Preparing a nation for autonomous vehicles: opportuni recommendations

Transportation Research, Part A: Policy and Practice 77, 167-181 DOI: 10.1016/j.tra.2015.04.003

Citation Report

#	Article	IF	CITATIONS
1	The autonomous car—a blessing or a curse for the future of low carbon mobility? An exploration of likely vs. desirable outcomes. European Journal of Futures Research, 2015, 3, .	1.5	115
2	Self-Driving Cars Will Change Cities. SSRN Electronic Journal, 2015, , .	0.4	0
3	Autonomous cars: The tension between occupant experience and intersection capacity. Transportation Research Part C: Emerging Technologies, 2015, 52, 1-14.	3.9	179
4	Towards a microeconomic framework for modelling the joint choice of activity–travel behaviour and ICT use. Transportation Research, Part A: Policy and Practice, 2015, 76, 92-112.	2.0	19
5	Self-driving cars and the chilling effect of liability law. Computer Law and Security Review, 2015, 31, 506-517.	1.3	67
6	Autonomous Vehicles: Disengagements, Accidents and Reaction Times. PLoS ONE, 2016, 11, e0168054.	1.1	214
7	Optimizing Departures of Automated Vehicles From Highways While Maintaining Mainline Capacity. IEEE Transactions on Intelligent Transportation Systems, 2016, 17, 3498-3511.	4.7	10
9	Shifts in Long-Distance Travel Mode Due to Automated Vehicles: Statewide Mode-Shift Simulation Experiment and Travel Survey Analysis. Transportation Research Record, 2016, 2566, 1-11.	1.0	50
10	Microsimulation of Demand and Supply of Autonomous Mobility On Demand. Transportation Research Record, 2016, 2564, 21-30.	1.0	90
11	A Human Factors Perspective on Ethical Concerns of Vehicle Automation. Proceedings of the Human Factors and Ergonomics Society, 2016, 60, 1844-1848.	0.2	6
12	Market Penetration Model for Autonomous Vehicles on the Basis of Earlier Technology Adoption Experience. Transportation Research Record, 2016, 2597, 67-74.	1.0	91
13	Conception of future integrated smart mobility. , 2016, , .		13
14	The Environmental Impact of Autonomous Vehicles Depends on Adoption Patterns. Environmental Science & Scie	4.6	43
15	Self-driving cars will change cities. Regional Science and Urban Economics, 2016, 61, 26-37.	1.4	144
16	Intelligence Testing for Autonomous Vehicles: A New Approach. IEEE Transactions on Intelligent Vehicles, 2016, 1, 158-166.	9.4	181
17	50th Anniversary Invited Article—Autonomous Vehicles and Connected Vehicle Systems: Flow and Operations Considerations. Transportation Science, 2016, 50, 1140-1162.	2.6	249
18	A novel peer-to-peer congestion pricing marketplace enabled by vehicle-automation. Transportation Research, Part A: Policy and Practice, 2016, 94, 483-494.	2.0	4
19	Hazard detection and cognition for an active driving assistance. , 2016, , .		6

#	Article	IF	CITATIONS
20	Technology blindness and temporal imprecision: rethinking the long term in an era of accelerating technological change. Foresight, 2016, 18, 391-413.	1.2	5
21	Planning for Cars That Drive Themselves. Journal of Planning Education and Research, 2016, 36, 210-224.	1.5	130
22	Policy and society related implications of automated driving: A review of literature and directions for future research. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2017, 21, 324-348.	2.6	582
23	Autonomous vehicles: The next jump in accessibilities?. Research in Transportation Economics, 2017, 62, 80-91.	2.2	254
24	A general framework for modeling shared autonomous vehicles with dynamic network-loading and dynamic ride-sharing application. Computers, Environment and Urban Systems, 2017, 64, 373-383.	3.3	165
25	Secure Information Sharing among Autonomous Vehicles in NDN. , 2017, , .		29
26	Towards trusted autonomous vehicles from vulnerable road users perspective. , 2017, , .		33
27	The enhanced knowledge translation and exchange framework for road safety: a brief report on its development and potential impacts. Injury Prevention, 2017, 23, 114-117.	1.2	1
28	Autonomous Vehicles. Transportation Research Record, 2017, 2640, 21-28.	1.0	51
29	Forecasting Americans' long-term adoption of connected and autonomous vehicle technologies. Transportation Research, Part A: Policy and Practice, 2017, 95, 49-63.	2.0	362
30	Economic Effects of Automated Vehicles. Transportation Research Record, 2017, 2606, 106-114.	1.0	166
31	Emerging technological trajectories and new mobility solutions. A large-scale investigation on transport-related innovative start-ups and implications for policy. Transportation Research, Part A: Policy and Practice, 2017, 106, 1-11.	2.0	27
32	Analysis of the Effects of Connected–Automated Vehicle Technologies on Travel Demand. Transportation Research Record, 2017, 2625, 1-8.	1.0	72
33	Legal aspects of autonomous vehicles — An overview. , 2017, , .		36
34	Risk Analysis of Autonomous Vehicles in Mixed Traffic Streams. Transportation Research Record, 2017, 2625, 51-61.	1.0	61
35	Estimating the trip generation impacts of autonomous vehicles on car travel in Victoria, Australia. Transportation, 2017, 44, 1279-1292.	2.1	66
36	Information Management of Demand-responsive Mobility Service Based on Autonomous Vehicles. Procedia Engineering, 2017, 187, 483-491.	1.2	16
37	Repurposing the paving: The case of surplus residential parking in Davis, CA. Cities, 2017, 70, 111-121.	2.7	9

#	Article	IF	Citations
38	Semantically aware multilateral filter for depth upsampling in automotive LiDAR point clouds. , 2017, ,		9
39	Fourth Industrial Revolution: technological drivers, impacts and coping methods. Chinese Geographical Science, 2017, 27, 626-637.	1.2	237
40	Fuel economy assessment of semi-autonomous vehicles using measured data. , 2017, , .		7
41	Potentials of Autonomous Vehicles in a Changing Private Transportation System – a Case Study in the Stuttgart Region. Transportation Research Procedia, 2017, 26, 13-21.	0.8	51
42	The Built Environment and Walking. Transport and Sustainability, 2017, , 139-165.	0.2	1
43	Why public health should embrace the autonomous car. Australian and New Zealand Journal of Public Health, 2017, 41, 5-7.	0.8	34
44	The Future of Automobility. , 2017, , 253-285.		0
45	Home automation networks: A survey. Computer Standards and Interfaces, 2017, 50, 42-54.	3.8	73
46	From connected vehicles to a connected, coordinated and automated road transport (C ² ART) system. , 2017, , .		6
47	Mobility Analysis of Electric Autonomous Vehicle Networks Driven by Energy-Efficient Rerouting. , 2017, , .		5
48	A two-level urban traffic control for autonomous vehicles to improve network-wide performance. Transportation Research Procedia, 2017, 27, 913-920.	0.8	36
49	Critical features of autonomous road transport from the perspective of technological regulation and law. Transportation Research Procedia, 2017, 27, 791-798.	0.8	21
50	Estimation of driver's posture using pressure distribution sensors in driving simulator and on-road experiment. , 2017, , .		7
51	Intent prediction of vulnerable road users from motion trajectories using stacked LSTM network. , 2017, , .		28
52	Analysis on supply and demand of shared autonomous vehicles considering household vehicle ownership and shared use. , 2017, , .		8
53	Autonomous Vehicle-Intersection Coordination Method in a Connected Vehicle Environment. IEEE Intelligent Transportation Systems Magazine, 2017, 9, 37-47.	2.6	100
54	How Can Autonomous and Connected Vehicles, Electromobility, BRT, Hyperloop, Shared Use Mobility and Mobility-As-A-Service Shape Transport Futures for the Context of Smart Cities?. Urban Science, 2017, 1, 36.	1.1	112
55	Reboot for the AI revolution. Nature, 2017, 550, 324-327.	13.7	57

#	Article	IF	CITATIONS
56	A Machine Learning Approach to Pedestrian Detection for Autonomous Vehicles Using High-Definition 3D Range Data. Sensors, 2017, 17, 18.	2.1	77
57	Powertrain and Chassis Hardware-in-the-Loop (HIL) Simulation of Autonomous Vehicle Platform. , 0, , .		15
58	Real-Time Implementation and Validation for Automated Path Following Lateral Control Using Hardware-in-the-Loop (HIL) Simulation. , 0, , .		12
59	Hardware-in-the-Loop (HIL) Implementation and Validation of SAE Level 2 Autonomous Vehicle with Subsystem Fault Tolerant Fallback Performance for Takeover Scenarios. , 2017, , .		6
60	Aggregated impacts of electric vehicles on electricity distribution in New South Wales, Australia. Australian Journal of Electrical and Electronics Engineering, 2017, 14, 71-87.	0.7	7
61	A critical analysis of travel demand estimation for new one-way carsharing systems. , 2017, , .		13
62	Perceptions of Fully Autonomous Freight Trucks. SSRN Electronic Journal, 2017, , .	0.4	4
63	Are Consumers Willing to Pay to Let Cars Drive for Them? Analyzing Response to Autonomous Vehicles. SSRN Electronic Journal, 0, , .	0.4	4
64	Comparison of Light Rail Streetcar Against Shared Autonomous Vehicle Fleet for Brooklyn–Queens Connector in New York City. Transportation Research Record, 2017, 2650, 142-151.	1.0	30
65	Line Crossing Assistance Based on Situation Modulated Potentials Using Stereo Camera Detection. IEEJ Journal of Industry Applications, 2017, 6, 286-294.	0.9	3
66	The Impacts of Autonomous Vehicles and E-Commerce on Local Government Budgeting and Finance. SSRN Electronic Journal, 2017, , .	0.4	10
67	Cognitive Internet of Vehicles. Computer Communications, 2018, 120, 58-70.	3.1	193
68	Facial Fractures: Pearls and Perspectives. Plastic and Reconstructive Surgery, 2018, 141, 742e-758e.	0.7	15
69	Artificial intelligence test: a case study of intelligent vehicles. Artificial Intelligence Review, 2018, 50, 441-465.	9.7	102
70	Driver Education and Licensing Programs. Transport and Sustainability, 2018, , 13-36.	0.2	7
71	Transportation Planning for Connected Autonomous Vehicles: How It All Fits Together. Transportation Research Record, 2018, 2672, 12-19.	1.0	8
72	Proactive Threat Detection for Connected Cars Using Recursive Bayesian Estimation. IEEE Sensors Journal, 2018, 18, 4822-4831.	2.4	24
73	Life Cycle Assessment of Connected and Automated Vehicles: Sensing and Computing Subsystem and Vehicle Level Effects. Environmental Science & Technology, 2018, 52, 3249-3256.	4.6	141

#	Article	IF	CITATIONS
74	Appraising the environmental benefits of ride-sharing: The Paris region case study. Journal of Cleaner Production, 2018, 177, 888-898.	4.6	55
75	Anticipating acceptance of emerging technologies using twitter: the case of self-driving cars. Journal of Business Economics, 2018, 88, 617-642.	1.3	31
76	A qualitative examination of drivers' responses to partially automated vehicles. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 56, 167-175.	1.8	39
77	The impact of private autonomous vehicles on vehicle ownership and unoccupied VMT generation. Transportation Research Part C: Emerging Technologies, 2018, 90, 156-165.	3.9	120
78	Big Data Analytics and IoT in logistics: a case study. International Journal of Logistics Management, 2018, 29, 575-591.	4.1	126
79	ICT, activity space–time and mobility: new insights, new models, new methodologies. Transportation, 2018, 45, 267-272.	2.1	19
80	Implications of automated vehicles for accessibility and location choices: Evidence from an expert-based experiment. Journal of Transport Geography, 2018, 68, 142-148.	2.3	93
81	Cognitive underpinnings of beliefs and confidence in beliefs about fully automated vehicles. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 55, 114-122.	1.8	75
82	Uncertain Environmental Footprint of Current and Future Battery Electric Vehicles. Environmental Science & Technology, 2018, 52, 4989-4995.	4.6	117
83	Pedestrians, Autonomous Vehicles, and Cities. Journal of Planning Education and Research, 2018, 38, 6-12.	1.5	205
84	A performance evaluation of a fault-tolerant path recommendation protocol for smart transportation system. Wireless Networks, 2018, 24, 345-360.	2.0	9
85	Organizing a Collaborative Development of Technological Design Requirements Using a Constructive Dialogue on Value Profiles: A Case in Automated Vehicle Development. Science and Engineering Ethics, 2018, 24, 49-72.	1.7	10
86	Modeling connected and autonomous vehicles in heterogeneous traffic flow. Physica A: Statistical Mechanics and Its Applications, 2018, 490, 269-277.	1.2	187
87	An agent-based model of the emergence of cooperation and a fair and stable system optimum using ATIS on a simple road network. Transportation Research Part C: Emerging Technologies, 2018, 86, 183-201.	3.9	38
88	Passenger's subjective traffic safety, in-vehicle security and emergency management in the driverless shuttle bus in Finland. Transport Policy, 2018, 61, 106-110.	3.4	122
89	Comparison between mixed-integer and second order cone programming for autonomous overtaking. , 2018, , .		2
90	User Perceptions in Adopting Cloud Computing in Autonomous Vehicle. , 2018, , .		7
91	Capability of Voice Recognition System for Automatic Signal in Autonomous Vehicle (AV) Application. , 2018, , .		3

#	Article	IF	CITATIONS
92	Urban Motion Planning Framework Based on N-Bézier Curves Considering Comfort and Safety. Journal of Advanced Transportation, 2018, 2018, 1-13.	0.9	35
93	Autonomous, Connected, Electric Shared Vehicles (ACES) and Public Finance: An Explorative Analysis. SSRN Electronic Journal, 0, , .	0.4	1
94	The Law-Technology Cycle and the Future of Work. SSRN Electronic Journal, 2018, , .	0.4	3
95	Personas and Emotional Design for Public Service Robots: A Case Study with Autonomous Vehicles in Public Transportation. , 2018, , .		14
96	Responsive Regulation on Disruptive Technology: A Continuous-Time Principal-Agent Approach. SSRN Electronic Journal, O, , . The Autonomous Vehicle Revolution: Implications for Planning The Driverless City/Autonomous	0.4	0
97	Vehicles – A Planner's Response/Autonomous Vehicles: Opportunities, Challenges and the Need for Government Action/Three Signs Autonomous Vehicles Will Not Lead to Less Car Ownership and Less Car Use in Car Dependent Cities – A Case Study of Sydney, Australia/Planning for Autonomous Vehicles? Ouestions of Purpose. Place and Pace/Ensuring Good Governance: The Role of Planners in	0.8	27
98	the Development of Autonomous Vehicles). Planning Theory and Practice, 2018, 19, 753-778. Spatio-Temporal Reasoning within a Neural Network framework for Intelligent Physical Systems. , 2018, , .		4
99	Opening Up the Conversation: Topic Modeling for Automated Text Analysis in Travel Surveys. , 2018, , .		3
100	Automated Speed and Lane Change Decision Making using Deep Reinforcement Learning. , 2018, , .		139
101	Unveiling Topics from Scientific Literature on the Subject of Self-driving Cars using Latent Dirichlet Allocation. , 2018, , .		4
102	Design and implementation of a centralized system for autonomous unmanned aerial vehicle trajectory conflict resolution. , 2018, , .		3
103	Parking Pricing and Design in the Morning Commute Problem with Regular and Autonomous Vehicles. SSRN Electronic Journal, 2018, , .	0.4	7
104	Predictors of Attitudes Toward Autonomous Vehicles: The Roles of Age, Gender, Prior Knowledge, and Personality. Frontiers in Psychology, 2018, 9, 2589.	1.1	104
105	Diagnostic Analysis for an Autonomous Truck Using Multiple Attribute Decision Making. , 2018, , .		4
106	Bias-aware guidelines and fairness-preserving Taxonomy in software engineering education. , 2018, , .		1
107	Analyzing Motion Sickness Level in Autonomous Vehicles According to Look-Ahead Distance. , 2018, , .		2
108	An Accelerated Approach to Safely and Efficiently Test Pre-Production Autonomous Vehicles on Public Streets. , 2018, , .		6
109	Sharing Mobility: Lane Accommodation in Urban Road Networks with Automated Vehicles. , 2018, , .		2

#	Article	IF	CITATIONS
110	Impact of Privately-Owned Level 4 CAV Technologies on Travel Demand and Energy. Procedia Computer Science, 2018, 130, 914-919.	1.2	32
111	A Survey to Understand Emotional Situations on the Road and What They Mean for Affective Automotive UIs. Multimodal Technologies and Interaction, 2018, 2, 75.	1.7	11
112	Investigating the Effect of Look-Ahead Distance on Automated Steering Performance. , 2018, , .		1
113	An analytical review on automatic gear shifting in automatic transmission. International Journal of Vehicle Design, 2018, 77, 227.	0.1	1
114	Infrastructure Enabled Autonomy: A Distributed Intelligence Architecture for Autonomous Vehicles. , 2018, , .		29
115	Application of Driverless Electric Automated Shuttles for Public Transport in Villages: The Case of Appelscha. World Electric Vehicle Journal, 2018, 9, 15.	1.6	15
116	Hardware-in-the-Loop (HIL) Implementation and Validation of SAE Level 2 Automated Vehicle with Subsystem Fault Tolerant Fallback Performance for Takeover Scenarios. SAE International Journal of Connected and Automated Vehicles, 0, 1, 13-32.	0.4	5
117	System Model for Autonomous Road Freight Transportation. Promet - Traffic - Traffico, 2018, 30, 93-103.	0.3	24
118	Vehicle-In-the-Loop Test Environment for Autonomous Driving with Microscopic Traffic Simulation. , 2018, , .		42
119	Technological game changers: convergence, hype, and evolving supply chain design. Production, 2018, 28, .	1.3	2
120	Wired at Birth: Childhood, Technology Engagement, and Travel Behavior. Transportation Research Record, 2018, 2672, 66-78.	1.0	6
121	What Types of Cars Will We Be Driving? Methods of Forecasting Car Travel Demand by Vehicle Type. Transportation Research Record, 2018, 2672, 125-134.	1.0	7
122	Longitudinal Safety Analysis For Heterogeneous Platoon of Automated And Human Vehicles. , 2018, , .		2
123	Characterization of the New Class of Driving Cycles for Connected and Automated Vehicles. , 2018, , .		2
124	An Augmented Reality Environment for Connected and Automated Vehicle Testing and Evaluation. , 2018, , .		29
125	Analysis of Dual LIDAR Placement for Off-Road Autonomy Using MAVS. , 2018, , .		8
126	Heterogeneous Traffic Flow Dynamics under Various Penetration Rates of Connected and Autonomous Vehicle. , 2018, , .		6
127	Speed Increasing of FOE Calculation in Autonomous Vehicle Control Systems. , 2018, , .		1

#	Article	IF	CITATIONS
128	Maximizing the value for money of road projects through digitalization. Competition and Regulation in Network Industries, 2018, 19, 69-92.	0.3	6
129	Who Would Put Their Child Alone In An Autonomous Vehicle? Preliminary Look At Gender Differences. Proceedings of the Human Factors and Ergonomics Society, 2018, 62, 256-259.	0.2	14
130	Connected, Autonomous and Electric Vehicles: The Optimum Value for a Successful Business Model. , 2018, , .		8
131	A Framework for Building Integrative Scenarios of Autonomous Vehicle Technology Application and Impacts, using Fuzzy Cognitive Maps (FCM). , 2018, , .		5
132	Technology: A Necessary but Not Sufficient Condition for Future Personal Mobility. Sustainability, 2018, 10, 4141.	1.6	12
133	Simulating deployment of connectivity and automation on the Antwerp ring road. IET Intelligent Transport Systems, 2018, 12, 1036-1044.	1.7	49
134	Transportation Infrastructure and Automation Technologies: High Performance Lanes and Dynamic Platoon Control Systems in the Automated Highways of Future Smart Cities. SSRN Electronic Journal, 2018, , .	0.4	1
135	Modelling driver acceptance of driver support systems. Accident Analysis and Prevention, 2018, 121, 134-147.	3.0	47
137	New Governance Challenges in the Era of â€~Smart' Mobility. , 2018, , 19-32.		8
138	Does Governance Matter? An International Scenarios Exercise. , 2018, , 139-151.		2
139	Autonomous Transport: Transforming Logistics through Driverless Intelligent Transportation. Transportation Research Record, 2018, 2672, 24-33.	1.0	4
140	Enhancing Trust in Autonomous Vehicles through Intelligent User Interfaces That Mimic Human Behavior. Multimodal Technologies and Interaction, 2018, 2, 62.	1.7	55
141	Developing Policy for Urban Autonomous Vehicles: Impact on Congestion. Urban Science, 2018, 2, 33.	1.1	63
142	Introducing Autonomous Vehicles: Formulation and Analysis of Public Policies. SSRN Electronic Journal, 0, , .	0.4	3
143	Estimating reaction time in Adaptive Cruise Control System. , 2018, , .		24
144	State-of-the-art and trends of autonomous driving technology. , 2018, , .		8
145	A Systemic View on Autonomous Vehicles. Disp, 2018, 54, 12-25.	0.8	45
146	Modeling adoption timing of autonomous vehicles: innovation diffusion approach. Transportation, 2018, 45, 1607-1621.	2.1	40

#	Article	IF	CITATIONS
147	Exploring the Economic, Environmental, and Travel Implications of Changes in Parking Choices due to Driverless Vehicles: An Agent-Based Simulation Approach. Journal of the Urban Planning and Development Division, ASCE, 2018, 144, .	0.8	38
148	Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet, The, 2018, 392, 2052-2090.	6.3	1,317
149	Evaluating How Interfaces Influence the User Interaction with Fully Autonomous Vehicles. , 2018, , .		12
150	Software Transparency as a Key Requirement for Self-Driving Cars. , 2018, , .		36
151	The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid. Energies, 2018, 11, 2016.	1.6	31
152	The Potential Implications of Autonomous Vehicles in and around the Workplace. International Journal of Environmental Research and Public Health, 2018, 15, 1876.	1.2	66
153	Unintended Effects of Autonomous Driving: A Study on Mobility Preferences in the Future. Sustainability, 2018, 10, 2404.	1.6	112
154	Effect of Highway Lane Management Policy of Heavy Vehicles on the Cost of Flexible Pavement. Journal of Transportation Engineering Part A: Systems, 2018, 144, .	0.8	6
155	Models of Human Decision-Making as Tools for Estimating and Optimizing Impacts of Vehicle Automation. Transportation Research Record, 2018, 2672, 153-163.	1.0	32
156	A Review on Energy, Environmental, and Sustainability Implications of Connected and Automated Vehicles. Environmental Science & Technology, 2018, 52, 11449-11465.	4.6	100
157	Level 5 autonomy: The new face of disruption in road transport. Technological Forecasting and Social Change, 2018, 134, 22-34.	6.2	75
158	Studying the Safety Impact of Autonomous Vehicles Using Simulation-Based Surrogate Safety Measures. Journal of Advanced Transportation, 2018, 2018, 1-11.	0.9	160
159	Driver distraction and inattention in the realm of automated driving. IET Intelligent Transport Systems, 2018, 12, 407-413.	1.7	39
160	Slow and steady won't win this race: Beyond compliance-based mission assurance for small satellites. , 2018, , .		0
161	Automated Vehicle Legislative Issues. Transportation Research Record, 2018, 2672, 1-13.	1.0	3
162	Computational intelligence in context of autonomous vehicle modeling: A survey. , 2018, , .		0
163	The Science of Testing: An Automotive Perspective. , 0, , .		13
164	Climate research priorities for policy-makers, practitioners, and scientists in Georgia, USA. Environmental Management, 2018, 62, 190-209.	1.2	15

#	Article	IF	CITATIONS
165	What drives people to accept automated vehicles? Findings from a field experiment. Transportation Research Part C: Emerging Technologies, 2018, 95, 320-334.	3.9	343
166	Automated Mobility Transitions: Governing Processes in the UK. Sustainability, 2018, 10, 956.	1.6	41
167	People must retain control of autonomous vehicles. Nature, 2018, 556, 169-171.	13.7	60
168	Working conditions, health and retirement intentions: a case study of truck drivers. International Journal of Workplace Health Management, 2018, 11, 114-129.	0.8	8
169	Application of Pre-Computed Acceleration Event Control to Improve Fuel Economy in Hybrid Electric Vehicles. , 0, , .		3
170	The Impact of Autonomous Vehicles on Cities: A Review. Journal of Urban Technology, 2018, 25, 3-18.	2.5	205
171	Hands Off the Wheel in Autonomous Vehicles?: A Systems Perspective on over a Million Miles of Field Data. , 2018, , .		69
172	Personal mobility and climate change. Wiley Interdisciplinary Reviews: Climate Change, 2018, 9, e542.	3.6	26
173	Improving Multisensor Positioning of Land Vehicles with Integrated Visual Odometry for Next-Generation Self-Driving Cars. Journal of Advanced Transportation, 2018, 2018, 1-12.	0.9	6
174	Is There a Limit to Adoption of Dynamic Ridesharing Systems? Evidence from Analysis of Uber Demand Data from New York City. Transportation Research Record, 2018, 2672, 127-136.	1.0	41
175	Autonomous Vehicles for Smart and Sustainable Cities: An In-Depth Exploration of Privacy and Cybersecurity Implications. Energies, 2018, 11, 1062.	1.6	122
176	The Governance of Risks in Ridesharing: A Revelatory Case from Singapore. Energies, 2018, 11, 1277.	1.6	37
177	Smart Automation, Customer Experience and Customer Engagement in Electric Vehicles. Sustainability, 2018, 10, 1350.	1.6	24
178	Eliciting preferences for adoption of fully automated vehicles using best-worst analysis. Transportation Research Part C: Emerging Technologies, 2018, 93, 463-478.	3.9	149
179	Autonomous Vehicle Routing Optimization in a Competitive Environment: A Reinforcement Learning Application. , 2018, , .		3
180	Multi-Agent Simulation of a Demand-Responsive Transit System Operated by Autonomous Vehicles. Transportation Research Record, 2018, 2672, 764-774.	1.0	14
181	A Macroscopic Multi-Lane Traffic Flow Model for ACC/CACC Traffic Dynamics. Transportation Research Record, 2018, 2672, 178-192.	1.0	19
182	Performance analysis and fleet requirements of automated demand-responsive transport systems as an urban public transport service. International Journal of Transportation Science and Technology, 2018, 7, 151-167.	2.0	49

# 183	ARTICLE An analysis of vehicle-to-infrastructure communications for non-signalised intersection control under mixed driving behaviour. Analog Integrated Circuits and Signal Processing, 2018, 95, 415-422.	IF 0.9	Citations
184	Crash safety concerns for out-of-position occupant postures: A look toward safety in highly automated vehicles. Traffic Injury Prevention, 2018, 19, 582-587.	0.6	34
185	How Autonomous Driving May Affect the Value of Travel Time Savings for Commuting. Transportation Research Record, 2018, 2672, 11-20.	1.0	132
186	Automated Mobility-on-Demand vs. Mass Transit: A Multi-Modal Activity-Driven Agent-Based Simulation Approach. Transportation Research Record, 2018, 2672, 608-618.	1.0	85
187	Transport Policy Optimization with Autonomous Vehicles. Transportation Research Record, 2018, 2672, 698-707.	1.0	20
188	Multiagent Spatial Simulation of Autonomous Taxis for Urban Commute: Travel Economics and Environmental Impacts. Journal of the Urban Planning and Development Division, ASCE, 2018, 144, .	0.8	43
189	Autonomous Traffic Management: Open Issues and New Directions. , 2018, , .		12
190	Dynamic transit lanes for connected and autonomous vehicles. Public Transport, 2018, 10, 399-426.	1.7	11
191	Spatially Clustered Autonomous Vehicle Malware: Producing New Urban Geographies of Inequity. Transportation Research Record, 2018, 2672, 66-75.	1.0	6
192	Reframing the governance of automotive automation: insights from UK stakeholder workshops. Journal of Responsible Innovation, 2018, 5, 257-279.	2.3	38
193	Modeling shared autonomous electric vehicles: Potential for transport and power grid integration. Energy, 2018, 158, 148-163.	4.5	97
194	Virtual Immersive Reality for Stated Preference Travel Behavior Experiments: A Case Study of Autonomous Vehicles on Urban Roads. Transportation Research Record, 2018, 2672, 35-45.	1.0	65
195	Public Acceptance of Fully Automated Driving: Effects of Social Trust and Risk/Benefit Perceptions. Risk Analysis, 2019, 39, 326-341.	1.5	199
196	Policy formulation for highly automated vehicles: Emerging importance, research frontiers and insights. Transportation Research, Part A: Policy and Practice, 2019, 124, 573-586.	2.0	27
197	Situation Awareness in Future Autonomous Vehicles: Beware of the Unexpected. Advances in Intelligent Systems and Computing, 2019, , 303-309.	0.5	44
198	Risk Assessment for Integral Safety in Automated Driving. , 2019, , .		13
199	Living Lab as an Ecosystem for Development, Demonstration and Assessment of Autonomous Mobility Solutions. Sustainability, 2019, 11, 4095.	1.6	8
200	Artificial Intelligence Approach in Melanoma. , 2019, , 599-628.		5

#	Article	IF	CITATIONS
201	Torque-Vectoring-Based Backup Steering Strategy for Steer-by-Wire Autonomous Vehicles With Vehicle Stability Control. IEEE Transactions on Vehicular Technology, 2019, 68, 7319-7328.	3.9	26
202	Internet of Autonomous Vehicles Communications Security: Overview, Issues, and Directions. IEEE Wireless Communications, 2019, 26, 60-65.	6.6	77
203	Autonomous Driving as System of Systems: roadmap for accelerating development. , 2019, , .		1
204	An estimation of the future adoption rate of autonomous trucks by freight organizations. Research in Transportation Economics, 2019, 76, 100737.	2.2	31
205	From Rail to Railless: Retrofitting Servicing Buses for Safe Autonomous Public Transportation. , 2019, , .		0
206	Exploring automated vehicle driving styles as a source of trust information. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 65, 268-279.	1.8	61
207	Future Outlook of Highway Operations with Implementation of Innovative Technologies Like AV, CV, IoT and Big Data. Logistics, 2019, 3, 15.	2.4	23
208	Assessing the Socioeconomic Impacts of Intelligent Connected Vehicles in China: A Cost–Benefit Analysis. Sustainability, 2019, 11, 3273.	1.6	21
209	Trust in Autonomous Technologies. Lecture Notes in Computer Science, 2019, , 371-384.	1.0	7
210	Privacy issues in smart cities: Insights into citizens' perspectives toward safe mobility in urban environments. , 2019, , 275-292.		2
211	Simulation-Based Connected and Automated Vehicle Models on Highway Sections: A Literature Review. Journal of Advanced Transportation, 2019, 2019, 1-14.	0.9	57
212	Modeling the Effect of Power Consumption in Automated Driving Systems on Vehicle Energy Efficiency for Real-World Driving in California. Transportation Research Record, 2019, 2673, 339-347.	1.0	3
213	Where will self-driving vehicles take us? Scenarios for the development of automated vehicles with Sweden as a case study. , 2019, , 17-32.		2
214	Filter-Based Secure Dynamic Pose Estimation for Autonomous Vehicles. IEEE Sensors Journal, 2019, 19, 6298-6308.	2.4	10
215	Optimization of Lateral Wandering of Automated Vehicles to Reduce Hydroplaning Potential and to Improve Pavement Life. Transportation Research Record, 2019, 2673, 81-89.	1.0	35
216	Impacts of gradual automated vehicle penetration on motorway operation: a comprehensive evaluation. European Transport Research Review, 2019, 11, .	2.3	27
217	Balancing the Benefits of Autonomous Vehicles. , 2019, , .		5
218	An Automated Vehicle Fuel Economy Benefits Evaluation Framework Using Real-World Travel and Traffic Data. IEEE Intelligent Transportation Systems Magazine, 2019, 11, 29-41.	2.6	15

#	Article	IF	CITATIONS
219	An adaptive approach for trialling fully automated vehicles in Queensland Australia: A brief report. Transport Policy, 2019, 81, 275-281.	3.4	4
220	A network traffic assignment model for autonomous vehicles with parking choices. Computer-Aided Civil and Infrastructure Engineering, 2019, 34, 1100-1118.	6.3	41
221	Attitudes on Autonomous Vehicle Adoption using Interpretable Gradient Boosting Machine. Transportation Research Record, 2019, 2673, 865-878.	1.0	36
222	Planning for Social Equity and Emerging Technologies. Transportation Research Record, 2019, 2673, 693-703.	1.0	4
223	Driving Style: How Should an Automated Vehicle Behave?. Information (Switzerland), 2019, 10, 219.	1.7	52
224	Quantifying the impacts of dynamic control in connected and automated vehicles on greenhouse gas emissions and urban NO2 concentrations. Transportation Research, Part D: Transport and Environment, 2019, 73, 142-151.	3.2	42
225	Collaborative Analysis Framework of Safety and Security for Autonomous Vehicles. IEEE Access, 2019, 7, 148672-148683.	2.6	22
226	Switching between augmented reality and a manual-visual task. , 2019, , .		9
227	The transport geography of electric and autonomous vehicles in road freight networks. Journal of Transport Geography, 2019, 80, 102500.	2.3	27
228	A modal-based approach for estimating electric vehicle energy consumption in transportation networks. Transportation Research, Part D: Transport and Environment, 2019, 75, 249-264.	3.2	22
229	Handbuch Maschinenethik. , 2019, , .		19
230	Trajectory Planning in Traffic Scenarios Using Support Vector Machines. IFAC-PapersOnLine, 2019, 52, 91-96.	0.5	4
231	Autonomous, connected, electric shared vehicles (ACES) and public finance: An explorative analysis. Transportation Research Interdisciplinary Perspectives, 2019, 2, 100038.	1.6	27
232	Autonomous Road Vehicles: Challenges for Urban Planning in European Cities. Urban Science, 2019, 3, 61.	1.1	50
233	Simulating impacts of automated driving behavior and traffic conditions on vehicle emissions. Transportation Research, Part D: Transport and Environment, 2019, 76, 176-192.	3.2	67
234	For a better (simulated) world. , 2019, , .		16
235	Gap acceptance study of pedestrians crossing between platooning autonomous vehicles in a virtual environment. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 67, 1-14.	1.8	39
236	Impacts of Automated Vehicles on Airport Landside Terminal Planning, Design, and Operations. Transportation Research Record, 2019, 2673, 443-454.	1.0	8

	CITATION R	EPORT	
#	Article	IF	CITATIONS
237	Revisiting â€~An unpopular essay on transportation:' The outcomes of old myths and the implications of new technologies for the sustainability of transport. Journal of Transport Geography, 2019, 81, 102535.	2.3	19
238	End-to-End Deep Learning Applied in Autonomous Navigation using Multi-Cameras System with RGB and Depth Images. , 2019, , .		4
239	Taking The Self-Driving Bus: A Passenger Choice Experiment. , 2019, , .		18
240	Including people with impairments from the start. , 2019, , .		26
241	Simultaneous determination of paracetamol and p-aminophenol using glassy carbon electrode modified with nitrogen- and sulfur- co-doped carbon dots. Mikrochimica Acta, 2019, 186, 733.	2.5	33
242	Lane Change Decision-making through Deep Reinforcement Learning with Rule-based Constraints. , 2019, , .		90
243	Benefit Cost Analysis (BCA) of Autonomous and Connected Truck (ACT) Technology and Platooning. , 2019, , .		3
244	Privacy-Preserving Solutions for Blockchain: Review and Challenges. IEEE Access, 2019, 7, 164908-164940.	2.6	211
245	Novel Compound Heterozygous Mutations in TTI2 Cause Syndromic Intellectual Disability in a Chinese Family. Frontiers in Genetics, 2019, 10, 1060.	1.1	7
246	Toward Policies to Manage the Impacts of Autonomous Vehicles on the City: A Visioning Exercise. Sustainability, 2019, 11, 5222.	1.6	14
247	How does training effect users' attitudes and skills needed for highly automated driving?. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 66, 184-195.	1.8	51
248	The Driverless Bus: An Analysis of Public Perceptions and Acceptability. Sustainability, 2019, 11, 4986.	1.6	29
249	Fully autonomous vehicles: analyzing transportation network performance and operating scenarios in the Greater Toronto Area, Canada. Transportation Planning and Technology, 2019, 42, 99-112.	0.9	23
250	Passing through the Bottleneck - The Potential of External Human-Machine Interfaces. , 2019, , .		26
251	Joint Communication and Control System Design for Connected and Autonomous Vehicle Navigation. , 2019, , .		3
252	Automated Driving Systems: Key Advantages, Limitations and Risks. , 2019, , .		2
253	Will vehicle data be shared to address the how, where, and who of traffic accidents?. European Journal of Futures Research, 2019, 7, .	1.5	7
254	Shared autonomous vehicle simulation and service design. Transportation Research Part C: Emerging Technologies, 2019, 107, 15-33.	3.9	97

#	Article	IF	CITATIONS
255	Who's Driving Change? Potential to Commute Further using Automated Vehicles among Existing Drivers in Southern Ontario, Canada. Transportation Research Record, 2019, 2673, 50-61.	1.0	7
256	How the older population perceives self-driving vehicles. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 65, 242-257.	1.8	75
257	Potential of Urban Land Use by Autonomous Vehicles: Analyzing Land Use Potential in Seoul Capital Area of Korea. IEEE Access, 2019, 7, 101915-101927.	2.6	5
258	Next-Generation Interchange Control Based on Centralized Management of Connected and Autonomous Vehicles. IEEE Access, 2019, 7, 82939-82955.	2.6	4
259	System Design of Dynamic Wireless Power Transfer for Automated Highways. , 2019, , .		9
260	Management of Potential Conflicts between Pedestrians and Autonomous Vehicles. , 2019, , .		4
261	SafeVRU: A Research Platform for the Interaction of Self-Driving Vehicles with Vulnerable Road Users. , 2019, , .		24
262	Hurting Others vs. Hurting Myself, a Dilemma for our Autonomous Vehicle. SSRN Electronic Journal, 0, , .	0.4	5
263	Holding the keys to health? A scoping study of the population health impacts of automated vehicles. BMC Public Health, 2019, 19, 1258.	1.2	24
264	Passenger car safety and emergency healthcare: a literature review. Procedia Manufacturing, 2019, 35, 35-49.	1.9	5
265	Probability Collectives Algorithm applied to Decentralized Intersection Coordination for Connected Autonomous Vehicles. , 2019, , .		10
266	The potential implications of autonomous vehicles for active transport. Journal of Transport and Health, 2019, 15, 100623.	1.1	25
267	Comparing Technology Acceptance for Autonomous Vehicles, Battery Electric Vehicles, and Car Sharing—A Study across Europe, China, and North America. Sustainability, 2019, 11, 4333.	1.6	62
268	Costs and carbon emissions of shared autonomous electric vehicles in a Virtual Power Plant and Microgrid with renewable energy. Energy Procedia, 2019, 156, 401-405.	1.8	19
269	"It's small talk, jim, but not as we know it.". , 2019, , .		21
270	Dead Time Compensation for High-flux Depth Imaging. , 2019, , .		2
271	A survey on security attacks in VANETs: Communication, applications and challenges. Vehicular Communications, 2019, 19, 100179.	2.7	107
272	A Hybrid Control Design for Autonomous Vehicles at Uncontrolled Crosswalks. , 2019, , .		14

#	Article	IF	CITATIONS
273	Investigating end-user acceptance of autonomous electric buses to accelerate diffusion. Transportation Research, Part D: Transport and Environment, 2019, 74, 255-276.	3.2	80
274	Benefits of travel time savings by truck platooning in Korean freeway networks. Transport Policy, 2019, 83, 37-45.	3.4	21
275	To buy or not to buy? Predicting willingness to pay for automated vehicles based on public opinion. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 65, 418-438.	1.8	26
276	A Study of Damage Patterns on Passenger Cars Involved in Road Traffic Accidents. Journal of Robotics, 2019, 2019, 1-12.	0.6	7
277	Survey on biometry for cognitive automotive systems. Cognitive Systems Research, 2019, 55, 175-191.	1.9	10
278	Clusters of potential autonomous vehicles users according to propensity to use individual versus shared vehicles. Transport Policy, 2019, 76, 13-20.	3.4	63
279	Distribution System Services Provided by Electric Vehicles: Recent Status, Challenges, and Future Prospects. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 4277-4296.	4.7	110
280	Towards Autonomous Transportation. Passengers' Experiences, Perceptions and Feelings in a Driverless Shuttle Bus in Finland. Sustainability, 2019, 11, 588.	1.6	86
281	Applications of Artificial Intelligence in Transport: An Overview. Sustainability, 2019, 11, 189.	1.6	299
282	Factors Affecting the Adoption of Autonomous Vehicles for Commute Trips: An Analysis with the 2015 and 2017 Puget Sound Travel Surveys. Transportation Research Record, 2019, 2673, 13-25.	1.0	45
283	Public Preferences and Willingness to Pay for Shared Autonomous Vehicles Services in Nagoya, Japan. Smart Cities, 2019, 2, 230-244.	5.5	5
284	Examining correlations between motorcyclist's conspicuity, apparel related factors and injury severity score: Evidence from new motorcycle crash causation study. Accident Analysis and Prevention, 2019, 131, 45-62.	3.0	32
285	The Cognitive Internet of Vehicles for Autonomous Driving. IEEE Network, 2019, 33, 65-73.	4.9	98
286	Analysis of Visual Scanning Patterns Comparing Drivers of Simulated L2 and L0 Systems. Transportation Research Record, 2019, 2673, 755-761.	1.0	3
287	Stakeholder views on the social issues relating to the introduction of autonomous vehicles. Transport Policy, 2019, 81, 64-67.	3.4	27
288	Artificial Intelligence Approach in Melanoma. , 2019, , 1-31.		5
289	Residential parking costs and car ownership: Implications for parking policy and automated vehicles. Regional Science and Urban Economics, 2019, 77, 276-288.	1.4	35
290	Are Cities Prepared for Autonomous Vehicles?. Journal of the American Planning Association, 2019, 85, 133-151.	0.9	38

#	Article	IF	CITATIONS
291	Self-driving vehicles: Are people willing to trade risks for environmental benefits?. Transportation Research, Part A: Policy and Practice, 2019, 125, 139-149.	2.0	27
292	How does the built environment affect interest in the ownership and use of self-driving vehicles?. Journal of Transport Geography, 2019, 78, 115-134.	2.3	13
293	Efficient and Privacy-Preserving Ridesharing Organization for Transferable and Non-Transferable Services. IEEE Transactions on Dependable and Secure Computing, 2021, 18, 1291-1306.	3.7	24
294	When will most cars be able to drive fully automatically? Projections of 18,970 survey respondents. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 64, 184-195.	1.8	20
295	Benefits and Costs of Ride-Sharing in Shared Automated Vehicles across Austin, Texas: Opportunities for Congestion Pricing. Transportation Research Record, 2019, 2673, 548-556.	1.0	43
296	Guidelines for the use of accelerated pavement testing data in autonomous vehicle infrastructure research. Journal of Traffic and Transportation Engineering (English Edition), 2019, 6, 273-281.	2.0	8
297	Strategic customer foresight: From research to strategic decision-making using the example of highly automated vehicles. Technological Forecasting and Social Change, 2019, 144, 49-65.	6.2	17
298	Training a Remote-Control Car to Autonomously Lane-Follow using End-to-End Neural Networks. , 2019, , .		10
299	Generation of Horizontally Curved Driving Lines in HD Maps Using Mobile Laser Scanning Point Clouds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 1572-1586.	2.3	37
300	Carsharing with shared autonomous vehicles: Uncovering drivers, barriers and future developments – A four-stage Delphi study. Technological Forecasting and Social Change, 2019, 144, 66-81.	6.2	70
301	Efficiency of Semi-Autonomous and Fully Autonomous Bus Services in Trunk-and-Branches Networks. Journal of Advanced Transportation, 2019, 2019, 1-17.	0.9	36
302	Dimensions of attitudes to autonomous vehicles. Urban, Planning and Transport Research, 2019, 7, 19-33.	0.8	49
303	Derivation of scaled design premises for future vehicle concepts based on a forecast of travel demand using the example of a commercial fully automated on-demand fleet. Automotive and Engine Technology, 2019, 4, 45-61.	0.7	2
304	Joint Optimization Scheme for the Planning and Operations of Shared Autonomous Electric Vehicle Fleets Serving Mobility on Demand. Transportation Research Record, 2019, 2673, 579-597.	1.0	17
305	Road tests of self-driving vehicles: Affective and cognitive pathways in acceptance formation. Transportation Research, Part A: Policy and Practice, 2019, 124, 354-369.	2.0	50
306	Forecasting the Impact of Connected and Automated Vehicles on Energy Use: A Microeconomic Study of Induced Travel and Energy Rebound. Applied Energy, 2019, 247, 297-308.	5.1	52
307	Dynamic Four-Step Planning Model of Empty Repositioning Trips for Personal Autonomous Vehicles. Journal of Transportation Engineering Part A: Systems, 2019, 145, 04019015.	0.8	8
308	PointNet Evaluation for On-Road Object Detection Using a Multi-resolution Conditioning. Lecture Notes in Computer Science, 2019, , 513-520.	1.0	1

#	Article	IF	CITATIONS
309	Collision-Avoidance Reliability Analysis of Automated Vehicle Based on Adaptive Surrogate Modeling. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2019, 5, .	0.7	6
310	Economic Assessment of Autonomous Electric Microtransit Vehicles. Sustainability, 2019, 11, 648.	1.6	37
311	The disruptive potential of autonomous vehicles (AVs) on future low-carbon tourism mobility. Asia Pacific Journal of Tourism Research, 2019, 24, 459-467.	1.8	28
312	Computation of cause and effect relationship for acceptance of autonomous mobile robots in industries. Journal of Statistics and Management Systems, 2019, 22, 237-256.	0.3	3
313	Exploring the Factors Affecting Mode Choice Intention of Autonomous Vehicle Based on an Extended Theory of Planned Behavior—A Case Study in China. Sustainability, 2019, 11, 1155.	1.6	112
314	A preliminary study of the potential impact of autonomous vehicles on residential location in Rome. Research in Transportation Economics, 2019, 75, 55-61.	2.2	32
315	A Review of SLAM Techniques and Security in Autonomous Driving. , 2019, , .		64
316	Greenhouse Gas Emission Impact of Autonomous Vehicle Introduction in an Urban Network. Transportation Research Record, 2019, 2673, 142-152.	1.0	20
317	Impact of Automated Vehicles on Travel Mode Preference for Different Trip Purposes and Distances. Transportation Research Record, 2019, 2673, 607-616.	1.0	44
318	Evaluating the impact of connected and autonomous vehicles on traffic safety. Physica A: Statistical Mechanics and Its Applications, 2019, 526, 121009.	1.2	145
319	Examining the myths of connected and autonomous vehicles: analysing the pathway to a driverless mobility paradigm. International Journal of Automotive Technology and Management, 2019, 19, 10.	0.4	54
320	Assess the impacts of different autonomous trucks' lateral control modes on asphalt pavement performance. Transportation Research Part C: Emerging Technologies, 2019, 103, 17-29.	3.9	76
321	Quantifying the Potential Impact of Autonomous Vehicle Adoption on Government Finances. Transportation Research Record, 2019, 2673, 72-83.	1.0	9
322	Beyond mere take-over requests: The effects of monitoring requests on driver attention, take-over performance, and acceptance. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 63, 22-37.	1.8	54
323	The limits of highly autonomous vehicles: an uncertain future. Ergonomics, 2019, 62, 496-499.	1.1	12
324	Fully automated vehicles: the use of travel time and its association with intention to use. Proceedings of the Institution of Civil Engineers: Transport, 2023, 176, 127-141.	0.3	27
325	Machines versus humans: People's biased responses to traffic accidents involving self-driving vehicles. Accident Analysis and Prevention, 2019, 125, 232-240.	3.0	38
326	Robust path-following control for articulated heavy-duty vehicles. Control Engineering Practice, 2019, 85, 246-256.	3.2	34

#	Article	IF	CITATIONS
327	Willingness to pay for self-driving vehicles: Influences of demographic and psychological factors. Transportation Research Part C: Emerging Technologies, 2019, 100, 306-317.	3.9	146
328	In Automatic We Trust: Investigating the Impact of Trust, Control, Personality Characteristics, and Extrinsic and Intrinsic Motivations on the Acceptance of Autonomous Vehicles. International Journal of Human-Computer Interaction, 2019, 35, 1769-1780.	3.3	123
329	What do driver educators and young drivers think about driving simulators? A qualitative draw-and-talk study. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 62, 282-293.	1.8	11
330	What Does the Future of Automated Driving Mean for Public Transportation?. Transportation Research Record, 2019, 2673, 85-93.	1.0	13
331	A Novel Lane Change Decision-Making Model of Autonomous Vehicle Based on Support Vector Machine. IEEE Access, 2019, 7, 26543-26550.	2.6	120
332	Management and business of autonomous vehicles: a systematic integrative bibliographic review. International Journal of Automotive Technology and Management, 2019, 19, 31.	0.4	7
333	Identifying and prioritizing the benefits and concerns of connected and autonomous vehicles: A comparison of individual and expert perceptions. Research in Transportation Business and Management, 2019, 32, 100438.	1.6	23
334	Wireless Traffic Signal Controller with Distributed Control System Architecture. Periodica Polytechnica: Civil Engineering, 2019, , .	0.6	1
335	Reservation-based traffic management for autonomous intersection crossing. International Journal of Distributed Sensor Networks, 2019, 15, 155014771989595.	1.3	14
336	An Intermittent Learning Algorithm for High-Speed Autonomous Driving in Unknown Environments. , 2019, , .		3
337	Assessing the Safety and Reliability of Autonomous Vehicles from Road Testing. , 2019, , .		28
338	Design of a modular solution for an autonomous vehicle for cargo transport and handling. Procedia Manufacturing, 2019, 38, 991-999.	1.9	4
339	Applying Markov decision process to adaptive dynamic route selection model. Proceedings of the Institution of Civil Engineers: Transport, 2019, , 1-14.	0.3	1
340	Proof of concept for Scenario-in-the-Loop (SciL) testing for autonomous vehicle technology. , 2019, , .		11
341	Detecting Water Reflection Symmetries in Point Clouds for Camera Position Calibration in Unmanned Surface Vehicles. , 2019, , .		0
342	Passenger Vehicle Avoidance Time Model For Connected and Autonomous Vehicles. , 2019, , .		0
343	Modeling the Combined Effect of Powertrain Options and Autonomous Technology on Vehicle Adoption and Utilization by Line-haul Fleets. , 2019, , .		0
344	The Future of Autonomous Vehicles: Lessons from the Literature on Technology Adoption. Applied Economic Perspectives and Policy, 2019, 41, 583-597.	3.1	12

#	Article	IF	CITATIONS
345	Adversarial Robustness vs. Model Compression, or Both?. , 2019, , .		68
346	A Survey on Path Prediction Techniques for Vulnerable Road Users: From Traditional to Deep-Learning Approaches. , 2019, , .		14
347	Optimized IoT Based Decision Making For Autonomous Vehicles In Intersections. , 2019, , .		12
348	How technology commitment affects mode choice for a self-driving shuttle service. Research in Transportation Business and Management, 2019, 32, 100458.	1.6	14
349	Reinforcement Learning Boat Autopilot: A Sample-efficient and Model Predictive Control based Approach. , 2019, , .		8
350	Optimal storage and loading zones within surface parking facilities for privately owned automated vehicles. IET Intelligent Transport Systems, 2019, 13, 1754-1760.	1.7	3
351	An Innovative Autonomous and Semiautonomous Cars Communication Framework: An Environment Perception Perspective. Journal of Computer Networks and Communications, 2019, 2019, 1-8.	1.2	0
352	Assessing the impact of Autonomous Vehicles on urban noise pollution. Noise Mapping, 2019, 6, 72-82.	0.7	14
353	Semi-Autonomous Vehicles as a Cognitive Assistive Device for Older Adults. Geriatrics (Switzerland), 2019, 4, 63.	0.6	16
354	Investigation into the Antecedents of Autonomous Car Acceptance using an Enhanced UTAUT Model. , 2019, , .		16
355	Modelling of a human driver s interaction with vehicle automated steering using cooperative game theory. IEEE/CAA Journal of Automatica Sinica, 2019, 6, 1095-1107.	8.5	33
356	Operationalizing Autonomy: A Transition From the Innovation Space to Real-World Operations. IEEE Systems, Man, and Cybernetics Magazine, 2019, 5, 23-32.	1.2	10
357	Analysing Drivers and Barriers of Accommodation Sharing in Dubai Using the Grey-DEMATEL Approach. Sustainability, 2019, 11, 5645.	1.6	11
358	Sharing vehicles and sharing rides in real-time: Opportunities for self-driving fleets. Advances in Transport Policy and Planning, 2019, 4, 59-85.	0.7	12
359	Public transport in a sharing environment. Advances in Transport Policy and Planning, 2019, 4, 39-57.	0.7	9
360	State of the art - Automated micro-vehicles for urban logistics. IFAC-PapersOnLine, 2019, 52, 2455-2462.	0.5	23
361	Neural Correlates of Trust During an Automated System Monitoring Task: Preliminary Results of an Effective Connectivity Study. Proceedings of the Human Factors and Ergonomics Society, 2019, 63, 83-87.	0.2	6
362	Vision Based Localization for Infrastructure Enabled Autonomy. , 2019, , .		2

#	Article	IF	CITATIONS
363	A Human Factors Approach to Defining Requirements for Low-speed Autonomous Vehicles to Enable Intelligent Platooning. , 2019, , .		8
364	Public's acceptance of automated vehicles: the role of initial trust and subjective norm. Proceedings of the Human Factors and Ergonomics Society, 2019, 63, 919-923.	0.2	13
365	Impacts of Automated Mobility on Demand on Long-term Mobility Choices: a Case Study of Singapore. , 2019, , .		3
366	Estimating empirically the response time of commercially available ACC controllers under urban and freeway conditions. , 2019, , .		6
367	To Please in a Pod. , 2019, , .		34
368	Design of Lightweight Driver-Assistance System for Safe Driving in Electric Vehicles. Sensors, 2019, 19, 4761.	2.1	4
369	Smart Longitudinal Velocity Control of Autonomous Vehicles in Interactions With Distracted Human-Driven Vehicles. IEEE Access, 2019, 7, 168060-168074.	2.6	2
370	Learning faster to perform autonomous lane changes by constructing maneuvers from shielded semantic actions. , 2019, , .		4
371	Performance of Training Sparse Deep Neural Networks on GPUs. , 2019, , .		8
372	Influence of artificial intelligence in automotive industry. Journal of Physics: Conference Series, 2019, 1402, 066081.	0.3	5
373	Transitioning to low-carbon suburbs in hot-arid regions: A case-study of Emirati villas in Abu Dhabi. Building and Environment, 2019, 147, 77-96.	3.0	17
374	Advanced Green Logistics Strategies and Technologies. Lecture Notes in Logistics, 2019, , 663-686.	0.6	7
375	Autonomous Cars: Research Results, Issues, and Future Challenges. IEEE Communications Surveys and Tutorials, 2019, 21, 1275-1313.	24.8	331
376	Autonomous vehicles: scientometric and bibliometric review. Transport Reviews, 2019, 39, 9-28.	4.7	98
377	Brief Report: The Unrealized Potential of Autonomous Vehicles for an Aging Population. Journal of Aging and Social Policy, 2019, 31, 486-496.	0.9	26
378	Shared Autonomous Electrical Vehicles and Urban Mobility: A Vision for Rome in 2035. Advances in Intelligent Systems and Computing, 2019, , 772-779.	0.5	6
379	The effect of population age on the acceptable safety of self-driving vehicles. Reliability Engineering and System Safety, 2019, 185, 341-347.	5.1	38
380	On the impact of vehicle automation on the value of travel time while performing work and leisure activities in a car: Theoretical insights and results from a stated preference survey. Transportation Research, Part A: Policy and Practice, 2019, 119, 359-382.	2.0	69

~	~
CITATION	REDUBL
CHAILON	KLI OKI

#	Article	IF	CITATIONS
382	Sustainable Interdependent Networks from Smart Autonomous Vehicle to Intelligent Transportation Networks. Studies in Systems, Decision and Control, 2019, , 121-134.	0.8	10
383	A Roadmap Toward the Resilient Internet of Things for Cyber-Physical Systems. IEEE Access, 2019, 7, 13260-13283.	2.6	87
384	The future of transport: Literature review and overview. Economic Analysis and Policy, 2019, 61, 1-6.	3.2	25
385	Evaluating Initial Public Acceptance of Highly and Fully Autonomous Vehicles. International Journal of Human-Computer Interaction, 2019, 35, 919-931.	3.3	92
386	"Human―Problems in Semi-Autonomous Vehicles: Understanding Drivers' Reactions to Off-Nominal Scenarios. International Journal of Human-Computer Interaction, 2019, 35, 956-971.	3.3	15
387	The autonomous vehicle parking problem. Transport Policy, 2019, 75, 99-108.	3.4	128
388	Should I take over? Does system knowledge help drivers in making take-over decisions while driving a partially automated car?. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 60, 669-684.	1.8	37
389	On the future of transportation in an era of automated and autonomous vehicles. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7684-7691.	3.3	170
390	Estimating Savings in Parking Demand Using Shared Vehicles for Home–Work Commuting. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 2903-2912.	4.7	47
391	Distributed Real-Time IoT for Autonomous Vehicles. IEEE Transactions on Industrial Informatics, 2019, 15, 1131-1140.	7.2	67
392	Precise Vehicle Location Detection Method Using a Wireless Power Transfer (WPT) System. IEEE Transactions on Vehicular Technology, 2019, 68, 1167-1177.	3.9	38
393	Major Limitations and Concerns Regarding the Integration of Autonomous Vehicles in Urban Transportation Systems. Advances in Intelligent Systems and Computing, 2019, , 739-747.	0.5	4
394	sCARy! Risk Perceptions in Autonomous Driving: The Influence of Experience on Perceived Benefits and Barriers. Risk Analysis, 2019, 39, 342-357.	1.5	90
395	How Should We Drive Self-driving Vehicles? Anticipation and Collective Imagination in Planning Mobility Futures. Urban Book Series, 2019, , 103-122.	0.3	11
396	Automated vehicles: exploring possible consequences of government (non)intervention for congestion and accessibility. Transport Reviews, 2019, 39, 129-151.	4.7	98
397	Self-Driving Cars and Engineering Ethics: The Need for a System Level Analysis. Science and Engineering Ethics, 2019, 25, 383-398.	1.7	48
398	Integrated models of land use and transportation for the autonomous vehicle revolution. Transport Reviews, 2019, 39, 66-83.	4.7	60
399	Human Decisions in Moral Dilemmas are Largely Described by Utilitarianism: Virtual Car Driving Study Provides Guidelines for Autonomous Driving Vehicles. Science and Engineering Ethics, 2019, 25, 399-418	1.7	85

ARTICLE IF CITATIONS Driving pleasure and perceptions of the transition from no automation to full self-driving 400 0.6 13 automation. Applied Mobilities, 2019, 4, 257-272. Discussing the "positive utilities―of autonomous vehicles: will travellers really use their time 104 productively?. Transport Reviews, 2019, 39, 50-65. 402 Transit user perceptions of driverless buses. Transportation, 2019, 46, 35-50. 2.1 94 A human factors perspective on automated driving. Theoretical Issues in Ergonomics Science, 2019, 20, 223-249. A functional form with a physical meaning for the macroscopic fundamental diagram. Transportation 404 2.8 41 Research Part B: Methodological, 2020, 137, 119-132. Autonomous automobilities: The social impacts of driverless vehicles. Current Sociology, 2020, 68, 0.8 116-134. Semi-Automated Generation of Road Transition Lines Using Mobile Laser Scanning Data. IEEE 406 4.7 25 Transactions on Intelligent Transportation Systems, 2020, 21, 1877-1890. Developing Robot Driver Etiquette Based on Naturalistic Human Driving Behavior. IEEE Transactions 408 4.7 on Intelligent Transportation Systems, 2020, 21, 1393-1403. Pedestrian Attitudes to Shared-Space Interactions with Autonomous Vehicles – A Virtual Reality 409 0.5 10 Study. Advances in Intelligent Systems and Computing, 2020, , 307-316. Acceptance of Full Driving Automation: Personally Owned and Shared-Use Concepts. Human Factors, 2.1 2020, 62, 288-309. A corridor selection for locating autonomous vehicles using an interval-valued intuitionistic fuzzy 411 2.1 59 AHP and TOPSIS method. Soft Computing, 2020, 24, 8937-8953. A concise guide to existing and emerging vehicle routing problem variants. European Journal of 3.5 171 Operational Research, 2020, 286, 401-416. Strategic Public Transport Design Using Autonomous Vehicles and Other New Technologies. 413 0.6 13 International Journal of Intelligent Transportation Systems Research, 2020, 18, 183-191. Human moral reasoning types in autonomous vehicle moral dilemma: A cross-cultural comparison of 414 5.1 36 Korea and Canada. Computers in Human Behavior, 2020, 102, 39-56. Computationally Efficient Autonomous Overtaking on Highways. IEEE Transactions on Intelligent 415 4.7 18 Transportation Systems, 2020, 21, 3169-3183. Deep Dual-Channel Neural Network for Image-Based Smoke Detection. IEEE Transactions on Multimedia, 5.2 143 2020, 22, 311-323. Get Ready for Being Chauffeured. Human Factors, 2020, 62, 1322-1338. 417 2.132 Polling-Systems-Based Autonomous Vehicle Coordination in Traffic Intersections With No Traffic Signals. IEEE Transactions on Automatic Control, 2020, 65, 680-694.

#	Article	IF	CITATIONS
419	A biâ€level model to optimize road networks for a mixture of manual and automated driving: An evolutionary local search algorithm. Computer-Aided Civil and Infrastructure Engineering, 2020, 35, 80-96.	6.3	24
420	Safety at the edge: a safety framework to identify edge conditions in the future transportation system with highly automated vehicles. Injury Prevention, 2020, 26, 386-390.	1.2	1
421	The Impact of Social Influence, Technophobia, and Perceived Safety on Autonomous Vehicle Technology Adoption. Periodica Polytechnica Transportation Engineering, 2020, 48, 133-142.	0.7	23
422	Smooth 3D Path Planning by Means of Multiobjective Optimization for Fixed-Wing UAVs. Electronics (Switzerland), 2020, 9, 51.	1.8	7
423	Threat Assessment Techniques in Intelligent Vehicles: A Comparative Survey. IEEE Intelligent Transportation Systems Magazine, 2021, 13, 71-91.	2.6	27
424	Exploring the who, what, when, where, and why of automated vehicle disengagements. Accident Analysis and Prevention, 2020, 136, 105406.	3.0	63
425	Self-driving cars and the city: Effects on sprawl, energy consumption, and housing affordability. Regional Science and Urban Economics, 2020, 81, 103484.	1.4	23
426	Corporate ownership of automated vehicles: discussing potential negative externalities. Transport Reviews, 2020, 40, 95-113.	4.7	17
427	A Mindset-Based Evolution of Unmanned Aircraft System (UAS) Acceptance Into the National Airspace System (NAS). IEEE Access, 2020, 8, 30938-30952.	2.6	4
428	A Review of the Transformation of Road Transport Systems: Are We Ready for the Next Step in Artificially Intelligent Sustainable Transport?. Applied System Innovation, 2020, 3, 1.	2.7	28
429	Review of factors affecting transportation systems adoption and satisfaction. , 2020, , 11-36.		8
430	Planning shared automated vehicle fleets. , 2020, , 151-168.		0
431	Implications of vehicle automation for accessibility and social inclusion of people on low income, people with physical and sensory disabilities, and older people. , 2020, , 61-73.		12
432	Exploratory analysis of automated vehicle crashes in California: A text analytics & hierarchical Bayesian heterogeneity-based approach. Accident Analysis and Prevention, 2020, 135, 105354.	3.0	81
433	Combining Planning and Deep Reinforcement Learning in Tactical Decision Making for Autonomous Driving. IEEE Transactions on Intelligent Vehicles, 2020, 5, 294-305.	9.4	148
434	Interacting Vehicle Trajectory Prediction with Convolutional Recurrent Neural Networks. , 2020, , .		14
435	Towards a Severity Assessment Method for Potential Cyber Attacks to Connected and Autonomous Vehicles. Journal of Advanced Transportation, 2020, 2020, 1-15.	0.9	8
436	Quantifying the employment accessibility benefits of shared automated vehicle mobility services: Consumer welfare approach using logsums. Transportation Research, Part A: Policy and Practice, 2020, 141, 221-247.	2.0	11

#	Article	IF	CITATIONS
437	Examination of trust and sustainability concerns in autonomous vehicle adoption. Technology in Society, 2020, 63, 101361.	4.8	79
438	Safety of Autonomous Vehicles. Journal of Advanced Transportation, 2020, 2020, 1-13.	0.9	64
439	The effects of trait anxiety and the big five personality traits on self-driving car acceptance. Transportation, 2021, 48, 2663-2679.	2.1	20
440	Modeling consumers' likelihood to adopt autonomous vehicles based on their peer network. Transportation Research, Part D: Transport and Environment, 2020, 87, 102509.	3.2	31
441	Addressing the "minimum parking―problem for on-demand mobility. Scientific Reports, 2020, 10, 15885.	1.6	16
442	Greenhouse gas emissions attributed to empty kilometers in automated vehicles. Transportation Research, Part D: Transport and Environment, 2020, 88, 102567.	3.2	15
443	Integrity monitoring for Kalman filter-based localization. International Journal of Robotics Research, 2020, 39, 1503-1524.	5.8	6
444	Shared Autonomous Vehicles in rural public transportation systems. Research in Transportation Economics, 2020, 83, 100925.	2.2	15
445	Regulatory governance in emerging technologies: The case of autonomous vehicles in Sweden and Norway. Research in Transportation Economics, 2020, 83, 100967.	2.2	26
446	Investigating user activities and the corresponding requirements for information and functions in autonomous vehicles of the future. International Journal of Industrial Ergonomics, 2020, 80, 103044.	1.5	15
447	Real-Time Inter-Vehicle Data Fusion Based on a New Metric for Evidence Distance in Autonomous Vehicle Systems. Applied Sciences (Switzerland), 2020, 10, 6834.	1.3	2
448	Autonomous Vehicles toward a Revolution in Collective Transport. , 0, , .		1
449	Ethical Decision Making in Autonomous Vehicles: The AV Ethics Project. Science and Engineering Ethics, 2020, 26, 3285-3312.	1.7	29
450	Impacts of Autonomous Vehicles on Public Health: A Conceptual Model and Policy Recommendations. Sustainable Cities and Society, 2020, 63, 102457.	5.1	51
451	Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city. Transport Policy, 2020, 99, 329-335.	3.4	26
452	Vision-based robust control framework based on deep reinforcement learning applied to autonomous ground vehicles. Control Engineering Practice, 2020, 104, 104630.	3.2	29
453	Assessing the feasibility of the theory of planned behaviour in predicting drivers' intentions to operate conditional and full automated vehicles. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 74, 173-183.	1.8	28
454	Risk and Trust in artificial intelligence technologies: A case study of Autonomous Vehicles. , 2020, , .		9

#	Article	IF	CITATIONS
455	The short-run and long-run equilibria for commuting with autonomous vehicles. Transportmetrica B, 2022, 10, 803-830.	1.4	6
456	Fourth industrialization-oriented offsite construction: case study of an application to an irregular commercial building. Engineering, Construction and Architectural Management, 2020, 27, 2271-2286.	1.8	27
457	Assessing the Spatial Implications of Autonomous Vehicles as Feeders to Railway Stations in Suburban Melbourne. Urban Policy and Research, 2020, 38, 357-368.	0.8	2
458	VeRA: A Simplified Security Risk Analysis Method for Autonomous Vehicles. IEEE Transactions on Vehicular Technology, 2020, 69, 10494-10505.	3.9	19
460	Racial Equity and the Future of Work. Technology Architecture and Design, 2020, 4, 17-22.	0.6	1
462	BASTA: BDI-based architecture of simulated traffic agents. Journal of Information and Telecommunication, 2020, 4, 440-460.	2.2	1
463	Mind the gap: Developments in autonomous driving research and the sustainability challenge. Journal of Cleaner Production, 2020, 275, 124087.	4.6	28
464	Pedestrian Support in Intelligent Transportation Systems: Challenges, Solutions and Open issues. Transportation Research Part C: Emerging Technologies, 2020, 121, 102856.	3.9	41
465	Public Acceptance of Driverless Buses in China: An Empirical Analysis Based on an Extended UTAUT Model. Discrete Dynamics in Nature and Society, 2020, 2020, 1-13.	0.5	25
466	Analysis of Factors Affecting the Severity of Automated Vehicle Crashes Using XGBoost Model Combining POI Data. Journal of Advanced Transportation, 2020, 2020, 1-12.	0.9	23
467	External Human–Machine Interfaces Can Be Misleading: An Examination of Trust Development and Misuse in a CAVE-Based Pedestrian Simulation Environment. Human Factors, 2022, 64, 1070-1085.	2.1	43
468	Service Quality and Service Gap of Autonomous Driving Group Rapid Transit System. Sustainability, 2020, 12, 9412.	1.6	0
469	What drives the acceptance of autonomous driving? An investigation of acceptance factors from an end-user's perspective. Technological Forecasting and Social Change, 2020, 161, 120319.	6.2	131
470	The Role of Human Operators in Safety Perception of AV Deployment—Insights from a Large European Survey. Sustainability, 2020, 12, 9166.	1.6	15
471	Acceptable Automobility through Automated Driving. Insights into the Requirements for Different Mobility Configurations and an Evaluation of Suitable Use Cases. Sustainability, 2020, 12, 9253.	1.6	3
472	Policies for Autonomy: How American Cities Envision Regulating Automated Vehicles. Urban Science, 2020, 4, 55.	1.1	7
473	Study of Road Autonomous Delivery Robots and Their Potential Effects on Freight Efficiency and Travel. Transportation Research Record, 2020, 2674, 1019-1029.	1.0	32
474	Stability Analysis of a Large-scale Single-Lane Connected Vehicle Model with Multiple Sensing, Communication, and Human Reaction Delays. , 2020, , .		3

#	Article	IF	Citations
475	A quantitative analysis of potential impacts of automated vehicles in Austria using a dynamic integrated land use and transport interaction model. Transport Policy, 2020, 98, 57-67.	3.4	18
476	Dynamic system optimal performances of shared autonomous and human vehicle system for heterogeneous travellers. Mathematical and Computer Modelling of Dynamical Systems, 2020, 26, 481-499.	1.4	0
477	Traditional taxis vs automated taxis – Does the driver matter for Millennials?. Travel Behaviour & Society, 2020, 21, 214-225.	2.4	14
478	Establishing Face and Content Validity of a Survey to Assess Users' Perceptions of Automated Vehicles. Transportation Research Record, 2020, 2674, 538-547.	1.0	27
479	Customer perceptions of shared autonomous vehicle usage: an empirical study. International Journal of Automotive Technology and Management, 2020, 20, 108.	0.4	4
480	The Flying Car—Challenges and Strategies Toward Future Adoption. Frontiers in Built Environment, 2020, 6, .	1.2	24
481	A Review on Handicap Sections and Situations to Improve Driving Safety of Automated Vehicles. Sustainability, 2020, 12, 5509.	1.6	5
482	Mobility Acceptance Factors of an Automated Shuttle Bus Last-Mile Service. Sustainability, 2020, 12, 5469.	1.6	21
483	Governance cultures and sociotechnical imaginaries of self-driving vehicle technology: Comparative analysis of Finland, UK and Germany. Advances in Transport Policy and Planning, 2020, 5, 235-262.	0.7	20
484	Smart Mobility and Policy Instruments: Broadened Definitions and Critical Understandings. , 2020, , 1-16.		0
485	The Safety Potential of Lane Keeping Assistance and Possible Actions to Improve the Potential. IEEE Transactions on Intelligent Vehicles, 2020, 5, 556-564.	9.4	21
486	A Reliability Engineering Based Approach to Model Complex and Dynamic Autonomous Systems. , 2020, ,		1
487	Simulation Study of Autonomous Vehicles' Effect on Traffic Flow Characteristics including Autonomous Buses. Journal of Advanced Transportation, 2020, 2020, 1-17.	0.9	9
488	Mixed Autonomy in Ride-Sharing Networks. IEEE Transactions on Control of Network Systems, 2020, 7, 1940-1950.	2.4	7
489	Autonomous vehicles and cycling: Policy implications and management issues. Transportation Research Interdisciplinary Perspectives, 2020, 7, 100188.	1.6	15
490	Machine Learning-Based Detection for Cyber Security Attacks on Connected and Autonomous Vehicles. Mathematics, 2020, 8, 1311.	1.1	37
491	The performance assessment of low-cost air pollution sensor in city and the prospect of the autonomous vehicle for air pollution reduction. IOP Conference Series: Materials Science and Engineering, 2020, 819, 012018.	0.3	3
492	The role of trust in influencing consumers' adoption of automated vehicles: An application of the health belief model. International Journal of Sustainable Transportation, 2021, 15, 837-849.	2.1	23

#	Article	IF	CITATIONS
493	An empirical investigation of performance challenges within contextâ€aware content sharing for vehicular ad hoc networks. Transactions on Emerging Telecommunications Technologies, 2022, 33, .	2.6	2
494	The role of policy entrepreneurs in defining directions of innovation policy: A case study of automated driving in the Netherlands. Technological Forecasting and Social Change, 2020, 161, 120243.	6.2	15
495	Path Tracking and Handling Stability Control Strategy With Collision Avoidance for the Autonomous Vehicle Under Extreme Conditions. IEEE Transactions on Vehicular Technology, 2020, 69, 14602-14617.	3.9	40
496	Differential Impact of Autonomous Vehicle Malfunctions on Human Trust. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 548-557.	4.7	22
497	Can Autonomous Vehicles Enhance Traffic Safety at Unsignalized Intersections?. , 2020, , .		4
498	Modeling and Assessing the Influence of Connected and Automated Vehicle Penetration Rates on Urban Arterial Road Operational Performance. , 2020, , .		3
499	A multi-agent deep reinforcement learning framework for automated driving on highways. , 2020, , .		1
500	Impacts of Autonomous Vehicles on the Characteristics of Mixed Traffic Flow Based on Cellular Automata. , 2020, , .		0
502	Mobilizing a Culture of Health in the Era of Smart Transportation and Automation. World Medical and Health Policy, 2020, 12, 137-162.	0.9	6
503	A Novel Pure Pursuit Algorithm for Autonomous Vehicles Based on Salp Swarm Algorithm and Velocity Controller. IEEE Access, 2020, 8, 166525-166540.	2.6	36
504	Influence of Individual Perceptions on the Decision to Adopt Automated Bus Services. Sustainability, 2020, 12, 6484.	1.6	18
505	Proximal Policy Optimization Through a Deep Reinforcement Learning Framework for Multiple Autonomous Vehicles at a Non-Signalized Intersection. Applied Sciences (Switzerland), 2020, 10, 5722.	1.3	20
506	Optimal Traffic Control for Roads with Mixed Autonomous and Human-Driven Vehicles. , 2020, , .		1
507	How different autonomous vehicle presentation influences its acceptance: Is a communal car better than agentic one?. PLoS ONE, 2020, 15, e0238714.	1.1	10
508	A Rule Based Control Algorithm for On-Ramp Merge with Connected and Automated Vehicles. , 2020, , .		3
509	Defining Quality of Experience for the Internet of Things. IT Professional, 2020, 22, 62-70.	1.4	12
510	"Mobility as a Service―Platforms: A Critical Path towards Increasing the Sustainability of Transportation Systems. Sustainability, 2020, 12, 6368.	1.6	56
511	Testing Environment for ADAS Software Solutions. , 2020, , .		0

#	Article	IF	CITATIONS
512	Analysis of Impact of Rain Conditions on ADAS. Sensors, 2020, 20, 6720.	2.1	16
513	People with disabilities' perceptions of autonomous vehicles as a viable transportation option to improve mobility: An exploratory study using mixed methods. International Journal of Sustainable Transportation, 2021, 15, 924-942.	2.1	15
514	Cognitive Enhancement and Autonomous Vehicles: What Differences in Social and Individual Endorsement Imply. AJOB Neuroscience, 2020, 11, 243-245.	0.6	0
515	Drivers for utilizing pooled-use automated vehicles— empirical insights from Switzerland. , 2020, , .		0
516	Autonomous vs. Self-Driving Vehicles: The Power of Language to Shape Public Perceptions. Journal of Urban Technology, 2021, 28, 5-24.	2.5	19
517	Modeling Cross-National Differences in Automated Vehicle Acceptance. Sustainability, 2020, 12, 9765.	1.6	34
518	Standing balance of vehicle passengers: The effect of vehicle motion, task performance on post-drive balance. Gait and Posture, 2020, 82, 189-195.	0.6	4
519	Experience and Acceptance of an Autonomous Shuttle in the Brussels Capital Region. , 2020, , .		7
520	Users' Acceptance of Connected and Automated Shuttles for Tourism Purposes: A Survey Study. Sustainability, 2020, 12, 10188.	1.6	5
521	Factors Influencing the Purchase Intention of Autonomous Cars. Sustainability, 2020, 12, 10303.	1.6	12
522	The provision of mobility as a service with autonomous vehicles. The necessity of regulatory schemes for a natural monopoly. Research in Transportation Economics, 2020, 90, 100993.	2.2	1
523	Investigating the state of connected and autonomous vehicles: a literature Review. Transportation Research Procedia, 2020, 48, 870-882.	0.8	17
524	Preparing Society for Automated Vehicles: Perceptions of the Importance and Urgency of Emerging Issues of Governance, Regulations, and Wider Impacts. Sustainability, 2020, 12, 7844.	1.6	7
525	Impact of Brand Trust and Technology Readiness on the Willingness to Use Autonomous Cars in Brazil. International Journal of Business Strategy and Automation, 2020, 1, 56-72.	0.7	1
526	Situational Hazard Recognition and Risk Assessment Within Safety-Driven Behavior Management in the Context of Automated Driving. , 2020, , .		5
527	A scientific evaluation of autonomous vehicle user experience on sighted and visually impaired passengers based on FACS (Facial Analysis Coding System) and a user experience questionnaire. Journal of Transport and Health, 2020, 19, 100906.	1.1	10
528	Autonomous Vehicles: Building a Test-bed Prototype at a Controlled Environment. , 2020, , .		14
529	Policy implementation of multi-modal (shared) mobility: review of a supply-demand value proposition canvas. Transport Reviews, 2020, 40, 670-684.	4.7	29

#	Article	IF	CITATIONS
530	Evaluating Automated Demand Responsive Transit Using Microsimulation. IEEE Access, 2020, 8, 82551-82561.	2.6	17
531	Public health principles to inform testing and build trust in automated vehicles. Injury Prevention, 2020, 26, 494-498.	1.2	5
532	A meso-simulation approach for the estimation of traffic flows in presence of automated vehicles. Transportation Research Procedia, 2020, 47, 481-488.	0.8	5
533	The social perspective on policy towards local shared autonomous vehicle services (LSAVS). Transport Policy, 2020, 98, 116-126.	3.4	42
534	Examining the potential of textual big data analytics for public policy decision-making: A case study with driverless cars in Denmark. Transport Policy, 2020, 98, 68-78.	3.4	28
535	Integrating Supply and Demand Perspectives for a Large-Scale Simulation of Shared Autonomous Vehicles. Transportation Research Record, 2020, 2674, 181-192.	1.0	30
536	Visualization Analysis of Intelligent Vehicles Research Field Based on Mapping Knowledge Domain. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 5721-5736.	4.7	34
537	Influence of Lane Policies on Freeway Traffic Mixed with Manual and Connected and Autonomous Vehicles. Journal of Advanced Transportation, 2020, 2020, 1-20.	0.9	16
538	Accident risk prediction and avoidance in intelligent semi-autonomous vehicles based on road safety data and driver biological behaviours1. Journal of Intelligent and Fuzzy Systems, 2020, 38, 4591-4601.	0.8	27
539	Prioritizing Safety or Traffic Flow? Qualitative Study on Highly Automated Vehicles' Potential to Prevent Pedestrian Crashes with Two Different Ambitions. Sustainability, 2020, 12, 3206.	1.6	7
540	A typology of Smart City services: The case of Data Protection Impact Assessment. Cities, 2020, 104, 102731.	2.7	25
541	Risk perception and social acceptability of autonomous vehicles: A case study in Hiroshima, Japan. Transport Policy, 2020, 98, 105-115.	3.4	46
543	Mitigating Traffic Congestion: The Role of Intelligent Transportation Systems. Information Systems Research, 2020, 31, 653-674.	2.2	56
544	Willingness to ride and perceptions of autonomous public transit. Transportation Research, Part A: Policy and Practice, 2020, 138, 92-104.	2.0	29
545	Assessing the Sustainability Implications of Autonomous Vehicles: Recommendations for Research Community Practice. Sustainability, 2020, 12, 1902.	1.6	30
546	Safety and operational impact of connected vehicles' lane configuration on freeway facilities with managed lanes. Accident Analysis and Prevention, 2020, 144, 105616.	3.0	15
547	Optimum Location of Autonomous Vehicle Lanes: A Model Considering Capacity Variation. Mathematical Problems in Engineering, 2020, 2020, 1-13.	0.6	7
548	Cooperative merging control via trajectory optimization in mixed vehicular traffic. Transportation Research Part C: Emerging Technologies, 2020, 116, 102663.	3.9	82

#	Article	IF	CITATIONS
549	Developing a methodology to predict the adoption rate of Connected Autonomous Trucks in transportation organizations using peer effects. Research in Transportation Economics, 2021, 90, 100866.	2.2	9
550	How are car buyers and car sellers currently informed about ADAS? An investigation among drivers and car sellers in the Netherlands. Transportation Research Interdisciplinary Perspectives, 2020, 4, 100103.	1.6	22
551	Dynamic Ridesharing Strategy for Shared Autonomous Vehicles Based on Maximum Similarity of Trajectories. , 2020, , .		0
552	Traffic Equilibrium for Mixed Traffic Flows of Human-Driven Vehicles and Connected and Autonomous Vehicles in Transportation Networks under Tradable Credit Scheme. Journal of Advanced Transportation, 2020, 2020, 1-18.	0.9	3
553	Mode Awareness and Automated Driving—What Is It and How Can It Be Measured?. Information (Switzerland), 2020, 11, 277.	1.7	21
554	Environmental Perception in Autonomous Vehicles Using Edge Level Situational Awareness. , 2020, , .		2
555	Quantifying Robot Localization Safety: A New Integrity Monitoring Method for Fixed-Lag Smoothing. IEEE Robotics and Automation Letters, 2020, 5, 3182-3189.	3.3	10
556	After you?! – Use of external human-machine interfaces in road bottleneck scenarios. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 70, 175-190.	1.8	45
557	Enhanced Mobility With Connectivity and Automation: A Review of Shared Autonomous Vehicle Systems. IEEE Intelligent Transportation Systems Magazine, 2022, 14, 87-102.	2.6	46
558	User acceptance and ethics of ITS. , 2020, , 85-91.		4
559	User acceptance of automated public transport. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 70, 109-123.	1.8	82
560	A lateral control scheme of autonomous vehicles considering pavement sustainability. Journal of Cleaner Production, 2020, 256, 120669.	4.6	37
561	Defining interactions: a conceptual framework for understanding interactive behaviour in human and automated road traffic. Theoretical Issues in Ergonomics Science, 2020, 21, 728-752.	1.0	95
562	Coordinated Control Algorithm at Non-Recurrent Freeway Bottlenecks for Intelligent and Connected Vehicles. IEEE Access, 2020, 8, 51621-51633.	2.6	13
563	An Enhanced Motorway Control System for Mixed Manual/Automated Traffic Flow. IEEE Systems Journal, 2020, 14, 4726-4734.	2.9	5
564	The potential effects of autonomous vehicles on alcohol consumption and drinkâ€driving behaviours. Drug and Alcohol Review, 2020, 39, 604-607.	1.1	9
565	A CAV Platoon Control Method for Isolated Intersections: Guaranteed Feasible Multi-Objective Approach with Priority. Energies, 2020, 13, 625.	1.6	14
566	Analysis of consumer attitudes towards autonomous, connected, and electric vehicles: A survey in China. Research in Transportation Economics, 2020, 80, 100828.	2.2	58

#	Article	IF	CITATIONS
567	The effect of digitalization in the energy consumption of passenger transport: An analysis of future scenarios for Europe. Journal of Cleaner Production, 2020, 258, 120926.	4.6	80
568	Autonomous driving cargo bikes – Introducing an acceptability-focused approach towards a new mobility offer. Transportation Research Interdisciplinary Perspectives, 2020, 6, 100135.	1.6	8
569	Autonomous road vehicles: recent issues and expectations. IET Intelligent Transport Systems, 2020, 14, 471-479.	1.7	23
570	Public perception of autonomous vehicles: A qualitative study based on interviews after riding an autonomous shuttle. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 72, 226-243.	1.8	86
571	Older Drivers' Experience With Automated Vehicle Technology: Interim Analysis of a Demonstration Study. Frontiers in Sustainable Cities, 2020, 2, .	1.2	18
572	Fault Detection, Isolation, Identification and Recovery (FDIIR) Methods for Automotive Perception Sensors Including a Detailed Literature Survey for Lidar. Sensors, 2020, 20, 3662.	2.1	30
573	A Reflective Neural Network Based Learning Framework for Intelligent Physical Systems. , 2020, , .		1
574	Autonomous vehicles, human agency and the potential of urban life. Geography Compass, 2020, 14, e12531.	1.5	6
575	Understanding Public Acceptance of Autonomous Vehicles Using the Theory of Planned Behaviour. International Journal of Environmental Research and Public Health, 2020, 17, 4419.	1.2	45
576	Safety requirements vs. crashing ethically: what matters most for policies on autonomous vehicles. Al and Society, 2021, 36, 405-415.	3.1	22
577	The effects of autonomous buses to vehicle scheduling system. Procedia Computer Science, 2020, 170, 235-240.	1.2	11
578	The utility of psychological measures in evaluating perceived usability of automated vehicle interfaces – A study with older adults. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 72, 244-263.	1.8	27
579	Factors Influencing the Adoption of Shared Autonomous Vehicles. International Journal of Environmental Research and Public Health, 2020, 17, 4868.	1.2	58
580	Should Manual Driving be (Eventually) Outlawed?. Science and Engineering Ethics, 2020, 26, 1549-1567.	1.7	11
581	A systematic literature review of the factors influencing the adoption of autonomous driving. International Journal of Systems Assurance Engineering and Management, 2020, 11, 1065-1082.	1.5	39
582	Artificial intelligence applications in the development of autonomous vehicles: a survey. IEEE/CAA Journal of Automatica Sinica, 2020, 7, 315-329.	8.5	258
583	The Determinants behind the Acceptance of Autonomous Vehicles: A Systematic Review. Sustainability, 2020, 12, 1719.	1.6	181
584	A cognitive framework to plan for the future of transportation. Transportation Planning and Technology, 2020, 43, 237-252.	0.9	0

#	Article	IF	CITATIONS
585	Modeling Quality of IoT Experience in Autonomous Vehicles. IEEE Internet of Things Journal, 2020, 7, 3833-3849.	5.5	34
586	Design of Near Infrared Reflective Effective Pigment for LiDAR Detectable Paint. MRS Advances, 2020, 5, 515-522.	0.5	5
587	Parking futures: Preparing European cities for the advent of automated vehicles. Land Use Policy, 2020, 91, 104010.	2.5	38
588	Design and evaluation of a novel hierarchical trust assessment approach for vehicular networks. Vehicular Communications, 2020, 24, 100227.	2.7	10
589	Modeling heterogeneous traffic with cooperative adaptive cruise control vehicles: A first-order macroscopic perspective. Transportation Planning and Technology, 2020, 43, 113-140.	0.9	4
590	Bi-objective autonomous vehicle repositioning problem with travel time uncertainty. 4or, 2020, 18, 477-505.	1.0	6
591	The Diffusion of Alternative Fuel Vehicles: A Generalised Model and Future Research Agenda. Journal of Simulation, 2020, 14, 260-277.	1.0	20
592	Choice Behavior of Autonomous Vehicles Based on Logistic Models. Sustainability, 2020, 12, 54.	1.6	18
593	Pedestrians' road crossing behaviour in front of automated vehicles: Results from a pedestrian simulation experiment using agent-based modelling. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 69, 101-119.	1.8	46
594	Smoothing Traffic Flow via Control of Autonomous Vehicles. IEEE Internet of Things Journal, 2020, 7, 3882-3896.	5.5	98
595	Mobility Internet of Things 2018. EAI/Springer Innovations in Communication and Computing, 2020, , .	0.9	1
596	Unintended Consequences of Automated Vehicles and Pooling for Urban Transportation Systems. Production and Operations Management, 2020, 29, 1354-1371.	2.1	28
597	Comprehensive safety assessment in mixed fleets with connected and automated vehicles: A crash severity and rate evaluation of conventional vehicles. Accident Analysis and Prevention, 2020, 142, 105567.	3.0	69
598	Supporting Drivers of Partially Automated Cars through an Adaptive Digital In-Car Tutor. Information (Switzerland), 2020, 11, 185.	1.7	12
599	Artificial Intelligence, Transport and the Smart City: Definitions and Dimensions of a New Mobility Era. Sustainability, 2020, 12, 2789.	1.6	178
600	A Few Critical Human Factors for Developing Sustainable Autonomous Driving Technology. Sustainability, 2020, 12, 3030.	1.6	4
601	A Study on Recent Developments and Issues with Obstacle Detection Systems for Automated Vehicles. Sustainability, 2020, 12, 3281.	1.6	47
602	A Novel Approach for Mixed Manual/Connected Automated Freeway Traffic Management. Sensors, 2020, 20, 1757.	2.1	14

#	Article	IF	CITATIONS
603	A focus group study on the potential of autonomous vehicles as a viable transportation option: Perspectives from people with disabilities and public transit agencies. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 70, 260-274.	1.8	47
604	Investigation on human factors and key aspects involved in Autonomous Vehicles -AVs- acceptance: new instruments and perspectives. Transportation Research Procedia, 2020, 45, 708-715.	0.8	2
605	Traffic Accidents with Autonomous Vehicles: Type of Collisions, Manoeuvres and Errors of Conventional Vehicles' Drivers. Transportation Research Procedia, 2020, 45, 161-168.	0.8	76
606	Smart Infrastructure: A Vision for the Role of the Civil Engineering Profession in Smart Cities. Journal of Infrastructure Systems, 2020, 26, .	1.0	72
607	Make way for the wealthy? Autonomous vehicles, markets in mobility, and social justice. Mobilities, 2020, 15, 514-526.	2.5	16
608	Customer Intentions Towards Autonomous Vehicles in South Africa: An Extended UTAUT Model. , 2020, , .		11
609	Inertial Navigation and Position Uncertainty During a Blind Safe Stop of an Autonomous Vehicle. IEEE Transactions on Vehicular Technology, 2020, 69, 4788-4802.	3.9	15
610	Comprehensive Survey of Machine Learning Approaches in Cognitive Radio-Based Vehicular Ad Hoc Networks. IEEE Access, 2020, 8, 78054-78108.	2.6	50
611	A Novel Lane-Changing Decision Model for Autonomous Vehicles Based on Deep Autoencoder Network and XGBoost. IEEE Access, 2020, 8, 9846-9863.	2.6	41
612	Agent-Based Simulation of Autonomous Vehicles: A Systematic Literature Review. IEEE Access, 2020, 8, 79089-79103.	2.6	45
613	Autonomous Vehicles Still Decades Away: 2019. , 2020, , .		1
614	Review and analysis of the importance of autonomous vehicles liability: a systematic literature review. International Journal of Systems Assurance Engineering and Management, 2020, 11, 1227-1249.	1.5	23
615	An evolutionary perspective on adoption-diffusion theory. Journal of Business Research, 2020, 116, 535-541.	5.8	14
616	Effects of different non-driving-related-task display modes on drivers' eye-movement patterns during take-over in an automated vehicle. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 70, 135-148.	1.8	44
617	Autonomous vessels: state of the art and potential opportunities in logistics. International Transactions in Operational Research, 2021, 28, 1706-1739.	1.8	46
618	Travelers' preferences regarding autonomous mobility in the State of Qatar. Personal and Ubiquitous Computing, 2021, 25, 141-149.	1.9	5
619	Building a predictive model of U.S. patient willingness to undergo robotic surgery. Journal of Robotic Surgery, 2021, 15, 203-214.	1.0	5
620	Future cities and autonomous vehicles: analysis of the barriers to full adoption. Energy and Built Environment, 2021, 2, 65-81.	2.9	42

#	Article	IF	CITATIONS
621	Approaching autonomous driving with cautious optimism: analysis of road traffic injuries involving autonomous vehicles based on field test data. Injury Prevention, 2021, 27, 42-47.	1.2	18
622	Impacts of electrification & automation of public bus transportation on sustainability—AÂcase study in Singapore. Forschung Im Ingenieurwesen/Engineering Research, 2021, 85, 431-442.	1.0	6
623	Cooperative Control of Heterogeneous Connected Vehicles with Directed Acyclic Interactions. IEEE Intelligent Transportation Systems Magazine, 2021, 13, 127-141.	2.6	47
624	The role of shared autonomous vehicle systems in delivering smart urban mobility: A systematic review of the literature. International Journal of Sustainable Transportation, 2021, 15, 731-748.	2.1	98
625	Governing smart mobility: policy instrumentation, technological utopianism, and the administrative quest for knowledge. Administrative Theory and Praxis, 2021, 43, 135-153.	1.0	8
626	Investigating consumer acceptance of autonomous technologies: the case of self-driving automobiles. European Journal of Innovation Management, 2021, 24, 1210-1232.	2.4	19
627	Investigating what level of visual information inspires trust in a user of a highly automated vehicle. Applied Ergonomics, 2021, 90, 103272.	1.7	8
628	Use-stage life cycle greenhouse gas emissions of the transition to an autonomous vehicle fleet: A System Dynamics approach. Journal of Cleaner Production, 2021, 278, 123447.	4.6	21
629	Factors influencing autonomous vehicle adoption: an application of the technology acceptance model and innovation diffusion theory. Technology Analysis and Strategic Management, 2021, 33, 505-519.	2.0	149
630	Carbon Footprint Case Studies. Environmental Footprints and Eco-design of Products and Processes, 2021, , .	0.7	4
631	A review of transport market modeling using game-theoretic principles. European Journal of Operational Research, 2021, 291, 808-829.	3.5	36
632	Autonomous vehicles and smart cities: A case study of Singapore. , 2021, , 265-287.		5
633	Parking space for shared automated vehicles: How less can be more. Transportation Research, Part A: Policy and Practice, 2021, 143, 61-77.	2.0	10
634	A comparative study of state-of-the-art driving strategies for autonomous vehicles. Accident Analysis and Prevention, 2021, 150, 105937.	3.0	51
635	Health Monitoring System for Autonomous Vehicles using Dynamic Bayesian Networks for Diagnosis and Prognosis. Journal of Intelligent and Robotic Systems: Theory and Applications, 2021, 101, 1.	2.0	22
636	Does initial experience affect consumers' intention to use autonomous vehicles? Evidence from a field experiment in Beijing. Accident Analysis and Prevention, 2021, 149, 105778.	3.0	33
637	Agent-Based Framework for Self-Organization of Collective and Autonomous Shuttle Fleets. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 3631-3643.	4.7	7
638	Autonomous Shuttle-as-a-Service (ASaaS): Challenges, Opportunities, and Social Implications. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 3790-3799.	4.7	35

#	Article	IF	CITATIONS
639	Landmark Augmentation for Mobile Robot Localization Safety. IEEE Robotics and Automation Letters, 2021, 6, 119-126.	3.3	6
640	Autonomous vehicles in the smart city era: An empirical study of adoption factors important for millennials. International Journal of Information Management, 2021, 58, 102050.	10.5	87
641	Effects of Automated Vehicles on Traffic Flow With Different Levels of Automation. IEEE Access, 2021, 9, 3630-3637.	2.6	4
642	Construct Validity and Test–Retest Reliability of the Automated Vehicle User Perception Survey. Frontiers in Psychology, 2021, 12, 626791.	1.1	18
643	MILP models for the Dial-a-ride problem with transfers. EURO Journal on Transportation and Logistics, 2021, 10, 100037.	1.3	8
644	The development of autonomous driving technology: perspectives from patent citation analysis. Transport Reviews, 2021, 41, 685-711.	4.7	19
645	Put Some Drive in Your Country – Need for and Acceptance of Autonomously Operating Services in Rural Areas of Germany. Lecture Notes in Networks and Systems, 2021, , 348-364.	0.5	1
646	Dynamic Lane-Changing Trajectory Planning for Autonomous Vehicles Based on Discrete Global Trajectory. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 8513-8527.	4.7	32
647	Ranking the Key Areas for Autonomous Proving Ground Development Using Pareto Analytic Hierarchy Process. IEEE Access, 2021, 9, 51214-51230.	2.6	6
648	Autonomous Distributed Intersection Management for Emergency Vehicles at Intersections. Communications in Computer and Information Science, 2021, , 261-269.	0.4	3
649	Traveler Responses to Congestion. , 2021, , 509-514.		0
650	Infrastructures to accommodate automated driving. , 2021, , 237-366.		1
651	Are Connected and Automated Vehicles the Silver Bullet for Future Transportation Challenges? Benefits and Weaknesses on Safety, Consumption, and Traffic Congestion. Frontiers in Sustainable Cities, 2021, 2, .	1.2	9
652	Attack Models and Countermeasures for Autonomous Vehicles. Internet of Things, 2021, , 375-401.	1.3	2
653	A General Framework for Intersection Traffic Control With Backpressure Routing. IEEE Access, 2021, 9, 102125-102136.	2.6	6
654	The Impact of Connected and Autonomous Trucks on Freeway Traffic Flow. Advances in Intelligent Systems and Computing, 2021, , 97-103.	0.5	0
655	Requirements of Automated Vehicles and Depots for the Initial Step of Automated Public Transport. Proceedings, 2021, , 15-26.	0.2	1
656	Keep Your Distance, Automated Vehicle! – Configuration of Automated Driving Behavior at an Urban Junction from a Cyclist's Perspective. Lecture Notes in Networks and Systems, 2021, , 393-402.	0.5	1

#	Article	IF	CITATIONS
657	Urban Intersection Management Strategies for Autonomous/Connected/Conventional Vehicle Fleet Mixtures. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 12084-12093.	4.7	6
658	The Integration of Innovative Mobility into the Urban Transport Network: A Literature Review. Transportation Research, Economics and Policy, 2021, , 153-166.	0.3	1
659	The Matter of How and When: Comparing Explicit and Implicit Communication Strategies of Automated Vehicles in Bottleneck Scenarios. IEEE Open Journal of Intelligent Transportation Systems, 2021, 2, 282-293.	2.6	19
660	Artificial Intelligence Analytics—Virtual Assistant in UAE Automotive Industry. Lecture Notes in Networks and Systems, 2021, , 309-322.	0.5	9
661	Transportation Statistics and Databases. , 2021, , 574-586.		0
662	Distance estimation using mono camera at different altitudes and pitch angles. , 2021, , .		0
663	Impacts of Large-Scale Driverless Truck Adoption on the Freight Transport System. SSRN Electronic Journal, 0, , .	0.4	1
664	Swarm-Based Optimization of Final Arrival Segments Considering the UAS Integration in the National Airspace System. IEEE Access, 2021, 9, 112372-112387.	2.6	1
665	Ethical issues in focus by the autonomous vehicles industry. Transport Reviews, 2021, 41, 556-577.	4.7	62
666	Connected and Automated Vehicles: Opportunities and Challenges for Transportation Systems, Smart Cities, and Societies. Advances in 21st Century Human Settlements, 2021, , 273-296.	0.3	10
667	Multi-Objective Linear Optimization Problem for Strategic Planning of Shared Autonomous Vehicle Operation and Infrastructure Design. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 3816-3828.	4.7	20
668	A global horizon scan of the future impacts of robotics and autonomous systems on urban ecosystems. Nature Ecology and Evolution, 2021, 5, 219-230.	3.4	39
669	Small Electric Vehicles (SEV)—Impacts of an Increasing SEV Fleet on the Electric Load and Grid. , 2021, , 115-125.		0
670	Acceptance Factors for Younger Passengers in Shared Autonomous Vehicles. Lecture Notes in Computer Science, 2021, , 212-224.	1.0	1
671	Technology and Education: A Deterministic and Instrumentalist Philosophical Approach. , 0, , .		0
672	A Decision-Making Method for Boosting New Digitalization Technologies. International Journal of Information Technology and Decision Making, 2021, 20, 635-669.	2.3	5
673	A model free controller based on reinforcement learning for active steering system with uncertainties. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 0, , 095440702199441.	1.1	3
674	Selfish or Utilitarian Automated Vehicles? Deontological Evaluation and Public Acceptance. International Journal of Human-Computer Interaction, 0, , 1-12.	3.3	18

#	Article	IF	CITATIONS
675	Spatial variation in shared ride-hail trip demand and factors contributing to sharing: Lessons from Chicago. Journal of Transport Geography, 2021, 91, 102944.	2.3	41
676	Beyond the State of the Art of Electric Vehicles: A Fact-Based Paper of the Current and Prospective Electric Vehicle Technologies. World Electric Vehicle Journal, 2021, 12, 20.	1.6	52
677	Deadlock-Free Planner for Occluded Intersections Using Estimated Visibility of Hidden Vehicles. Electronics (Switzerland), 2021, 10, 411.	1.8	6
678	CONTROL OF AN AUTONOMOUS VEHICLE WITH OBSTACLES IDENTIFICATION AND COLLISION AVOIDANCE USING MULTI VIEW CONVOLUTIONAL NEURAL NETWORK. Indian Journal of Computer Science and Engineering, 2021, 12, 178-192.	0.2	1
679	Multi-Task End-to-End Self-Driving Architecture for CAV Platoons. Sensors, 2021, 21, 1039.	2.1	9
680	Introducing Autonomous Vehicles: Adoption Patterns and Impacts on Social Welfare. Manufacturing and Service Operations Management, 2022, 24, 352-369.	2.3	13
681	Multi-objective framework for optimum configuration of human-driven and shared or privately owned autonomous vehicles. International Journal of Sustainable Transportation, 0, , 1-21.	2.1	1
682	Modeling the Impacts of Autonomous Vehicles on Land Use Using a LUTI Model. Sustainability, 2021, 13, 1608.	1.6	9
683	Factors that influence parents' intentions of using autonomous vehicles to transport children to and from school. Accident Analysis and Prevention, 2021, 152, 105991.	3.0	34
684	Connected and autonomous vehicle injury loss events: Potential risk and actuarial considerations for primary insurers. Risk Management and Insurance Review, 2021, 24, 5-35.	0.4	6
685	Akzeptanz eines automatisierten Shuttles in einer Kleinstadt Analyse anhand einer Trendstudie und Fahrgastbefragung. Journal Ful^r Mobilital^t Und Verkehr, 2021, , 25-35.	0.2	2
686	The Impact of On-Demand Collective Transport Services on Sustainability: A Comparison of Various Service Options in a Rural and an Urban Area of Switzerland. Sustainability, 2021, 13, 3091.	1.6	3
687	John Senders, Human Error, and System Safety. Human Factors, 2023, 65, 766-778.	2.1	2
688	Integration of automated vehicles in mixed traffic: Evaluating changes in performance of following human-driven vehicles. Accident Analysis and Prevention, 2021, 152, 106006.	3.0	55
689	Unbundling and Managing Uncertainty Surrounding Emerging Technologies. Strategy Science, 2021, 6, 62-74.	2.1	26
690	A multi-vehicle communication system to assess the safety and mobility of connected and automated vehicles. Transportation Research Part C: Emerging Technologies, 2021, 124, 102887.	3.9	36
691	Investigating the safety and operational benefits of mixed traffic environments with different automated vehicle market penetration rates in the proximity of a driveway on an urban arterial. Accident Analysis and Prevention, 2021, 152, 105982.	3.0	46
692	Lane Change Decision Making for Automated Driving. , 2021, , .		4

#	Article	IF	CITATIONS
693	Impacts of Private Autonomous and Connected Vehicles on Transportation Network Demand in the Triangle Region, North Carolina. Journal of the Urban Planning and Development Division, ASCE, 2021, 147, .	0.8	6
694	Identifying the Potential for Partial Integration of Private and Public Transportation. Sustainability, 2021, 13, 3424.	1.6	3
695	Using the Capability Approach as a normative perspective on energy justice: Insights from two case studies on digitalisation in the energy sector. Journal of Human Development and Capabilities, 2021, 22, 336-359.	1.2	11
696	Koreans' Ethical Judgment on the Situation Characteristics of AVs(Autonomous Vehicles) Accidents. The Korean Journal of Psychology General, 2021, 40, 105-129.	0.3	1
697	Sustainable Renewal Methods of Urban Public Parking Spaces under the Scenario of Shared Autonomous Vehicles (SAV): A Review and a Proposal. Sustainability, 2021, 13, 3629.	1.6	8
698	How Will the Technological Shift in Transportation Impact Cities? A Review of Quantitative Studies on the Impacts of New Transportation Technologies. Sustainability, 2021, 13, 3013.	1.6	7
699	Quantifying the automated vehicle safety performance: A scoping review of the literature, evaluation of methods, and directions for future research. Accident Analysis and Prevention, 2021, 152, 106003.	3.0	46
700	A Framework for Minimizing Information Aging in the Exchange of CAV Messages. , 2021, , .		1
701	Cross-cultural differences in the acceptance of decisions of automated vehicles. Applied Ergonomics, 2021, 92, 103346.	1.7	17
702	Exploring the Effects of "Smart City―in the Inner-City Fabric of the Mediterranean Metropolis: Towards a Bio-Cultural Sonic Diversity?. Heritage, 2021, 4, 690-709.	0.9	9
703	Who Is Willing to Share Their AV? Insights about Gender Differences among Seven Countries. Sustainability, 2021, 13, 4769.	1.6	34
704	Contested values in bike-sharing mobilities – A case study from Sweden. Journal of Transport Geography, 2021, 92, 103026.	2.3	14
705	Coordination of Autonomous Vehicles. ACM Computing Surveys, 2022, 54, 1-33.	16.1	37
706	A Comprehensive Emissions Model Combining Autonomous Vehicles with Park and Ride and Electric Vehicle Transportation Policies. Sustainability, 2021, 13, 4653.	1.6	16
707	A Bayesian Regression Analysis of the Effects of Alert Presence and Scenario Criticality on Automated Vehicle Takeover Performance. Human Factors, 2023, 65, 288-305.	2.1	6
708	eHMI: Review and Guidelines for Deployment on Autonomous Vehicles. Sensors, 2021, 21, 2912.	2.1	32
709	Are we willing to relocate with the future introduction of flying cars? An exploratory empirical analysis of public perceptions in the United States. Transportmetrica A: Transport Science, 2022, 18, 1025-1052.	1.3	4
710	In-Vehicle Test Results for Advanced Propulsion and Vehicle System Controls Using Connected and Automated Vehicle Information. SAE International Journal of Advances and Current Practices in Mobility, 0, 3, 2915-2930.	2.0	5

#	Article	IF	CITATIONS
711	Open-Ended Versus Closed-Ended Responses: A Comparison Study Using Topic Modeling and Factor Analysis. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 2123-2132.	4.7	14
712	Sustainable Mobility Driven Prioritization of New Vehicle Technologies, Based on a New Decision-Aiding Methodology. Sustainability, 2021, 13, 4760.	1.6	12
713	System Architecture for Scenario-In-The-Loop Automotive Testing. Transport and Telecommunication, 2021, 22, 141-151.	0.7	4
714	Calibrating Pedestrians' Trust in Automated Vehicles. , 2021, , .		22
715	Linking physical objects to their digital twins via fiducial markers designed for invisibility to humans. Multifunctional Materials, 2021, 4, 022002.	2.4	11
716	Effects of Semantic Segmentation Visualization on Trust, Situation Awareness, and Cognitive Load in Highly Automated Vehicles. , 2021, , .		47
717	The development and validation of the perceived safety of intelligent connected vehicles scale. Accident Analysis and Prevention, 2021, 154, 106092.	3.0	17
718	Predicting Increase in Demand for Public Buses in University Students Daily Life Needs: Case Study Based on a City in Japan. Sustainability, 2021, 13, 5137.	1.6	3
719	Accommodation of freeway merging in a mixed traffic environment including connected autonomous vehicles. Canadian Journal of Civil Engineering, 2022, 49, 357-367.	0.7	2
720	A Deeper Look at Autonomous Vehicle Ethics: An Integrative Ethical Decision-Making Framework to Explain Moral Pluralism. Frontiers in Robotics and Al, 2021, 8, 632394.	2.0	12
721	Optimal Parking Management of Connected Autonomous Vehicles. , 2021, , .		0
722	Moral Decision Making: From Bentham to Veil of Ignorance via Perspective Taking Accessibility. Behavioral Sciences (Basel, Switzerland), 2021, 11, 66.	1.0	10
724	Automation Levels of Mobility Services. Journal of Transportation Engineering Part A: Systems, 2021, 147, .	0.8	3
725	A Taxonomy of Vulnerable Road Users for HCI Based On A Systematic Literature Review. , 2021, , .		39
726	Application areas and antecedents of automation in logistics and supply chain management: a conceptual framework. Supply Chain Forum, 2021, 22, 223-239.	2.7	14
727	Studying the Simultaneous Effect of Autonomous Vehicles and Distracted Driving on Safety at Unsignalized Intersections. Journal of Advanced Transportation, 2021, 2021, 1-16.	0.9	11
728	Impacts of load distribution and lane width on pavement rutting performance for automated vehicles. International Journal of Pavement Engineering, 2022, 23, 4125-4135.	2.2	10
729	Retooling local transportation financing in a new mobility future. Transportation Research Interdisciplinary Perspectives, 2021, 10, 100388.	1.6	4

ARTICLE IF CITATIONS A Review on Impacts of Autonomous Trucking on Freight Transportation Infrastructure., 2021,,. 730 1 Evaluating Onboard Multitasking on Mode Choice: Conventional Car and Autonomous Vehicle., 2021, Capable and considerate: Exploring the assigned attributes of an automated vehicle. Transportation 732 0 1.6 Research Interdisciplinary Perspectives, 2021, 10, 100383. A day in the life with an automated vehicle: Empirical analysis of data from an interactive stated 1.2 activity-travel survey. Journal of Choice Modelling, 2021, 39, 100286. Optimal Real-Time Velocity Planner of a Battery Electric Vehicle in V2V Driving., 2021,,. 734 3 Hybrid Multi-Sensor Integration for Static or Dynamic Obstacle Detection, Tracking and Classification for Autonomous Vehicle. Shanghai Ligong Daxue Xuebao/Journal of University of Shanghai for Science and Technology, 2021, 23, 1288-1293. 0.1 736 The potential effects of autonomous vehicles on walking. Global Health Promotion, 2022, 29, 60-67. 0.7 4 Household Activity Pattern Problem with Autonomous Vehicles. Networks and Spatial Economics, 737 2021, 21, 609-637. Fourteen pathways between urban transportation and health: A conceptual model and literature 738 1.1 54 review. Journal of Transport and Health, 2021, 21, 101070. The Effects of Automated Vehicles Deployment on Pavement Rutting Performance., 2021, ... Route optimization issues and initiatives in Bangladesh: The context of regional significance. 740 2.3 4 Transportation Engineering, 2021, 4, 100054. Attitudes Toward Four Levels of Self-Driving Technology Among Elderly Drivers. Frontiers in 1.1 Psychology, 2021, 12, 682973. A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use 742 2.3 15 and air quality impacts. Journal of Transport Geography, 2021, 94, 103113. Enhancing Mixed Traffic Flow Safety via Connected and Autonomous Vehicle Trajectory Planning with 743 a Reinforcement Learning Approach. Journal of Advanced Transportation, 2021, 2021, 1-11. Exploring Concerns and Preferences towards Using Autonomous Vehicles as a Public Transportation 744 11 Option: Perspectives from a Public Focus Group Study., 2021,,. Potential Impacts of Autonomous Vehicles on Urban Sprawl: A Comparison of Chinese and US 745 Car-Oriented Adults. Sustainability, 2021, 13, 7632. Characterizing the Changes in Material Use due to Vehicle Electrification. Environmental Science 746 4.6 12 & Technology, 2021, 55, 10097-10107. Intelligent Mobility in the City: The Influence of System and Context Factors on Drivers' Takeover 747 Willingness and Trust in Automated Vehicles. Frontiers in Human Dynamics, 2021, 3, .

#	Article	IF	CITATIONS
748	SAV Operations on a Bus Line Corridor: Travel Demand, Service Frequency, and Vehicle Size. Journal of Advanced Transportation, 2021, 2021, 1-15.	0.9	3
749	Dynamic Ride-Hailing with Electric Vehicles. Transportation Science, 2022, 56, 775-794.	2.6	33
750	Extracting Rules from Autonomous-Vehicle-Involved Crashes by Applying Decision Tree and Association Rule Methods. Transportation Research Record, 2021, 2675, 522-533.	1.0	17
751	Autonomous Bus Fleet Control Using Multiagent Reinforcement Learning. Journal of Advanced Transportation, 2021, 2021, 1-14.	0.9	1
752	A Study on Autonomous Intersection Management: Planning-Based Strategy Improved by Convolutional Neural Network. KSCE Journal of Civil Engineering, 2021, 25, 3995-4004.	0.9	8
753	Human Performance in Critical Scenarios as a Benchmark for Highly Automated Vehicles. Automotive Innovation, 2021, 4, 274-283.	3.1	11
754	Modeling takeover behavior in level 3 automated driving via a structural equation model: Considering the mediating role of trust. Accident Analysis and Prevention, 2021, 157, 106156.	3.0	21
755	A flow-based integer programming approach to design an interurban shared automated vehicle system and assess its financial viability. Transportation Research Part C: Emerging Technologies, 2021, 128, 103092.	3.9	11
756	Using autonomous vehicles or shared cars? Results of a stated choice experiment. Transportation Research Part C: Emerging Technologies, 2021, 128, 103117.	3.9	30
757	Impact of Autonomous Vehicles on the Physical Infrastructure: Changes and Challenges. Designs, 2021, 5, 40.	1.3	27
758	Post-Drive Standing Balance of Vehicle Passengers Using Wearable Sensors: The Effect of On-Road Driving and Task Performance. Sensors, 2021, 21, 4997.	2.1	0
759	Motion Planning Based on Steering Obstacle Avoidance Under Emergency Conditions. , 2021, , .		2
760	Multilane Microscopic Modeling to Measure Mobility and Safety Consequences of Mixed Traffic in Freeway Weaving Sections. Journal of Advanced Transportation, 2021, 2021, 1-21.	0.9	1
761	Heterogeneous attitudes toward autonomous vehicles: evaluation of consumer acceptance of vehicle automation technology using a latent class approach. Technology Analysis and Strategic Management, 2022, 34, 1402-1417.	2.0	1
762	Do People Prefer Cars That People Don't Drive? A Survey Study on Autonomous Vehicles. Energies, 2021, 14, 4795.	1.6	5
763	The †Sharing Trap': A Case Study of Societal and Stakeholder Readiness for On-Demand and Autonomous Public Transport in New South Wales, Australia. Sustainability, 2021, 13, 9574.	1.6	3
764	When the automated driving system fails: Dynamics of public responses to automated vehicles. Transportation Research Part C: Emerging Technologies, 2021, 129, 103271.	3.9	19
766	A Real-Time Speed Limit Sign Recognition System for Autonomous Vehicle Using SSD Algorithm. , 2021, ,		5

#	Article	IF	CITATIONS
767	Safety implications of higher levels of automated vehicles: a scoping review. Transport Reviews, 2022, 42, 245-267.	4.7	24
768	Public Preferences of Shared Autonomous Vehicles in Developing Countries: A Cross-National Study of Pakistan and China. Journal of Advanced Transportation, 2021, 2021, 1-19.	0.9	21
769	Performance evaluation of a state-of-the-art automotive radar and corresponding modeling approaches based on a large labeled dataset. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2022, 26, 655-674.	2.6	12
770	Planning and Policy Directions for Autonomous Vehicles in Metropolitan Planning Organizations (MPOs) in the United States. Journal of Urban Technology, 2021, 28, 175-201.	2.5	12
771	Autonomous People: Identity, Agency, and Automated Driving. Journal of Urban Technology, 2021, 28, 25-44.	2.5	2
772	Surveillance and privacy – Beyond the panopticon. An exploration of 720-degree observation in level 3 and 4 vehicle automation. Technology in Society, 2021, 66, 101667.	4.8	10
773	Shared Low-Speed Autonomous Vehicle System for Suburban Residential Areas. Sustainability, 2021, 13, 8638.	1.6	2
774	Infrastructure Planning for Autonomous Electric Vehicles, Integrating Safety and Sustainability Aspects: A Multi-Criteria Analysis Approach. Energies, 2021, 14, 5269.	1.6	10
775	People Might Be More Willing to Use Automated Vehicles in Pandemics like COVID-19. International Journal of Human-Computer Interaction, 2022, 38, 491-498.	3.3	8
776	Junction Management for Connected and Automated Vehicles: Intersection or Roundabout?. Sustainability, 2021, 13, 9482.	1.6	11
777	Driverless futures: current non-drivers' willingness to travel in driverless vehicles. Journal of Marketing Management, 2021, 37, 1656-1689.	1.2	4
778	Evolution of Traffic Microsimulation and Its Use for Modeling Connected and Automated Vehicles. Journal of Advanced Transportation, 2021, 2021, 1-29.	0.9	21
779	A Petri net extension for systems of concurrent communicating agents with durable actions. Journal of Parallel and Distributed Computing, 2021, 155, 14-23.	2.7	1
780	Underlying dimensions of benefit and risk perception and their effects on people's acceptance of conditionally/fully automated vehicles. Transportation, 0, , 1.	2.1	0
781	Impact assessment methodology for connected and automated vehicles. Open Research Europe, 0, 1, 104.	2.0	0
782	Parking design and pricing for regular and autonomous vehicles: a morning commute problem. Transportmetrica B, 2022, 10, 159-183.	1.4	8
783	Exploring the Potential of Using Privately-Owned, Self-Driving Autonomous Vehicles for Evacuation Assistance. Journal of Advanced Transportation, 2021, 2021, 1-11.	0.9	1
784	Stated Preference Analysis of Automated Vehicles among California Residents Using Probabilistic Inferences. Transportation Research Record, 0, , 036119812110398.	1.0	2

#	Article	IF	CITATIONS
785	Individual and location-based characteristics associated with Autonomous Vehicle adoption in the Chicago metropolitan area: Implications for public health. Journal of Transport and Health, 2021, 22, 101232.	1.1	5
786	The 3rd Workshop on Localization vs. Internationalization: AccessibilityÂof Autonomous Vehicles by Different End-Users. , 2021, , .		1
787	Increasing Pedestrian Safety Using External Communication of Autonomous Vehicles for Signalling Hazards. , 2021, , .		13
788	Autonomous vehicles between anticipation and apprehension: Investigations through safety and security perceptions. Transport Policy, 2021, 110, 440-451.	3.4	19
789	On employer-paid parking and parking (cash-out) policy: A formal synthesis of different perspectives. Transport Policy, 2021, 110, 499-516.	3.4	4
790	How Should Automated Vehicles Communicate Critical Situations?. , 2021, 5, 1-23.		15
791	Quantifying the performance of perovskite retinomorphic sensors. Journal Physics D: Applied Physics, 2021, 54, 475110.	1.3	4
792	ORIAS: On-The-Fly Object Identification and Action Selection for Highly Automated Vehicles. , 2021, , .		6
793	Simulation based Verification & amp; amp; Validation of AEBS. , 0, , .		2
794	Fully Autonomous Vehicles for People with Visual Impairment. ACM Transactions on Accessible Computing, 2021, 14, 1-17.	1.9	13
795	The Needed Features of Connected and Automated Vehicles to Prevent Passenger Car Crashes Caused by Driving Errors. Future Transportation, 2021, 1, 370-386.	1.3	4
796	Communication via motion $\hat{a} \in \mathcal{C}$ Suitability of automated vehicle movements to negotiate the right of way in road bottleneck scenarios. Applied Ergonomics, 2021, 95, 103438.	1.7	18
797	Psychological consequences of legal responsibility misattribution associated with automated vehicles. Ethics and Information Technology, 2021, 23, 763-776.	2.3	6
798	Assessment of Social Acceptance for Autonomous Vehicles in Southeastern Poland. Energies, 2021, 14, 5778.	1.6	16
799	AI enabled applications towards intelligent transportation. Transportation Engineering, 2021, 5, 100083.	2.3	58
800	Quantifying the health and health equity impacts of autonomous vehicles: A conceptual framework and literature review. Journal of Transport and Health, 2021, 22, 101120.	1.1	5
801	Communication of Automated Vehicles and Pedestrian Groups: An Intercultural Study on Pedestrians' Street Crossing Decisions. , 2021, , .		8
802	Driver's views on driverless vehicles: Public perspectives on defining and using autonomous cars. Transportation Research Interdisciplinary Perspectives, 2021, 11, 100446.	1.6	12

#	Article	IF	CITATIONS
803	A system of shared autonomous vehicles for Chicago: Understanding the effects of geofencing the service. Journal of Transport and Land Use, 2021, 14, 933-948.	0.7	12
804	A comparative, sociotechnical design perspective on Responsible Innovation: multidisciplinary research and education on digitized energy and Automated Vehicles. Journal of Responsible Innovation, 2021, 8, 421-444.	2.3	8
805	What drives people to use automated vehicles? A meta-analytic review. Accident Analysis and Prevention, 2021, 159, 106270.	3.0	34
806	Anomaly Detection for Discovering Performance Degradation in Cellular IoT Services. , 2021, , .		1
807	A Conceptual Framework for an Integrated Information System to Enhance Urban Mobility. International Journal of Decision Support System Technology, 2021, 13, 1-17.	0.4	2
808	User experience and usability when the automated driving system fails: Findings from a field experiment. Accident Analysis and Prevention, 2021, 161, 106383.	3.0	9
809	Adopting autonomous vehicles: The moderating effects of demographic variables. Journal of Retailing and Consumer Services, 2021, 63, 102687.	5.3	46
810	Tourists' perceptions of robots in passenger transport. Technology in Society, 2021, 67, 101720.	4.8	4
811	Drivers use active gaze to monitor waypoints during automated driving. Scientific Reports, 2021, 11, 263.	1.6	9
812	Technology-Enhanced Airport Services—Attractiveness from the Travelers' Perspective. Sustainability, 2021, 13, 705.	1.6	20
813	Autonomous Vehicles and Their Implications to Society. Encyclopedia of the UN Sustainable Development Goals, 2021, , 94-102.	0.0	0
814	Autonomous Intelligent Vehicles (AIV): Research statements, open issues, challenges and road for future. International Journal of Intelligent Networks, 2021, 2, 83-102.	5.8	39
815	Optimizing Vehicles' Tracking Accuracies While Considering Information Aging. IEEE Transactions on Intelligent Vehicles, 2023, 8, 2538-2550.	9.4	2
816	Evaluating Impacts of Traffic Incidents on CO2 Emissions in Express Roads. Environmental Footprints and Eco-design of Products and Processes, 2021, , 35-53.	0.7	4
817	Connected and Autonomous Vehicles: Priorities for Policy and Planning. , 2021, , 167-172.		0
818	Are autonomous vehicles better off without signals at intersections? A comparative computational study. SSRN Electronic Journal, 0, , .	0.4	0
819	How Internal and External Risks Affect the Relationships Between Trust and Driver Behavior in Automated Driving Systems. SSRN Electronic Journal, 0, , .	0.4	1
820	Modeling and Simulating Urban Traffic Flow Mixed With Regular and Connected Vehicles. IEEE Access, 2021, 9, 10392-10399.	2.6	29

#	Article	IF	CITATIONS
821	Highway Cost Analysis for Platooning of Connected and Autonomous Trucks. Journal of Transportation Engineering Part A: Systems, 2021, 147, .	0.8	6
822	Active prevention of snow accumulation on cameras of autonomous vehicles. SN Applied Sciences, 2021, 3, 1.	1.5	6
823	Future Blockchain Technology for Autonomous Applications/Autonomous Vehicle. Advances in Data Mining and Database Management Book Series, 2021, , 165-177.	0.4	14
824	Autonomous Vehicles. Advances in Information Quality and Management, 2021, , 1-11.	0.3	9
825	Willingness to Use Automated Vehicles: Results From a Large and Diverse Sample of U.S. Older Adults. Gerontology and Geriatric Medicine, 2021, 7, 233372142098733.	0.8	6
826	Vehicles That Drive Themselves: What to Expect With Autonomous Vehicles. , 2021, , 19-25.		1
827	The Role of Local Public Authorities in Steering toward Smart and Sustainable Mobility: Findings from the Stockholm Metropolitan Area. Planning Practice and Research, 2022, 37, 532-546.	0.8	12
828	Public Perceptions of Autonomous Vehicles (AV): A Review. , 2020, , 739-750.		4
829	Turmoil Behind the Automated Wheel. Lecture Notes in Computer Science, 2019, , 3-25.	1.0	7
830	Securing Connection and Data Transfer Between Devices and IoT Cloud Service. Studies in Computational Intelligence, 2020, , 83-96.	0.7	3
831	Key Factors Influencing Autonomous Vehicles' Energy and Environmental Outcome. Lecture Notes in Mobility, 2014, , 127-135.	0.2	24
832	A Longitudinal Simulator Study to Explore Drivers' Behaviour During Highly-Automated Driving. Advances in Intelligent Systems and Computing, 2018, , 583-594.	0.5	11
833	Traffic Flow of Connected and Automated Vehicles: Challenges and Opportunities. Lecture Notes in Mobility, 2018, , 235-245.	0.2	11
834	Potential Fleet Size of Private Autonomous Vehicles in Germany and the US. Lecture Notes in Mobility, 2018, , 247-256.	0.2	6
835	Investigating Older Adults' Preferences for Functions Within a Human-Machine Interface Designed for Fully Autonomous Vehicles. Lecture Notes in Computer Science, 2018, , 445-462.	1.0	3
836	Autonomes Fahren aus Sicht der Maschinenethik. , 2019, , 281-300.		3
837	Reducing Climate Change for Future Transportation: Roles of Computing. Lecture Notes in Electrical Engineering, 2020, , 43-54.	0.3	3
838	An Overview on Costs of Shifting to Sustainable Road Transport: A Challenge for Cities Worldwide. Environmental Footprints and Eco-design of Products and Processes, 2021, , 93-121.	0.7	8

ARTICLE IF CITATIONS # A priori acceptance of highly automated cars in Australia, France, and Sweden: A theoretically informed investigation guided by the TPB and UTAUT. Accident Analysis and Prevention, 839 3.0 76 2020, 137, 105441. The determinants of public acceptance of autonomous vehicles: An innovation diffusion perspective. 840 4.6 Journal of Cleaner Production, 2020, 270, 121904. How challenges of human reliability will hinder the deployment of semi-autonomous vehicles. 841 6.2 11 Technological Forecasting and Social Change, 2020, 157, 120093. Enhancing eco-safe driving behaviour through the use of in-vehicle human-machine interface: A 842 2.0 qualitative study. Transportation Research, Part A: Policy and Practice, 2017, 100, 247-263. Perception of autonomous vehicles by the modern society: a survey. IET Intelligent Transport Systems, 843 1.7 22 2020, 14, 1228-1239. Futuramas of the present: the "driver problem―in the autonomous vehicle sociotechnical imaginary. Humanities and Social Sciences Communications, 2020, 7, . 844 1.3 What we know and do not know about connected and autonomous vehicles. Transportmetrica A: 845 1.3 22 Transport Science, 2020, 16, 987-1029. Reducing urban traffic congestion due to localized routing decisions. Physical Review Research, 2020, 846 1.3 2, . 847 Autonomous Goods Vehicles for Last-mile Delivery: Evaluation of Impact and Barriers., 2020, , . 6 Tactical Decision-Making in Autonomous Driving by Reinforcement Learning with Uncertainty 848 29 Estimation., 2020,,. IEEE 7010: A New Standard for Assessing the Well-being Implications of Artificial Intelligence., 2020, , . 849 13 Game-Theoretic Modeling of Traffic in Unsignalized Intersection Network for Autonomous Vehicle Control Verification and Validation. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 4.7 2211-2226. Automated Vehicles Sharing the Road: Surveying Detection and Localization of Pedalcyclists. IEEE 851 9.4 8 Transactions on Intelligent Vehicles, 2021, 6, 649-664. The Effects of Explicit Intention Communication, Conspicuous Sensors, and Pedestrian Attitude in 36 Interactions with Automated Vehicles., 2020,,. Towards Inclusive External Communication of Autonomous Vehicles for Pedestrians with Vision 853 47 Impairments., 2020,,. A Longitudinal Video Study on Communicating Status and Intent for Self-Driving Vehicle — Pedestrian 854 39 Interaction., 2020,,. 855 Towards a Design Space for External Communication of Autonomous Vehicles., 2020,,. 20 Unveiling the Lack of Scalability in Research on External Communication of Autonomous Vehicles., 2020,,.

#	Article	IF	CITATIONS
857	Pedestrians and Visual Signs of Intent. , 2019, 3, 1-31.		16
858	A Design Space for External Communication of Autonomous Vehicles. , 2020, , .		25
859	Evaluating Highly Automated Trucks as Signaling Lights. , 2020, , .		20
860	Effect of Visualization of Pedestrian Intention Recognition on Trust and Cognitive Load. , 2020, , .		27
861	Designing the Interaction of Highly Automated Vehicles with Cyclists in Urban Longitudinal Traffic. , 2020, , .		3
862	Posing Questions and Policy Suggestions: Autonomous Vehicles & Climate Change. , 0, , .		1
863	Robot Cars and Dynamic Bottleneck Congestion: The Effects on Capacity, Value of Time and Preference Heterogeneity. SSRN Electronic Journal, 0, , .	0.4	3
864	A New Route to Increasing Economic Growth: Reducing Highway Congestion with Autonomous Vehicles. SSRN Electronic Journal, 0, , .	0.4	2
865	Residential Parking Costs and Car Ownership: Implications for Parking Policy and Automated Vehicles. SSRN Electronic Journal, 0, , .	0.4	1
867	EVALUATING THE IMPACT OF AUTONOMOUS VEHICLES ON ACCESSIBILITY USING AGENT-BASED SIMULATION —A CASE STUDY OF GUNMA PREFECTURE. Journal of Japan Society of Civil Engineers, 2019, 7, 100-111.	0.1	9
868	Urban smart mobility in the scientific literature — bibliometric analysis. Engineering Management in Production and Services, 2018, 10, 41-56.	0.5	49
871	Shared Autonomous Vehicles: Potentials for a Sustainable Mobility and Risks of Unintended Effects. , 0, , .		5
872	Influence of Autonomous Vehicles on Freeway Traffic Performance for Undersaturated Traffic Conditions. Athens Journal of Î e chnology & Engineering, 2020, 7, 117-132.	0.2	3
873	Otonom Araçların Otomotiv Sektörüne Etkileri ve Beraberinde Getirdiği Yenilikler. European Journal of Science and Technology, 0, , .	0.5	2
874	Improvement of the Economic Management System Based on the Publicity of Railway Transportation Products. Intelligent Automation and Soft Computing, 2020, 26, 539-547.	1.6	4
875	Traffic Simulation of Future Intelligent Vehicles in Duisburg City Inner Ring. Applied Sciences (Switzerland), 2021, 11, 29.	1.3	12
876	Adoption Barriers of IoT in Large Scale Pilots. Information (Switzerland), 2020, 11, 23.	1.7	12
877	Costs and Benefits of Electrifying and Automating Bus Transit Fleets. Sustainability, 2020, 12, 3977.	1.6	54

	CHATION R	LPORT	
#	Article	IF	CITATIONS
878	The Adoption of Green Vehicles in Last Mile Logistics: A Systematic Review. Sustainability, 2021, 13, 6.	1.6	61
879	Benefits and Costs of Autonomous Trucks and Cars. Journal of Transportation Technologies, 2019, 09, 121-145.	0.2	25
880	Autonomous Vehicles Scenario Testing Framework and Model of Computation. SAE International Journal of Connected and Automated Vehicles, 0, 2, 205-218.	0.4	14
881	Validating Heavy-Duty Vehicle Models Using a Platooning Scenario. , 0, , .		2
882	Prevention of Snow Accretion on Camera Lenses of Autonomous Vehicles. , 0, , .		4
883	A Decentralized Time- and Energy-Optimal Control Framework for Connected Automated Vehicles: From Simulation to Field Test. , 0, , .		15
884	Changes in air pollutant emissions from road vehicles due to autonomous driving technology: A conceptual modeling approach. Environmental Engineering Research, 2020, 25, 366-373.	1.5	12
885	Autonomous vehicles: organizational scenarios and their threats and opportunities to transportation sustainability. WUT Journal of Transportation Engineering, 2018, 120, 133-142.	0.1	1
886	Implications of the Fourth Industrial Revolution on sustainable development. Economics of Sustainable Development, 2020, 4, 45-60.	0.1	11
887	Will driverless cars be good for us? Now is the time for public health to act together with urban and transport planning. Journal of Global Health, 2019, 9, .	1.2	7
888	A Learning-Based Method for Predicting Heterogeneous Traffic Agent Trajectories: Implications for Transfer Learning. , 2021, , .		4
889	Optimal Policy for Integration of Automated Vehicles into the Auto Market: A Control-Theoretic Perspective. , 2021, , .		0
890	Vulnerable Road Users Safety in Infrastructure Assisted Intelligent Transportation System. , 2021, , .		2
891	Agent-based modelling of car platooning for traffic optimization. , 2021, , .		1
892	A Matching Mechanism with Anticipatory Tolls for Congestion Pricing. , 2021, , .		0
893	Take-Over Intention during Conditionally Automated Driving in China: Current Situation and Influencing Factors. International Journal of Environmental Research and Public Health, 2021, 18, 11076.	1.2	2
894	U.S. vehicle occupancy trends relevant to future automated vehicles and mobility services. Traffic Injury Prevention, 2021, 22, S116-S121.	0.6	0
895	Ethical considerations and moral implications of autonomous vehicles and unavoidable collisions. Theoretical Issues in Ergonomics Science, 2022, 23, 435-452.	1.0	9

#	Article	IF	CITATIONS
897	Boosting Advanced Driving Information: a Real-world Experiment About the Effect of HUD on HMI, Driving Effort, and Safety. International Journal of Intelligent Transportation Systems Research, 2022, 20, 181-191.	0.6	2
898	Determinants of car rental choice in Ghana. Anatolia, 0, , 1-17.	1.3	0
899	What affects drivers' satisfaction with autonomous vehicles in different road scenarios?. Transportation Research, Part D: Transport and Environment, 2021, 100, 103048.	3.2	5
900	ADAS-Assisted Driver Behaviour in Near Missing Car-Pedestrian Accidents. , 0, , .		0
901	Augmenting Smart Buildings and Autonomous Vehicles with Wearable Thermal Technology. Lecture Notes in Computer Science, 2017, , 550-561.	1.0	3
902	Modeling and simulations on automated vehicles to alleviate traffic congestion. Mathematical Models in Engineering, 2017, 3, 112-125.	0.1	0
904	Transition to Autonomous Public Transportation: Impacts on Trip Service Levels and Potential Benefits for Transportation Systems. SSRN Electronic Journal, 0, , .	0.4	3
905	The future of driver training and driver instructor education in Norway with increasing ADAS technology in cars. , 2018, , 1433-1440.		3
906	Review of the reliability in a robotic application: autonomous driving cars. International Robotics & Automation Journal, 2018, 4, .	0.3	3
907	Gesamtwirtschaftliche Kosteneinsparpotenziale durch das automatisierte Fahren. TATuP - Zeitschrift Für Technikfolgenabschäzung in Theorie Und Praxis, 2018, 27, 23-30.	0.2	4
908	Importance of Human Anthropometry in the Interior Development of Autonomous Vehicles. Advances in Intelligent Systems and Computing, 2019, , 453-463.	0.5	1
909	AUTONOMOUS VEHICLES IN SUSTAINABLE CITIES: MORE QUESTIONS THAN ANSWERS. WIT Transactions on Ecology and the Environment, 2018, , .	0.0	3
910	Security Design from Ergonomic Perspective: From "Total Security―to "Acceptable Security―Design for a Better Real Security. Advances in Intelligent Systems and Computing, 2019, , 1051-1057.	0.5	0
911	The impact of autonomous vehicles on traffic capacity at an intersection. , 2018, , .		0
912	Explaining consumer intentions to use autonomous vehicles. Beta Scandinavian Journal of Business Research, 2018, 32, 181-203.	0.1	0
913	Effects of privacy risk perception and cultural bias on intention of connected autonomous vehicle use. , 2018, , .		0
914	Study of Consumer's Unconscious Reaction towards the Use of Anthropomorphic Appearance of AI: An Eye-Tracking Experiment. Studia Universitatis Vasile Goldis Arad, Economics Series, 2018, 28, 55-67.	0.4	2
915	Autonomous Vehicles and Their Implications to Society. Encyclopedia of the UN Sustainable Development Goals, 2019, , 1-10.	0.0	0

#	Article	IF	CITATIONS
916	Ableitung von objektivierten AuslegungsprĤnissen zukünftiger Fahrzeugkonzepte auf der Basis von Prognosen zum Mobilitäsverhalten in Deutschland im Jahr 2035. , 2019, , 157-179.		0
917	Liability Design for Autonomous Vehicles and Human-Driven Vehicles: A Hierarchical Game-Theoretic Approach. SSRN Electronic Journal, 0, , .	0.4	1
918	The Impacts of Autonomous Vehicles on Local Government Budgeting and Finance: Case of Solid Waste Collection. SSRN Electronic Journal, 0, , .	0.4	0
919	Autonomes Fahren aus Sicht der Maschinenethik. Springer Reference Medizin, 2019, , 1-20.	0.0	0
920	Analysis of Modal Choice of Residents in Lagos State. Journal of Human Ecology: International, Interdisciplinary Journal of Man-environment Relationship, 2019, 65, .	0.1	1
921	Self-Driving RC Car that reaches Specified Destination. International Journal for Research in Applied Science and Engineering Technology, 2019, 7, 459-464.	0.1	0
922	Evaluating Exclusive Lanes For Autonomous Vehicle Platoons. , 2019, , .		0
923	Automotive Cluster UI Design Based on Time and Path from the Perspective of the â€~Passenger'. Archives of Design Research, 2019, 32, 5-17.	0.1	1
924	Predicting the Impact of Shared Autonomous Vehicles on the Change of Parking Demand in Seoul, Korea. Journal of Korea Planning Association, 2019, 54, 48-60.	0.2	1
925	Cognitive intelligence of highly automated vehicles in a carâ€sharing context. IET Intelligent Transport Systems, 2019, 13, 1604-1612.	1.7	3
926	Specification of Drivers' Behavior in Partially Automated Vehicles for Microscopic Simulation Models. , 2019, , .		0
927	ll futuro Ã adesso. Governare gli impatti spaziali dei veicoli a guida autonoma. Territorio, 2019, , 149-156.	0.1	1
928	Unmanned and autonomous ground vehicle. International Journal of Electrical and Computer Engineering, 2019, 9, 4466.	0.5	7
929	A study of preconceptions of the autonomous car with a view to adequate road safety education. Education Et Didactique, 2019, , 127-139.	0.1	0
931	Optimizing the Placement of Applications in Autonomous Vehicles. , 2020, , .		2
932	Effects of Demographic Characteristics on Trust in Driving Automation. Journal of Robotics and Mechatronics, 2020, 32, 605-612.	0.5	5
934	On the Co-Design of AV-Enabled Mobility Systems. , 2020, , .		8
935	Otonom Araçların Özellikleri, Mevcut Durumu ve Gelecekteki Yerinin Ulaştırma ve Trafik Üzerine Etkisi Bağlamında İncelenmesi. DÜMF Mühendislik Dergisi, 0, , .	0.2	0

#	Article	IF	CITATIONS
936	Linear Parameter Varying Path Tracking Control for Over-Actuated Electric Vehicles. Frontiers in Control Engineering, 2021, 2, .	0.4	1
937	Pedestrian and Vehicle Detection in Autonomous Vehicle Perception Systems—A Review. Sensors, 2021, 21, 7267.	2.1	23
938	Cruising for Parking with Autonomous and Conventional Vehicles. Journal of Advanced Transportation, 2021, 2021, 1-16.	0.9	3
940	Autonomous Vehicle Architecture for High Automation. Lecture Notes in Computer Science, 2020, , 145-152.	1.0	2
941	Reliable Sense-Plan-Act Approaches for TrustVehicles. Lecture Notes in Intelligent Transportation and Infrastructure, 2021, , 69-85.	0.3	0
942	Infrastructure Enabled Autonomy—Autonomy as a Service. Perspectives in Law, Business and Innovation, 2021, , 165-184.	0.3	0
943	Integrating urban road safety and sustainable transportation policy through the hierarchy of hazard controls. International Journal of Sustainable Transportation, 2022, 16, 166-180.	2.1	12
944	Assess the Performance of Electric Autonomous Taxi System Using a Data-Driven Simulation Model. , 0, , .		Ο
945	Research on Mixed Traffic Flow Model of Autonomous-Manual Driving Vehicles. , 0, , .		0
946	Quantitative Studies on Traffic Efficiency and Safety Variation Trend of Mixed Traffic Flow with Different Penetration Rates of Automated Vehicles. , 2020, , .		0
947	Model-Based Control Strategy for Autonomous Vehicle Path Tracking Task. Acta Universitatis Sapientiae Electrical and Mechanical Engineering, 2020, 12, 35-45.	0.5	0
948	Road Surface Wetness Quantification Using a Capacitive Sensor System. IEEE Access, 2021, 9, 145498-145512.	2.6	8
949	A multi-analytical approach to studying customers motivations to use innovative totally autonomous vehicles. Technological Forecasting and Social Change, 2022, 174, 121252.	6.2	23
950	Autonomous Vehicles. , 2022, , 878-889.		14
951	Future Blockchain Technology for Autonomous Applications/Autonomous Vehicle. , 2022, , 1027-1038.		0
952	Designing Ride Access Points for Shared Automated Vehicles - An Early Stage Prototype Evaluation. Communications in Computer and Information Science, 2020, , 560-567.	0.4	2
953	Autonomous Road Vehicles and Law Enforcement: Identifying High-Priority Needs for Law Enforcement Interactions With Autonomous Vehicles Within the Next Five Years. , 2020, , .		1
954	Autonomous cars and responsible innovation. , 2020, , .		1

#	Article	IF	CITATIONS
955	Intelligent Freight Transportation and Supply Chain Drivers: A Literature Survey. Uncertainty and Operations Research, 2020, , 49-56.	0.1	0
956	An Optimization-based Strategy for Shared Autonomous Vehicle Fleet Repositioning. , 2020, , .		6
957	An Open Multi-Sensor Fusion Toolbox for Autonomous Vehicles. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2020, E103.A, 252-264.	0.2	0
958	Degrees of Autonomy in Coordinating Collectives of Self-Driving Vehicles. Lecture Notes in Computer Science, 2020, , 189-204.	1.0	3
959	Ein Vergleich von Herstellerkommunikation und kundenseitigen Akzeptanzfaktoren bezogen auf autonomes Fahren. , 2020, , 27-38.		0
960	Consumer Insight on Driverless Automobile Technology Adoption via Twitter Data: A Sentiment Analytic Approach. IFIP Advances in Information and Communication Technology, 2020, , 463-473.	0.5	1
961	Evaluation of Macroscopic Fundamental Diagram Transition in the Era of Connected and Autonomous Vehicles. , 2021, , .		4
962	Effect of Space Weather on Autonomous Vehicle Navigation. , 0, , .		0
963	Vehicle Velocity Prediction Using Artificial Neural Network and Effect of Real World Signals on Prediction Window. , 0, , .		14
964	Effects of Driverless Vehicles on Competitiveness of Bus Transit Services. Journal of Transportation Engineering Part A: Systems, 2020, 146, .	0.8	1
965	Effects of Level 3 Automated Vehicle Drivers' Fatigue on Their Take-Over Behaviour: A Literature Review. Journal of Advanced Transportation, 2021, 2021, 1-12.	0.9	9
966	Theory and Practice of Quantitative Assessment of System Harmonicity: Case of Road Safety in Russia before and during the COVID-19 Epidemic. Mathematics, 2021, 9, 2812.	1.1	4
967	Passenger vehicle brand meaning among Generations X and Y in South Africa. Innovative Marketing, 2020, 16, 1-13.	0.7	1
969	Evaluating the Influencing Factors on Adoption of Self-driving Vehicles by Using Interval-Valued Pythagorean Fuzzy AHP. Advances in Intelligent Systems and Computing, 2021, , 503-511.	0.5	1
970	Moving Array Traffic Probes. Frontiers in Future Transportation, 2020, 1, .	1.3	2
971	Quality of Life, Sustainability and Transport: The Case of Melbourne, Australia. International Handbooks of Quality-of-life, 2021, , 203-226.	0.3	3
972	What Could Go Wrong? Exploring the Downsides of Autonomous Vehicles. , 2020, , .		2
973	Effect of Self-driving Buses on Vehicle Scheduling. Advances in Intelligent Systems and Computing, 2021, , 21-29.	0.5	0

#	Article	IF	CITATIONS
974	An Enhanced Conceptual Security Model for Autonomous Vehicles. Advances in Science, Technology and Engineering Systems, 2020, 5, 853-864.	0.4	1
975	WeCARe: Workshop on Inclusive Communication between Automated Vehicles and Vulnerable Road Users. , 2020, , .		2
977	Dynamic Trajectory-Based Traffic Dispersion Method for Intersection Traffic Accidents in an Intelligent and Connected Environment. IEEE Intelligent Transportation Systems Magazine, 2023, 15, 84-100.	2.6	6
978	Roadrunner+: An Autonomous Intersection Management Cooperating with Connected Autonomous Vehicles and Pedestrians with Spillback Considered. ACM Transactions on Cyber-Physical Systems, 2022, 6, 1-29.	1.9	2
979	Analyzing Change in Business Activity before, during, and after Autonomous Shuttle Bus Service in the Old Las Vegas Downtown Area. Journal of the Urban Planning and Development Division, ASCE, 2022, 148, .	0.8	1
980	Factors Affecting the Acceptance and Willingness-to-Pay of End-Users: A Survey Analysis on Automated Vehicles. Sustainability, 2021, 13, 13272.	1.6	5
981	Connected and Autonomous Vehicles and Infrastructures: A Literature Review. International Journal of Pavement Research and Technology, 2023, 16, 264-284.	1.3	23
982	Beyond the Driverless Car: A Typology of Forms and Functions for Autonomous Mobility. Applied Mobilities, 2023, 8, 26-46.	0.6	6
983	Drivers' Intentions to Use Different Functionalities of Conditionally Automated Cars: A Survey Study of 18,631 Drivers from 17 Countries. International Journal of Environmental Research and Public Health, 2021, 18, 12054.	1.2	6
984	An Intelligent Multimode Clustering Mechanism Using Driving Pattern Recognition in Cognitive Internet of Vehicles. Sensors, 2021, 21, 7588.	2.1	8
985	Development and Experimental Validation of an Intelligent Camera Model for Automated Driving. Sensors, 2021, 21, 7583.	2.1	9
986	What Drives Commuters to Pay for Autonomous Vehicles?. Transportation Research Record, 2022, 2676, 267-280.	1.0	1
988	Operational Characteristics of Mixed-Autonomy Traffic Flow on the Freeway With On- and Off-Ramps and Weaving Sections: An RL-Based Approach. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 13512-13525.	4.7	12
989	Bibliometric Analysis on the Safety of Autonomous Vehicles with Artificial Intelligence. Lecture Notes in Computer Science, 2021, , 278-289.	1.0	0
990	A multi-group analysis of the behavioral intention to ride in autonomous vehicles: evidence from three U.S. metropolitan areas. Transportation, 2023, 50, 635-675.	2.1	5
991	A theoretical investigation of user acceptance of autonomous public transport. Transportation, 2023, 50, 545-569.	2.1	12
992	Otonom Araçların Benimsenmesi ve Güvenlik Algılarının İncelenmesi. European Journal of Science a Technology, 0, , .	nd 0.5	0
993	Subtype Divergences of Trust in Autonomous Vehicles: Towards Optimisation of Driver–Vehicle Trust Management. , 2020, , .		1

#	Article	IF	CITATIONS
994	Roadrunner: Autonomous Intersection Management with Dynamic Lane Assignment. , 2020, , .		3
995	Autonomous vehicle with communicative driving for pedestrian crossing: Trajectory optimization. , 2020, , .		6
996	Analyzing Energy and Mobility Impacts of Privately-owned Autonomous Vehicles. , 2020, , .		0
997	Overview of Tools Supporting Planning for Automated Driving. , 2020, , .		10
998	Is Greece Ready for Autonomous Vehicles? A Methodological Approach. , 2020, , .		0
999	A Review of Essential Technologies for Autonomous and Semi-autonomous Articulated Heavy Vehicles. , 0, , .		9
1000	Decentralized Cooperative Collision Avoidance for Automated Vehicles: a Real-World Implementation. , 2020, , .		3
1001	Scenario Description Language for Automated Driving Systems: A Two Level Abstraction Approach. , 2020, , .		19
1002	Connected and Autonomous Vehicles cooperate with the pedestrian in industrial sites based on trajectory optimization and vehicle signalization system. , 2020, , .		2
1003	A Unified Evaluation Framework for Autonomous Driving Vehicles. , 2020, , .		2
1004	Al-NAAV: An Al enabled Neurocognition Aware Autonomous Vehicle. , 2020, , .		1
1005	Examining the Acceptance for Autonomous Transit Feeders Using a Hybrid Choice Model. , 2020, , .		1
1006	An ANFIS Based Derivations of Inference Rules for Users' Adoptions of Autonomous Vehicles. , 2020, , .		0
1007	Studying Adversarial Attacks on Behavioral Cloning Dynamics. , 2020, , .		2
1008	Redesigning infrastructure for autonomous vehicles and evaluating its impact on traffic. , 2020, , .		0
1009	Fast Modelling and Identification of Hydraulic Brake Plants for Automotive Applications. International Journal of Fluid Power, 0, , .	0.7	5
1010	Gain-Scheduled Robust Recursive Lateral Control for Autonomous Ground Vehicles Subject to Polytopic Uncertainties. , 2020, , .		0
1011	Factors Affecting Trust in the Autonomous Vehicle: A Survey of Primary School Students and Parent Perceptions. , 2020, , .		5

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
1012	Integration of women in recent projects in cyber-physical systems. Tehnika, 2021, 76, 832-840.	0.0	0
1013	Practical Object Detection Using Thermal Infrared Image Sensors. , 2021, , .		1
1014	Transition to Autonomous Vehicles: A Socio-Technical Transition Perspective. Alphanumeric Journal, 0, , .	0.9	3
1015	Taxi Dispatch and AEV Management in AEV Taxi Services. , 2021, , .		0
1016	An Adaptive Approach for the Coordination of Autonomous Vehicles at Intersections. , 2021, , .		2
1017	Design of Experiment (DOE) for the Investigation of Human Emotions while Driving in a Virtual Environment through Brain Signal (EEC). , 2021, , .		1
1018	Pedestrian Avoidance with and Without Incoming Traffic by Using Deep Reinforcement Learning. , 2021, , .		0
1019	The Mobility Industry Trends Through the Lens of the Social Analysis: A Multi-Level Perspective Approach. SAGE Open, 2022, 12, 215824402110691.	0.8	13
1020	Hydrogen-powered vehicles for autonomous ride-hailing fleets. International Journal of Hydrogen Energy, 2022, 47, 9422-9427.	3.8	6
1021	Safety criticism and ethical dilemma of autonomous vehicles. AI and Ethics, 2022, 2, 869-874.	4.6	3
1022	Attacks to Automatous Vehicles: A Deep Learning Algorithm for Cybersecurity. Sensors, 2022, 22, 360.	2.1	44
1023	Interactions of Automated Vehicles with Road Users. Studies in Computational Intelligence, 2022, , 533-581.	0.7	2
1024	Imaginaries of Road Transport Automation in Finnish Governance Culture—A Critical Discourse Analysis. Sustainability, 2022, 14, 1437.	1.6	6
1025	Hybrid Reinforcement Learning-Based Eco-Driving Strategy for Connected and Automated Vehicles at Signalized Intersections. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 15850-15863.	4.7	48
1026	Cyber-Physical Systems Enabled Transport Networks in Smart Cities: Challenges and Enabling Technologies of the New Mobility Era. IEEE Access, 2022, 10, 16350-16364.	2.6	19
1028	Ethical Issues in Automated Driving—Opportunities, Dangers, andÂObligations. Studies in Computational Intelligence, 2022, , 99-121.	0.7	3
1029	Online Platform for Matching and Trading Shares of Autonomous Vehicles. Transportation Research Record, 0, , 036119812110556.	1.0	0
1030	Do autonomous vehicles drive like humans? A Turing approach and an application to SAE automation Level 2 cars. Transportation Research Part C: Emerging Technologies, 2022, 134, 103499.	3.9	30

#	Article	IF	CITATIONS
1031	Design and Implementation of Computer Vision Based Autonomous Vehicle Prototype. Osmaniye Korkut Ata Aœniversitesi Fen Bilimleri Enstitüsü Dergisi, 0, , .	0.2	0
1032	Design of a Switching Nonlinear MPC for Emission Aware Ecodriving. IEEE Transactions on Intelligent Vehicles, 2023, 8, 469-480.	9.4	8
1033	System Optimization of Shared Mobility in Suburban Contexts. Sustainability, 2022, 14, 876.	1.6	1
1034	Differential Congestion Pricing Strategies for Heterogeneous Users in the Mixed Traffic Condition. Journal of Advanced Transportation, 2022, 2022, 1-14.	0.9	0
1035	Encouraging the Sustainable Adoption of Autonomous Vehicles for Public Transport in Belgium: Citizen Acceptance, Business Models, and Policy Aspects. Sustainability, 2022, 14, 921.	1.6	9
1036	Influence of CAVs platooning on intersection capacity under mixed traffic. Physica A: Statistical Mechanics and Its Applications, 2022, 593, 126989.	1.2	21
1037	Shared Automated Electric Vehicle Prospects for Low Carbon Road Transportation in British Columbia, Canada. Vehicles, 2022, 4, 102-123.	1.7	2
1038	Visualization and Analysis of Mapping Knowledge Domain of Heterogeneous Traffic Flow. Computational Intelligence and Neuroscience, 2022, 2022, 1-15.	1.1	5
1040	Step Attention: Sequential Pedestrian Trajectory Prediction. IEEE Sensors Journal, 2022, 22, 8071-8083.	2.4	2
1041	Self-Organizing Multilateration of an Unknown Number of Transmitters. IEEE Open Journal of Vehicular Technology, 2022, 3, 85-97.	3.4	0
1043	Generating Merging Strategies for Connected Autonomous Vehicles Based on Spatiotemporal Information Extraction Module and Deep Reinforcement Learning. SSRN Electronic Journal, 0, , .	0.4	0
1045	Optimal Strategy for Autonomous-Vehicle-Dedicated Lane Deployment on Freeway with City Planning and Market as Driving Force. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2022, , 206-227.	0.2	2
1046	An Intelligent System for Safely Managing Traffic Flow of Connected Autonomous Vehicles at Multilane Intersections in Smart Cities. , 2022, , .		1
1047	Impact of Autonomous Vehicles on Roundabout Capacity. Sustainability, 2022, 14, 2203.	1.6	13
1048	Analysis of Driver Behavior and Intervehicular Collision: A Data-Based Traffic Modeling and Simulation Approach. Journal of Advanced Transportation, 2022, 2022, 1-20.	0.9	1
1049	Directions for future research on urban mobility and city logistics. Networks, 2022, 79, 253-263.	1.6	8
1050	Requirements for the Interaction With Highly Automated Construction Site Delivery Trucks. Frontiers in Human Dynamics, 2022, 4, .	1.0	3
1052	Toward Autonomous and Distributed Intersection Management with Emergency Vehicles. Electronics (Switzerland), 2022, 11, 1089.	1.8	5

#	Article	IF	CITATIONS
1053	Study on the Extraction Method of Sub-Network for Optimal Operation of Connected and Automated Vehicle-Based Mobility Service and Its Implication. Sustainability, 2022, 14, 3688.	1.6	1
1054	Modelling the impact of context in real-world highway pull-out dynamics to inform acceptable path planning of automated vehicles. Transportmetrica A: Transport Science, 2024, 20, .	1.3	3
1055	Macroscopic Modelling of Predicted Automated Vehicle Emissions. Baltic Journal of Road and Bridge Engineering, 2022, 17, 31-49.	0.4	0
1056	Development Status and Hotspot Visualized Analysis of Autonomous Vehicles Based on CiteSpace. Journal of Advanced Transportation, 2022, 2022, 1-15.	0.9	2
1057	A comprehensive review of shared mobility for sustainable transportation systems. International Journal of Sustainable Transportation, 2023, 17, 527-551.	2.1	12
1058	EVALUATION OF THE IMPACTS OF AUTONOMOUS VEHICLES ON THE MOBILITY OF USER GROUPS BY USING AGENT-BASED SIMULATION. Transport, 2022, 37, 1-16.	0.6	3
1059	Personality and the autonomous vehicle: Overcoming psychological barriers to the driverless car. Technology in Society, 2022, 69, 101971.	4.8	5
1060	How to Share Benefits of Smart Transportation and Mobility: A Study Based on Cooperative Game Theory. , 0, , .		0
1061	Using Automated Vehicle Technologies With Older Adults: A Mixed-Methods Study. OTJR Occupation, Participation and Health, 2022, 42, 189-198.	0.4	0
1062	Transnational Testing, Operation and Certification of Automated Driving Systems: Perspective from testEPS and Central System EUREKA Projects. , 2022, , .		3
1063	Modeling the long-term regional impacts of autonomous vehicles: A case study of Victoria, Australia. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2023, 27, 459-470.	2.6	1
1064	The Emergence of Unconventional Tourism Services Based on Autonomous Vehicles (AVs)—Attitude Analysis of Tourism Experts Using the Q Methodology. Sustainability, 2022, 14, 3691.	1.6	5
1065	Acceptance of automated vehicles: Gender effects, but lack of meaningful association with desire for control in Germany and in the U.S Transportation Research Interdisciplinary Perspectives, 2022, 13, 100563.	1.6	6
1066	Technology Developments and Impacts of Connected and Autonomous Vehicles: An Overview. Smart Cities, 2022, 5, 382-404.	5.5	32
1067	Optimal Transport Pricing in an Age of Fully Autonomous Vehicles: Is It Getting More Complicated?. Future Transportation, 2022, 2, 347-364.	1.3	2
1068	Evaluating highway design considering uncertain mobility patterns and decision flexibility. Infrastructure Asset Management, 2022, 9, 135-155.	1.2	3
1069	Impact of the connected & autonomous vehicle industry on the Korean national economy using input-output analysis. Technological Forecasting and Social Change, 2022, 178, 121572.	6.2	9
1070	The Influence of Robot Designs on Human Compliance and Emotion: A Virtual Reality Study in the Context of Future Public Transport. ACM Transactions on Human-Robot Interaction, 2022, 11, 1-17.	3.2	5

#	Article	IF	CITATIONS
1071	Impacts and potential of autonomous vehicles in tourism. , 2021, 13, 34-51.		3
1072	Estimated crash avoidance with the hypothetical introduction of automated vehicles: a simulation based on experts' assessment from French in-depth data. European Transport Research Review, 2021, 13,	2.3	1
1073	How Does Approaching a Lead Vehicle and Monitoring Request Affect Drivers' Takeover Performance? A Simulated Driving Study with Functional MRI. International Journal of Environmental Research and Public Health, 2022, 19, 412.	1.2	5
1074	Pilot project purgatory? Assessing automated vehicle pilot projects in U.S. cities. Humanities and Social Sciences Communications, 2021, 8, .	1.3	9
1075	The design of cruise control and lane-changing control for an autonomous vehicle. , 2021, , .		1
1076	Examination of the role of safety concerns from autonomous vehicle ownership choice: results of a stated choice experiment in Istanbul, Turkey. Transportation Letters, 2022, 14, 1172-1183.	1.8	4
1077	An Improved Cellular Automaton Traffic Model Based on STCA Model Considering Variable Direction Lanes in I-VICS. Sustainability, 2021, 13, 13626.	1.6	2
1078	The Determinants of Consumer Acceptance of Autonomous Vehicles: A Case Study in Riyadh, Saudi Arabia. International Journal of Human-Computer Interaction, 2022, 38, 1375-1387.	3.3	11
1079	A Review of Motor Vehicle Driver Fatigue Research—Based on L3 Automatic Driving System. Lecture Notes in Electrical Engineering, 2022, , 257-270.	0.3	0
1081	Acceptance of driverless shuttles in pilot and non-pilot cities. Journal of Public Transportation, 2022, 24, 100018.	0.3	1
1082	First steps towards a holistic impact assessment methodology for connected and automated vehicles. Open Research Europe, 0, 1, 104.	2.0	0
1083	Feasibility and performance analyses for an active geometry control suspension system for over-actuated vehicles. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, 1.	0.8	2
1084	Innovations in freight transport: aÂsystematic literature evaluation and COVID implications. International Journal of Logistics Management, 2022, 33, 1157-1195.	4.1	9
1085	The deceitful Connected and Autonomous Vehicle: Defining the concept, contextualising its dimensions and proposing mitigation policies. Transport Policy, 2022, 122, 1-10.	3.4	6
1086	Emerging trends and influential outsiders of transportation science. Transportation Letters, 2023, 15, 386-422.	1.8	8
1087	Perspectives of mobility development in remote areas attractive to tourists. , 2022, 80, 150-188.		3
1088	Dynamic ride-sharing impacts of greater trip demand and aggregation at stops in shared autonomous vehicle systems. Transportation Research, Part A: Policy and Practice, 2022, 160, 114-125.	2.0	10
1089	Engineers' Roles and Responsibilities in Automated Vehicle Ethics: Exploring Engineering Codes of Ethics as a Guide to Addressing Issues in Sociotechnical Systems. Journal of Transportation Engineering Part A: Systems, 2022, 148, .	0.8	1

#	Article	IF	CITATIONS
1090	A Review on Benefits and Security Concerns for Self Driving Vehicles. Sustainable Civil Infrastructures, 2022, , 667-675.	0.1	1
1091	A Cross-Domain Scientometric Analysis of Situational Awareness of Autonomous Vehicles With Focus on the Maritime Domain. IEEE Access, 2022, 10, 50047-50061.	2.6	5
1092	Autonomous Driving: A Survey of Technological Gaps Using Google Scholar and Web of Science Trend Analysis. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 21241-21258.	4.7	3
1093	Autonomous Vehicles for Enhancing Expressway Capacity: A Dynamic Perspective. Sustainability, 2022, 14, 5193.	1.6	1
1094	External Human–Machine Interfaces for Autonomous Vehicles from Pedestrians' Perspective: A Survey Study. Sensors, 2022, 22, 3339.	2.1	6
1095	Effects of Pedestrian Behavior, Time Pressure, and Repeated Exposure on Crossing Decisions in Front of Automated Vehicles Equipped with External Communication. , 2022, , .		21
1096	Deep Journalism and DeepJournal V1.0: A Data-Driven Deep Learning Approach to Discover Parameters for Transportation. Sustainability, 2022, 14, 5711.	1.6	10
1097	Factors Influencing Users' Willingness to Adopt Connected and Autonomous Vehicles: Net and Configurational Effects Analysis Using PLS-SEM and FsQCA. Journal of Advanced Transportation, 2022, 2022, 1-23.	0.9	3
1098	A Video-Based, Eye-Tracking Study to Investigate the Effect of eHMI Modalities and Locations on Pedestrian–Automated Vehicle Interaction. Sustainability, 2022, 14, 5633.	1.6	2
1099	Quantifying the consumer's dependence on different information sources on acceptance of autonomous vehicles. Transportation Research, Part A: Policy and Practice, 2022, 160, 179-203.	2.0	10
1100	How can the built environment affect the impact of autonomous vehicles' operational behaviour on air quality?. Journal of Environmental Management, 2022, 315, 115154.	3.8	4
1102	A Survey on Mobile Road Side Units in VANETs. Vehicles, 2022, 4, 482-500.	1.7	16
1103	Immune moral models? Pro-social rule breaking as a moral enhancement approach for ethical AI. AI and Society, 0, , .	3.1	3
1104	A Systematic Review of Blockchain Applications. IEEE Access, 2022, 10, 59155-59177.	2.6	31
1105	Identifying crashes potentially affected by conditionally automated vehicles in Finland. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2023, 27, 665-676.	2.6	4
1106	Modeling Users' Adoption of Shared Autonomous Vehicles Employing Actual Ridership Experiences. Transportation Research Record, 2022, 2676, 462-478.	1.0	28
1107	State-of-the-Art of Factors Affecting the Adoption of Automated Vehicles. Sustainability, 2022, 14, 6697.	1.6	10
1108	Merging Sequence Optimization Based on Reverse Auction Theory and Merging Strategy with Active Trajectory Adjustment of Heterogeneous Vehicles. Journal of Advanced Transportation, 2022, 2022, 1-20.	0.9	1

#	Article	IF	CITATIONS
1109	The Attitudes towards Autonomous Vehicles in a Medium-Sized Academic-Dominated U.S. Metropolitan Area With Cold Winters. International Journal of Human-Computer Interaction, 2024, 40, 1033-1048.	3.3	1
1110	A tale of two modes: Who will use single user and shared autonomous vehicles. Case Studies on Transport Policy, 2022, 10, 1566-1580.	1.1	7
1111	Factors Affecting Adaptability of Cryptocurrency: An Application of Technology Acceptance Model. Frontiers in Psychology, 2022, 13, .	1.1	10
1112	Recruiting research participants for transport research: Reflections from studies on autonomous vehicles in the UK. Journal of Transport Geography, 2022, 102, 103377.	2.3	3
1114	Risk Assessment in the Context of Dynamic Reconfiguration of Level of Driving Automation in Highly Automated Vehicles. , 2021, , .		2
1115	A feasibility study on adoption of autonomous vans for relief distribution in rural India. , 2022, , .		1
1116	Accelerating Adoption of Disruptive Technologies: Impact of COVID-19 on Intentions to Use On-Demand Autonomous Vehicle Mobility Services. Transportation Research Record, 0, , 036119812210992.	1.0	5
1117	A new standard for accident simulations for self-driving vehicles: Can we use Waymo's results from accident simulations?. Al and Society, 0, , .	3.1	2
1118	Cognitive selection of driving automation levels in highly automated vehicles leveraging on Bayesian networking principles. IET Intelligent Transport Systems, 0, , .	1.7	1
1119	Designing a Reminders System in Highly Automated Vehicles' Interfaces for Individuals With Mild Cognitive Impairment. Frontiers in Future Transportation, 0, 3, .	1.3	4
1120	Go Ahead, Please!—Evaluation of External Human—Machine Interfaces in a Real-World Crossing Scenario. Frontiers in Computer Science, 0, 4, .	1.7	1
1121	Autonomous Vehicles Acceptance: A Perceived Risk Extension of Unified Theory of Acceptance and Use of Technology and Diffusion of Innovation, Evidence from Tehran, Iran. International Journal of Human-Computer Interaction, 2023, 39, 2663-2672.	3.3	13
1122	Impact of Different Penetration Rates of Shared Autonomous Vehicles on Traffic: Case Study of Budapest. Transportation Research Record, 2022, 2676, 396-408.	1.0	5
1123	Parent Opinions of Automated Vehicles and Young Driver Mobility. , 0, , .		0
1124	Modal Choice for the Driverless City: Scenario Simulation Based on a Stated Preference Survey. Journal of Advanced Transportation, 2022, 2022, 1-12.	0.9	1
1125	Connected automated vehicle impacts in Southern California part-I: Travel behavior and demand analysis. Transportation Research, Part D: Transport and Environment, 2022, 109, 103329.	3.2	4
1126	The effect of information from dash-based human-machine interfaces on drivers' gaze patterns and lane-change manoeuvres after conditionally automated driving. Accident Analysis and Prevention, 2022, 174, 106726.	3.0	7
1127	Effects of levels of automation and non-driving related tasks on driver performance and workload: A review of literature and meta-analysis. Applied Ergonomics, 2022, 104, 103824.	1.7	7

			_
#	ARTICLE	IF	CITATIONS
1128	What Determines Customer Willingness to Travel in Automated Driving Vehicles? The Perspective of Cognitive Appraisal Theory of Emotions. SSRN Electronic Journal, 0, , .	0.4	0
1129	Autonomous Vehicle Platoon Packet Based Control Problem Under Denial-of-Service Attacks. Lecture Notes in Electrical Engineering, 2022, , 474-486.	0.3	1
1130	A Video-based Study on Perceived Intelligence, Subjective Performance and Trust under Variation of Prior Information given to Users in Autonomous Driving. , 2022, , .		1
1131	Design and Comparison of Optimal Controllers Using Look-Ahead Error in Path Following Problem. , 2022, , .		0
1132	Review of shared online hailing and autonomous taxi services. Transportmetrica B, 2023, 11, 486-509.	1.4	6
1133	Will I start an automated driving system? Report on the emotions, cognition, and intention of drivers who experienced real-world conditional automated driving. Cognition, Technology and Work, 2022, 24, 641-666.	1.7	2
1134	The adoption of self-driving vehicles in Africa: insight from Ghana. Urban, Planning and Transport Research, 2022, 10, 333-357.	0.8	5
1135	Drivers' ability to distinguish consecutive horizontal curves. Canadian Journal of Civil Engineering, 2022, 49, 1518-1531.	0.7	4
1136	Study the Effect of eHMI Projection Distance and Contrast on People Acceptance in Blind-Spot Detection Scenario. Applied Sciences (Switzerland), 2022, 12, 6730.	1.3	3
1137	Effects of Scene Detection, Scene Prediction, and Maneuver Planning Visualizations on Trust, Situation Awareness, and Cognitive Load in Highly Automated Vehicles. , 2022, 6, 1-21.		22
1138	Continuance intention of autonomous buses: An empirical analysis based on passenger experience. Transport Policy, 2022, 126, 85-95.	3.4	3
1139	Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness. Transport Policy, 2022, 126, 120-135.	3.4	8
1140	Impacts of truck platooning on the multimodal freight transport market: An exploratory assessment on a case study in Italy. Transportation Research, Part A: Policy and Practice, 2022, 163, 100-125.	2.0	4
1141	Comparison the effects of shared autonomous vehicle from city characteristics. , 2019, 18, 106-111.		0
1142	Infrastructure-Based Object Detection and Tracking for Cooperative Driving Automation: A Survey. , 2022, , .		26
1143	Making regulation flexible for the governance of disruptive innovation: A comparative study of AVs regulation in the United Kingdom and South Korea. Journal of European Public Policy, 0, , 1-21.	2.4	1
1144	Development of freeway-based test scenarios for applying new car assessment program to automated vehicles. PLoS ONE, 2022, 17, e0271532.	1.1	2
1145	Allocation of Drivers' Visual Attention During Preliminary Uses of Automated Driving: A Wizard-of-Oz Study. Transportation Research Record, 2023, 2677, 818-827.	1.0	1

#	Article	IF	CITATIONS
1146	A general maximum-stability dispatch policy for shared autonomous vehicle dispatch with an analytical characterization of the maximum throughput. Transportation Research Part B: Methodological, 2022, 163, 258-280.	2.8	5
1147	Autonomous Driving and Connected Mobility Modeling: Smart Dynamic Traffic Monitoring and Enforcement System for Connected and Autonomous Mobility. Procedia Computer Science, 2022, 203, 213-221.	1.2	1
1148	Characterization of Real-Time Object Detection Workloads on Vehicular Edge. , 2022, , .		0
1149	Deep Learning and Imaging for the Orthopaedic Surgeon. Journal of Bone and Joint Surgery - Series A, 2022, 104, 1675-1686.	1.4	6
1150	Simulating Realistic Rain, Snow, and Fog Variations For Comprehensive Performance Characterization of LiDAR Perception. , 2022, , .		7
1151	Validating Simulation Environments for Automated Driving Systems Using 3D Object Comparison Metric. , 2022, , .		2
1153	Ranking preferences towards adopting autonomous vehicles based on peer inputs and advertisements. Transportation, 2023, 50, 2139-2192.	2.1	5
1154	Evaluating the Impacts of Autonomous Vehicles' Market Penetration on a Complex Urban Freeway during Autonomous Vehicles' Transition Period. Sustainability, 2022, 14, 10094.	1.6	4
1155	Interact or counteract? Behavioural observation of interactions between vulnerable road users and autonomous shuttles in Oslo, Norway. , 0, 2, 000008.		2
1156	Evaluation of the Environmental Effect of Automated Vehicles Based on IVIULWG Operator Development. Sustainability, 2022, 14, 9669.	1.6	1
1157	Automation and connectivity of electric vehicles: Energy boon or bane?. Cell Reports Physical Science, 2022, 3, 101002.	2.8	9
1158	Risk Perceptions and Public Acceptance of Autonomous Vehicles: A Comparative Study in Japan and Israel. Sustainability, 2022, 14, 10508.	1.6	3
1159	Human Resource Management, Innovative Work Behaviour, Incremental and Radical Innovation: Inspirational Vision or Aspirational Rhetoric. , 2022, , 111-127.		0
1160	Conceptualising the adoption of safer autonomous mobilities. Transportation Planning and Technology, 2022, 45, 403-426.	0.9	1
1161	Walking in the Era of Autonomous Vehicles. Sustainability, 2022, 14, 10509.	1.6	3
1162	New Paradigm of Sustainable Urban Mobility: Electric and Autonomous Vehicles—A Review and Bibliometric Analysis. Sustainability, 2022, 14, 9525.	1.6	20
1163	On the road safety benefits of advanced driver assistance systems in different driving contexts. Transportation Research Interdisciplinary Perspectives, 2022, 15, 100670.	1.6	8
1164	Smart cities, urban mobility and autonomous vehicles: How different cities needs different sustainable investment strategies. Technological Forecasting and Social Change, 2022, 184, 121857.	6.2	22

#	Article	IF	CITATIONS
1165	Research on Short-Term Driver Following Habits Based on GA-BP Neural Network. World Electric Vehicle Journal, 2022, 13, 171.	1.6	3
1166	Can we adapt to highly automated vehicles as passengers? The mediating effect of trust and situational awareness on role adaption moderated by automated driving style. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 90, 269-286.	1.8	6
1167	A systematic review of the agent-based modelling/simulation paradigm in mobility transition. Technological Forecasting and Social Change, 2022, 184, 122011.	6.2	8
1168	City readiness for connected and autonomous vehicles: A multi-stakeholder and multi-criteria analysis through analytic hierarchy process. Transport Policy, 2022, 128, 13-24.	3.4	7
1169	Generating merging strategies for connected autonomous vehicles based on spatiotemporal information extraction module and deep reinforcement learning. Physica A: Statistical Mechanics and Its Applications, 2022, 607, 128172.	1.2	2
1170	Development of socially sustainable transport research: A bibliometric and visualization analysis. Travel Behaviour & Society, 2023, 30, 60-73.	2.4	18
1171	A MAS-Based Hierarchical Architecture for the Cooperation Control of Connected and Automated Vehicles. IEEE Transactions on Vehicular Technology, 2023, 72, 1559-1573.	3.9	8
1172	Modeling Autonomous Vehicles Deployment in a Multilane AV Zone With Mixed Traffic. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 23708-23720.	4.7	3
1173	Equity Implications of Robo-Taxis on Job Accessibility: Avoiding the Ecological Fallacy with Agent-Based Models. SSRN Electronic Journal, 0, , .	0.4	1
1174	Benefit-cost Analysis-based Modeling of the Self-driving Freight Line. , 2022, , .		0
1175	Real-Time On-Ramp Merging Control of Connected and Automated Vehicles using Pseudospectral Convex Optimization. , 2022, , .		1
1176	Effect of automation failure type on trust development in driving automation systems. Applied Ergonomics, 2023, 106, 103913.	1.7	7
1177	Usage Patterns and Perceptions of Shared Autonomous Vehicles (SAVs): Empirical Findings from a Self-Driving Service. , 2022, , .		2
1178	Active speed and cruise control of the mobile robot based on the analysis of the position of the preceding vehicle. , 2022, , .		0
1179	Autonomous Vehicles in Mixed Traffic Conditions—A Bibliometric Analysis. Sustainability, 2022, 14, 10743.	1.6	4
1180	Impacts of Shared Autonomous Vehicles (SAVs) on Individuals' Travel Behavior: Evidence from a Pilot Project. , 2022, , .		3
1181	The Impact of Individual Differences on the Acceptance of Self-Driving Buses: A Case Study of Nanjing, China. Sustainability, 2022, 14, 11425.	1.6	2
1182	Investigating the Effects of External Communication and Automation Behavior on Manual Drivers at Intersections. Proceedings of the ACM on Human-Computer Interaction, 2022, 6, 1-16.	2.5	6

#	Article	IF	CITATIONS
1183	How does the space influence Living Labs? Evidence from two automotive experiences. R and D Management, 2024, 54, 227-242.	3.0	2
1184	Accounting for preference heterogeneity for high occupancy toll lanes in a Canadian city: a latent class approach. Transportation Letters, 0, , 1-12.	1.8	0
1185	Decentralised CAVs based on micro–macro flow control (MiMaFC) strategy for multiâ€intersection traffic network. IET Intelligent Transport Systems, 0, , .	1.7	0
1186	Factors Affecting the Parental Intention of Using AVs to Escort Children: An Integrated SEM–Hybrid Choice Model Approach. Sustainability, 2022, 14, 11640.	1.6	2
1187	A Systematic Evaluation of Solutions for the Final 100m Challenge of Highly Automated Vehicles. Proceedings of the ACM on Human-Computer Interaction, 2022, 6, 1-19.	2.5	3
1188	Towards End-to-End Chase in Urban Autonomous Driving Using Reinforcement Learning. Lecture Notes in Networks and Systems, 2023, , 408-426.	0.5	0
1189	Implications of the Emergence of Autonomous Vehicles and Shared Autonomous Vehicles: A Budapest Perspective. Sustainability, 2022, 14, 10952.	1.6	4
1190	Study on Vehicle–Road Interaction for Autonomous Driving. Sustainability, 2022, 14, 11693.	1.6	1
1191	Divergent Effects of Factors on Crash Severity under Autonomous and Conventional Driving Modes Using a Hierarchical Bayesian Approach. International Journal of Environmental Research and Public Health, 2022, 19, 11358.	1.2	3
1192	Combined flexible lane assignment and reservation-based intersection control in field-like traffic conditions. Transportmetrica A: Transport Science, 2024, 20, .	1.3	1
1193	Public Acceptance of Autonomous Vehicles in China. International Journal of Human-Computer Interaction, 2024, 40, 315-326.	3.3	5
1194	Impacts of Attention Level on Manual Take-Over Performance in Automatic Driving on High-Speed Railways. International Journal of Human-Computer Interaction, 2024, 40, 603-612.	3.3	1
1195	Investigating the Impacting Factors on the Public's Attitudes towards Autonomous Vehicles Using Sentiment Analysis from Social Media Data. Sustainability, 2022, 14, 12186.	1.6	2
1196	Can Eyes on a Car Reduce Traffic Accidents?. , 2022, , .		15
1197	μCity. , 2022, , .		0
1198	A strategic review approach on adoption of autonomous vehicles and its risk perception by road users. Innovative Infrastructure Solutions, 2022, 7, .	1.1	6
1199	A Short Review of Innovation in Autonomous Car in Combination with Mechanical and Electronics. Lecture Notes in Civil Engineering, 2023, , 683-698.	0.3	0
1201	Reachability Analysis and Safety Synthesis of a Class of Human-Computer Collaborative Driving Systems. , 2022, , .		0

		CITATION REPORT	
#	Article	IF	Citations
1202	The Interaction Gap: A Step Toward Understanding Trust in Autonomous Vehicles Between Encounters. Proceedings of the Human Factors and Ergonomics Society, 2022, 66, 147-151.	0.2	3
1203	Measurement and Analysis of Dynamic Trust in Automated Vehicles Lessons Learned, Recommendations, and Pilot Results. Proceedings of the Human Factors and Ergonomics Society, 2 66, 1370-1371.	2022, 0.2	0
1204	Real-Time Adaptive Traffic Signal Control in a Connected and Automated Vehicle Environment: Optimisation of Signal Planning with Reinforcement Learning under Vehicle Speed Guidance. Senso 2022, 22, 7501.	ors, 2.1	4
1205	A Review of Deep Learning-Based Visual Multi-Object Tracking Algorithms for Autonomous Driving. Applied Sciences (Switzerland), 2022, 12, 10741.	1.3	12
1206	PillarGrid: Deep Learning-Based Cooperative Perception for 3D Object Detection from Onboard-Roadside LiDAR. , 2022, , .		21
1207	An evaluation of lane management strategy for CAV priority in mixed traffic. IET Intelligent Transpo Systems, 2024, 18, 467-479.	rt 1.7	1
1208	The Interrelationship between Road Pricing Acceptability and Self-Driving Vehicle Adoption: Insights from Four Countries. Sustainability, 2022, 14, 12798.	s 1.6	2
1209	The Acceptance of Driverless Cars: The Roles of Perceived Outcomes and Technology Usefulness. American Behavioral Scientist, 2023, 67, 1736-1754.	2.3	Ο
1210	Detecting Stealthy Cyberattacks on Automated Vehicles via Generative Adversarial Networks. , 202	22, , .	5
1211	Trusting autonomous vehicles as moral agents improves related policy support. Frontiers in Psychology, 0, 13, .	1.1	3
1212	It's Enactment Time!: High-fidelity Enactment Stage for Accessible Automated Driving System Technology Research. , 2022, , .		2
1213	Frameworks for assessing societal impacts of automated driving technology. Transportation Planning and Technology, 0, , 1-28.	0.9	ο
1214	Understanding Shared Autonomous Vehicle Preferences: A Comparison between Shuttles, Buses, Ridesharing and Taxis. Sustainability, 2022, 14, 13656.	1.6	3
1215	Etiquette Equality or Inequality? Drivers' Intention to be Polite to Automated Vehicles in Mixed Traffic. Automation, Collaboration, and E-services, 2023, , 57-73.	0.5	1
1216	Autonomous electric vehicles can reduce carbon emissions and air pollution in cities. Transportatio Research, Part D: Transport and Environment, 2022, 112, 103472.	n 3.2	38
1217	Autonomous vehicle solutions and their digital servitization business models. Technological Forecasting and Social Change, 2022, 185, 122070.	6.2	16
1218	Determinants of intention to use autonomous vehicles: Findings from PLS-SEM and ANFIS. Journal Retailing and Consumer Services, 2023, 70, 103158.	of 5.3	37
1219	Trust More, Fear Less: The Role of Social Support in Fully Automated Vehicle Choice. IEEE Transaction on Engineering Management, 2024, 71, 5000-5017.	ons 2.4	ο

~			~
CT	TAT	ON	Report
<u> </u>			KEI OKI

#	Article	IF	CITATIONS
1220	Cyber Mobility Mirror for Enabling Cooperative Driving Automation in Mixed Traffic: A Co-Simulation Platform. IEEE Intelligent Transportation Systems Magazine, 2023, 15, 251-265.	2.6	2
1221	Innovations Shaping Smart Mobility. Tri-City Case Study. Barometr Regionalny Analizy I Prognozy, 2019, 16, 99-105.	0.1	0
1222	PrzeksztaÅ,cenia urbanistyczne miasta a wprowadzenie pojazdów autonomicznych. Prace Geograficzne (krakÓw), 2022, , 49-67.	0.3	0
1223	Exploration on prior driving modes for automated vehicle collisions. International Journal of Urban Sciences, 2023, 27, 622-644.	1.3	4
1224	Comparing Inequality in Future Urban Transport Modes by Doughnut Economy Concept. Sustainability, 2022, 14, 14462.	1.6	2
1225	Modeling post-shock emergency transfers with the participation of connected-and-autonomous vehicles. International Journal of Disaster Risk Reduction, 2022, 83, 103436.	1.8	2
1226	Autonomous Vehicle Adoption in Developing Countries: Futurist Insights. Energies, 2022, 15, 8464.	1.6	4
1227	Decentralized approaches for autonomous vehicles coordination. Internet Technology Letters, 0, , .	1.4	1
1228	Transportation in the 21st Century: New Vision on Future Mobility. Applied Sciences (Switzerland), 2022, 12, 11663.	1.3	0
1229	A transport justice approach to integrating vulnerable road users with automated vehicles. Transportation Research, Part D: Transport and Environment, 2022, 113, 103499.	3.2	5
1230	Safety and security co-analysis in transport systems: Current state and regulatory development. Transportation Research, Part A: Policy and Practice, 2022, 166, 369-388.	2.0	4
1231	Cooperative Behaviors of Connected Autonomous Vehicles and Pedestrians to Provide Safe and Efficient Traffic in Industrial Sites*. , 2022, , .		1
1232	Writing Accessible and Correct Test Scenarios for Automated Driving Systems. , 2022, , .		3
1233	Impacts of Connected and Automated Vehicles on Road Safety and Efficiency: A Systematic Literature Review. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 2705-2736.	4.7	8
1234	Optimization Model of Autonomous Vehicle Parking Facilities, Developed With the Nondominated Sorting Genetic Algorithm With an Elite Strategy 2 and by Comparing Different Moving Strategies. IEEE Intelligent Transportation Systems Magazine, 2022, , 2-20.	2.6	3
1235	Implications of automated vehicles for physical road environment: A comprehensive review. Transportation Research, Part E: Logistics and Transportation Review, 2023, 169, 102989.	3.7	28
1236	Role played by social factors and privacy concerns in autonomous vehicle adoption. Transport Policy, 2023, 132, 1-15.	3.4	12
1237	Co-Design to Enable User-Friendly Tools to Assess the Impact of Future Mobility Solutions. IEEE Transactions on Network Science and Engineering, 2023, 10, 827-844.	4.1	3

#	Article	IF	CITATIONS
1238	Dynamic Watermarking for Cybersecurity of Autonomous Vehicles. IEEE Transactions on Industrial Electronics, 2023, 70, 11735-11743.	5.2	1
1239	Statistical Analysis of Connected and Autonomous Vehicles (CAVs) Effects on the Environment in Terms of Pollutants and Fuel Consumption. , 2022, , .		0
1240	Path Prediction Method for Automotive Applications Based on Cubic Spline Interpolation. , 2022, , .		2
1241	Open challenges for Machine Learning based Early Decision-Making research. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2022, 24, 12-31.	3.2	4
1242	Predicting Changes in the Built Environment in the era of Vehicular Automation: A Review. Journal of Planning Literature, 0, , 088541222211385.	2.2	0
1243	Real-Time Application of Traffic Sign Recognition Algorithm with Deep Learning. , 2022, 3, 275-289.		3
1244	A Microsimulation Modelling Approach to Quantify Environmental Footprint of Autonomous Buses. Sustainability, 2022, 14, 15657.	1.6	5
1245	IvCDS: An End-to-End Driver Simulator for Personal In-Vehicle Conversational Assistant. International Journal of Environmental Research and Public Health, 2022, 19, 15493.	1.2	0
1246	Modeling adaptive platoon and reservationâ€based intersection control for connected and autonomous vehicles employing deep reinforcement learning. Computer-Aided Civil and Infrastructure Engineering, 2023, 38, 1346-1364.	6.3	12
1247	Estimating the Potential Modal Split of Any Future Mode Using Revealed Preference Data. Journal of Advanced Transportation, 2022, 2022, 1-11.	0.9	0
1248	Autonomous Vehicles. , 2023, , 1-7.		0
1249	Effect of Autonomous Vehicles on Fatigue Life of Orthotropic Steel Decks. Sensors, 2022, 22, 9353.	2.1	1
1250	The Impact of Autonomous Vehicles on People's Use of Vehicles and the Possible Environmental Pollution. , 0, 25, 368-373.		0
1251	Determinants and the Moderating Effects of Individual Characteristics on Autonomous Vehicle Adoption in China. International Journal of Environmental Research and Public Health, 2023, 20, 43.	1.2	2
1252	Reducing congestion and emissions via roadside unit deployment under mixed traffic flow. International Journal of Coal Science and Technology, 2023, 10, .	2.7	2
1253	Public Acceptance towards Emerging Autonomous Vehicle Technology: A Bibliometric Research. Sustainability, 2023, 15, 1566.	1.6	8
1254	The Role of Attitude, Travel-Related, and Socioeconomic Characteristics in Modal Shift to Shared Autonomous Vehicles with Ride Sharing. World Electric Vehicle Journal, 2023, 14, 23.	1.6	5
1255	Public discourse on automated vehicles in online discussion forums: A social constructionist perspective. Transportation Research Interdisciplinary Perspectives, 2023, 17, 100743.	1.6	3

#	Article	IF	CITATIONS
1256	How Can the Trust-Change Direction be Measured and Identified During Takeover Transitions in Conditionally Automated Driving? Using Physiological Responses and Takeover-Related Factors. Human Factors, 2024, 66, 1276-1301.	2.1	3
1257	Understanding Passenger Acceptance of Autonomous Vehicles Through the Prism of the Trolley Dilemma. International Journal of Human-Computer Interaction, 0, , 1-10.	3.3	3
1258	Analysing the acceptance of autonomous buses in real-life traffic environments: pilot project with tourists in Malaga, Spain. Transportation Planning and Technology, 0, , 1-22.	0.9	1
1259	The Elderly Acceptance of Autonomous Vehicle Services in Beijing, China. International Review for Spatial Planning and Sustainable Development, 2023, 11, 64-84.	0.6	3
1260	Value of travel time savings of autonomous vehicle commuters: a segmented valuation for local and inter-city travel. International Journal of Urban Sciences, 0, , 1-25.	1.3	2
1261	An intelligent management system for relocating semi-autonomous shared vehicles. Transportation Planning and Technology, 0, , 1-26.	0.9	0
1262	Age and Technology Readiness Influences on Adults' Experiences with Highly Automated Vehicles. Transportation Research Record, 2023, 2677, 161-171.	1.0	0
1263	Usage Intention of Shared Autonomous Vehicles with Dynamic Ride Sharing on Long-Distance Trips. Sustainability, 2023, 15, 1649.	1.6	5
1264	Review on the impacts of cooperative automated driving on transportation and environment. Transportation Research, Part D: Transport and Environment, 2023, 115, 103607.	3.2	7
1265	Building on the past to help prepare the workforce for the future with automated vehicles: A systematic review of automated passenger vehicle deployment timelines. Technology in Society, 2023, 72, 102186.	4.8	6
1266	Comparison of technology acceptance model, theory of planned behavior, and unified theory of acceptance and use of technology to assess a priori acceptance of fully automated vehicles. Transportation Research, Part A: Policy and Practice, 2023, 168, 103565.	2.0	9
1267	Integrating automated minibuses into mobility systems – Socio-technical transitions analysis and multi-level perspectives. Technological Forecasting and Social Change, 2023, 188, 122260.	6.2	2
1268	Repeated conditionally automated driving on the road: How do drivers leave the loop over time?. Accident Analysis and Prevention, 2023, 181, 106927.	3.0	0
1269	The interaction between perceived safety and perceived usefulness in automated parking as a result of safety distance. Applied Ergonomics, 2023, 108, 103962.	1.7	2
1270	User preferences, driving context or manoeuvre characteristics? Exploring parameters affecting the acceptability of automated overtaking. Applied Ergonomics, 2023, 109, 103959.	1.7	5
1271	Fingerprint of a Traffic Scene: an Approach for a Generic and Independent Scene Assessment. , 2022, , .		2
1272	Moving toward a More Sustainable Autonomous Mobility, Case of Heterogeneity in Preferences. Sustainability, 2023, 15, 460.	1.6	5
1273	Quadratic approximation based heuristic for optimization-based coordination of automated vehicles in confined areas. , 2022, , .		2

#	Article	IF	CITATIONS
1274	Governing beyond innovation: Exploring the impact of connected and automated vehicles on the organization of vehicle accident investigations. International Journal of Sustainable Transportation, 0, , 1-12.	2.1	1
1275	A Novel Triple Radar Arrangement for Level 2 ADAS Detection System in Autonomous Vehicles. , 2022, , .		1
1276	Deep Reinforcement Learning for Autonomous Vehicles Collaboration at Unsignalized Intersections. , 2022, , .		1
1277	Microscopic Vehicular Traffic Simulation: Comparison of Calibration Techniques. , 2022, , .		0
1278	Optimizing Energy Consumption in Smart Cities' Mobility: Electric Vehicles, Algorithms, and Collaborative Economy. Energies, 2023, 16, 1268.	1.6	5
1279	Zwischen Ambition und Umsetzung. Institutionalisierungsprozesse als Kernherausforderung der MobilitÄ ts wende?. , 2023, , 293-322.		1
1280	Traffic rules compliance checking of automated vehicle maneuvers. Artificial Intelligence and Law, 2024, 32, 1-56.	3.0	2
1281	Realâ€ŧime control of connected vehicles in signalized corridors using pseudospectral convex optimization. Optimal Control Applications and Methods, 2023, 44, 2257-2277.	1.3	5
1282	Prediction of Vehicle Ownership Growth Using Gompertz Model, Case Study of Hungary. System Safety Human - Technical Facility - Environment, 2022, 4, 164-169.	0.2	0
1283	SELMA: SEmantic Large-Scale Multimodal Acquisitions in Variable Weather, Daytime and Viewpoints. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 7012-7024.	4.7	5
1284	Developing tutorial video for supporting distance learning on basic automotive control. AIP Conference Proceedings, 2023, , .	0.3	0
1285	Modelling and simulation of (connected) autonomous vehicles longitudinal driving behavior: A stateâ€ofâ€theâ€art. IET Intelligent Transport Systems, 2023, 17, 1051-1071.	1.7	3
1286	Infrastructure requirements for the safe operation of automated vehicles: Opinions from experts and stakeholders. Transport Policy, 2023, 133, 209-222.	3.4	8
1287	What is the public really concerned about the AV crash? Insights from a combined analysis of social media and questionnaire survey. Technological Forecasting and Social Change, 2023, 189, 122371.	6.2	4
1288	Development of a Multibody Dynamic Model of a Seated Occupant to Evaluate More Realistic ISO-Standard Motion Sickness Dose Value. , 0, , .		0
1289	Who is more attached to their car? Comparing automobility engagement and response to shared, automated and electric mobility in Canada and Germany. Energy Research and Social Science, 2023, 99, 103048.	3.0	2
1290	Survey on the acceptance of smart cars amongst middle-aged and elderly in China. Technology in Society, 2023, 73, 102234.	4.8	3
1291	Perceived benefits as a driver and necessary condition for the willingness of air passengers to provide personal data for non-mandatory digital services at airports. Transportation Research, Part A:	2.0	0

#	Article	IF	CITATIONS
1292	Using reaction times and accident statistics for safety impact prediction of automated vehicles on road safety of vulnerable road users. Safety Science, 2023, 162, 106091.	2.6	3
1293	Alternative prioritization of freeway incident management using autonomous vehicles in mixed traffic using a type-2 neutrosophic number based decision support system. Engineering Applications of Artificial Intelligence, 2023, 123, 106183.	4.3	11
1294	Supporting user experience of shared automated mobility on-demand through novel virtual infrastructure: Making the case for virtual stops. International Journal of Human Computer Studies, 2023, 176, 103043.	3.7	2
1295	An ODD-Based Scalable Assurance Framework for Automated Driving Systems. , 0, , .		1
1296	Evaluation of SEU impact on convolutional neural networks based on BRAM and CRAM in FPGAs. Microelectronics Reliability, 2023, 144, 114974.	0.9	0
1297	Autonomous Delivery Solutions for Last-Mile Logistics Operations: A Literature Review and Research Agenda. Sustainability, 2023, 15, 2774.	1.6	14
1298	Can autonomy level and anthropomorphic characteristics affect public acceptance and trust towards shared autonomous vehicles?. Technological Forecasting and Social Change, 2023, 189, 122384.	6.2	5
1299	Perceived Effectiveness of Messages Designed to Promote the Use of Autonomous Vehicles. Itinerarios De Trabajo Social, 2023, 2, 1-9.	0.2	1
1300	Autonomous Vehicles Enabled by the Integration of IoT, Edge Intelligence, 5G, and Blockchain. Sensors, 2023, 23, 1963.	2.1	23
1301	Post-Covid Perspectives for the Automotive Industry, Opportunities, and Threats. System Safety Human - Technical Facility - Environment, 2022, 4, 85-98.	0.2	0
1302	Studying Traffic Safety During the Transition Period Between Manual Driving and Autonomous Driving: A Simulation-Based Approach. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 6690-6710.	4.7	6
1303	Learning the Policy for Mixed Electric Platoon Control of Automated and Human-Driven Vehicles at Signalized Intersection: A Random Search Approach. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 5131-5143.	4.7	7
1304	Information and Entropy Aspects of the Specifics of Regional Road Traffic Accident Rate in Russia. Information (Switzerland), 2023, 14, 138.	1.7	2
1305	Multi-Agent Reinforcement Learning for Traffic Flow Management of Autonomous Vehicles. Sensors, 2023, 23, 2373.	2.1	6
1306	Identifying individuals' perceptions, attitudes, preferences, and concerns of shared autonomous vehicles: During- and post-implementation evidence. Transportation Research Interdisciplinary Perspectives, 2023, 18, 100785.	1.6	3
1307	Modeling and analysis of human-machine mixed traffic flow considering the influence of the trust level toward autonomous vehicles. Simulation Modelling Practice and Theory, 2023, 125, 102741.	2.2	8
1308	Automated Vehicles Empowering Mobility of Vulnerable Groups - and the Pathway to Achieve This. Lecture Notes in Mobility, 2023, , 22-41.	0.2	0
1309	When both human and machine drivers make mistakes: Whom to blame?. Transportation Research, Part A: Policy and Practice, 2023, 170, 103637.	2.0	3

#	Article	IF	Citations
1310	Stakeholders' Survey on the Introduction of Connected and Automated Vehicles in Greece. Lecture Notes in Intelligent Transportation and Infrastructure, 2023, , 406-419.	0.3	1
1311	Curb Allocation and Pick-Up Drop-Off Aggregation for a Shared Autonomous Vehicle Fleet. International Regional Science Review, 2024, 47, 131-158.	1.0	1
1312	Intelligent, In-Vehicle Autonomous Decision-Making Functionality for Driving Style Reconfigurations. Electronics (Switzerland), 2023, 12, 1370.	1.8	0
1313	Highly Productive 3D Printing Process to Transcend Intractability in Materials and Geometries via Interactive Machineâ€Learningâ€Based Technique. Advanced Intelligent Systems, 2023, 5, .	3.3	0
1314	Living in a City Where Automated Taxis are Operating and Using Them: Does This Affect Consumers' Preferences?. Transportation Research Record, 0, , 036119812311551.	1.0	0
1315	Understanding the value of autonomous vehicles – an empirical meta-synthesis. Transport Reviews, 2023, 43, 1058-1082.	4.7	1
1316	Recognition of Lane Changing Maneuvers for Vehicle Driving Safety. Electronics (Switzerland), 2023, 12, 1456.	1.8	3
1317	Review of studies on public acceptability and acceptance of shared autonomous mobility services: past, present and future. Transport Reviews, 2023, 43, 970-996.	4.7	3
1318	Comprehensive Review of Recent Advancements in Battery Technology, Propulsion, Power Interfaces, and Vehicle Network Systems for Intelligent Autonomous and Connected Electric Vehicles. Energies, 2023, 16, 2925.	1.6	4
1319	How to Incorporate Autonomous Vehicles into the Carbon Neutrality Framework of China: Legal and Policy Perspectives. Sustainability, 2023, 15, 5671.	1.6	0
1320	Cooperative Perception With V2V Communication for Autonomous Vehicles. IEEE Transactions on Vehicular Technology, 2023, 72, 11122-11131.	3.9	5
1321	A Survey on Controller Area Network Reverse Engineering. IEEE Communications Surveys and Tutorials, 2023, 25, 1445-1481.	24.8	5
1322	Opinions from Users Across the Lifespan about Fully Autonomous and Rideshare Vehicles with Associated Features. , 0, , .		4
1323	Trajectory-based traffic observation of cooperation at a road narrowing. Automatisierungstechnik, 2023, 71, 249-258.	0.4	1
1324	What Makes Passengers Uncomfortable In Vehicles Today? An Exploratory Study of Current Factors that May Influence Acceptance of Future Autonomous Vehicles. , 0, , .		4
1325	Willingness to Pay for Conditional Automated Driving among Segments of Potential Buyers in Europe. Journal of Advanced Transportation, 2023, 2023, 1-14.	0.9	1
1326	Semiâ€automated vehicles may not solve older drivers' mobility needs. Journal of the American Geriatrics Society, 2023, 71, 3010-3013.	1.3	3
1327	Impact of Carpooling under Mobile Internet on Travel Mode Choices and Urban Traffic Volume: The Case of China. Sustainability, 2023, 15, 6595.	1.6	0

#	Article	IF	CITATIONS
1328	Using Dual Attention BiLSTM to Predict Vehicle Lane Changing Maneuvers on Highway Dataset. Systems, 2023, 11, 196.	1.2	7
1329	Integrating shared autonomous vehicles in Last-Mile public transportation. Sustainable Energy Technologies and Assessments, 2023, 57, 103214.	1.7	1
1330	Untersuchung des Entscheidungsverhaltens von Fußgägern bei Überqueren mit autonomen Fahrzeugen in virtueller Realitä Zeitschrift Für Arbeitswissenschaft, 2023, 77, 218-229.	0.7	2
1331	Cyber Attack Detection for Self-Driving Vehicle Networks Using Deep Autoencoder Algorithms. Sensors, 2023, 23, 4086.	2.1	8
1332	Wearing Awareness: Designing Pedestrian-Wearables for Interactions with Autonomous Vehicles. , 2023, , .		1
1333	Interaction Effects of Pedestrian Behavior, Smartphone Distraction and External Communication of Automated Vehicles on Crossing and Gaze Behavior. , 2023, , .		3
1334	Effects of Personal Driving Styles on Preference for Fully Automated Driving and Their Heterogeneity by Travel Distance: A Hybrid Choice Model Approach with Multiple-Stated-Choice Experiments. Transportation Research Record, 0, , 036119812311638.	1.0	0
1335	Steering Stories. , 2023, , .		1
1336	Verifying Collision Risk Estimation using Autonomous Driving Scenarios Derived from a Formal Model. Journal of Intelligent and Robotic Systems: Theory and Applications, 2023, 107, .	2.0	2
1337	How Riders Use Shared Autonomous Vehicles. , 2022, , .		9
1360	Users' and Nonusers' Attitudes and Perceptions of Shared Autonomous Vehicles: A Case Study in Arlington, Texas. , 2023, , .		0
1361	Impact of Autonomous Vehicles on Traffic Crashes in Comparison with Conventional Vehicles. , 2023, ,		Ο
1365	mmCPTP: A Cross-Layer Pull based Transport Protocol for 5G mmWave Networks. , 2023, , .		1
1366	Real-Time Data-Predictive Attack-Recovery for Complex Cyber-Physical Systems. , 2023, , .		2
1368	5G Enabling Technologies: Revolutionizing Transport, Environment, and Health. , 0, , .		0
1382	Impact of Sustainability on Supply Chain. Advances in Business Information Systems and Analytics Book Series, 2023, , 199-250.	0.3	0
1387	Safe Merging Control in Mixed Vehicular Traffic. , 2023, , .		0
1391	The Relationship Between Older Drivers' Cognitive Ability and Takeover Performance in Conditionally Automated Driving. Lecture Notes in Computer Science, 2023, , 102-115.	1.0	0

		CITATION REPORT		
#	ARTICLE The City Scale Effect and the Baidu Index Prediction Model of Public Perceptions of the	Diebe	IF	CITATIONS
1392	Associated with Autonomous Driving Technology. Lecture Notes in Computer Science,	2023, , 425-441.	1.0	0
1393	Research on the Influencing Factors of Autonomous Driving Acceptance. Lecture Notes Science, 2023, , 512-530.	s in Computer	1.0	0
1400	Structured Natural Language for expressing Rules of the Road for Automated Driving S	ystems. , 2023, ,		0
1401	Exploring Energy Impacts of Cyberattacks on Adaptive Cruise Control Vehicles. , 2023,	y.		Ο
1403	Unified Pedestrian Path Prediction Framework: A Comparison Study. , 2023, , .			0
1404	Gap Approaching Intelligent Driver Model for Interactive Simulation of Merging Scenari	ios. , 2023, , .		Ο
1411	Game Theory of Cheating Autonomous Vehicles. , 2023, , .			0
1426	Privately Evaluating Region Overlaps with Applications to Collaborative Sensor Output 2023, , .	Validation. ,		0
1430	Scoping Out the Scalability Issues of Autonomous Vehicle-Pedestrian Interaction. , 202	3,,.		0
1431	From Me to We: Combining Driving Simulation and Traffic Simulation for Holistic Usabi Research. , 2023, , .	ility and Safety		1
1433	Impacts of Connected Automated Vehicles on Urban Parking: A Literature Review. , 202	23, , .		0
1439	Design of a High-Level Guidance User Interface for Teleoperation of Autonomous Vehic	les. , 2023, , .		Ο
1440	Design Methods for Mobility After Manual Driving: Prototyping Mobile Lifestyle. , 2023	y,.		0
1446	User-Centered Design of a Mobile Augmented Reality HMI for Virtual Stops. , 2023, , .			0
1452	Systematic Situation Coverage versus Random Situation Coverage for Safety Testing ir Autonomous Car Simulation. , 2023, , .	1 an		0
1458	A Critical Evaluation of Eco-Driving Strategies for Connected Autonomous Electric Vehi Signalized Intersections. , 2023, , .	cles at		0
1465	Ergonomics in Transportation: A Comprehensive Review and Analysis. Lecture Notes in Science, 2023, , 130-144.	Computer	1.0	0
1467	Trajectory Extraction from Online Mapping Platforms: Empowering Vehicle Dynamics a Functionalities. , 2023, , .	nd Intelligent		Ο

#	Article	IF	Citations
1468	Study on the Impact of Situational Explanations and Prior Information Given to Users on Trust and Perceived Intelligence in Autonomous Driving in a Video-based 2x2 Design. , 2023, , .		0
1471	The Evolution of Public Perceptions of Automated Vehicles in China: A Text Mining Approach Based Dynamic Topic Modeling. Lecture Notes in Computer Science, 2023, , 340-350.	1.0	0
1472	Autonomous vehicle model for implementation and challenge in traffic observation and lane detection. AIP Conference Proceedings, 2023, , .	0.3	0
1474	Skill Set Development for Autonomous Vehicle Repairing Based on the Fuzzy MOP Based Competence Set Expansions. , 2023, , .		0
1475	An Indian Legal Perspective on the Use of AI in Robots. , 2023, , .		0
1483	Efficiency and Safety of Traffic Networks Under the Effect of Autonomous Vehicles. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 0, , .	1.0	0
1490	Survey on the Effectiveness of Traffic Sign Detection and Recognition System. Lecture Notes in Electrical Engineering, 2023, , 169-187.	0.3	0
1491	Autonomous Vehicles. , 2023, , 186-192.		0
1496	Modeling of Barriers to the Adoption of Autonomous Vehicles: DEMATEL Method. , 0, , .		0
1505	Experimental Studies On Drivers Distractions: Investigating the Effects of Distractions on Driving Performance. , 2023, , .		0
1515	Bi-Level Programming Approach for Optimal Charging Station Location and Traffic Assignment in Electric Autonomous Vehicle Systems. , 2023, , .		0
1516	Safety Standards for Autonomous Vehicles: Challenges and Way Forward. , 2023, , .		0
1517	A Control-Oriented Highway Traffic Model with Multiple Clusters of CAVs. , 2023, , .		0
1518	A Comfort-Based Vehicle Routing Methodology for Autonomous Vehicles. , 2023, , .		0
1519	Autonomous Vehicles Empty Cruising Impact on Parking Dynamics. , 2023, , .		0
1523	Smart Electric Cars: Navigating the Intersection of Sustainable Innovation and Security Threats. , 2023, , .		0
1532	An Integration Tool of Safety and Security Requirements for Autonomous Vehicles. , 2023, , .		0