Clarifying Tissue Clearing

Cell 162, 246-257 DOI: 10.1016/j.cell.2015.06.067

Citation Report

#	Article	IF	CITATIONS
9	CLARITY and PACT-based imaging of adult zebrafish and mouse for whole-animal analysis of infections. DMM Disease Models and Mechanisms, 2015, 8, 1643-50.	1.2	56
10	Into the depths: Techniques for in vitro three-dimensional microtissue visualization. BioTechniques, 2015, 59, 279-286.	0.8	36
11	Optical clearing based cellular-level 3D visualization of intact lymph node cortex. Biomedical Optics Express, 2015, 6, 4154.	1.5	28
12	Simple, Scalable Proteomic Imaging for High-Dimensional Profiling of Intact Systems. Cell, 2015, 163, 1500-1514.	13.5	391
13	A Whole-Mount Approach for Accurate Quantitative and Spatial Assessment of Fetal Oocyte Dynamics in Mice1. Biology of Reproduction, 2015, 93, 113.	1.2	27
14	Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nature Protocols, 2015, 10, 1860-1896.	5.5	234
15	Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6274-83.	3.3	195
16	ScaleS: an optical clearing palette for biological imaging. Nature Neuroscience, 2015, 18, 1518-1529.	7.1	511
17	Clearing and Labeling Techniques for Large-Scale Biological Tissues. Molecules and Cells, 2016, 39, 439-446.	1.0	96
18	Under the (Light) Sheet after the iDISCO+. Epilepsy Currents, 2016, 16, 405-407.	0.4	2
19	Whole Brain Imaging with Serial Two-Photon Tomography. Frontiers in Neuroanatomy, 2016, 10, 31.	0.9	73
20	Connectomic Analysis of Brain Networks: Novel Techniques and Future Directions. Frontiers in Neuroanatomy, 2016, 10, 110.	0.9	23
21	Clarifying CLARITY: Quantitative Optimization of the Diffusion Based Delipidation Protocol for Genetically Labeled Tissue. Frontiers in Neuroscience, 2016, 10, 179.	1.4	37
22	Lighting up Neuroanatomy. Frontiers in Neuroscience, 2016, 10, 293.	1.4	0
23	Advanced Fluorescence Protein-Based Synapse-Detectors. Frontiers in Synaptic Neuroscience, 2016, 8, 16.	1.3	16
24	A Versatile Optical Clearing Protocol for Deep Tissue Imaging of Fluorescent Proteins in Arabidopsis thaliana. PLoS ONE, 2016, 11, e0161107.	1.1	37
25	3D imaging in CUBIC-cleared mouse heart tissue: going deeper. Biomedical Optics Express, 2016, 7, 3716.	1.5	33
26	Light sheet Raman micro-spectroscopy. Optica, 2016, 3, 452.	4.8	45

#	Article	IF	CITATIONS
27	Extracting structural and functional features of widely distributed biological circuits with single cell resolution via tissue clearing and delivery vectors. Current Opinion in Biotechnology, 2016, 40, 193-207.	3.3	41
28	New approaches in renal microscopy. Current Opinion in Nephrology and Hypertension, 2016, 25, 159-167.	1.0	7
29	Light microscopy of whole plant organs. Journal of Microscopy, 2016, 263, 165-170.	0.8	18
30	CD11c.DTR mice develop a fatal fulminant myocarditis after local or systemic treatment with diphtheria toxin. European Journal of Immunology, 2016, 46, 2028-2042.	1.6	20
31	Kinetics of Reactive Modules Adds Discriminative Dimensions for Selective Cell Imaging. ChemPhysChem, 2016, 17, 1396-1413.	1.0	12
32	Real-time high dynamic range laser scanning microscopy. Nature Communications, 2016, 7, 11077.	5.8	33
33	Low-cost multimodal light sheet microscopy for optically cleared tissues and living specimens. Journal of Biomedical Optics, 2016, 21, 1.	1.4	1
34	Large-scale tissue clearing (PACT): Technical evaluation and new perspectives in immunofluorescence, histology and ultrastructure. Scientific Reports, 2016, 6, 34331.	1.6	67
35	Human Brainnetome Atlas and Its Potential Applications in Brain-Inspired Computing. Lecture Notes in Computer Science, 2016, , 1-14.	1.0	6
36	An Integrative Platform for Three-dimensional Quantitative Analysis of Spatially Heterogeneous Metastasis Landscapes. Scientific Reports, 2016, 6, 24201.	1.6	13
37	ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Scientific Reports, 2016, 6, 18631.	1.6	186
38	On-chip clearing of arrays of 3-D cell cultures and micro-tissues. Biomicrofluidics, 2016, 10, 044107.	1.2	40
39	Clearing of fixed tissue: a review from a microscopist's perspective. Journal of Biomedical Optics, 2016, 21, 081205.	1.4	140
40	Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes. Cell, 2016, 165, 1789-1802.	13.5	641
41	Success of transdisciplinary science requires monodisciplinary support. Cell Biology and Toxicology, 2016, 32, 5-6.	2.4	4
42	Neuro-Immune Interactions at Barrier Surfaces. Cell, 2016, 165, 801-811.	13.5	201
43	Novel imaging tools for investigating the role of immune signalling in the brain. Brain, Behavior, and Immunity, 2016, 58, 40-47.	2.0	12
44	Light and Electron Microscopy Methods for Examination of Cochlear Morphology in Mouse Models of Deafness. Current Protocols in Mouse Biology, 2016, 6, 272-306.	1.2	5

	CITATION	n Report	
#	Article	IF	CITATIONS
45	Super-resolution microscopy writ large. Nature Biotechnology, 2016, 34, 928-930.	9.4	9
46	Threeâ€dimensional microscopic analysis of clinical prostate specimens. Histopathology, 2016, 69, 985-992.	1.6	71
47	Deep tissue imaging: a review from a preclinical cancer research perspective. Histochemistry and Cell Biology, 2016, 146, 781-806.	0.8	50
48	Animal Models of Behavior Genetics. , 2016, , .		0
49	Extending two-dimensional histology into the third dimension through conventional micro computed tomography. NeuroImage, 2016, 139, 26-36.	2.1	69
50	BiDiFuse: a FIJI plugin for fusing bi-directionally recorded microscopic image volumes. Bioinformatics, 2016, 32, 3691-3693.	1.8	2
51	Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nature Methods, 2016, 13, 859-867.	9.0	522
53	High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14456-14461.	3.3	224
54	Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nature Biotechnology, 2016, 34, 973-981.	9.4	351
55	Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny. Nature Communications, 2016, 7, 13053.	5.8	109
56	Reconnecting Eye to Brain. Journal of Neuroscience, 2016, 36, 10707-10722.	1.7	73
57	A crystal-clear zebrafish for in vivo imaging. Scientific Reports, 2016, 6, 29490.	1.6	122
58	Simplified three-dimensional tissue clearing and incorporation of colorimetric phenotyping. Scientific Reports, 2016, 6, 30736.	1.6	38
59	CLARITY-compatible lipophilic dyes for electrode marking and neuronal tracing. Scientific Reports, 2016, 6, 32674.	1.6	46
60	Rapid Acquisition of 3D Images Using High-resolution Episcopic Microscopy. Journal of Visualized Experiments, 2016, , .	0.2	2
61	Imaging Cleared Embryonic and Postnatal Hearts at Single-cell Resolution. Journal of Visualized Experiments, 2016, , .	0.2	5
62	Behavioral characterization of neuropathic pain on the glabrous skin areas reinnervated solely by axotomy-regenerative axons after adult rat sciatic nerve crush. NeuroReport, 2016, 27, 404-414.	0.6	6
63	Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology. Journal of Neurophysiology, 2016, 115, 2124-2146.	0.9	17

#	Article	IF	CITATIONS
64	A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Progress in Histochemistry and Cytochemistry, 2016, 51, 9-23.	5.1	146
65	The untapped potential of the GENSAT mice—A valuable resource for developmental biology. Genesis, 2016, 54, 245-256.	0.8	5
66	Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nature Communications, 2016, 7, 10374.	5.8	173
67	Decalcification using ethylenediaminetetraacetic acid for clear microstructure imaging of cochlea through optical coherence tomography. Journal of Biomedical Optics, 2016, 21, 081204.	1.4	30
68	Multiplexed Intact-Tissue Transcriptional Analysis at Cellular Resolution. Cell, 2016, 164, 792-804.	13.5	125
69	Advancing multiscale structural mapping of the brain through fluorescence imaging and analysis across length scales. Interface Focus, 2016, 6, 20150081.	1.5	8
70	Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals. Cell Chemical Biology, 2016, 23, 137-157.	2.5	263
71	Optimizing probes to image cleared tissue. Nature Methods, 2016, 13, 205-209.	9.0	31
72	Validation of a Three-Dimensional Method for Counting and Sizing Podocytes in Whole Glomeruli. Journal of the American Society of Nephrology: JASN, 2016, 27, 3093-3104.	3.0	59
73	Communication in Neural Circuits: Tools, Opportunities, and Challenges. Cell, 2016, 164, 1136-1150.	13.5	143
74	Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent. Cell Reports, 2016, 14, 2718-2732.	2.9	227
75	Recent advancement in the challenges to connectomics. Microscopy (Oxford, England), 2016, 65, 97-107.	0.7	12
76	A beginner's guide to tissue clearing. International Journal of Biochemistry and Cell Biology, 2017, 84, 35-39.	1.2	108
77	High-resolution 3D imaging of whole organ after clearing: taking a new look at the zebrafish testis. Scientific Reports, 2017, 7, 43012.	1.6	37
78	Three-dimensional mouse brain cytoarchitecture revealed by laboratory-based x-ray phase-contrast tomography. Scientific Reports, 2017, 7, 42847.	1.6	67
79	Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution. Scientific Reports, 2017, 7, 42209.	1.6	41
80	Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nature Communications, 2017, 8, 14293.	5.8	155
81	Label-free volumetric optical imaging of intact murine brains. Scientific Reports, 2017, 7, 46306.	1.6	13

		CITATION REPORT		
#	Article		IF	CITATIONS
82	We can see clearly now. Current Opinion in Nephrology and Hypertension, 2017, 26, 1	.79-186.	1.0	12
83	Three-dimensional imaging of human brain tissues using absorption-contrast high-reso tomography. , 2017, , .	lution X-ray		0
84	Clarification and 3-D visualization of immunolabeled human placenta villi. Placenta, 20	17, 53, 36-39.	0.7	16
85	Single-Cell RNA Sequencing: Unraveling the Brain One Cell at a Time. Trends in Molecu 2017, 23, 563-576.	lar Medicine,	3.5	111
86	Bone CLARITY: Clearing, imaging, and computational analysis of osteoprogenitors with marrow. Science Translational Medicine, 2017, 9, .	iin intact bone	5.8	160
87	FSOCAâ€induced switchable footpad skin optical clearing window for blood flow and <i>inâ€vivo</i> . Journal of Biophotonics, 2017, 10, 1647-1656.	cell imaging	1.1	10
88	A novel imaging method for correlating 2D light microscopic data and 3D volume data block-face imaging. Scientific Reports, 2017, 7, 3645.	based on	1.6	23
89	Resolving in vivo gene expression during collective cell migration using an integrated R immunohistochemistry and tissue clearing method. Mechanisms of Development, 201	NAscope, 7, 148, 100-106.	1.7	17
90	Quantifying podocyte depletion: theoretical and practical considerations. Cell and Tiss 2017, 369, 229-236.	ue Research,	1.5	18
91	Optical clearing of the eye using the See Deep Brain technique. Eye, 2017, 31, 1496-1	502.	1.1	11
92	Introduction to Homeostatic Migration. Methods in Molecular Biology, 2017, 1591, 1-	8.	0.4	0
93	Tridimensional Visualization and Analysis of Early Human Development. Cell, 2017, 16	9, 161-173.e12.	13.5	262
94	A dosimetric model for the heterogeneous delivery of radioactive nanoparticles In vivo study. Radiation Oncology, 2017, 12, 54.	: a feasibility	1.2	1
95	Multiparametric Imaging of Organ System Interfaces. Circulation: Cardiovascular Imag	ing, 2017, 10, .	1.3	6
96	New structural insights into podocyte biology. Cell and Tissue Research, 2017, 369, 5-	10.	1.5	21
97	The role of myelination in measures of white matter integrity: Combination of diffusior imaging and two-photon microscopy of CLARITY intact brains. NeuroImage, 2017, 147	1 tensor , 253-261.	2.1	133
98	A multilevel framework to reconstruct anatomical 3D models of the hepatic vasculatur Journal of Anatomy, 2017, 230, 471-483.	e in rat livers.	0.9	20
99	A platform for efficient identification of molecular phenotypes of brain-wide neural circ Scientific Reports, 2017, 7, 13891.	uits.	1.6	27

#	Article	IF	CITATIONS
100	Functional mapping of brain synapses by the enriching activity-marker SynaptoZip. Nature Communications, 2017, 8, 1229.	5.8	22
101	SnapShot: Tissue Clearing. Cell, 2017, 171, 496-496.e1.	13.5	41
102	Improved vessel painting with carbocyanine dye-liposome solution for visualisation of vasculature. Scientific Reports, 2017, 7, 10089.	1.6	14
103	Threeâ€dimensional distribution of tyrosine hydroxylase, vasopressin and oxytocin neurones in the transparent postnatal mouse brain. Journal of Neuroendocrinology, 2017, 29, e12551.	1.2	15
104	3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy. Science Advances, 2017, 3, e1700553.	4.7	29
105	Comparison of tissue processing methods for microvascular visualization in axolotls. MethodsX, 2017, 4, 265-273.	0.7	3
106	Myofibril contraction and crosslinking drive nuclear movement to the periphery of skeletal muscle. Nature Cell Biology, 2017, 19, 1189-1201.	4.6	100
107	Large-scale 3-dimensional quantitative imaging of tissues: state-of-the-art and translational implications. Translational Research, 2017, 189, 1-12.	2.2	23
108	Advances and perspectives in tissue clearing using CLARITY. Journal of Chemical Neuroanatomy, 2017, 86, 19-34.	1.0	52
109	Quantitative Visualization of Leukocyte Infiltrate in a Murine Model of Fulminant Myocarditis by Light Sheet Microscopy. Journal of Visualized Experiments, 2017, , .	0.2	2
110	Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (C _e 3D). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7321-E7330.	3.3	238
111	Pathways to clinical CLARITY: volumetric analysis of irregular, soft, and heterogeneous tissues in development and disease. Scientific Reports, 2017, 7, 5899.	1.6	33
112	Multiplex three-dimensional optical mapping of tumor immune microenvironment. Scientific Reports, 2017, 7, 17031.	1.6	41
113	Phase-Retrieved Tomography enables Mesoscopic imaging of Opaque Tumor Spheroids. Scientific Reports, 2017, 7, 11854.	1.6	14
114	High-resolution Confocal Imaging of the Blood-brain Barrier: Imaging, 3D Reconstruction, and Quantification of Transcytosis. Journal of Visualized Experiments, 2017, , .	0.2	6
115	Q&A: How can advances in tissue clearing and optogenetics contribute to our understanding of normal and diseased biology?. BMC Biology, 2017, 15, 87.	1.7	8
116	xDCl, a data science cyberinfrastructure for interdisciplinary research. , 2017, , .		0
117	A platform for stereological quantitative analysis of the brain-wide distribution of type-specific neurons. Scientific Reports, 2017, 7, 14334.	1.6	24

#	Article	IF	CITATIONS
118	Regulatory myeloid cells: an underexplored continent in B-cell lymphomas. Cancer Immunology, Immunotherapy, 2017, 66, 1103-1111.	2.0	19
119	Fully Automated Evaluation of Total Glomerular Number and Capillary Tuft Size in Nephritic Kidneys Using Lightsheet Microscopy. Journal of the American Society of Nephrology: JASN, 2017, 28, 452-459.	3.0	274
120	Whole-Brain Microscopy Meets In Vivo Neuroimaging: Techniques, Benefits, and Limitations. Molecular Imaging and Biology, 2017, 19, 1-9.	1.3	30
121	Clustered structural and functional plasticity of dendritic spines. Brain Research Bulletin, 2017, 129, 18-22.	1.4	38
122	Tissue microenvironment and cellular imaging. , 2017, , .		0
123	Compensating anisotropy in histological serial sections with optical flow-based interpolation. , 2017, ,		8
124	Quantification and three-dimensional microanatomical organization of the bone marrow. Blood Advances, 2017, 1, 407-416.	2.5	84
125	Spectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer's disease brain samples. Biomedical Optics Express, 2017, 8, 4007.	1.5	51
126	Looking inside the heart: a see-through view of the vascular tree. Biomedical Optics Express, 2017, 8, 3110.	1.5	21
127	Whole blood clot optical clearing for nondestructive 3D imaging and quantitative analysis. Biomedical Optics Express, 2017, 8, 3671.	1.5	12
128	Multimode fibre based imaging for optically cleared samples. Biomedical Optics Express, 2017, 8, 5179.	1.5	5
129	Growth and Morphogenesis during Early Heart Development in Amniotes. Journal of Cardiovascular Development and Disease, 2017, 4, 20.	0.8	16
130	Longitudinal imaging of HIV-1 spread in humanized mice with parallel 3D immunofluorescence and electron tomography. ELife, 2017, 6, .	2.8	27
131	Brain Vascular Imaging Techniques. International Journal of Molecular Sciences, 2017, 18, 70.	1.8	35
132	Editorial: Tertiary Lymphoid Organs (TLOs): Powerhouses of Disease Immunity. Frontiers in Immunology, 2017, 8, 228.	2.2	14
133	A Manual Segmentation Tool for Three-Dimensional Neuron Datasets. Frontiers in Neuroinformatics, 2017, 11, 36.	1.3	16
134	Ribbon scanning confocal for high-speed high-resolution volume imaging of brain. PLoS ONE, 2017, 12, e0180486.	1.1	33
135	Investigating dye performance and crosstalk in fluorescence enabled bioimaging using a model system. PLoS ONE, 2017, 12, e0188359.	1.1	9

#	Article	IF	CITATIONS
136	Neuroscience in the third dimension: shedding new light on the brain with tissue clearing. Molecular Brain, 2017, 10, 33.	1.3	70
137	A Systems Neuroscience Approach to Migraine. Neuron, 2018, 97, 1004-1021.	3.8	134
138	Superâ€resolution structural analysis of dendritic spines using threeâ€dimensional structured illumination microscopy in cleared mouse brain slices. European Journal of Neuroscience, 2018, 47, 1033-1042.	1.2	10
139	Society of Biomolecular Imaging and Informatics High-Content Screening/High-Content Analysis Emerging Technologies in Biological Models, When and Why?. Assay and Drug Development Technologies, 2018, 16, 1-6.	0.6	4
140	A hybridization-chain-reaction-based method for amplifying immunosignals. Nature Methods, 2018, 15, 275-278.	9.0	91
141	Immunolabeling of Cleared Human Pancreata Provides Insights into Three-Dimensional Pancreatic Anatomy and Pathology. American Journal of Pathology, 2018, 188, 1530-1535.	1.9	38
142	Synaptic nanomodules underlie the organization and plasticity of spine synapses. Nature Neuroscience, 2018, 21, 671-682.	7.1	188
143	Tissue-Clearing Techniques Enable Three-Dimensional Visualization of Aerosolized Model Compound and Lung Structure at the Alveolar Scale. Biological and Pharmaceutical Bulletin, 2018, 41, 24-28.	0.6	8
144	A review of techniques for visualising soft tissue microstructure deformation and quantifying strain <i>Ex Vivo</i> . Journal of Microscopy, 2018, 272, 165-179.	0.8	35
145	Genetic Dissection of Neural Circuits: A Decade of Progress. Neuron, 2018, 98, 256-281.	3.8	374
146	Three-dimensional Rendering and Analysis of Immunolabeled, Clarified Human Placental Villous Vascular Networks. Journal of Visualized Experiments, 2018, , .	0.2	9
147	ClearT immersion optical clearing method for intact 3D spheroids imaging through confocal laser scanning microscopy. Optics and Laser Technology, 2018, 106, 94-99.	2.2	24
148	Molecular mobility and activity in an intravital imaging setting – implications for cancer progression and targeting. Journal of Cell Science, 2018, 131, .	1.2	32
149	Application of the Mesolens for subcellular resolution imaging of intact larval and whole adult <i>Drosophila</i> . Journal of Microscopy, 2018, 270, 252-258.	0.8	22
150	High Resolution 3D Imaging of the Human Pancreas Neuro-insular Network. Journal of Visualized Experiments, 2018, , .	0.2	16
151	Microscopy of fungal biofilms. Current Opinion in Microbiology, 2018, 43, 100-107.	2.3	30
152	Application of light sheet microscopy for qualitative and quantitative analysis of bronchus-associated lymphoid tissue in mice. Cellular and Molecular Immunology, 2018, 15, 875-887.	4.8	24
153	RTF: a rapid and versatile tissue optical clearing method. Scientific Reports, 2018, 8, 1964.	1.6	53

#	Article	IF	CITATIONS
154	Three-dimensional visualization of extracellular matrix networks during murine development. Developmental Biology, 2018, 435, 122-129.	0.9	17
155	A Novel Ultra-Stable, Monomeric Green Fluorescent Protein For Direct Volumetric Imaging of Whole Organs Using CLARITY. Scientific Reports, 2018, 8, 667.	1.6	66
156	17 Multiscale correlative imaging of the brain. , 2018, , 321-344.		0
157	Developing 3D microscopy with CLARITY on human brain tissue: Towards a tool for informing and validating MRI-based histology. NeuroImage, 2018, 182, 417-428.	2.1	81
158	Quantitative validation of immunofluorescence and lectin staining using reduced CLARITY acrylamide formulations. Brain Structure and Function, 2018, 223, 987-999.	1.2	9
159	3D Image Analysis of theÂMicrovasculature in Healthy and Diseased Tissues. Methods in Molecular Biology, 2018, 1731, 193-212.	0.4	0
160	Proteases and Cancer. Methods in Molecular Biology, 2018, , .	0.4	1
161	Somatic mutations in neurons during aging and neurodegeneration. Acta Neuropathologica, 2018, 135, 811-826.	3.9	35
162	Clarity and Immunofluorescence on Mouse Brain Tissue. Current Protocols in Neuroscience, 2018, 83, e46.	2.6	2
163	Self-interference 3D super-resolution microscopy for deep tissue investigations. Nature Methods, 2018, 15, 449-454.	9.0	86
164	Three-dimensional Cardiomyocytes Structure Revealed By Diffusion Tensor Imaging and Its Validation Using a Tissue-Clearing Technique. Scientific Reports, 2018, 8, 6640.	1.6	22
165	Next generation histology methods for three-dimensional imaging of fresh and archival human brain tissues. Nature Communications, 2018, 9, 1066.	5.8	98
166	Mesoscale connectomics. Current Opinion in Neurobiology, 2018, 50, 154-162.	2.0	59
167	Light-Sheet Imaging to Elucidate Cardiovascular Injury and Repair. Current Cardiology Reports, 2018, 20, 35.	1.3	21
168	Validation of an easily applicable three-dimensional immunohistochemical imaging method for a mouse brain using conventional confocal microscopy. Histochemistry and Cell Biology, 2018, 149, 97-103.	0.8	1
169	Optical clearing of small intestine for threeâ€dimensional visualization of cellular proliferation within crypts. Journal of Anatomy, 2018, 232, 152-157.	0.9	6
170	Pancreatic neuro-insular network in young mice revealed by 3D panoramic histology. Diabetologia, 2018, 61, 158-167.	2.9	48
171	Optical clearing for multiscale biological tissues. Journal of Biophotonics, 2018, 11, e201700187.	1.1	75

#	ARTICLE	IF	CITATIONS
172	Dopaminergic dysfunction in neurodevelopmental disorders: recent advances and synergistic technologies to aid basic research. Current Opinion in Neurobiology, 2018, 48, 17-29.	2.0	23
173	A novel, modernized Golgi-Cox stain optimized for CLARITY cleared tissue. Journal of Neuroscience Methods, 2018, 294, 102-110.	1.3	18
174	A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. Plant Journal, 2018, 93, 399-412.	2.8	324
175	Multicolor quantitative confocal imaging cytometry. Nature Methods, 2018, 15, 39-46.	9.0	86
176	High-resolution ultramicroscopy of the developing and adult nervous system in optically cleared Drosophila melanogaster. Nature Communications, 2018, 9, 4731.	5.8	54
177	Cell-type-specific and projection-specific brain-wide reconstruction of single neurons. Nature Methods, 2018, 15, 1033-1036.	9.0	97
178	Bright multicolor labeling of neuronal circuits with fluorescent proteins and chemical tags. ELife, 2018, 7, .	2.8	48
179	Multidirectional digital scanned light-sheet microscopy enables uniform fluorescence excitation and contrast-enhanced imaging. Scientific Reports, 2018, 8, 13878.	1.6	22
180	Optical Clearing in the Kidney Reveals Potassium-Mediated Tubule Remodeling. Cell Reports, 2018, 25, 2668-2675.e3.	2.9	40
181	Imaging the Life and Death of mRNAs in Single Cells. Cold Spring Harbor Perspectives in Biology, 2018, 10, a032086.	2.3	8
182	Light-sheet Fluorescence Microscopy for the Study of the Murine Heart. Journal of Visualized Experiments, 2018, , .	0.2	12
183	Aqueous mounting media increasing tissue translucence improve image quality in Structured Illumination Microscopy of thick biological specimen. Scientific Reports, 2018, 8, 13971.	1.6	10
184	3D multiscale imaging of human vocal folds using synchrotron X-ray microtomography in phase retrieval mode. Scientific Reports, 2018, 8, 14003.	1.6	30
185	Predicting a tumour's drug uptake. Nature Biomedical Engineering, 2018, 2, 717-718.	11.6	1
186	Specimen Preparation. , 2018, , 73-97.		0
187	Acquisition and reconstruction of 4D surfaces of axolotl embryos with the flipping stage robotic microscope. BioSystems, 2018, 173, 214-220.	0.9	5
188	Acute Myeloid Leukemia and the Bone Marrow Niche—Take a Closer Look. Frontiers in Oncology, 2018, 8, 444.	1.3	66
189	Three-dimensional imaging of the developing human fetal urogenital-genital tract: Indifferent stage to male and female differentiation. Differentiation, 2018, 103, 14-23.	1.0	14

#	Article	IF	Citations
190	Recording the wild lives of immune cells. Science Immunology, 2018, 3, .	5.6	59
191	Optical Clearing of Murine Bones to Study Megakaryocytes in Intact Bone Marrow Using Light-Sheet Fluorescence Microscopy. Methods in Molecular Biology, 2018, 1812, 233-253.	0.4	7
194	Assessing Individual Neuronal Activity Across the Intact Brain: Using Hybridization Chain Reaction (HCR) to Detect <i>Arc</i> mRNA Localized to the Nucleus in Volumes of Cleared Brain Tissue. Current Protocols in Neuroscience, 2018, 84, e49.	2.6	10
195	Tracing Gene Expression Through Detection of β-galactosidase Activity in Whole Mouse Embryos. Journal of Visualized Experiments, 2018, , .	0.2	2
196	3D imaging in the postmortem human brain with CLARITY and CUBIC. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 150, 303-317.	1.0	5
197	Validation strategies for the interpretation of microstructure imaging using diffusion MRI. NeuroImage, 2018, 182, 62-79.	2.1	73
198	Light sheet theta microscopy for rapid high-resolution imaging of large biological samples. BMC Biology, 2018, 16, 57.	1.7	86
199	Imaging transparent intact cardiac tissue with single-cell resolution. Biomedical Optics Express, 2018, 9, 423.	1.5	24
200	Beyond backscattering: optical neuroimaging by BRAD. Biomedical Optics Express, 2018, 9, 2476.	1.5	25
201	Adipo-Clear: A Tissue Clearing Method for Three-Dimensional Imaging of Adipose Tissue. Journal of Visualized Experiments, 2018, , .	0.2	46
202	Brain architecture at varying scales. Journal of Neuroscience Research, 2018, 96, 1447-1449.	1.3	0
203	High-Resolution, Three-Dimensional Reconstruction of the Outflow Tract Demonstrates Segmental Differences in Cleared Eyes. , 2018, 59, 2371.		29
204	Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models. Frontiers in Medicine, 2018, 5, 179.	1.2	45
205	Clearing for Deep Tissue Imaging. Current Protocols in Cytometry, 2018, 86, e38.	3.7	34
206	3D Clearing and Molecular Labeling in Plant Tissues. Methods in Molecular Biology, 2018, 1770, 285-304.	0.4	2
207	Concepts in Light Microscopy of Viruses. Viruses, 2018, 10, 202.	1.5	44
208	Silencing cuticular pigmentation genes enables RNA FISH in intact insect appendages. Journal of Experimental Biology, 2018, 221, .	0.8	7
209	Whole-body clearing, staining and screening of calcium deposits in the mdx mouse model of Duchenne muscular dystrophy. Skeletal Muscle, 2018, 8, 21.	1.9	16

	CITATION RE	PORT	
#	Article	IF	CITATIONS
210	Linking neuronal lineage and wiring specificity. Neural Development, 2018, 13, 5.	1.1	37
211	PolNet: A Tool to Quantify Network-Level Cell Polarity and Blood Flow in Vascular Remodeling. Biophysical Journal, 2018, 114, 2052-2058.	0.2	29
212	Humanizing Miniature Hearts through 4-Flow Cannulation Perfusion Decellularization and Recellularization. Scientific Reports, 2018, 8, 7458.	1.6	32
213	Imaging a Large Sample with Selective Plane Illumination Microscopy Based on Multiple Fluorescent Microsphere Tracking. Journal of the Korean Physical Society, 2018, 72, 880-884.	0.3	1
214	Advances in CLARITY‑based tissue clearing and imaging (Review). Experimental and Therapeutic Medicine, 2018, 16, 1567-1576.	0.8	21
215	On the Usage of Brain Atlases in Neuroimaging Research. Molecular Imaging and Biology, 2018, 20, 742-749.	1.3	28
216	Optimizing tissue-clearing conditions based on analysis of the critical factors affecting tissue-clearing procedures. Scientific Reports, 2018, 8, 12815.	1.6	37
217	Whole-Brain Vasculature Reconstruction at the Single Capillary Level. Scientific Reports, 2018, 8, 12573.	1.6	96
218	Optimization of GFP Fluorescence Preservation by a Modified uDISCO Clearing Protocol. Frontiers in Neuroanatomy, 2018, 12, 67.	0.9	33
219	3D Imaging and Quantitative Analysis of Vascular Networks: A Comparison of Ultramicroscopy and Micro-Computed Tomography. Theranostics, 2018, 8, 2117-2133.	4.6	41
220	Combined fractional carbon dioxide laser and longâ€pulsed neodymium : yttriumâ€aluminiumâ€garnet (1064) Tj controlled study. International Journal of Dermatology, 2018, 57, 1135-1144.	ETQq0 0 (0.5	0 rgBT /Overl 28
221	Hard Xâ€Ray Nanoholotomography: Largeâ€Scale, Labelâ€Free, 3D Neuroimaging beyond Optical Limit. Advanced Science, 2018, 5, 1700694.	5.6	45
222	BrainFilm, a novel technique for physical compression of 3D brain slices for efficient image acquisition and post-processing. Scientific Reports, 2018, 8, 8531.	1.6	8
223	A Novel Technique for Visualizing and Analyzing the Cerebral Vasculature in Rodents. Translational Stroke Research, 2019, 10, 216-230.	2.3	19
224	Light-Sheet Microscopy for Whole-Brain Imaging. Progress in Optical Science and Photonics, 2019, , 69-81.	0.3	5
225	Chemical Processing of Brain Tissues for Large-Volume, High-Resolution Optical Imaging. Progress in Optical Science and Photonics, 2019, , 295-334.	0.3	2
226	The Airyscan Detector: Confocal Microscopy Evolution for the Neurosciences. Progress in Optical Science and Photonics, 2019, , 83-102.	0.3	2
227	Saturated twoâ€photon excitation fluorescence microscopy for the visualization of cerebral neural of Biophotonics, 2019, 12, e201800136.	1.1	7

ARTICLE IF CITATIONS # Next-generation imaging of the skeletal system and its blood supply. Nature Reviews Rheumatology, 228 3.5 46 2019, 15, 533-549. Optical Clearing and Imaging of Immunolabeled Kidney Tissue. Journal of Visualized Experiments, 2019, , 229 0.2 230 Computer Optimized Microscopy. Methods in Molecular Biology, 2019, , . 0.4 4 BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. Nature 9.0 214 Methods, 2019, 16, 870-874. FxClear, A Free-hydrogel Electrophoretic Tissue Clearing Method for Rapid De-lipidation of Tissues 232 0.7 5 with High Preservation of Immunoreactivity. Experimental Neurobiology, 2019, 28, 436-445. Refinement of a clearing protocol to study crassinucellate ovules of the sugar beet (Beta vulgaris L.,) Tj ETQq1 1 0.784314 rgBT /Over Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes. Annual Review 234 4.0 98 of Cell and Developmental Biology, 2019, 35, 655-681. Advances in Ex Situ Tissue Optical Clearing. Laser and Photonics Reviews, 2019, 13, 1800292. 4.4 mSphere of Influence: Clearing a Path for High-Resolution Visualization of Host-Pathogen 236 1.3 0 Interactions <i>In Vivo</i>. MSphere, 2019, 4, . Optical clearing methods: An overview of the techniques used for the imaging of 3D spheroids. 1.7 Biotechnology and Bioengineering, 2019, 116, 2742-2763. Modified CLARITY Achieving Faster and Better Intact Mouse Brain Clearing and Immunostaining. 238 7 1.6 Scientific Reports, 2019, 9, 10571. Venom Atypical Extracellular Vesicles as Interspecies Vehicles of Virulence Factors Involved in Host 2.2 Specificity: The Case of a Drosophila Parasitoid Wasp. Frontiers in Immunology, 2019, 10, 1688. Coherent Raman Scattering Unravelling Mechanisms Underlying Skull Optical Clearing for 240 3.2 29 Through-Skull Brain Imaging. Analytical Chemistry, 2019, 91, 9371-9375. Introductory Chapter: Histological Microtechniques., 2019,,. 241 Light sheet microscopy for histopathology applications. Biomedical Engineering Letters, 2019, 9, 242 2.1 30 279-291. Single-cell memory trace imaging with immediate-early genes. Journal of Neuroscience Methods, 2019, 243 24 326, 108368. Probing the 3D architecture of the plant nucleus with microscopy approaches: challenges and 244 0.6 30 solutions. Nucleus, 2019, 10, 181-212. 245 Tissue Transparency In Vivo. Molecules, 2019, 24, 2388.

#	Article	IF	CITATIONS
246	Understanding the axonal response to injury by imaging in the mouse spinal cord: A tale of two branches. Experimental Neurology, 2019, 318, 277-285.	2.0	15
247	A Review of Intrinsic Optical Imaging Serial Blockface Histology (ICI-SBH) for Whole Rodent Brain Imaging. Photonics, 2019, 6, 66.	0.9	4
248	Multi-modal image cytometry approach – From dynamic to whole organ imaging. Cellular Immunology, 2019, 344, 103946.	1.4	3
249	Diffraction-limited axial scanning in thick biological tissue with an aberration-correcting adaptive lens. Scientific Reports, 2019, 9, 9532.	1.6	26
250	Multi-immersion open-top light-sheet microscope for high-throughput imaging of cleared tissues. Nature Communications, 2019, 10, 2781.	5.8	135
251	Rapid single-wavelength lightsheet localization microscopy for clarified tissue. Nature Communications, 2019, 10, 4762 Quasifree Neutron Knockout from <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>5.8</td><td>25</td></mml:math>	5.8	25
252	display="inline"> <mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi>Ca</mml:mi></mml:mrow><mml:mpr /><mml:none /><mml:mrow><mml:mn>54</mml:mn></mml:mrow></mml:none </mml:mpr </mml:mmultiscripts></mml:mrow> Corroborates Arising <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>escripts 2.9</td><td>48</td></mml:math>	escripts 2.9	48
253	display="inline"> <mml:mi>N</mml:mi> <mml:mo>=</mml:mo> <mml:mo>34 Neutr Moving tissue spectral window to the deepâ€ultraviolet via optical clearing. Journal of Biophotonics, 2019, 12, e201900181.</mml:mo>	1.1	15
254	A Clearing Technique to Enhance Endogenous Fluorophores in Skin and Soft Tissue. Scientific Reports, 2019, 9, 15791.	1.6	15
255	Light-sheet microscopy of cleared tissues with isotropic, subcellular resolution. Nature Methods, 2019, 16, 1109-1113.	9.0	128
256	Stem cell–driven lymphatic remodeling coordinates tissue regeneration. Science, 2019, 366, 1218-1225.	6.0	122
257	Bearing Fault Diagnosis Based on One-Dimensional Convolution Network and Residual Training. , 2019, , .		0
258	3D cellular visualization of intact mouse tooth using optical clearing without decalcification. International Journal of Oral Science, 2019, 11, 25.	3.6	11
259	Optimization-based investigations of a two-phase thermofluidic oscillator for low-grade heat conversion. BMC Chemical Engineering, 2019, 1, .	3.4	3
260	Automated Quantification With Sub-Micrometer Scale Precision In Volumetric Multicolor Multiphoton Microscopy Images. , 2019, , .		0
261	Fast 3-D Imaging of Brain Organoids With a New Single-Objective Planar-Illumination Two-Photon Microscope. Frontiers in Neuroanatomy, 2019, 13, 77.	0.9	48
262	Gotta Trace â€~em All: A Mini-Review on Tools and Procedures for Segmenting Single Neurons Toward Deciphering the Structural Connectome. Frontiers in Bioengineering and Biotechnology, 2019, 7, 202.	2.0	20
263	lmpact of tissue enzymatic digestion on analysis of immune cells in mouse reproductive mucosa with a focus on Î ^a δT cells. Journal of Immunological Methods, 2019, 474, 112665.	0.6	7

		CITATION RE	PORT	
#	Article		IF	Citations
264	The future of rodent models in depression research. Nature Reviews Neuroscience, 201	9, 20, 686-701.	4.9	178
265	3D mapping reveals network-specific amyloid progression and subcortical susceptibility Communications Biology, 2019, 2, 360.	in mice.	2.0	42
266	A cationic near infrared fluorescent agent and ethyl-cinnamate tissue clearing protocol staining and imaging. Scientific Reports, 2019, 9, 521.	for vascular	1.6	30
267	Expansion Light Sheet Microscopy Resolves Subcellular Structures in Large Portions of Brain. Frontiers in Neuroanatomy, 2019, 13, 2.	the Songbird	0.9	27
268	Deciphering myeloid-derived suppressor cells: isolation and markers in humans, mice an primates. Cancer Immunology, Immunotherapy, 2019, 68, 687-697.	d non-human	2.0	168
269	An update for epilepsy research and antiepileptic drug development: Toward precise cir 2019, 201, 77-93.	cuit therapy. ,		102
270	DNA barcodes evolve for high-resolution cell lineage tracing. Current Opinion in Chemic 2019, 52, 63-71.	al Biology,	2.8	20
271	Contemporaneous 3D characterization of acute and chronic myocardial I/R injury and re Nature Communications, 2019, 10, 2312.	esponse.	5.8	60
272	Massive volumetric imaging of cleared tissue: The necessary tools to be successful. Inte Journal of Biochemistry and Cell Biology, 2019, 112, 76-78.	rnational	1.2	7
273	Laser Scanning Microscopy of Yersinia pestis Infected Tissues. Methods in Molecular Bio 2010, 69-84.	blogy, 2019,	0.4	1
274	Novel fluorescence techniques to quantitate renal cell biology. Methods in Cell Biology, 85-107.	2019, 154,	0.5	11
275	Single molecule chromogenic in situ hybridization assay for RNA visualization in fixed contrastive states. Rna, 2019, 25, 1038-1046.	ells and	1.6	11
276	Confocal Laser Scanning Microscopy of Morphology and Apoptosis in Organogenesis-S Embryos. Methods in Molecular Biology, 2019, 1965, 297-311.	tage Mouse	0.4	7
277	Rapid increase in transparency of biological organs by matching refractive index of med membrane using phosphoric acid. RSC Advances, 2019, 9, 15269-15276.	ium to cell	1.7	7
278	A standard procedure for lentiviralâ€mediated labeling of murine mesenchymal stromal Biotechnology and Applied Biochemistry, 2019, 66, 643-653.	cells in vitro.	1.4	2
279	3D Reconstruction of the Intracortical Volume Around a Hybrid Microelectrode Array. Fi Neuroscience, 2019, 13, 393.	rontiers in	1.4	4
280	Advanced Imaging of Lung Homing Human Lymphocytes in an Experimental In Vivo Mo Inflammation Based on Light-sheet Microscopy. Journal of Visualized Experiments, 2019	del of Allergic 9, , .	0.2	11
281	3D imaging of human epidermis micromorphology by combining fluorescent dye, optica confocal microscopy. Skin Research and Technology, 2019, 25, 735-742.	al clearing and	0.8	4

#	Article	IF	CITATIONS
282	Scalable volumetric imaging for ultrahigh-speed brain mapping at synaptic resolution. National Science Review, 2019, 6, 982-992.	4.6	38
283	A Cleared View on Retinal Organoids. Cells, 2019, 8, 391.	1.8	39
284	High-resolution 3D imaging of fixed and cleared organoids. Nature Protocols, 2019, 14, 1756-1771.	5.5	317
285	In Situ Measurement of Native Extracellular Matrix Strain. Experimental Mechanics, 2019, 59, 1307-1321.	1.1	3
286	High-dimensional cell-level analysis of tissues with Ce3D multiplex volume imaging. Nature Protocols, 2019, 14, 1708-1733.	5.5	103
287	Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nature Communications, 2019, 10, 1944.	5.8	140
288	A new approach for analyzing an adhesive bacterial protein in the mouse gastrointestinal tract using optical tissue clearing. Scientific Reports, 2019, 9, 4731.	1.6	10
289	Evaluation of various tissue-clearing techniques for the three-dimensional visualization of liposome distribution in mouse lungs at the alveolar scale. International Journal of Pharmaceutics, 2019, 562, 218-227.	2.6	11
290	Regional vulnerability and spreading of hyperphosphorylated tau in seeded mouse brain. Neurobiology of Disease, 2019, 127, 398-409.	2.1	30
291	Novel 3D analysis using optical tissue clearing documents the evolution of murine rapidly progressive glomerulonephritis. Kidney International, 2019, 96, 505-516.	2.6	35
292	Computational Modeling of Developing Cartilage Using Experimentally Derived Geometries and Compressive Moduli. Journal of Biomechanical Engineering, 2019, 141, .	0.6	4
293	Quantitative assessment of regional variation in tissue clearing efficiency using optical coherence tomography (OCT) and magnetic resonance imaging (MRI): A feasibility study. Scientific Reports, 2019, 9, 2923.	1.6	11
294	New Views of the Clomerulus: Advanced Microscopy for Advanced Diagnosis. Frontiers in Medicine, 2019, 6, 37.	1.2	15
295	Open-Top Light-Sheet Microscopy Image Atlas of Prostate Core Needle Biopsies. Archives of Pathology and Laboratory Medicine, 2019, 143, 1069-1075.	1.2	44
296	An active texture-based digital atlas enables automated mapping of structures and markers across brains. Nature Methods, 2019, 16, 341-350.	9.0	26
298	Singleâ€neuron axonal reconstruction: The search for a wiring diagram of the brain. Journal of Comparative Neurology, 2019, 527, 2190-2199.	0.9	26
299	Multi-Photon Microscopy. , 2019, , 543-560.		1
300	Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6608-6617.	3.3	92

#	Article	IF	CITATIONS
301	Mapping causal pathways from genetics to neuropsychiatric disorders using genomeâ€wide imaging genetics: Current status and future directions. Psychiatry and Clinical Neurosciences, 2019, 73, 357-369.	1.0	22
302	Three-dimensional imaging and quantitative analysis in CLARITY processed breast cancer tissues. Scientific Reports, 2019, 9, 5624.	1.6	45
303	Tailored Sample Mounting for Light-Sheet Fluorescence Microscopy of Clarified Specimens by Polydimethylsiloxane Casting. Frontiers in Neuroanatomy, 2019, 13, 35.	0.9	11
304	Intraclonal Plasticity in Mammary Tumors Revealed through Large-Scale Single-Cell Resolution 3D Imaging. Cancer Cell, 2019, 35, 618-632.e6.	7.7	119
305	Microphysiological Systems as Enabling Tools for Modeling Complexity in the Tumor Microenvironment and Accelerating Cancer Drug Development. Advanced Functional Materials, 2019, 29, 1807553.	7.8	32
306	The Importance of Peripheral Nerves in Adipose Tissue for the Regulation of Energy Balance. Biology, 2019, 8, 10.	1.3	49
307	Recent Progress in Timeâ€Resolved Biosensing and Bioimaging Based on Lanthanideâ€Doped Nanoparticles. Small, 2019, 15, e1804969.	5.2	92
308	Toolbox for In Vivo Imaging of Host–Parasite Interactions at Multiple Scales. Trends in Parasitology, 2019, 35, 193-212.	1.5	12
309	Labelâ€free optical projection tomography for quantitative threeâ€dimensional anatomy of mouse embryo. Journal of Biophotonics, 2019, 12, e201800481.	1.1	16
310	3-Dimensional Optical Clearing and Imaging of Pruritic Atopic Dermatitis and Psoriasis Skin RevealsÂDownregulation of Epidermal Innervation. Journal of Investigative Dermatology, 2019, 139, 1201-1204.	0.3	39
311	Haematopoietic stem cell activity andÂinteractions with the niche. Nature Reviews Molecular Cell Biology, 2019, 20, 303-320.	16.1	588
312	Experimental and Computational Methods for the Study of Cerebral Organoids: A Review. Frontiers in Neuroscience, 2019, 13, 162.	1.4	32
313	Tissue Clearing and Light Sheet Microscopy: Imaging the Unsectioned Adult Zebra Finch Brain at Cellular Resolution. Frontiers in Neuroanatomy, 2019, 13, 13.	0.9	20
314	Comparative analysis reveals Ce3D as optimal clearing method for in toto imaging of the mouse intestine. Neurogastroenterology and Motility, 2019, 31, e13560.	1.6	32
315	Optical Imaging in Brainsmatics. Photonics, 2019, 6, 98.	0.9	4
316	Multimodal image registration and connectivity analysis for integration of connectomic data from microscopy to MRI. Nature Communications, 2019, 10, 5504.	5.8	66
317	The Optical Clearing Method. SpringerBriefs in Physics, 2019, , .	0.2	37
318	Ultra-thin fluorocarbon foils optimise multiscale imaging of three-dimensional native and optically cleared specimens. Scientific Reports, 2019, 9, 17292.	1.6	20

_	
	DEDODT
JIAHON	KEPUKI

#	Article	IF	CITATIONS
319	Three-dimensional spatially resolved geometrical and functional models of human liver tissue reveal new aspects of NAFLD progression. Nature Medicine, 2019, 25, 1885-1893.	15.2	58
320	Quantitative analysis reveals reciprocal regulations underlying recovery dynamics of thymocytes and thymic environment in mice. Communications Biology, 2019, 2, 444.	2.0	4
321	Optical tissue clearing and immunolabeling in kidney research. Methods in Cell Biology, 2019, 154, 31-41.	0.5	3
322	The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nature Methods, 2019, 16, 1105-1108.	9.0	174
323	Tyrosine-hydroxylase immunoreactivity in the mouse transparent brain and adrenal glands. Journal of Neural Transmission, 2019, 126, 367-375.	1.4	7
324	EyeCi: Optical clearing and imaging of immunolabeled mouse eyes using light-sheet fluorescence microscopy. Experimental Eye Research, 2019, 180, 137-145.	1.2	41
325	Microvascular networks in the area of the auditory peripheral nervous system. Hearing Research, 2019, 371, 105-116.	0.9	16
326	Hydrogen bound water profiles in the skin influenced by optical clearing molecular agents—Quantitative analysis using confocal Raman microscopy. Journal of Biophotonics, 2019, 12, e201800283.	1.1	48
327	Magnetometry based method for investigation of nanoparticle clearance from circulation in a liver perfusion model. Nanotechnology, 2019, 30, 105101.	1.3	14
328	From single cells to tissue selfâ€organization. FEBS Journal, 2019, 286, 1495-1513.	2.2	52
329	Nondestructive, multiplex three-dimensional mapping of immune infiltrates in core needle biopsy. Laboratory Investigation, 2019, 99, 1400-1413.	1.7	18
330	Structure-Based Intensity Propagation for 3-D Brain Reconstruction With Multilayer Section Microscopy. IEEE Transactions on Medical Imaging, 2019, 38, 1106-1115.	5.4	1
331	Clarification and confocal imaging of the nonhuman primate placental micro-anatomy. BioTechniques, 2019, 66, 79-84.	0.8	5
332	Pre-vascularized dermis model for fast and functional anastomosis with host vasculature. Biomaterials, 2019, 192, 159-170.	5.7	43
333	FDISCO: Advanced solvent-based clearing method for imaging whole organs. Science Advances, 2019, 5, eaau8355.	4.7	171
334	Allele-specific RNA imaging shows that allelic imbalances can arise in tissues through transcriptional bursting. PLoS Genetics, 2019, 15, e1007874.	1.5	52
335	A Label-free Multicolor Optical Surface Tomography (ALMOST) imaging method for nontransparent 3D samples. BMC Biology, 2019, 17, 1.	1.7	148
336	Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nature Protocols, 2019, 14, 379-414.	5.5	235

#	Article	IF	CITATIONS
337	Modernization of Golgi staining techniques for high-resolution, 3-dimensional imaging of individual neurons. Scientific Reports, 2019, 9, 130.	1.6	32
338	Quantitative assessment of optical clearing methods in various intact mouse organs. Journal of Biophotonics, 2019, 12, e201800134.	1.1	53
339	Multiplex Three-Dimensional Mapping of Macromolecular Drug Distribution in the Tumor Microenvironment. Molecular Cancer Therapeutics, 2019, 18, 213-226.	1.9	33
340	A "Clearer―View of Pancreatic Pathology: A Review of Tissue Clearing and Advanced Microscopy Techniques. Advances in Anatomic Pathology, 2019, 26, 31-39.	2.4	19
341	Imaging methods used to study mouse and human HSC niches: Current and emerging technologies. Bone, 2019, 119, 19-35.	1.4	27
342	Imaging the developing human external and internal urogenital organs with light sheet fluorescence microscopy. Differentiation, 2020, 111, 12-21.	1.0	10
343	Imaging and spatial analysis of hematopoietic stem cell niches. Annals of the New York Academy of Sciences, 2020, 1466, 5-16.	1.8	17
344	Towards a clearer view of sympathetic innervation of cardiac and skeletal muscles. Progress in Biophysics and Molecular Biology, 2020, 154, 80-93.	1.4	19
346	Illuminating the dark depths inside coral. Cellular Microbiology, 2020, 22, e13122.	1.1	7
347	Tissue clearing and its applications inÂneuroscience. Nature Reviews Neuroscience, 2020, 21, 61-79.	4.9	350
348	Multimodal Nanocarrier Probes Reveal Superior Biodistribution Quantification by Isotopic Analysis over Fluorescence. ACS Nano, 2020, 14, 509-523.	7.3	23
349	Two simple criteria to estimate an objective's performance when imaging in non design tissue clearing solutions. Journal of Neuroscience Methods, 2020, 332, 108564.	1.3	4
350	Deep learning in biomedical image analysis. , 2020, , 239-263.		14
351	Tissue Clearing and Expansion Methods for Imaging Brain Pathology in Neurodegeneration: From Circuits to Synapses and Beyond. Frontiers in Neuroscience, 2020, 14, 914.	1.4	26
352	A practical method for multimodal registration and assessment of whole-brain disease burden using PET, MRI, and optical imaging. Scientific Reports, 2020, 10, 17324.	1.6	10
353	Application of ethyl cinnamate based optical tissue clearing and expansion microscopy combined with retrograde perfusion for 3D lung imaging. Experimental Lung Research, 2020, 46, 393-408.	0.5	6
354	Biomedical Applications of Tissue Clearing and Three-Dimensional Imaging in Health and Disease. IScience, 2020, 23, 101432.	1.9	67
355	A novel, rapid technique for clearing leaf tissues. Applications in Plant Sciences, 2020, 8, e11391.	0.8	3

	CITATION REF	PORT	
#	Article	IF	CITATIONS
356	A tube-source X-ray microtomography approach for quantitative 3D microscopy of optically challenging cell-cultured samples. Communications Biology, 2020, 3, 548.	2.0	6
357	Magnetic resonance contrast agents in optical clearing: Prospects for multimodal tissue imaging. Journal of Biophotonics, 2020, 13, e201960249.	1.1	21
358	The Effectiveness of Glycerol Solutions for Optical Clearing of the Intact Skin as Measured by Confocal Raman Microspectroscopy. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq0 0 0 rgBT	/ 0 værlock	140 Tf 50 65
359	Mammary Organoids and 3D Cell Cultures: Old Dogs with New Tricks. Journal of Mammary Gland Biology and Neoplasia, 2020, 25, 273-288.	1.0	23
360	Comparison of Transparency and Shrinkage During Clearing of Insect Brains Using Media With Tunable Refractive Index. Frontiers in Neuroanatomy, 2020, 14, 599282.	0.9	15
361	FRACTAL: Signal amplification of immunofluorescence <i>via</i> cyclic staining of target molecules. Nanoscale, 2020, 12, 23506-23513.	2.8	13
362	Microanalytical techniques for phenotyping secondary xylem. IAWA Journal, 2020, 41, 356-389.	2.7	4
363	Source of Early Regenerating Axons in Lamprey Spinal Cord Revealed by Wholemount Optical Clearing with BABB. Cells, 2020, 9, 2427.	1.8	5
364	A pH-Adjustable Tissue Clearing Solution That Preserves Lipid Ultrastructures: Suitable Tissue Clearing Method for DDS Evaluation. Pharmaceutics, 2020, 12, 1070.	2.0	10
365	From 2D to 3D: Promising Advances in Imaging Lung Structure. Frontiers in Medicine, 2020, 7, 343.	1.2	5
366	Tutorial: avoiding and correcting sample-induced spherical aberration artifacts in 3D fluorescence microscopy. Nature Protocols, 2020, 15, 2773-2784.	5.5	49
367	Quantitative assessment of optical clearing methods on formalin-fixed human lymphoid tissue. Pathology Research and Practice, 2020, 216, 153136.	1.0	5
368	Considerations for using optical clearing techniques for 3D imaging of nanoparticle biodistribution. International Journal of Pharmaceutics, 2020, 588, 119739.	2.6	3
369	Brainwide Genetic Sparse Cell Labeling to Illuminate the Morphology of Neurons and Glia with Cre-Dependent MORF Mice. Neuron, 2020, 108, 111-127.e6.	3.8	37
370	Applications of tissue clearing in the spinal cord. European Journal of Neuroscience, 2020, 52, 4019-4036.	1.2	8
371	Fabrication of Blood Capillary Models for Live Imaging Microarray Analysis. Micromachines, 2020, 11, 727.	1.4	7
372	Evaluation of tissue-clearing techniques for intraorgan imaging of distribution of polymeric nanoparticles as drug carriers. Drug Development and Industrial Pharmacy, 2020, 46, 2061-2069.	0.9	4
373	Special Issue "Neurophotonics—Optics for the Brain― Photonics, 2020, 7, 62.	0.9	0

#	Article	IF	CITATIONS
374	Evaluating Microelectrode Arrays in Peripheral Nerve Using Micro Computed Tomography*. , 2020, 2020, 3432-3435.		2
375	3D confocal microscope imaging of macromolecule uptake in the intact brachiocephalic artery. Atherosclerosis, 2020, 310, 93-101.	0.4	0
376	Distal convoluted tubule sexual dimorphism revealed by advanced 3D imaging. American Journal of Physiology - Renal Physiology, 2020, 319, F754-F764.	1.3	27
377	C-ECi: a CUBIC-ECi combined clearing method for three-dimensional follicular content analysis in the fish ovaryâ€. Biology of Reproduction, 2020, 103, 1099-1109.	1.2	4
378	Scalable method for micro-CT analysis enables large scale quantitative characterization of brain lesions and implants. Scientific Reports, 2020, 10, 20851.	1.6	8
379	Three-dimensional in situ morphometrics of Mycobacterium tuberculosis infection within lesions by optical mesoscopy and novel acid-fast staining. Scientific Reports, 2020, 10, 21774.	1.6	5
380	Spatially Resolved Analytical Chemistry in Intact, Living Tissues. Analytical Chemistry, 2020, 92, 15255-15262.	3.2	6
381	Rapid Clearing for High Resolution 3D Imaging of Ex Vivo Pancreatic Cancer Spheroids. International Journal of Molecular Sciences, 2020, 21, 7703.	1.8	10
382	Dissecting Neuronal Activation on a Brain-Wide Scale With Immediate Early Genes. Frontiers in Neuroscience, 2020, 14, 569517.	1.4	31
383	Mapping mesoscale axonal projections in the mouse brain using a 3D convolutional network. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11068-11075.	3.3	52
384	High resolution three-dimensional imaging of the ocular surface and intact eyeball using tissue clearing and light sheet microscopy. Ocular Surface, 2020, 18, 526-532.	2.2	9
385	Slicing Spheroids in Microfluidic Devices for Morphological and Immunohistochemical Analysis. Micromachines, 2020, 11, 480.	1.4	8
386	Whole-Brain Profiling of Cells and Circuits in Mammals by Tissue Clearing and Light-Sheet Microscopy. Neuron, 2020, 106, 369-387.	3.8	145
387	Cephalopod-inspired optical engineering of human cells. Nature Communications, 2020, 11, 2708.	5.8	29
388	Imaging the invisible—Bioorthogonal Raman probes for imaging of cells and tissues. Journal of Biophotonics, 2020, 13, e202000129.	1.1	32
389	Tools and Concepts for Interrogating and Defining Cellular Identity. Cell Stem Cell, 2020, 26, 632-656.	5.2	24
391	A Comprehensive Integrated Anatomical and Molecular Atlas of Rat Intrinsic Cardiac Nervous System. IScience, 2020, 23, 101140.	1.9	40
392	Feature-rich covalent stains for super-resolution and cleared tissue fluorescence microscopy. Science Advances, 2020, 6, eaba4542.	4.7	60

#	Article	IF	CITATIONS
393	New technical approaches for 3D morphological imaging and quantification of measurements. Anatomical Record, 2020, 303, 2702-2715.	0.8	6
394	Research Techniques Made Simple: Optical Clearing and Three-Dimensional Volumetric Imaging of Skin Biopsies. Journal of Investigative Dermatology, 2020, 140, 1305-1314.e1.	0.3	1
395	Using confocal imaging approaches to understand the structure and function of osteocytes and the lacunocanalicular network. Bone, 2020, 138, 115463.	1.4	16
396	Development of an animal-free methodology for mechanical performance assessment of engineered skin substitutes. Biomedical Science and Engineering, 2020, 3, .	0.0	Ο
397	Clarifying mid-brain organoids: Application of the CLARITY protocol to unperfusable samples. Biomedical Science and Engineering, 2020, 3, .	0.0	1
398	Animal Models of Diabetes. Methods in Molecular Biology, 2020, , .	0.4	3
399	Clarifying and Imaging Candida albicans Biofilms. Journal of Visualized Experiments, 2020, , .	0.2	3
400	Routine Optical Clearing of 3D-Cell Cultures: Simplicity Forward. Frontiers in Molecular Biosciences, 2020, 7, 20.	1.6	50
401	Reprint of "Multi-modal image cytometry approach – From dynamic to whole organ imaging― Cellular Immunology, 2020, 350, 104086.	1.4	1
402	Nearâ€Infrared Light Triggeredâ€Release in Deep Brain Regions Using Ultraâ€photosensitive Nanovesicles. Angewandte Chemie, 2020, 132, 8686-8693.	1.6	6
403	Tutorial: guidance for quantitative confocal microscopy. Nature Protocols, 2020, 15, 1585-1611.	5.5	201
405	Three-Dimensional Imaging of Intraplaque Neovascularization in a Mouse Model of Advanced Atherosclerosis. Journal of Vascular Research, 2020, 57, 348-354.	0.6	6
406	hFRUIT: An optimized agent for optical clearing of Dil-stained adult human brain tissue. Scientific Reports, 2020, 10, 9950.	1.6	6
407	Single-Cell Resolution Three-Dimensional Imaging of Intact Organoids. Journal of Visualized Experiments, 2020, , .	0.2	22
408	Simultaneous Three-Dimensional Vascular and Tubular Imaging of Whole Mouse Kidneys With X-ray μCT. Microscopy and Microanalysis, 2020, 26, 731-740.	0.2	7
409	Detailed process analysis for glomerular capillary formation by immunofluorescence on ultra-thick sections. Gene Expression Patterns, 2020, 35, 119096.	0.3	1
410	Visualization of the Retina in Intact Eyes of Mice and Ferrets Using a Tissue Clearing Method. Translational Vision Science and Technology, 2020, 9, 1.	1.1	9
411	Dynamic contrast with reversibly photoswitchable fluorescent labels for imaging living cells. Chemical Science, 2020, 11, 2882-2887.	3.7	6

#	Article	IF	CITATIONS
412	Nearâ€Infrared Light Triggeredâ€Release in Deep Brain Regions Using Ultraâ€photosensitive Nanovesicles. Angewandte Chemie - International Edition, 2020, 59, 8608-8615.	7.2	36
413	Diminished Reactive Hematopoiesis and Cardiac Inflammation in a Mouse Model of Recurrent Myocardial Infarction. Journal of the American College of Cardiology, 2020, 75, 901-915.	1.2	28
414	Cellular and Molecular Probing of Intact Human Organs. Cell, 2020, 180, 796-812.e19.	13.5	187
415	Clearing techniques for visualizing the nervous system in development, injury, and disease. Journal of Neuroscience Methods, 2020, 334, 108594.	1.3	4
416	Clearing, immunofluorescence, and confocal microscopy for the three-dimensional imaging of murine testes and study of testis biology. Journal of Structural Biology, 2020, 209, 107449.	1.3	2
417	Liposome Imaging in Optically Cleared Tissues. Nano Letters, 2020, 20, 1362-1369.	4.5	28
418	Short-Wave Infrared Quantum Dots with Compact Sizes as Molecular Probes for Fluorescence Microscopy. Journal of the American Chemical Society, 2020, 142, 3449-3462.	6.6	30
419	Parallelized volumetric fluorescence microscopy with a reconfigurable coded incoherent light-sheet array. Light: Science and Applications, 2020, 9, 8.	7.7	39
420	Combined iDISCO and CUBIC tissue clearing and lightsheet microscopy for in toto analysis of the adult mouse ovaryâ€. Biology of Reproduction, 2020, 102, 1080-1089.	1.2	36
421	Mapping 2D- and 3D-distributions of metal/metal oxide nanoparticles within cleared human ex vivo skin tissues. NanoImpact, 2020, 17, 100208.	2.4	11
422	Hydrogel machines. Materials Today, 2020, 36, 102-124.	8.3	625
423	A simple tissue clearing method for increasing the depth penetration of STED microscopy of fixed brain slices. Journal Physics D: Applied Physics, 2020, 53, 184001.	1.3	10
424	Systematic Evaluation of Chemically Distinct Tissue Optical Clearing Techniques in Murine Lymph Nodes. Journal of Immunology, 2020, 204, 1395-1407.	0.4	10
425	Imaging of hydrogen peroxide (H2O2) during the ferroptosis process in living cancer cells with a practical fluorescence probe. Talanta, 2020, 212, 120804.	2.9	41
426	Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues. Nature Communications, 2020, 11, 1982.	5.8	134
427	Mapping the Architecture of Ferret Brains at Single-Cell Resolution. Frontiers in Neuroscience, 2020, 14, 322.	1.4	2
428	Geometrically Structured Microtumors in 3D Hydrogel Matrices. Advanced Biology, 2020, 4, 2000056.	3.0	10
429	Understanding the In Vivo Fate of Advanced Materials by Imaging. Advanced Functional Materials, 2020, 30, 1910369.	7.8	5

#	ARTICLE	IF	CITATIONS
430	Advances in Hybrid Fabrication toward Hierarchical Tissue Constructs. Advanced Science, 2020, 7, 1902953.	5.6	86
431	Multidimensional Imaging of Mammary Gland Development: A Window Into Breast Form and Function. Frontiers in Cell and Developmental Biology, 2020, 8, 203.	1.8	17
432	Visualization and Analysis of Pharyngeal Arch Arteries using Whole-mount Immunohistochemistry and 3D Reconstruction. Journal of Visualized Experiments, 2020, , .	0.2	8
433	Rapid Ultrasound Optical Clearing of Human Light and Dark Skin. IEEE Transactions on Medical Imaging, 2020, 39, 3198-3206.	5.4	13
434	Simple Whole-Mount Staining Protocol of F-Actin for Studies of the Female Gametophyte in Agavoideae and Other Crassinucellate Ovules. Frontiers in Plant Science, 2020, 11, 384.	1.7	3
435	Serial optical coherence microscopy for label-free volumetric histopathology. Scientific Reports, 2020, 10, 6711.	1.6	7
436	Cavitation in soft matter. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9157-9165.	3.3	86
437	A Smart Region-Growing Algorithm for Single-Neuron Segmentation From Confocal and 2-Photon Datasets. Frontiers in Neuroinformatics, 2020, 14, 9.	1.3	13
438	Light sheet fluorescence microscopy as a new method for unbiased three-dimensional analysis of vascular injury. Cardiovascular Research, 2021, 117, 520-532.	1.8	18
439	The future of cerebral organoids in drug discovery. Seminars in Cell and Developmental Biology, 2021, 111, 67-73.	2.3	15
440	A clearing protocol for Galleria mellonella larvae: Visualization of internalized fluorescent nanoparticles. New Biotechnology, 2021, 60, 20-26.	2.4	9
441	Salamanderâ€Eci: An optical clearing protocol for the threeâ€dimensional exploration of regeneration. Developmental Dynamics, 2021, 250, 902-915.	0.8	8
442	Rapid immunostaining method for three-dimensional volume imaging of biological tissues by magnetic force-induced focusing of the electric field. Brain Structure and Function, 2021, 226, 297-309.	1.2	6
443	Antigen retrieval and clearing for whole-organ immunofluorescence by FLASH. Nature Protocols, 2021, 16, 239-262.	5.5	50
444	Strategies for Delivering Nanoparticles across Tumor Blood Vessels. Advanced Functional Materials, 2021, 31, 2007363.	7.8	46
445	Recent advances in nonlinear microscopy: Deep insights and polarized revelations. International Journal of Biochemistry and Cell Biology, 2021, 130, 105896.	1.2	7
446	An ex vivo investigation of the intestinal uptake and translocation of nanoparticles targeted to Peyer's patches microfold cells. International Journal of Pharmaceutics, 2021, 594, 120167.	2.6	8
447	Optical plasticity of mammalian cells. Journal of Biophotonics, 2021, 14, e202000457.	1.1	3

#	Article	IF	CITATIONS
448	Current Status of Tissue Clearing and the Path Forward in Neuroscience. ACS Chemical Neuroscience, 2021, 12, 5-29.	1.7	10
449	The spatiotemporal spread of cervical spinal cord contusion injury pathology revealed by 3D in-line phase contrast synchrotron X-ray microtomography. Experimental Neurology, 2021, 336, 113529.	2.0	9
450	Imaging lung regeneration by light sheet microscopy. Histochemistry and Cell Biology, 2021, 155, 271-277.	0.8	7
451	Characterizing Vocal Fold Injury Recovery in a Rabbit Model With Threeâ€Đimensional Virtual Histology. Laryngoscope, 2021, 131, 1578-1587.	1.1	6
452	Measurement of cartilage subâ€component distributions through the surface by Raman spectroscopyâ€based multivariate analysis. Journal of Biophotonics, 2021, 14, e202000289.	1.1	5
453	Tissue clearing technique: Recent progress and biomedical applications. Journal of Anatomy, 2021, 238, 489-507.	0.9	74
455	Preparation, Scanning and Analysis of Duckweed Using X-Ray Computed Microtomography. Frontiers in Plant Science, 2020, 11, 617830.	1.7	10
456	An advanced optical clearing protocol allows label-free detection of tissue necrosis <i>via</i> multiphoton microscopy in injured whole muscle. Theranostics, 2021, 11, 2876-2891.	4.6	10
458	Light-Sheet Fluorescence Microscopy for Multiscale Biological Imaging. , 2021, , 373-382.		0
459	Multicolor 3D Confocal Imaging of Thick Tissue Sections. Methods in Molecular Biology, 2021, 2350, 95-104.	0.4	5
460	Application of a Method for the Analysis of Dopaminergic. Methods in Molecular Biology, 2021, 2322, 141-150.	0.4	0
461	Efficient and Fast Immuno-labeling of Clarified Tissues Using Low-Field Enhanced Diffusion. IEEE Transactions on Biomedical Engineering, 2021, 68, 1-1.	2.5	0
463	Comparative Study between Nd‥AG laser, fractional CO2 Laser, and combined Nd‥AG with fractional CO2 Laser in the Management of keloid: clinical and molecular Study. Journal of Cosmetic Dermatology, 2021, 20, 1124-1132.	0.8	5
464	Imaging of spine synapses using super-resolution microscopy. Anatomical Science International, 2021, 96, 343-358.	0.5	4
465	3D Microscopy of Murine Bone Marrow Hematopoietic Tissues. Methods in Molecular Biology, 2021, 2308, 127-138.	0.4	2
466	Tissue Optical Clearing for Biomedical Imaging: From In Vitro to In Vivo. Advances in Experimental Medicine and Biology, 2021, 3233, 217-255.	0.8	0
468	Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain. ELife, 2021, 10, .	2.8	17
469	A quantitative metric for the comparative evaluation of optical clearing protocols for 3D multicellular spheroids. Computational and Structural Biotechnology Journal, 2021, 19, 1233-1243.	1.9	2

#	Article	IF	Citations
470	Holographic tomography: techniques and biomedical applications [Invited]. Applied Optics, 2021, 60, B65.	0.9	74
471	3D microscopy and deep learning reveal the heterogeneity of crown-like structure microenvironments in intact adipose tissue. Science Advances, 2021, 7, .	4.7	31
472	Upscaling X-ray nanoimaging to macroscopic specimens. Journal of Applied Crystallography, 2021, 54, 386-401.	1.9	15
473	Factors to consider when interrogating 3D culture models with plate readers or automated microscopes. In Vitro Cellular and Developmental Biology - Animal, 2021, 57, 238-256.	0.7	17
474	Intrinsic sources of tachykinin-related peptide in the thoracic ganglion mass of the crab, Cancer borealis. General and Comparative Endocrinology, 2021, 302, 113688.	0.8	3
475	Harnessing non-destructive 3D pathology. Nature Biomedical Engineering, 2021, 5, 203-218.	11.6	74
476	CLARITY with neuronal tracing and immunofluorescence to study the somatosensory system in rats. Journal of Neuroscience Methods, 2021, 350, 109048.	1.3	3
477	Urea-based amino sugar agent clears murine liver and preserves protein fluorescence and lipophilic dyes. BioTechniques, 2021, 70, 72-80.	0.8	0
478	Transpathology: molecular imaging-based pathology. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2338-2350.	3.3	52
479	Prospects for multimodal visualisation of biological tissues using fluorescence imaging. Quantum Electronics, 2021, 51, 104-117.	0.3	4
480	Three-dimensional imaging and reconstruction of the whole ovary and testis: a new frontier for the reproductive scientist. Molecular Human Reproduction, 2021, 27, .	1.3	8
481	Unbiased analysis of obesity related, fat depot specific changes of adipocyte volumes and numbers using light sheet fluorescence microscopy. PLoS ONE, 2021, 16, e0248594.	1.1	1
482	Limiting the incident NA for efficient wavefront shaping through thin anisotropic scattering media. Optica, 2021, 8, 428.	4.8	13
483	Navigating across multi-dimensional space of tissue clearing parameters. Methods and Applications in Fluorescence, 2021, 9, 022001.	1.1	7
485	A guidebook for DISCO tissue clearing. Molecular Systems Biology, 2021, 17, e9807.	3.2	53
486	Towards Precision Medicine: The Ellison Institute and Olympus Partnership is Working to Change the Future of Cancer Medicine. Microscopy Today, 2021, 29, 10-14.	0.2	0
487	Whole-organ analysis of TGF-Î ² -mediated remodelling of the tumour microenvironment by tissue clearing. Communications Biology, 2021, 4, 294.	2.0	14
488	A quick and versatile protocol for the 3D visualization of transgene expression across the whole body of larval <i>Drosophila</i> . Journal of Neurogenetics, 2021, 35, 306-319.	0.6	3

#	Articif	IF	CITATIONS
489	Flexible annotation atlas of the mouse brain: combining and dividing brain structures of the Allen Brain Atlas while maintaining anatomical hierarchy. Scientific Reports, 2021, 11, 6234.	1.6	8
490	Organic solventâ€based tissue clearing techniques and their applications. Journal of Biophotonics, 2021, 14, e202000413.	1.1	13
491	Cerebrovascular development: mechanisms and experimental approaches. Cellular and Molecular Life Sciences, 2021, 78, 4377-4398.	2.4	10
492	Physical and chemical mechanisms of tissue optical clearing. IScience, 2021, 24, 102178.	1.9	63
493	Topical Gadobutrol Application Causes Fluorescence Intensity Change in RFP-expressing Tumor-Bearing Mice. Journal of Biomedical Photonics and Engineering, 2021, 7, 020301.	0.4	4
494	The Dynamic Interface Between the Bone Marrow Vascular Niche and Hematopoietic Stem Cells in Myeloid Malignancy. Frontiers in Cell and Developmental Biology, 2021, 9, 635189.	1.8	13
495	3D super-resolution deep-tissue imaging in living mice. Optica, 2021, 8, 442.	4.8	39
496	3D Model Characterization by 2D and 3D Imaging in t(14;18)-Positive B-NHL: Perspectives for In Vitro Drug Screens in Follicular Lymphoma. Cancers, 2021, 13, 1490.	1.7	9
497	The Cellular Organization of the Mammary Gland: Insights From Microscopy. Journal of Mammary Gland Biology and Neoplasia, 2021, 26, 71-85.	1.0	16
498	Tissue clearing techniques for threeâ€dimensional optical imaging of intact human prostate and correlations with multiâ€parametric MRI. Prostate, 2021, 81, 521-529.	1.2	1
499	Pancreas Optical Clearing and 3-D Microscopy in Health and Diabetes. Frontiers in Endocrinology, 2021, 12, 644826.	1.5	9
500	3D Whole-Brain Imaging Approaches to Study Brain Tumors. Cancers, 2021, 13, 1897.	1.7	7
501	Tissue clearing and imaging methods for cardiovascular development. IScience, 2021, 24, 102387.	1.9	18
503	Optical clearing reveals TNBS-induced morphological changes of VGLUT2-positive nerve fibers in mouse colorectum. American Journal of Physiology - Renal Physiology, 2021, 320, G644-G657.	1.6	7
504	From base pair to brain. Nature Neuroscience, 2021, 24, 619-621.	7.1	4
505	Three-Dimensional Mapping of Retrograde Multi-Labeled Motor Neuron Columns in the Spinal Cord. Photonics, 2021, 8, 145.	0.9	1
507	The Hidden Brain: Uncovering Previously Overlooked Brain Regions by Employing Novel Preclinical Unbiased Network Approaches. Frontiers in Systems Neuroscience, 2021, 15, 595507.	1.2	11
508	High-resolution 3D fluorescent imaging of intact tissues. , 2021, 1, 1-14.		0

		CITATION R	EPORT	
#	Article		IF	Citations
509	Permeabilization-free en bloc immunohistochemistry for correlative microscopy. ELife, 2	2021, 10, .	2.8	21
510	Tutorial: practical considerations for tissue clearing and imaging. Nature Protocols, 202 2732-2748.	1, 16,	5.5	51
512	Liver Organoids: Recent Developments, Limitations and Potential. Frontiers in Medicine	, 2021, 8, 574047.	1.2	50
513	Segmentor: a tool for manual refinement of 3D microscopy annotations. BMC Bioinforr 260.	natics, 2021, 22,	1.2	11
514	It's clearly the heart! Optical transparency, cardiac tissue imaging, and computer model in Biophysics and Molecular Biology, 2021, 168, 18-18.	lling. Progress	1.4	6
515	Can Developments in Tissue Optical Clearing Aid Super-Resolution Microscopy Imaging Journal of Molecular Sciences, 2021, 22, 6730.	?. International	1.8	2
516	The effects of a simple optical clearing protocol on the mechanics of collagenous soft to of Biomechanics, 2021, 122, 110413.	issue. Journal	0.9	2
517	Rapid methods for the evaluation of fluorescent reporters in tissue clearing and the seg large vascular structures. IScience, 2021, 24, 102650.	mentation of	1.9	11
518	Volumetric histological characterization of optic nerve degeneration using tissue clearir literature review and practical study. Journal of Histotechnology, 2021, 44, 206-216.	ıg:	0.2	0
519	A Straightforward Method for 3D Visualization of B Cell Clusters and High Endothelial V Lymph Nodes Highlights Differential Roles of TNFRI and -II. Frontiers in Immunology, 20	'enules in 21, 12, 699336.	2.2	3
520	Expansion microscopy: A powerful nanoscale imaging tool for neuroscientists. Neurobic Disease, 2021, 154, 105362.	ology of	2.1	30
521	Next-Generation Imaging: New Insights from Multicolor Microscopy in Liver Biology and Engineering, 2022, 9, 17-21.	Disease.	3.2	1
522	Refractive Index Matching Efficiency in Colorectal Mucosa Treated With Glycerol. IEEE Jo Selected Topics in Quantum Electronics, 2021, 27, 1-8.	ournal of	1.9	5
523	Tissue clearing to examine tumour complexity in three dimensions. Nature Reviews Can 718-730.	cer, 2021, 21,	12.8	50
524	Recent Trends and Perspectives in Cerebral Organoids Imaging and Analysis. Frontiers in Neuroscience, 2021, 15, 629067.	n	1.4	17
525	Ovary Development: Insights From a Three-Dimensional Imaging Revolution. Frontiers in Developmental Biology, 2021, 9, 698315.	n Cell and	1.8	12
526	Mathematical and computational modeling for the determination of optical parameters cancer cell. Electromagnetic Biology and Medicine, 2021, 40, 447-458.	of breast	0.7	1
527	Mesoscale microscopy and image analysis tools for understanding the brain. Progress ir and Molecular Biology, 2022, 168, 81-93.	n Biophysics	1.4	25

#	Article	IF	CITATIONS
528	NeuroRetriever: Automatic Neuron Segmentation for Connectome Assembly. Frontiers in Systems Neuroscience, 2021, 15, 687182.	1.2	3
529	Brillouin Spectroscopy: From Biomedical Research to New Generation Pathology Diagnosis. International Journal of Molecular Sciences, 2021, 22, 8055.	1.8	8
530	InVision: An optimized tissue clearing approach for three-dimensional imaging and analysis of intact rodent eyes. IScience, 2021, 24, 102905.	1.9	8
531	An Approach to Maximize Retrograde Transport Based on the Spatial Distribution of Motor Endplates in Mouse Hindlimb Muscles. Frontiers in Cellular Neuroscience, 2021, 15, 707982.	1.8	6
532	Optical clearing in cardiac imaging: A comparative study. Progress in Biophysics and Molecular Biology, 2022, 168, 10-17.	1.4	10
533	Dec-DISCO: decolorization DISCO clearing for seeing through the biological architectures of heme-rich organs. Biomedical Optics Express, 2021, 12, 5499.	1.5	3
534	Recent advances in microarray 3D bioprinting for high-throughput spheroid and tissue culture and analysis. Essays in Biochemistry, 2021, 65, 481-489.	2.1	8
535	Passive Clearing and 3D Lightsheet Imaging of the Intact and Injured Spinal Cord in Mice. Frontiers in Cellular Neuroscience, 2021, 15, 684792.	1.8	7
536	Tissue clearing and 3D imaging – putting immune cells into context. Journal of Cell Science, 2021, 134, .	1.2	6
537	Spatial transcriptional mapping of the human nephrogenic program. Developmental Cell, 2021, 56, 2381-2398.e6.	3.1	44
538	Basic principles of hydrogel-based tissue transformation technologies and their applications. Cell, 2021, 184, 4115-4136.	13.5	37
541	Tissue clearing and 3D imaging in developmental biology. Development (Cambridge), 2021, 148, .	1.2	30
542	CUBIC-plus: An optimized method for rapid tissue clearing and decolorization. Biochemical and Biophysical Research Communications, 2021, 568, 116-123.	1.0	5
543	Protein-retention expansion microscopy for visualizing subcellular organelles in fixed brain tissue. Journal of Neuroscience Methods, 2021, 361, 109285.	1.3	10
544	Two-photon excitation fluorescent spectral and decay properties of retrograde neuronal tracer Fluoro-Gold. Scientific Reports, 2021, 11, 18053.	1.6	3
545	FDISCO+: a clearing method for robust fluorescence preservation of cleared samples. Neurophotonics, 2021, 8, 035007.	1.7	3
546	Tissue optical clearing for 3D visualization of vascular networks: A review. Vascular Pharmacology, 2021, 141, 106905.	1.0	10
547	Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomaterialia, 2021, 132, 83-102.	4.1	33

<u></u>	 	Deed	
			וער
\sim		IVEL V	

#	Article	IF	CITATIONS
549	Distribution, fine structure, and three-dimensional innervation of lamellar corpuscles in rat plantar skin. Cell and Tissue Research, 2021, 386, 477-490.	1.5	1
550	Advanced preclinical models for evaluation of drug-induced liver injury – consensus statement by the European Drug-Induced Liver Injury Network [PRO-EURO-DILI-NET]. Journal of Hepatology, 2021, 75, 935-959.	1.8	66
551	Spatial mapping of the tumor immune microenvironment. , 2022, , 293-329.		0
553	Whole Murine Brain Imaging Based on Optical Elastic Scattering. Advances in Experimental Medicine and Biology, 2021, 3233, 109-125.	0.8	0
554	Voltage Imaging with a NIR-Absorbing Phosphine Oxide Rhodamine Voltage Reporter. Journal of the American Chemical Society, 2021, 143, 2304-2314.	6.6	13
556	Ex Vivo Whole-Mount Imaging of Leukocyte Migration to the Bone Marrow. Methods in Molecular Biology, 2021, 2308, 139-150.	0.4	0
557	Three-dimensional Imaging Coupled with Topological Quantification Uncovers Retinal Vascular Plexuses Undergoing Obliteration. Theranostics, 2021, 11, 1162-1175.	4.6	6
559	Lung organoids: advances in generation and 3D-visualization. Histochemistry and Cell Biology, 2021, 155, 301-308.	0.8	24
560	Painting the Pancreas in Three Dimensions: Whole-Mount Immunofluorescence Method. Methods in Molecular Biology, 2020, 2155, 193-200.	0.4	5
561	Automated Macro Approach to Remove Vitelline Membrane Autofluorescence in Drosophila Embryo 4D Movies. Methods in Molecular Biology, 2019, 2040, 155-175.	0.4	2
562	Serial Multiphoton Tomography and Analysis of Volumetric Images of theÂMouse Brain. Neuromethods, 2019, , 195-224.	0.2	7
563	Tissue Clearing and Deep Imaging of the Kidney Using Confocal and Two-Photon Microscopy. Methods in Molecular Biology, 2020, 2067, 103-126.	0.4	13
564	Controlling the Optical Properties of Biological Materials. SpringerBriefs in Physics, 2019, , 17-34.	0.2	1
566	SEQUIN Multiscale Imaging of Mammalian Central Synapses Reveals Loss of Synaptic Connectivity Resulting from Diffuse Traumatic Brain Injury. Neuron, 2020, 107, 257-273.e5.	3.8	30
567	Single cell-based automated quantification of therapy responses of invasive cancer spheroids in organotypic 3D culture. Methods, 2017, 128, 139-149.	1.9	27
595	Polyethylene glycol molecular weight influences the ClearT2 optical clearing method for spheroids imaging by confocal laser scanning microscopy. Journal of Biomedical Optics, 2018, 23, 1.	1.4	10
596	Tunable structured illumination light sheet microscopy for background rejection and imaging depth in minimally processed tissues. Journal of Biomedical Optics, 2019, 24, 1.	1.4	3
597	Assessment of pathological features in Alzheimer's disease brain tissue with a large field-of-view visible-light optical coherence microscope. Neurophotonics, 2018, 5, 1.	1.7	20

	CITATION	LEPUKI	
#	Article	IF	Citations
598	Evaluation of seven optical clearing methods in mouse brain. Neurophotonics, 2018, 5, 1.	1.7	70
599	Light-sheet fluorescence expansion microscopy: fast mapping of neural circuits at super resolution. Neurophotonics, 2019, 6, 1.	1.7	30
600	Three-dimensional visualization of intramuscular innervation in intact adult skeletal muscle by a modified iDISCO method. Neurophotonics, 2020, 7, 1.	1.7	8
601	Multiscale light-sheet for rapid imaging of cardiopulmonary system. JCI Insight, 2018, 3, .	2.3	36
602	3,3′-thiodipropanol as a versatile refractive index-matching mounting medium for fluorescence microscopy. Biomedical Optics Express, 2019, 10, 1136.	1.5	5
603	Multimodal virtual histology of rabbit vocal folds by nonlinear microscopy and nano computed tomography. Biomedical Optics Express, 2019, 10, 1151.	1.5	10
604	Large-scale high-sensitivity optical diffraction tomography of zebrafish. Biomedical Optics Express, 2019, 10, 1782.	1.5	13
605	Study on the tissue clearing process using different agents by Mueller matrix microscope. Biomedical Optics Express, 2019, 10, 3269.	1.5	13
606	Review of micro-optical sectioning tomography (MOST): technology and applications for whole-brain optical imaging [Invited]. Biomedical Optics Express, 2019, 10, 4075.	1.5	22
607	Volumetric stimulated Raman scattering imaging of cleared tissues towards three-dimensional chemical histopathology. Biomedical Optics Express, 2019, 10, 4329.	1.5	36
608	In-vivo and ex-vivo optical clearing methods for biological tissues: review. Biomedical Optics Express, 2019, 10, 5251.	1.5	133
609	Tissue imaging depth limit of stimulated Raman scattering microscopy. Biomedical Optics Express, 2020, 11, 762.	1.5	30
610	Three-dimensional imaging of intact porcine cochlea using tissue clearing and custom-built light-sheet microscopy. Biomedical Optics Express, 2020, 11, 6181.	1.5	20
611	Slice-illuminated optical projection tomography. Optics Letters, 2018, 43, 5555.	1.7	5
612	Solid immersion meniscus lens (SIMlens) for open-top light-sheet microscopy. Optics Letters, 2019, 44, 4451.	1.7	23
613	Rationalisation and Validation of an Acrylamide-Free Procedure in Three-Dimensional Histological Imaging. PLoS ONE, 2016, 11, e0158628.	1.1	32
614	Comparison of different clearing and acquisition methods for 3D imaging of murine intestinal organoids. Journal of Biological Methods, 2020, 7, e141.	1.0	9
615	High-Fidelity Imaging in Brain-Wide Structural Studies Using Light-Sheet Microscopy. ENeuro, 2018, 5, ENEURO.0124-18.2018.	0.9	15

CITATION REPORT ARTICLE IF CITATIONS Quantifying Mesoscale Neuroanatomy Using X-Ray Microtomography. ENeuro, 2017, 4, 0.9 74 ENEURÓ.0195-17.2017. Optical Clearing and Index Matching of Tissue Samples for High-resolution Fluorescence Imaging 0.2 Using SeeDB2. Bio-protocol, 2018, 8, e3046. Looking through Brains with Fast Passive CLARITY: Zebrafish, Rodents, Non-human Primates and 0.2 6 Humans. Bio-protocol, 2019, 9, e3321. Mechanical Tissue Compression and Whole-mount Imaging at Single Cell Resolution for Developing Murine Epididymal Tubules. Bio-protocol, 2020, 10, e3694. Vascular Casting of Adult and Early Postnatal Mouse Lungs for Micro-CT Imaging. Journal of 0.2 6 Visualized Experiments, 2020, , . Time course analysis of sensory axon regeneration in vivo by directly tracing regenerating axons. Neural Regeneration Research, 2020, 15, 1160. 1.6 See-Through Technology for Biological Tissue: 3-Dimensional Visualization of Macromolecules. 0.5 21 International Neurourology Journal, 2016, 20, S15-22. A tunable refractive index matching medium for live imaging cells, tissues and model organisms. ELife, 2.8 128 Mechanisms of virus dissemination in bone marrow of HIV-1â€"infected humanized BLT mice. ELife, 2019, 2.8 24 8. . Mouse retinal cell behaviour in space and time using light sheet fluorescence microscopy. ELife, 2020, 2.8 Revisiting the role of Dcc in visual system development with a novel eye clearing method. ELife, 2020, 2.8 19 9,. A technical review and guide to RNA fluorescence in situ hybridization. PeerJ, 2020, 8, e8806. 0.9 Multi-Scale Light-Sheet Fluorescence Microscopy for Fast Whole Brain Imaging. Frontiers in 0.9 15 Neuroanatomy, 2021, 15, 732464. Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing. Nature 9.4 Biotechnology, 2022, 40, 364-373 Characterization of Astrocyte Morphology and Function Using a Fast and Reliable Tissue Clearing 1.3 1 Technique. Current Protocols, 2021, 1, e279. Novel in vitro Experimental Approaches to Study Myelination and Remyelination in the Central 1.8 Nervous System. Frontiers in Cellular Neuroscience, 2021, 15, 748849. NuMorph: Tools for cortical cellular phenotyping in tissue-cleared whole-brain images. Cell Reports, 2.9 8 2021, 37, 109802.

A simple optical tissue clearing pipeline for 3D vasculature imaging of the mediastinal organs in mice. International Journal of Experimental Pathology, 2021, 102, 218-227.

#

616

618

620

622

624

626

628

630

#	Article	IF	Citations
634	Recent progress in optical clearing of eye tissues. Experimental Eye Research, 2021, 212, 108796.	1.2	3
637	Scalable embedding method with hydrogel for optical imaging of fluorescent samples. , 2017, , .		0
639	High-refractive index of acrylate embedding resin clarifies mouse brain tissue. Journal of Biomedical Optics, 2017, 22, 1.	1.4	1
642	Optical Clearing in Kidney Reveals Potassium-Mediated Tubule Remodeling. SSRN Electronic Journal, 0, ,	0.4	1
643	Estimation of Glucose Diffusion Coefficient in Human Dura Mater. Izvestiya of Saratov University, New Series: Physics, 2018, 18, 32-45.	0.1	0
644	Confocal multispot microscope for fast and deep imaging in semicleared tissues. Journal of Biomedical Optics, 2018, 23, 1.	1.4	1
645	Comparison of seven optical clearing methods for mouse brain. , 2018, , .		1
646	Low cost light-sheet microscopy for whole brain imaging. , 2018, , .		0
647	The microstructural variation during tissue optical clearing by Mueller matrix polarimetry. , 2018, , .		0
656	Segmentation of biological images containing multitarget labeling using the jelly filling framework. Journal of Medical Imaging, 2018, 5, 1.	0.8	1
659	Multi-immersion open-top light-sheet microscopy. , 2019, , .		0
660	Seebest: A pH-Adjustable Tissue Clearing Solution that Preserves Lipid Ultrastructures. SSRN Electronic Journal, 0, , .	0.4	0
661	Optical Clearing and Tissue Imaging. SpringerBriefs in Physics, 2019, , 107-138.	0.2	1
662	Tissue Optics. SpringerBriefs in Physics, 2019, , 1-15.	0.2	2
664	A multimodal light-sheet microscope that is compatible with all clearing techniques. , 2019, , .		0
666	Imaging of microglia â, macrophage in an animal model of peripheral inflammatory pain. Pain Research, 2019, 34, 31-38.	0.1	0
667	An applicable whole-mount immunolabeling method for volume imaging of skeletal muscle. , 2019, , .		1
668	Imaging the brain in 3D using a combination of CUBIC and immunofluorescence staining. Biomedical Optics Express, 2019, 10, 2141.	1.5	7

#	Article	IF	CITATIONS
677	Neurohistology with a Touch of History: Technology-Driven Research. Neuromethods, 2020, , 1-48.	0.2	0
681	In Vivo Clonal Analysis of Cardiomyocytes. Methods in Molecular Biology, 2021, 2158, 243-256.	0.4	2
682	Tutorial: methods for three-dimensional visualization of archival tissue material. Nature Protocols, 2021, 16, 4945-4962.	5.5	7
684	Navigating the Light-Sheet Image Analysis Software Landscape: Concepts for Driving Cohesion From Data Acquisition to Analysis. Frontiers in Cell and Developmental Biology, 2021, 9, 739079.	1.8	11
686	Influence of ClearT and ClearT2 Agitation Conditions in the Fluorescence Imaging of 3D Spheroids. International Journal of Molecular Sciences, 2021, 22, 266.	1.8	3
687	Malignant cell characterization via mathematical analysis of bio impedance and optical properties. Electromagnetic Biology and Medicine, 2021, 40, 65-83.	0.7	5
688	A Hydrophobic Tissue Clearing Method for Rat Brain Tissue. Journal of Visualized Experiments, 2020, , .	0.2	2
689	Ultraviolet photoacoustic microscopy with tissue clearing for high-contrast histological imaging. Photoacoustics, 2022, 25, 100313.	4.4	10
690	Biomechanics of Mitral Valve Leaflets: Second Harmonic Generation Microscopy, Biaxial Mechanical Tests and Tissue Modeling. SSRN Electronic Journal, 0, , .	0.4	0
691	Sample Preparation of Optically Cleared Liver Tissue to Identify Liver Macrophages Using 3D Microscopy. Methods in Molecular Biology, 2020, 2164, 55-63.	0.4	1
692	Multicolor Labeling and Tracing of Pancreatic Beta-Cell Proliferation in Zebrafish. Methods in Molecular Biology, 2020, 2128, 159-179.	0.4	1
693	Toward Better Medical Diagnosis: Tissue Optical Clearing. Journal of Public Health International, 2019, 2, 13-21.	0.1	6
694	Optical Clearing of Biological Tissues: Prospects of Application for Multimodal Malignancy Diagnostics. , 2020, , 107-131.		5
695	Three-Dimensional Approaches in Histopathological Tissue Clearing System. Korean Journal of Clinical Laboratory Science, 2020, 52, 1-17.	0.1	2
698	Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Advanced Drug Delivery Reviews, 2022, 180, 114037.	6.6	19
699	Sodium Cholateâ€Based Active Delipidation for Rapid and Efficient Clearing and Immunostaining of Deep Biological Samples. Small Methods, 2022, 6, e2100943.	4.6	4
700	Light sheet fluorescence microscopy. Nature Reviews Methods Primers, 2021, 1, .	11.8	105
703	Phenotyping Intact Mouse Bones Using Bone CLARITY. Methods in Molecular Biology, 2021, 2230, 217-230.	0.4	0

#	Article	IF	CITATIONS
704	THz spectroscopy of skin pathologies associated with water migration and content. , 2020, , .		0
705	Combined transmission, dark field and fluorescence microscopy for intact, 3D tissue analysis of biopsies. Journal of Biomedical Optics, 2020, 25, .	1.4	1
706	Immune cells in cardiac homeostasis and disease: emerging insights from novel technologies. European Heart Journal, 2022, 43, 1533-1541.	1.0	33
707	Optical tissue clearing enables rapid, precise and comprehensive assessment of three-dimensional morphology in experimental nerve regeneration research. Neural Regeneration Research, 2022, 17, 1348.	1.6	7
708	Emerging landscape of cell-penetrating peptide-mediated nucleic acid delivery and their utility in imaging, gene-editing, and RNA-sequencing. Journal of Controlled Release, 2022, 341, 166-183.	4.8	32
709	A 3D adult zebrafish brain atlas (AZBA) for the digital age. ELife, 2021, 10, .	2.8	22
710	The extracellular matrix of hematopoietic stem cell niches. Advanced Drug Delivery Reviews, 2022, 181, 114069.	6.6	26
711	Optical angiography for diabetes-induced pathological changes in microvascular structure and function: An overview. Journal of Innovative Optical Health Sciences, 2022, 15, .	0.5	6
712	Novel Optics-Based Approaches for Cardiac Electrophysiology: A Review. Frontiers in Physiology, 2021, 12, 769586.	1.3	6
713	F-CUBIC: a rapid optical clearing method optimized by quantitative evaluation. Biomedical Optics Express, 2022, 13, 237.	1.5	3
714	Imaging viral infection in vivo to gain unique perspectives on cellular antiviral immunity*. Immunological Reviews, 2022, 306, 200-217.	2.8	0
715	Imaging innate immunity*. Immunological Reviews, 2022, 306, 293-303.	2.8	10
716	Skinâ€ny deeping: Uncovering immune cell behavior and function through imaging techniques*. Immunological Reviews, 2022, 306, 271-292.	2.8	3
717	Combining laser-irradiation and glycerol immersion of skeletal muscles to improve their optical transparency. Optics and Laser Technology, 2022, 148, 107760.	2.2	7
720	Finding the best clearing approach - Towards 3D wide-scale multimodal imaging of aged human brain tissue. Neurolmage, 2022, 247, 118832.	2.1	7
721	Combined transmission, dark field and fluorescence microscopy for intact, 3D tissue analysis of biopsies. Journal of Biomedical Optics, 2020, 25, .	1.4	3
722	Usefulness of a tissue optical clearing technique for forensic autopsy. Journal of Forensic Sciences, 2022, , .	0.9	1
724	Isotope-probed SRS (ip-SRS) imaging of metabolic dynamics in living organisms. , 2022, , 421-443.		0

#	Article	IF	CITATIONS
725	Whole-Mount Immunofluorescence Protocol for 3D Imaging, Reconstruction, and Quantification of Fourth Pharyngeal Arch Formation. Methods in Molecular Biology, 2022, 2441, 41-62.	0.4	0
726	Biomechanics of mitral valve leaflets: Second harmonic generation microscopy, biaxial mechanical tests and tissue modeling. Acta Biomaterialia, 2022, 141, 244-254.	4.1	11
727	Instrumentation and methodology for volumetric stimulated Raman scattering imaging. , 2022, , 189-201.		0
729	Three-dimensional label-free histological imaging of whole organs by microtomy-assisted autofluorescence tomography. IScience, 2022, 25, 103721.	1.9	5
730	Spatial analysis of histology in 3D: quantification and visualization of organ and tumor level tissue environment. Heliyon, 2022, 8, e08762.	1.4	6
731	Multi-scale light microscopy/electron microscopy neuronal imaging from brain to synapse with a tissue clearing method, ScaleSF. IScience, 2022, 25, 103601.	1.9	11
732	Development of a 3D atlas of the embryonic pancreas for topological and quantitative analysis of heterologous cell interactions. Development (Cambridge), 2022, 149, .	1.2	11
733	Fluorescent labeling of abundant reactive entities (FLARE) for cleared-tissue and super-resolution microscopy. Nature Protocols, 2022, 17, 819-846.	5.5	9
734	Advances in fluorescence microscopy can reveal important new aspects of tissue regeneration. Biochimie, 2022, 196, 194-202.	1.3	3
736	Tissue clearing. Nature Reviews Methods Primers, 2021, 1, .	11.8	56
737	Clearing-induced tisssue shrinkage: A novel observation of a thickness size effect. PLoS ONE, 2021, 16, e0261417.	1.1	5
738	Hydrophobic and Hydrogel-Based Methods for Passive Tissue Clearing. Methods in Molecular Biology, 2022, 2440, 197-209.	0.4	2
739	Tissue Clearing Approaches in Atherosclerosis. Methods in Molecular Biology, 2022, 2419, 747-763.	0.4	5
740	Luminescent Lifetime Regulation of Lanthanide-Doped Nanoparticles for Biosensing. Biosensors, 2022, 12, 131.	2.3	9
742	Studies on the Manner of Collateral Regeneration From Nerve Stem to Motor Endplate. Frontiers in Physiology, 2021, 12, 795623.	1.3	2
743	Double-layered two-directional somatopleural cell migration during chicken body wall development revealed with local fluorescent tissue labeling. Anatomical Science International, 2022, 97, 380-390.	0.5	1
744	Expansion-Based Clearing of Golgi-Cox-Stained Tissue for Multi-Scale Imaging. International Journal of Molecular Sciences, 2022, 23, 3575.	1.8	0
745	Two-Photon–Near Infrared-II Antimicrobial Graphene-Nanoagent for Ultraviolet–Near Infrared Imaging and Photoinactivation. International Journal of Molecular Sciences, 2022, 23, 3230.	1.8	4

# 746	ARTICLE Generalised adaptive optics method for high-NA aberration-free refocusing in	IF 1.7	Citations
747	3D Tissue-Engineered Vascular Drug Screening Platforms: Promise and Considerations. Frontiers in Cardiovascular Medicine, 2022, 9, 847554.	1.1	20
748	A method for ultrafast tissue clearing that preserves fluorescence for multimodal and longitudinal brain imaging. BMC Biology, 2022, 20, 77.	1.7	5
749	Optical tissue clearing associated with 3D imaging: application in preclinical and clinical studies. Histochemistry and Cell Biology, 2022, 157, 497-511.	0.8	10
750	Three-Dimensional Visualization With Tissue Clearing Uncovers Dynamic Alterations of Renal Resident Mononuclear Phagocytes After Acute Kidney Injury. Frontiers in Immunology, 2022, 13, 844919.	2.2	3
751	Imaging plant tissues: advances and promising clearing practices. Trends in Plant Science, 2022, 27, 601-615.	4.3	6
752	Probing Dynamic Variation of Layered Microstructure Using Backscattering Polarization Imaging. Photonics, 2022, 9, 153.	0.9	2
753	Differential location of NKT and MAIT cells within lymphoid tissue. Scientific Reports, 2022, 12, 4034.	1.6	2
754	Multiresolution nondestructive 3D pathology of whole lymph nodes for breast cancer staging. Journal of Biomedical Optics, 2022, 27, .	1.4	9
756	Tissue clearing may alter emission and absorption properties of common fluorophores. Scientific Reports, 2022, 12, 5551.	1.6	4
757	Monte Carlo simulation of photon transport in a scattering-dominated medium with a refractive index gradient for acoustic light-guiding. , 2022, 1, 846.		1
758	Graphene near infrared-I/II probe in two-photon excitation-wavelength-independent photoluminescence and photoinactivation. Carbon, 2022, 193, 205-215.	5.4	3
759	Taking advantage of transparency: A proof-of-principle for the analysis of the uptake of labeled microplastic particles by organisms of different functional feeding guilds using an adapted CUBIC protocol. Science of the Total Environment, 2022, 832, 154922.	3.9	1
760	Understanding immunity in a tissueâ€centric context: Combining novel imaging methods and mathematics to extract new insights into function and dysfunction*. Immunological Reviews, 2022, 306, 8-24.	2.8	11
761	Cross-modal coherent registration of whole mouse brains. Nature Methods, 2022, 19, 111-118.	9.0	36
762	Post hoc Correction of Chromatic Aberrations in Large-Scale Volumetric Images in Confocal Microscopy. Frontiers in Neuroanatomy, 2021, 15, 760063.	0.9	5
764	Microcomputed Tomography-Based Analysis of Neovascularization within Bioengineered Vascularized Tissues. ACS Biomaterials Science and Engineering, 2022, 8, 232-241.	2.6	3
765	Microphysiological stem cell models of the human heart. Materials Today Bio, 2022, 14, 100259.	2.6	4

#	Article	IF	CITATIONS
766	3D imaging for driving cancer discovery. EMBO Journal, 2022, 41, e109675.	3.5	5
810	Challenges and advances in optical 3D mesoscale imaging. Journal of Microscopy, 2022, 286, 201-219.	0.8	13
811	Methods of Studying Ultraweak Photon Emission from Biological Objects: III. Physical Methods. Biophysics (Russian Federation), 2022, 67, 27-58.	0.2	2
812	Development of Microscopic Techniques for the Visualization of Plant–Root-Knot Nematode Interaction. Plants, 2022, 11, 1165.	1.6	3
813	Quantification and visualization of metastatic lung tumors in mice. Toxicological Research, 2022, 38, 503-510.	1.1	1
814	Optimized single-step optical clearing solution for 3D volume imaging of biological structures. Communications Biology, 2022, 5, 431.	2.0	9
815	A hybrid open-top light-sheet microscope for versatile multi-scale imaging of cleared tissues. Nature Methods, 2022, 19, 613-619.	9.0	54
816	Imaging cleared tissues made easy. Nature Methods, 2022, 19, 527-529.	9.0	0
817	Fast volumetric scanning of living tissue. Nature Biomedical Engineering, 2022, , .	11.6	0
820	Optimization of Whole Mount RNA Multiplexed in situ Hybridization Chain Reaction With Immunohistochemistry, Clearing and Imaging to Visualize Octopus Embryonic Neurogenesis. Frontiers in Physiology, 2022, 13, .	1.3	6
821	Multiplexed imaging in oncology. Nature Biomedical Engineering, 2022, 6, 527-540.	11.6	53
822	Lymphatics act as a signaling hub to regulate intestinal stem cell activity. Cell Stem Cell, 2022, 29, 1067-1082.e18.	5.2	53
824	Retention of peptide-based vesicles in murine knee joints after intra-articular injection. Journal of Drug Delivery Science and Technology, 2022, , 103532.	1.4	2
825	Single-Step Fast Tissue Clearing of Thick Mouse Brain Tissue for Multi-Dimensional High-Resolution Imaging. International Journal of Molecular Sciences, 2022, 23, 6826.	1.8	Ο
826	Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy. Nature Communications, 2022, 13, .	5.8	23
828	Tissue Optical Clearing: State of the Art and Prospects. Diagnostics, 2022, 12, 1534.	1.3	3
829	Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. , 2022, , .		0
830	Hybrid open-top light-sheet microscopy. , 2022, , .		Ο

#	Article	IF	CITATIONS
831	The new X-ray/visible microscopy MAXWELL technique for fast three-dimensional nanoimaging with isotropic resolution. Scientific Reports, 2022, 12, .	1.6	2
832	A Noninvasive Method for Time-Lapse Imaging of Microbial Interactions and Colony Dynamics. Microbiology Spectrum, 2022, 10, .	1.2	4
833	biPACT: A method for three-dimensional visualization of mouse spinal cord circuits of long segments with high resolution. Journal of Neuroscience Methods, 2022, 379, 109672.	1.3	0
834	Methodological approaches in aggregate formation and microscopic analysis to assess pseudoislet morphology and cellular interactions. Open Research Europe, 0, 2, 87.	2.0	0
835	Lightsheet Microscopy. Current Protocols, 2022, 2, .	1.3	6
836	Cryo-fluorescence micro-optical sectioning tomography for volumetric imaging of various whole organs with subcellular resolution. IScience, 2022, 25, 104805.	1.9	7
837	Visual three-dimensional spatial distribution of motor neurons innervating superficial limb muscles in mice. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	1
838	Hybrid Open-Top Light-Sheet Microscopy for Multi-Scale 3D Imaging of Cleared and Expanded Tissues. Microscopy and Microanalysis, 2022, 28, 1558-1558.	0.2	1
839	Towards Quantitative Mapping of Organ-Wide Molecular and Anatomical Patterns with Whole Mount Imaging. Microscopy and Microanalysis, 2022, 28, 1570-1570.	0.2	0
840	On Some Current Challenges in High-Resolution Optical Bioimaging. ACS Photonics, 2022, 9, 2538-2546.	3.2	10
842	Successful retrograde regeneration using a sensory branch for motor nerve transfer. Journal of Neurosurgery, 2023, 138, 858-867.	0.9	2
843	Whole-Brain Single-Cell Imaging and Analysis of Intact Neonatal Mouse Brains Using MRI, Tissue Clearing, and Light-Sheet Microscopy. Journal of Visualized Experiments, 2022, , .	0.2	0
844	Understanding Breast Cancers through Spatial and High-Resolution Visualization Using Imaging Technologies. Cancers, 2022, 14, 4080.	1.7	0
845	Visualization of the distribution of covalently cross-linked hydrogels in CLARITY brain-polymer hybrids for different monomer concentrations. Scientific Reports, 2022, 12, .	1.6	2
846	Chromatin compaction precedes apoptosis in developing neurons. Communications Biology, 2022, 5, .	2.0	11
847	FlyClear: A Tissue-Clearing Technique for High-Resolution Microscopy of Drosophila. Methods in Molecular Biology, 2022, , 349-359.	0.4	0
848	Model visualization: from micro to macro. , 2022, , 207-221.		0
849	Deep Tissue Clearing for Three-dimensional Imaging Analysis of Murine Pancreas. Anatomy & Biological Anthropology, 2022, 35, 57.	0.1	0

#	Article	IF	Citations
851	Methodological approaches in aggregate formation and microscopic analysis to assess pseudoislet morphology and cellular interactions. Open Research Europe, 0, 2, 87.	2.0	1
853	Multidimensional Imaging of Breast Cancer. Cold Spring Harbor Perspectives in Medicine, 0, , a041330.	2.9	1
855	Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	2
856	Characterization of optical clearing mechanisms in muscle during treatment with glycerol and gadobutrol solutions. Journal of Biophotonics, 0, , .	1.1	6
857	Imaging in complex media. Nature Physics, 2022, 18, 1008-1017.	6.5	31
858	High-Resolution Multiscale Imaging Enabled by Hybrid Open-Top Light-Sheet Microscopy. BME Frontiers, 2022, 2022, .	2.2	1
859	Probe Contact Force Monitoring during Conductivity Measurements of the Left Atrial Appendage to Support the Design of Novel Diagnostic and Therapeutic Procedures. Sensors, 2022, 22, 7171.	2.1	1
860	Visualization of 3D Organoids Through the Latest Advancements in Microscopy. Neuromethods, 2023, , 43-66.	0.2	2
861	Multispectral confocal 3D imaging of intact healthy and tumor tissue using mLSR-3D. Nature Protocols, 2022, 17, 3028-3055.	5.5	5
862	Development of a 3D-immunofluorescence analysis for sensory nerve endings in human ligaments. Journal of Neuroscience Methods, 2022, 382, 109724.	1.3	2
863	Epithelial cell size dysregulation in human lung adenocarcinoma. PLoS ONE, 2022, 17, e0274091.	1.1	6
864	Volumetric Ultrasound Localization Microscopy of the Whole Rat Brain Microvasculature. IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 2, 261-282.	0.9	10
865	Magnetic torque–driven living microrobots for increased tumor infiltration. Science Robotics, 2022, 7, .	9.9	52
866	CODA: quantitative 3D reconstruction of large tissues at cellular resolution. Nature Methods, 2022, 19, 1490-1499.	9.0	49
867	EZ Clear for simple, rapid, and robust mouse whole organ clearing. ELife, 0, 11, .	2.8	13
868	A new protocol for whole-brain biodistribution analysis of AAVs by tissue clearing, light-sheet microscopy and semi-automated spatial quantification. Gene Therapy, 2022, 29, 665-679.	2.3	4
869	Pocket CLARITY enables distortion-mitigated cardiac microstructural tissue characterization of large-scale specimens. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	0
870	Three-dimensional visualization of human brain tumors using the CUBIC technique. Brain Tumor Pathology, 0, , .	1.1	1

#	Article	IF	CITATIONS
871	MAX: a simple, affordable, and rapid tissue clearing reagent for 3D imaging of wide variety of biological specimens. Scientific Reports, 2022, 12, .	1.6	0
872	Wholeâ€brain microscopy reveals distinct temporal and spatial efficacy of antiâ€Aβ therapies. EMBO Molecular Medicine, 0, , .	3.3	4
873	Translational rapid ultraviolet-excited sectioning tomography for whole-organ multicolor imaging with real-time molecular staining. ELife, 0, 11, .	2.8	4
874	Visualization of the carotid body in situ in fixed human carotid bifurcations using a xylene-based tissue clearing method. Biotechnic and Histochemistry, 0, , 1-6.	0.7	0
875	Optical Tissue Clearing to Study the Intra-Pulmonary Biodistribution of Intravenously Delivered Mesenchymal Stromal Cells and Their Interactions with Host Lung Cells. International Journal of Molecular Sciences, 2022, 23, 14171.	1.8	4
876	Chapter 12. Imaging in Scaffolds. Biomaterials Science Series, 2022, , 304-341.	0.1	0
877	HyClear: A Novel Tissue Clearing Solution for One-Step Clearing of Microtissues. Cells, 2022, 11, 3854.	1.8	1
879	A Genetically Encoded Magnetic Resonance Imaging Reporter Enables Sensitive Detection and Tracking of Spontaneous Metastases in Deep Tissues. Cancer Research, 2023, 83, 673-685.	0.4	12
880	Optical Tissue Clearing Enables Three-Dimensional Morphometry in Experimental Nerve Regeneration Research. Methods in Molecular Biology, 2023, , 163-169.	0.4	0
881	Structural and functional imaging of brains. Science China Chemistry, 0, , .	4.2	13
882	3D Imaging for Cleared Tissues and Thicker Samples on Confocal and Light-Sheet Microscopes. Methods in Molecular Biology, 2023, , 143-161.	0.4	2
884	Tissue Clearing and Its Application in the Musculoskeletal System. ACS Omega, 2023, 8, 1739-1758.	1.6	1
885	Light sheet imaging and interactive analysis of the cardiac structure in neonatal mice. Journal of Biophotonics, 2023, 16, .	1.1	2
886	Volumetric imaging of optically cleared and fluorescently labeled animal tissue (VIOLA) for quantifying the 3D biodistribution of nanoparticles at cellular resolution in tumor tissue. Journal of Controlled Release, 2023, 354, 244-259.	4.8	1
887	Observing single cells in whole organs with optical imaging. Journal of Innovative Optical Health Sciences, 2023, 16, .	0.5	7
890	Research on the spectral polarization characteristics of teeth in different age groups. , 2023, , .		0
891	A simple and low ost method to visualize musculature and other aspects of anatomy by confocal microscopy. Microscopy Research and Technique, 2023, 86, 565-572.	1.2	1
892	Tissue libraries enable rapid determination of conditions that preserve antibody labeling in cleared mouse and human tissue. ELife, 0, 12, .	2.8	3

#	Article	IF	CITATIONS
893	Bidirectional near-infrared regulation of motor behavior using orthogonal emissive upconversion nanoparticles. Nanoscale, 2023, 15, 7845-7853.	2.8	5
895	Three-dimensional structure of liver vessels and spatial distribution of hepatic immune cells. Journal of Innovative Optical Health Sciences, 2023, 16, .	0.5	0
896	Tissue clearing to examine glioma complexity in 3 dimensions. Journal of Neuropathology and Experimental Neurology, 2023, 82, 376-389.	0.9	1
897	Rapid colorimetric detection of H2O2 in living cells and its upstream series of molecules based on oxidase-like activity of CoMnO3 nanofibers. Sensors and Actuators B: Chemical, 2023, 382, 133540.	4.0	13
898	Experience-dependent structural plasticity of pyramidal neurons in the developing sensory cortices. Current Opinion in Neurobiology, 2023, 81, 102724.	2.0	2
899	Invasive and Minimally Invasive Evaluation of Diffusion Properties of Sugar in Muscle. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-8.	1.9	0
900	Influence of laser beam aberrations compensation and spot size on the transmittance in native and optically cleared skeletal muscles. Optik, 2023, 274, 170596.	1.4	4
901	Tissue clearing and 3D reconstruction of digitized, serially sectioned slides provide novel insights into pancreatic cancer. Med, 2023, 4, 75-91.	2.2	6
902	Tissue clearing protocols: an overview of current methods and approaches. Scripta Scientifica Medica, 2022, 54, 9.	0.1	0
903	Quantifying Podocyte Number in a Small Sample Size of Glomeruli with CUBIC to Evaluate Podocyte Depletion of db/db Mice. Journal of Diabetes Research, 2023, 2023, 1-12.	1.0	3
904	Definition and Quantification of Three-Dimensional Imaging Targets to Phenotype Pre-Eclampsia Subtypes: An Exploratory Study. International Journal of Molecular Sciences, 2023, 24, 3240.	1.8	0
905	ROCKETS – a novel one-for-all toolbox for light sheet microscopy in drug discovery. Frontiers in Immunology, 0, 14, .	2.2	1
906	Label-free, fast, 2-photon volume imaging of the organization of neurons and glia in the enteric nervous system. Frontiers in Neuroanatomy, 0, 16, .	0.9	1
907	Nondestructive 3D Pathology with Light-Sheet Fluorescence Microscopy for Translational Research and Clinical Assays. Annual Review of Analytical Chemistry, 2023, 16, 231-252.	2.8	6
908	Characterization of Systemic Disease Development and Paw Inflammation in a Susceptible Mouse Model of Mayaro Virus Infection and Validation Using X-ray Synchrotron Microtomography. International Journal of Molecular Sciences, 2023, 24, 4799.	1.8	1
909	Selfâ€Healing Photochromic Elastomer Composites for Wearable UVâ€5ensors. Advanced Functional Materials, 2023, 33, .	7.8	8
911	Nasopharyngeal carcinoma ecology theory: cancer as multidimensional spatiotemporal "unity of ecology and evolution―pathological ecosystem. Theranostics, 2023, 13, 1607-1631.	4.6	52
913	Image-based modeling of vascular organization to evaluate anti-angiogenic therapy. Biology Direct, 2023, 18, .	1.9	2

#	Article	IF	CITATIONS
914	Nontoxic Fluorescent Nanoprobes for Multiplexed Detection and 3D Imaging of Tumor Markers in Breast Cancer. Pharmaceutics, 2023, 15, 946.	2.0	2
915	Rapid and fully automated blood vasculature analysis in 3D light-sheet image volumes of different organs. Cell Reports Methods, 2023, 3, 100436.	1.4	5
916	Gene Electrotransfer Efficiency in 2D and 3D Cancer Cell Models Using Different Electroporation Protocols: A Comparative Study. Pharmaceutics, 2023, 15, 1004.	2.0	4
917	Mechanical behavior and collagen structure of degenerative mitral valve leaflets and a finite element model of primary mitral regurgitation. Acta Biomaterialia, 2023, 164, 269-281.	4.1	5
918	CRISPR-clear imaging of melanin-rich B16-derived solid tumors. Communications Biology, 2023, 6, .	2.0	1
919	Visualisation of Host–Pathogen Communication. Advances in Experimental Medicine and Biology, 2023, , 19-39.	0.8	Ο
920	Electrophoretic Transport Through Fibrocartilage Driven by Square and Sawtooth Pulses With Decreased Joule Heating. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2023, 7, 210-215.	2.3	0
921	Uncovering the cytotoxic effects of air pollution with multi-modal imaging of <i>in vitro</i> respiratory models. Royal Society Open Science, 2023, 10, .	1.1	3
922	COMBINe enables automated detection and classification of neurons and astrocytes in tissue-cleared mouse brains. Cell Reports Methods, 2023, 3, 100454.	1.4	2
923	Principles of deep immunohistochemistry for 3D histology. Cell Reports Methods, 2023, 3, 100458.	1.4	1
931	Tissue optical clearing and 3D imaging of virus infections. Advances in Virus Research, 2023, , 89-121.	0.9	0
933	A Roadmap for Three-Dimensional Analysis of the Intact Mouse Ovary. Methods in Molecular Biology, 2023, , 203-219.	0.4	1
938	Prospects of artificial intelligence in regeneration and repair of organs. , 2023, , 117-132.		0
939	Whole-brain Optical Imaging: A Powerful Tool for Precise Brain Mapping at the Mesoscopic Level. Neuroscience Bulletin, 2023, 39, 1840-1858.	1.5	2
945	Simulating water as immersion medium for scanning laser optical tomography and correcting image artifacts due to refractive index mismatch. , 2023, , .		0
959	Fundamental Neurocardiology: The Intracardiac Nervous System. , 2023, , 151-186.		0
973	Quantitative Analysis of Whole-Mount Fluorescence-Stained Tumor Spheroids in Phenotypic Drug Screens. Methods in Molecular Biology, 2024, , 311-334.	0.4	0