Glycomic Analysis of Life Stages of the Human Parasite Developmental Expression Profiles of Functional and A

Molecular and Cellular Proteomics 14, 1750-1769 DOI: 10.1074/mcp.m115.048280

Citation Report

#	Article	IF	CITATIONS
1	Schistosoma mansonil $\pm 1,3$ -fucosyltransferase-F generates the Lewis X antigen. Glycobiology, 2015, 26, cwv103.	1.3	7
2	Surface expression patterns of defined glycan antigens change during <i>Schistosoma mansoni</i> cercarial transformation and development of schistosomula. Glycobiology, 2015, 25, 1465-1479.	1.3	21
3	Comprehensive Transcriptome Analysis of Sex-Biased Expressed Genes Reveals Discrete Biological and Physiological Features of Male and Female Schistosoma japonicum. PLoS Neglected Tropical Diseases, 2016, 10, e0004684.	1.3	43
4	Tegument Glycoproteins and Cathepsins of Newly Excysted Juvenile Fasciola hepatica Carry Mannosidic and Paucimannosidic N-glycans. PLoS Neglected Tropical Diseases, 2016, 10, e0004688.	1.3	32
5	Novel O -linked methylated glycan antigens decorate secreted immunodominant glycoproteins from the intestinal nematode Heligmosomoides polygyrus. International Journal for Parasitology, 2016, 46, 157-170.	1.3	16
6	Glycomics: revealing the dynamic ecology and evolution of sugar molecules. Journal of Proteomics, 2016, 135, 90-100.	1.2	41
7	Sweet secrets of a therapeutic worm: mass-spectrometric N-glycomic analysis of Trichuris suis. Analytical and Bioanalytical Chemistry, 2016, 408, 461-471.	1.9	27
8	The Tao survivorship of schistosomes: implications for schistosomiasis control. International Journal for Parasitology, 2016, 46, 453-463.	1.3	19
9	Identification of Antigenic Glycans from Schistosoma mansoni by Using a Shotgun Egg Glycan Microarray. Infection and Immunity, 2016, 84, 1371-1386.	1.0	27
10	The fucomic potential of mosquitoes: Fucosylated N-glycan epitopes and their cognate fucosyltransferases. Insect Biochemistry and Molecular Biology, 2016, 68, 52-63.	1.2	17
11	Local Antiglycan Antibody Responses to Skin Stage and Migratory Schistosomula of Schistosoma japonicum. Infection and Immunity, 2016, 84, 21-33.	1.0	8
12	A next-generation microarray further reveals stage-enriched gene expression pattern in the blood fluke Schistosoma japonicum. Parasites and Vectors, 2017, 10, 19.	1.0	16
13	Helminth glycomics – glycan repertoires and host-parasite interactions. Molecular and Biochemical Parasitology, 2017, 215, 47-57.	0.5	51
14	Gender and developmental specific N-glycomes of the porcine parasite Oesophagostomum dentatum. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 418-430.	1.1	29
15	Mass Spectrometry and Metabolomicsâ \in "New Approaches for Helminth Biochemical Studies. , 0, , .		2
16	Specific Pathogen Recognition by Multiple Innate Immune Sensors in an Invertebrate. Frontiers in Immunology, 2017, 8, 1249.	2.2	58
17	Changes in surface glycosylation and glycocalyx shedding in Trichobilharzia regenti (Schistosomatidae) during the transformation of cercaria to schistosomulum. PLoS ONE, 2017, 12, e0173217.	1.1	21
18	The anti-fecundity effect of 5-azacytidine (5-AzaC) on Schistosoma mansoni is linked to dis-regulated transcription, translation and stem cell activities. International Journal for Parasitology: Drugs and	1.4	18

CITATION REPORT

#	Article	IF	CITATIONS
19	The Schistosoma mansoni lipidome: Leads for immunomodulation. Analytica Chimica Acta, 2018, 1037, 107-118.	2.6	46
20	Identification of dominant anti-glycan IgE responses in school children by glycan microarray. Journal of Allergy and Clinical Immunology, 2018, 141, 1130-1133.	1.5	18
21	Antibody responses to <i>Schistosoma mansoni</i> schistosomula antigens. Parasite Immunology, 2018, 40, e12591.	0.7	10
22	Glycan Microarray-Assisted Identification of IgG Subclass Targets in Schistosomiasis. Frontiers in Immunology, 2018, 9, 2331.	2.2	17
23	In silico analyses of protein glycosylating genes in the helminth Fasciola hepatica (liver fluke) predict protein-linked glycan simplicity and reveal temporally-dynamic expression profiles. Scientific Reports, 2018, 8, 11700.	1.6	13
24	Metazoan Parasite Vaccines: Present Status and Future Prospects. Frontiers in Cellular and Infection Microbiology, 2018, 8, 67.	1.8	59
25	Dectin-1/2–induced autocrine PGE2 signaling licenses dendritic cells to prime Th2 responses. PLoS Biology, 2018, 16, e2005504.	2.6	79
26	Best-first search guided multistage mass spectrometry-based glycan identification. Bioinformatics, 2019, 35, 2991-2997.	1.8	7
27	Glycans in the roles of parasitological diagnosis and host–parasite interplay. Parasitology, 2019, 146, 1217-1232.	0.7	14
28	Comparisons of N-glycans across invertebrate phyla. Parasitology, 2019, 146, 1733-1742.	0.7	26
29	Galectin-2 suppresses nematode development by binding to the invertebrate-specific galactosel ² 1-4fucose glyco-epitope. Glycobiology, 2019, 29, 504-512.	1.3	6
30	Microarray assessment of N-glycan-specific IgE and IgG profiles associated with Schistosoma mansoni infection in rural and urban Uganda. Scientific Reports, 2019, 9, 3522.	1.6	14
31	Males, the Wrongly Neglected Partners of the Biologically Unprecedented Male–Female Interaction of Schistosomes. Frontiers in Genetics, 2019, 10, 796.	1.1	13
32	Micro Array-Assisted Analysis of Anti-Schistosome Glycan Antibodies Elicited by Protective Vaccination With Irradiated Cercariae. Journal of Infectious Diseases, 2019, 219, 1671-1680.	1.9	10
33	Highly modified and immunoactive N-glycans of the canine heartworm. Nature Communications, 2019, 10, 75.	5.8	36
34	Let's talk about sexes: sex-related N-glycosylation in ecologically important invertebrates. Glycoconjugate Journal, 2020, 37, 41-46.	1.4	2
35	Functional characterization of Schistosoma mansoni fucosyltransferases in Nicotiana benthamiana plants. Scientific Reports, 2020, 10, 18528.	1.6	14
36	<scp> <i>Macrobrachium rosenbergii</i> </scp> nodavirus virusâ€like particles attach to fucosylated glycans in the gills of the giant freshwater prawn. Cellular Microbiology, 2020, 22, e13258.	1.1	2

#	Article	IF	CITATIONS
37	Chemoâ€Enzymatic Synthesis of <i>S. mansoni</i> Oâ€Glycans and Their Evaluation as Ligands for Câ€Type Lectin Receptors MGL, DCâ€SIGN, and DCâ€SIGNR. Chemistry - A European Journal, 2020, 26, 12818-12830.	1.7	4
38	DCâ€SIGN mediated internalisation of glycosylated extracellular vesicles from <i>Schistosoma mansoni</i> increases activation of monocyteâ€derived dendritic cells. Journal of Extracellular Vesicles, 2020, 9, 1753420.	5.5	41
39	Unique glycan and lipid composition of helminth-derived extracellular vesicles may reveal novel roles in host-parasite interactions. International Journal for Parasitology, 2020, 50, 647-654.	1.3	12
40	Mono―and Diâ€Fucosylated Glycans of the Parasitic Worm <i>S. mansoni</i> are Recognized Differently by the Innate Immune Receptor DCâ€SIGN. Chemistry - A European Journal, 2020, 26, 15605-15612.	1.7	8
41	Antigenic cross-reactivity between Schistosoma mansoni and allergenic invertebrates putatively due to shared glycanic epitopes. Scientific Reports, 2020, 10, 3350.	1.6	6
42	Schistosomiasis—from immunopathology to vaccines. Seminars in Immunopathology, 2020, 42, 355-371.	2.8	90
43	Identification of glycan branching patterns using multistage mass spectrometry with spectra tree analysis. Journal of Proteomics, 2020, 217, 103649.	1.2	5
44	Glycomics, Glycoproteomics, and Glycogenomics: An Inter-Taxa Evolutionary Perspective. Molecular and Cellular Proteomics, 2021, 20, 100024.	2.5	27
45	N-glycome and N-glycoproteome of a hematophagous parasitic nematode Haemonchus. Computational and Structural Biotechnology Journal, 2021, 19, 2486-2496.	1.9	12
46	ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIXâ€ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015–2016. Mass Spectrometry Reviews, 2021, 40, 408-565.	2.8	18
47	Synthesis and Antibody Binding Studies of Schistosome-Derived Oligo-α-(1-2)-l-Fucosides. Molecules, 2021, 26, 2246.	1.7	1
48	Revisiting the Mechanisms of Immune Evasion Employed by Human Parasites. Frontiers in Cellular and Infection Microbiology, 2021, 11, 702125.	1.8	30
49	Chemoenzymatic Synthesis of Complex N â€Glycans of the Parasite S. mansoni to Examine the Importance of Epitope Presentation on DCâ€SIGN recognition. Angewandte Chemie, 2021, 133, 19436-19445.	1.6	1
50	Chemoenzymatic Synthesis of Complex <i>N</i> â€Glycans of the Parasite <i>S. mansoni</i> to Examine the Importance of Epitope Presentation on DCâ€SIGN recognition. Angewandte Chemie - International Edition, 2021, 60, 19287-19296.	7.2	12
52	Profiling the glycome of Cardicola forsteri, a blood fluke parasitic to bluefin tuna. International Journal for Parasitology, 2021, 52, 1-1.	1.3	2
53	Biochemical characterization of the recombinant schistosome tegumental protein SmALDH_312 produced in E. coli and baculovirus expression vector system. Electronic Journal of Biotechnology, 2021, 54, 26-36.	1.2	5
54	Community Rates of IgG4 Antibodies to Ascaris Haemoglobin Reflect Changes in Community Egg Loads Following Mass Drug Administration. PLoS Neglected Tropical Diseases, 2016, 10, e0004532.	1.3	23
55	Fasciola hepatica Surface Coat Glycoproteins Contain Mannosylated and Phosphorylated N-glycans and Exhibit Immune Modulatory Properties Independent of the Mannose Receptor. PLoS Neglected Tropical Diseases, 2016, 10, e0004601.	1.3	39

CITATION REPORT

#	Article	IF	CITATIONS
56	A Phosphorylcholine-Containing Glycolipid-like Antigen Present on the Surface of Infective Stage Larvae of Ascaris spp. Is a Major Antibody Target in Infected Pigs and Humans. PLoS Neglected Tropical Diseases, 2016, 10, e0005166.	1.3	12
57	Specific anti-glycan antibodies are sustained during and after parasite clearance in Schistosoma japonicum-infected rhesus macaques. PLoS Neglected Tropical Diseases, 2017, 11, e0005339.	1.3	23
58	<i>Schistosoma</i> Sporocysts. , 2016, , 118-148.		4
59	Identification of Small Molecules of the Infective Stage of Human Hookworm Using LCMS-Based Metabolomics and Lipidomics Protocols. ACS Infectious Diseases, 2021, 7, 3264-3276.	1.8	5
60	Mass Spectrometric and Glycan Microarray–Based Characterization of the Filarial Nematode Brugia malayi Glycome Reveals Anionic and Zwitterionic Glycan Antigens. Molecular and Cellular Proteomics, 2022, 21, 100201.	2.5	17
61	Helminth Glycans at the Host-Parasite Interface and Their Potential for Developing Novel Therapeutics. Frontiers in Molecular Biosciences, 2021, 8, 807821.	1.6	5
62	Fasciola hepatica is refractory to complement killing by preventing attachment of mannose binding lectin (MBL) and inhibiting MBL-associated serine proteases (MASPs) with serpins. PLoS Pathogens, 2022, 18, e1010226.	2.1	13
63	Schistosoma mansoni α-N-acetylgalactosaminidase (SmNAGAL) regulates coordinated parasite movement and egg production. PLoS Pathogens, 2022, 18, e1009828.	2.1	14
64	Schistosome immunomodulators. PLoS Pathogens, 2021, 17, e1010064.	2.1	25
69	Glyco-Engineering Plants to Produce Helminth Glycoproteins as Prospective Biopharmaceuticals: Recent Advances, Challenges and Future Prospects. Frontiers in Plant Science, 2022, 13, 882835.	1.7	2
70	Draft genome of the bluefin tuna blood fluke, Cardicola forsteri. PLoS ONE, 2022, 17, e0276287.	1.1	0
71	H11-induced immunoprotection is predominantly linked to N-glycan moieties during Haemonchus contortus infection. Frontiers in Immunology, 0, 13, .	2.2	6
72	Increasing Complexity of the N-Glycome During Caenorhabditis Development. Molecular and Cellular Proteomics, 2023, 22, 100505.	2.5	5
74	Life stage-specific glycosylation of extracellular vesicles from Schistosoma mansoni schistosomula and adult worms drives differential interaction with C-type lectin receptors DC-SIGN and MGL. Frontiers in Molecular Biosciences, 0, 10, .	1.6	1
75	Anti-schistosomal immunity to core xylose/fucose in N-glycans. Frontiers in Molecular Biosciences, 0, 10, .	1.6	4

CITATION REPORT