Novel Stroke Therapeutics: Unraveling Stroke Pathophy Treatments

Neuron 87, 297-309 DOI: 10.1016/j.neuron.2015.05.041

Citation Report

#	Article	IF	CITATIONS
1	Roles of Sestrin2 and Ribosomal Protein S6 in Transient Global Ischemia-Induced Hippocampal Neuronal Injury. International Journal of Molecular Sciences, 2015, 16, 26406-26416.	1.8	30
2	Review of Preclinical and Clinical Studies of Bone Marrow-Derived Cell Therapies for Intracerebral Hemorrhage. Stem Cells International, 2016, 2016, 1-18.	1.2	14
3	High-Resolution Microfluidic Single-Cell Transcriptional Profiling Reveals Clinically Relevant Subtypes among Human Stem Cell Populations Commonly Utilized in Cell-Based Therapies. Frontiers in Neurology, 2016, 7, 41.	1.1	12
4	Protection against Oxygen-Glucose Deprivation/Reperfusion Injury in Cortical Neurons by Combining Omega-3 Polyunsaturated Acid with Lyciumbarbarum Polysaccharide. Nutrients, 2016, 8, 41.	1.7	18
5	Subarachnoid Hemorrhage Promotes Proliferation, Differentiation, and Migration of Neural Stem Cells via BDNF Upregulation. PLoS ONE, 2016, 11, e0165460.	1.1	28
6	Optogenetic modulation in stroke recovery. Neurosurgical Focus, 2016, 40, E6.	1.0	16
7	Management of the Pediatric Neurocritical Care Patient. Seminars in Neurology, 2016, 36, 492-501.	0.5	13
8	Inosine enhances recovery of grasp following cortical injury to the primary motor cortex of the rhesus monkey. Restorative Neurology and Neuroscience, 2016, 34, 827-848.	0.4	14
9	History of Neural Stem Cell Research and Its Clinical Application. Neurologia Medico-Chirurgica, 2016, 56, 110-124.	1.0	19
10	Clinical features and biological markers of lung cancer-associated stroke. Journal of International Medical Research, 2016, 44, 1483-1491.	0.4	20
11	Prokineticins are neuroprotective in models of cerebral ischemia and ischemic tolerance inÂvitro. Neuropharmacology, 2016, 108, 39-48.	2.0	40
12	Inflammation and Stroke: An Overview. Neurotherapeutics, 2016, 13, 661-670.	2.1	631
13	NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation. Experimental Cell Research, 2016, 347, 52-59.	1.2	24
14	mTOR regulates neuroprotective effect of immunized CD4+Foxp3+ T cells in optic nerve ischemia. Scientific Reports, 2016, 6, 37805.	1.6	12
15	Long noncoding RNA MEG3 activation of p53 mediates ischemic neuronal death in stroke. Neuroscience, 2016, 337, 191-199.	1.1	130
16	Academic-industry Collaborations in Translational Stroke Research. Translational Stroke Research, 2016, 7, 343-353.	2.3	12
17	Neurorestoration after stroke. Neurosurgical Focus, 2016, 40, E2.	1.0	72
18	Venlafaxine treatment after endothelin-1-induced cortical stroke modulates growth factor expression and reduces tissue damage in rats. Neuropharmacology, 2016, 107, 131-145.	2.0	16

#	ARTICLE	IF.	CITATIONS
19	Ultrasound treatment of neurological diseases — current and emerging applications. Nature Reviews Neurology, 2016, 12, 161-174.	4.9	200
20	Optogenetic Approaches to Target Specific Neural Circuits in Post-stroke Recovery. Neurotherapeutics, 2016, 13, 325-340.	2.1	34
21	Reactive astrogliosis in stroke: Contributions of astrocytes to recovery of neurological function. Neurochemistry International, 2017, 107, 88-103.	1.9	107
23	Soluble cpg15 from Astrocytes Ameliorates Neurite Outgrowth Recovery of Hippocampal Neurons after Mouse Cerebral Ischemia. Journal of Neuroscience, 2017, 37, 1628-1647.	1.7	22
24	Review of Previous Clinical Trials and Guidelines of Cell Therapy. , 2017, , 123-133.		0
25	Cell Culture. , 2017, , 49-72.		0
26	Transplantation of reprogrammed neurons for improved recovery after stroke. Progress in Brain Research, 2017, 231, 245-263.	0.9	16
27	ADAMTSâ€4 in central nervous system pathologies. Journal of Neuroscience Research, 2017, 95, 1703-1711.	1.3	12
28	Stem Cells and Neurogenesis for Brain Development, Degeneration and Therapy. , 2017, , 217-243.		0
29	The roles of histamine and its receptor ligands in central nervous system disorders: An update. , 2017, 175, 116-132.		93
30	Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli. Brain, 2017, 140, aww347.	3.7	104
31	Identification of IL-17A-derived neural cell type and dynamic changes of IL-17A in serum/CSF of mice with ischemic stroke. Neurological Research, 2017, 39, 552-558.	0.6	15
32	A coâ€drug conjugate of naringenin and lipoic acid mediates neuroprotection in a rat model of oxidative stress. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 1008-1016.	0.9	14
33	The application of nanoparticles for neuroprotection in acute ischemic stroke. Therapeutic Delivery, 2017, 8, 915-928.	1.2	25
34	Stroke triggers nigrostriatal plasticity and increases alcohol consumption in rats. Scientific Reports, 2017, 7, 2501.	1.6	20
35	Monocyte depletion early after stroke promotes neurogenesis from endogenous neural stem cells in adult brain. Experimental Neurology, 2017, 297, 129-137.	2.0	19
36	Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate ischemic neuronal death by targeting miR-21/PDCD4 signaling pathway. Cell Death and Disease, 2017, 8, 3211.	2.7	161
37	An Increase of Sigma-1 Receptor in the Penumbra Neuron after Acute Ischemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 2017, 26, 1981-1987.	0.7	14

#	Article	IF	CITATIONS
38	Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro. Stem Cell Research and Therapy, 2017, 8, 79.	2.4	168
39	Regulation of Dipeptidyl Peptidase IV in the Post-stroke Rat Brain and In Vitro Ischemia: Implications for Chemokine-Mediated Neural Progenitor Cell Migration and Angiogenesis. Molecular Neurobiology, 2017, 54, 4973-4985.	1.9	26
40	Prospects of modeling poststroke epileptogenesis. Journal of Neuroscience Research, 2017, 95, 1000-1016.	1.3	38
41	Peroxynitrite formed during a transient episode of brain ischaemia increases endotheliumâ€derived hyperpolarizationâ€type dilations in thromboxane/prostaglandin receptorâ€stimulated rat cerebral arteries. Acta Physiologica, 2017, 220, 150-166.	1.8	3
42	Reduced Synaptic Vesicle Recycling during Hypoxia in Cultured Cortical Neurons. Frontiers in Cellular Neuroscience, 2017, 11, 32.	1.8	17
43	Safety and effectiveness of stem cell therapies in early-phase clinical trials in stroke: a systematic review and meta-analysis. Stem Cell Research and Therapy, 2017, 8, 191.	2.4	56
44	Stroke causes a transient imbalance of interhemispheric information flow in EEG during non-REM sleep. Clinical Neurophysiology, 2018, 129, 1418-1426.	0.7	11
45	Electrically Conductive Scaffold to Modulate and Deliver Stem Cells. Journal of Visualized Experiments, 2018, , .	0.2	7
46	Exosomes in Acquired Neurological Disorders: New Insights into Pathophysiology and Treatment. Molecular Neurobiology, 2018, 55, 9280-9293.	1.9	86
47	Neurons Generated by Mouse ESCs with Hippocampal or Cortical Identity Display Distinct Projection Patterns When Co-transplanted in the Adult Brain. Stem Cell Reports, 2018, 10, 1016-1029.	2.3	19
48	Multi-targeting effects of a new synthetic molecule (JM-20) in experimental models of cerebral ischemia. Pharmacological Reports, 2018, 70, 699-704.	1.5	9
49	The Proliferation Capacity of Cultured Neural Stem Cells Promoted by CSF Collected from SAH Patients Correlates to Clinical Outcome. Scientific Reports, 2018, 8, 1109.	1.6	7
50	Up-regulation of miR-122 protects against neuronal cell death in ischemic stroke through the heat shock protein 70-dependent NF-κB pathway by targeting FOXO3. Experimental Cell Research, 2018, 369, 34-42.	1.2	41
51	Cistanche deserticola polysaccharides protects PC12 cells against OGD/RP-induced injury. Biomedicine and Pharmacotherapy, 2018, 99, 671-680.	2.5	25
52	Lack of collagen XV is protective after ischemic stroke in mice. Cell Death and Disease, 2018, 8, e2541-e2541.	2.7	10
53	Dexpramipexole improves bioenergetics and outcome in experimental stroke. British Journal of Pharmacology, 2018, 175, 272-283.	2.7	21
54	Effects of Rat Anti-mouse Interleukin-6 Receptor Antibody on the Recovery of Cognitive Function in Stroke Mice. Cellular and Molecular Neurobiology, 2018, 38, 507-515.	1.7	9
55	The NAD ⁺ -Dependent Family of Sirtuins in Cerebral Ischemia and Preconditioning. Antioxidants and Redox Signaling, 2018, 28, 691-710.	2.5	36

#	Article	IF	CITATIONS
56	Can adjunctive therapies augment the efficacy of endovascular thrombolysis? A potential role for activated protein C. Neuropharmacology, 2018, 134, 293-301.	2.0	15
57	Methods of reactivation and reprogramming of neural stem cells for neural repair. Methods, 2018, 133, 3-20.	1.9	12
58	Hexokinase 2â€dependent hyperglycolysis driving microglial activation contributes to ischemic brain injury. Journal of Neurochemistry, 2018, 144, 186-200.	2.1	80
59	Transplantation of feederâ€free human induced pluripotent stem cell–derived cortical neuron progenitors in adult male Wistar rats with focal brain ischemia. Journal of Neuroscience Research, 2018, 96, 863-874.	1.3	15
60	Acute connexin43 temporal and spatial expression in response to ischemic stroke. Journal of Cell Communication and Signaling, 2018, 12, 193-204.	1.8	9
61	Cell Death Mechanisms in Stroke and Novel Molecular and Cellular Treatment Options. Current Neuropharmacology, 2018, 16, 1396-1415.	1.4	221
62	Endothelial Atg7 Deficiency Ameliorates Acute Cerebral Injury Induced by Ischemia/Reperfusion. Frontiers in Neurology, 2018, 9, 998.	1.1	19
63	Gasdermin Family: a Promising Therapeutic Target for Stroke. Translational Stroke Research, 2018, 9, 555-563.	2.3	40
64	RNA-Sequencing Analysis Revealed a Distinct Motor Cortex Transcriptome in Spontaneously Recovered Mice After Stroke. Stroke, 2018, 49, 2191-2199.	1.0	39
65	Ischemic postconditioning confers cerebroprotection by stabilizing VDACs after brain ischemia. Cell Death and Disease, 2018, 9, 1033.	2.7	25
66	Biomaterials Developments for Brain Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1078, 323-346.	0.8	13
67	Inhibition of Connexin 43 Hemichannels Alleviates Cerebral Ischemia/Reperfusion Injury via the TLR4 Signaling Pathway. Frontiers in Cellular Neuroscience, 2018, 12, 372.	1.8	41
68	Cortical Reshaping and Functional Recovery Induced by Silk Fibroin Hydrogels-Encapsulated Stem Cells Implanted in Stroke Animals. Frontiers in Cellular Neuroscience, 2018, 12, 296.	1.8	34
69	2-(4-Methoxyphenyl)ethyl-2-Acetamido-2-deoxy-β-d-pyranoside (A Salidroside Analog) Confers Neuroprotection with a Wide Therapeutic Window by Regulating Local Glucose Metabolism in a Rat Model of Cerebral Ischemic Injury. Neuroscience, 2018, 391, 60-72.	1.1	11
70	Characters of Ischemic Stroke and Recanalization Arteries. Springer Series in Translational Stroke Research, 2018, , 15-34.	0.1	0
71	Hydrogels-Assisted Cell Engraftment for Repairing the Stroke-Damaged Brain: Chimera or Reality. Polymers, 2018, 10, 184.	2.0	28
72	Recent Advances in the Therapeutic and Diagnostic Use of Liposomes and Carbon Nanomaterials in Ischemic Stroke. Frontiers in Neuroscience, 2018, 12, 453.	1.4	39
73	Allogeneic Umbilical Cord Blood Infusion for Adults with Ischemic Stroke: Clinical Outcomes from a Phase I Safety Study. Stem Cells Translational Medicine, 2018, 7, 521-529.	1.6	83

ARTICLE

IF CITATIONS

Neuroprotective Effects of neuroEPO Using an In Vitro Model of Stroke. Behavioral Sciences (Basel,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

75	Activated protein C, protease activated receptor 1, and neuroprotection. Blood, 2018, 132, 159-169.	0.6	94
76	Attenuation of reactive gliosis in stroke-injured mouse brain does not affect neurogenesis from grafted human iPSC-derived neural progenitors. PLoS ONE, 2018, 13, e0192118.	1.1	11
77	Engineered stem cell mimics to enhance stroke recovery. Biomaterials, 2018, 178, 63-72.	5.7	26
78	Neural stem cell therapies and hypoxic-ischemic brain injury. Progress in Neurobiology, 2019, 173, 1-17.	2.8	129
79	Toward Functional Restoration of the Central Nervous System: A Review of Translational Neuroscience Principles. Neurosurgery, 2019, 84, 30-40.	0.6	20
80	Circular RNA <i>TLK1</i> Aggravates Neuronal Injury and Neurological Deficits after Ischemic Stroke via miR-335-3p/TIPARP. Journal of Neuroscience, 2019, 39, 7369-7393.	1.7	164
81	Astrocytic connexin 43 potentiates myelin injury in ischemic white matter disease. Theranostics, 2019, 9, 4474-4493.	4.6	21
82	Acute Aspirin Plus Cilostazol Dual Therapy for Noncardioembolic Stroke Patients Within 48 Hours of Symptom Onset. Journal of the American Heart Association, 2019, 8, e012652.	1.6	29
83	Interfacing cells with microengineered scaffolds for neural tissue reconstruction. Brain Research Bulletin, 2019, 152, 202-211.	1.4	25
84	The protective effect of bone marrow mesenchymal stem cells in a rat model of ischemic stroke via reducing the C-Jun N-terminal kinase expression. Pathology Research and Practice, 2019, 215, 152519.	1.0	26
85	A balanced evaluation of the evidence for adult neurogenesis in humans: implication for neuropsychiatric disorders. Brain Structure and Function, 2019, 224, 2281-2295.	1.2	37
86	Ischaemic stroke. Nature Reviews Disease Primers, 2019, 5, 70.	18.1	849
87	The Evolution of Neurovascular Surgery: Disease or Procedure Oriented. Neurosurgery, 2019, 66, 16-22.	0.6	0
88	lschemic stroke in neonatal and adult astrocytes. Mechanisms of Ageing and Development, 2019, 183, 111147.	2.2	30
89	Neurogenesis promoted by the CD200/CD200R signaling pathway following treadmill exercise enhances post-stroke functional recovery in rats. Brain, Behavior, and Immunity, 2019, 82, 354-371.	2.0	24
90	Dynamic Detection of Thrombolysis in Embolic Stroke Rats by Synchrotron Radiation Angiography. Translational Stroke Research, 2019, 10, 695-704.	2.3	8
91	Recognition, Intervention, and Monitoring of Neutrophils in Acute Ischemic Stroke. Nano Letters, 2019, 19, 4470-4477.	4.5	81

#	Article	IF	CITATIONS
92	Identification and Management of Ischemic Stroke in the Postanesthesia Care Unit. Journal of Perianesthesia Nursing, 2019, 34, 881-888.	0.3	2
93	Consensus Paper: Experimental Neurostimulation of the Cerebellum. Cerebellum, 2019, 18, 1064-1097.	1.4	120
94	Meningeal Mast Cells as Key Effectors of Stroke Pathology. Frontiers in Cellular Neuroscience, 2019, 13, 126.	1.8	22
95	OCT4B-190 protects against ischemic stroke by modulating GSK-3β/HDAC6. Experimental Neurology, 2019, 316, 52-62.	2.0	4
96	Cell-Based Therapies for Stroke: Promising Solution or Dead End? Mesenchymal Stem Cells and Comorbidities in Preclinical Stroke Research. Frontiers in Neurology, 2019, 10, 332.	1.1	18
97	Cell therapy for ischemic stroke: Are differences in preclinical and clinical study design responsible for the translational loss of efficacy?. Annals of Neurology, 2019, 86, 5-16.	2.8	47
98	Conductive polymers to modulate the post-stroke neural environment. Brain Research Bulletin, 2019, 148, 10-17.	1.4	15
99	Tribulusterine Containing Tribulus terrestris Extract Exhibited Neuroprotection Through Attenuating Stress Kinases Mediated Inflammatory Mechanism: In Vitro and In Vivo Studies. Neurochemical Research, 2019, 44, 1228-1242.	1.6	18
100	The in vivo timeline of differentiation of engrafted human neural progenitor cells. Stem Cell Research, 2019, 37, 101429.	0.3	17
101	Enolase1 Alleviates Cerebral Ischemia-Induced Neuronal Injury via Its Enzymatic Product Phosphoenolpyruvate. ACS Chemical Neuroscience, 2019, 10, 2877-2889.	1.7	13
102	Meta-Analysis of the Safety and Efficacy of Stem Cell Therapies for Ischemic Stroke in Preclinical and Clinical Studies. Stem Cells and Development, 2019, 28, 497-514.	1.1	12
103	Stand alone or join forces? Stem cell therapy for stroke. Expert Opinion on Biological Therapy, 2019, 19, 25-33.	1.4	13
104	Nitrite Protects Neurons Against Hypoxic Damage Through <i>S</i> -nitrosylation of Caspase-6. Antioxidants and Redox Signaling, 2019, 31, 109-126.	2.5	7
105	Therapeutic spectrum of interferonâ€Î² in ischemic stroke. Journal of Neuroscience Research, 2019, 97, 116-127.	1.3	18
106	Stem cellâ€based cell therapy for neuroprotection in stroke: A review. Journal of Cellular Biochemistry, 2019, 120, 8849-8862.	1.2	33
107	Optogenetic Excitation of Ipsilesional Sensorimotor Neurons is Protective in Acute Ischemic Stroke: A Laser Speckle Imaging Study. IEEE Transactions on Biomedical Engineering, 2019, 66, 1372-1379.	2.5	8
108	JM-20 Treatment After MCAO Reduced Astrocyte Reactivity and Neuronal Death on Peri-infarct Regions of the Rat Brain. Molecular Neurobiology, 2019, 56, 502-512.	1.9	21
109	A NeuroD1 AAV-Based Gene Therapy for Functional Brain Repair after Ischemic Injury through InÂVivo Astrocyte-to-Neuron Conversion. Molecular Therapy, 2020, 28, 217-234.	3.7	163

#	Article	IF	CITATIONS
110	Repurposing antimycotic ciclopirox olamine as a promising anti-ischemic stroke agent. Acta Pharmaceutica Sinica B, 2020, 10, 434-446.	5.7	23
111	A novel biscoumarin compound ameliorates cerebral ischemia reperfusion-induced mitochondrial oxidative injury via Nrf2/Keap1/ARE signaling. Neuropharmacology, 2020, 167, 107918.	2.0	20
112	In vivo Cell Tracking Using Non-invasive Imaging of Iron Oxide-Based Particles with Particular Relevance for Stem Cell-Based Treatments of Neurological and Cardiac Disease. Molecular Imaging and Biology, 2020, 22, 1469-1488.	1.3	14
113	Donepezil in the treatment of ischemic stroke: Review and future perspective. Life Sciences, 2020, 263, 118575.	2.0	18
114	RiPerC Attenuates Cerebral Ischemia Injury through Regulation of miR-98/PIK3IP1/PI3K/AKT Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-12.	1.9	10
115	Self-Support Biofeedback Training for Recovery From Motor Impairment After Stroke. IEEE Access, 2020, 8, 72138-72157.	2.6	15
116	Human Pluripotent Stem Cells-Based Therapies for Neurodegenerative Diseases: Current Status and Challenges. Cells, 2020, 9, 2517.	1.8	45
117	Resveratrol promotes the survival and neuronal differentiation of hypoxia-conditioned neuronal progenitor cells in rats with cerebral ischemia. Frontiers of Medicine, 2021, 15, 472-485.	1.5	15
118	Applying hiPSCs and Biomaterials Towards an Understanding and Treatment of Traumatic Brain Injury. Frontiers in Cellular Neuroscience, 2020, 14, 594304.	1.8	10
119	Intracerebral transplantation of HLAâ€homozygous human iPSCâ€derived neural precursors ameliorates the behavioural and pathological deficits in a rodent model of ischaemic stroke. Cell Proliferation, 2020, 53, e12884.	2.4	8
120	Curcumin-laden exosomes target ischemic brain tissue and alleviate cerebral ischemia-reperfusion injury by inhibiting ROS-mediated mitochondrial apoptosis. Materials Science and Engineering C, 2020, 117, 111314.	3.8	80
121	In Vitro Evaluation of the Neuroprotective Effect of <i>Panax notoginseng</i> Saponins by Activating the EGFR/PI3K/AKT Pathway. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-11.	0.5	8
122	Enhancing Brain Plasticity to Promote Stroke Recovery. Frontiers in Neurology, 2020, 11, 554089.	1.1	42
123	Characterization of brainâ€derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake. Journal of Extracellular Vesicles, 2020, 9, 1809065.	5.5	47
124	Neurovascular Coupling Impairment in Acute Ischemic Stroke by Optogenetics and Optical Brain Imaging. , 2020, 2020, 3727-3730.		3
125	Experimental artefacts can lead to misattribution of bioactivity from soluble mesenchymal stem cell paracrine factors to extracellular vesicles. Journal of Extracellular Vesicles, 2020, 9, 1807674.	5.5	61
126	In Vitro Oxygen-Glucose Deprivation-Induced Stroke Models with Human Neuroblastoma Cell- and Induced Pluripotent Stem Cell-Derived Neurons. Stem Cells International, 2020, 2020, 1-13.	1.2	14
127	Regenerative Rehabilitation for Stroke Recovery by Inducing Synergistic Effects of Cell Therapy and Neurorehabilitation on Motor Function: A Narrative Review of Pre-Clinical Studies. International Journal of Molecular Sciences, 2020, 21, 3135.	1.8	8

#	Article	IF	CITATIONS
128	HDAC2 (Histone deacetylase 2): A critical factor in environmental enrichmentâ€mediated stroke recovery. Journal of Neurochemistry, 2020, 155, 679-696.	2.1	16
129	VXâ€765 enhances autophagy of human umbilical cord mesenchymal stem cells against strokeâ€induced apoptosis and inflammatory responses via AMPK/mTOR signaling pathway. CNS Neuroscience and Therapeutics, 2020, 26, 952-961.	1.9	21
130	Expression profile and bioinformatics analysis of circular RNAs in acute ischemic stroke in a South Chinese Han population. Scientific Reports, 2020, 10, 10138.	1.6	30
131	Plasma exosomes protect against cerebral ischemia/reperfusion injury via exosomal HSP70 mediated suppression of ROS. Life Sciences, 2020, 256, 117987.	2.0	29
132	Endothelium-Targeted Deletion of microRNA-15a/16-1 Promotes Poststroke Angiogenesis and Improves Long-Term Neurological Recovery. Circulation Research, 2020, 126, 1040-1057.	2.0	75
133	Stroke. Lancet, The, 2020, 396, 129-142.	6.3	533
134	Resilience to Injury: A New Approach to Neuroprotection?. Neurotherapeutics, 2020, 17, 457-474.	2.1	6
135	Intraventricular Medium B Treatment Benefits an Ischemic Stroke Rodent Model via Enhancement of Neurogenesis and Anti-apoptosis. Scientific Reports, 2020, 10, 6596.	1.6	5
136	Delayed PARP-1 Inhibition Alleviates Post-stroke Inflammation in Male Versus Female Mice: Differences and Similarities. Frontiers in Cellular Neuroscience, 2020, 14, 77.	1.8	21
137	Survivorship After Sudden Cardiac Arrest: Establishing a Framework for Understanding and Care Optimization. Journal of Cardiothoracic and Vascular Anesthesia, 2021, 35, 368-373.	0.6	0
138	Evaluating the effect of transplanting umbilical cord matrix stem cells on ischemic tolerance in an animal model of stroke. Neurological Research, 2021, 43, 225-238.	0.6	0
139	Phase I safety, tolerability, and pharmacokinetic studies of tetramethylpyrazine nitrone in healthy Chinese volunteers. Drug Development Research, 2021, 82, 97-107.	1.4	5
140	The Next Step in the Treatment of Stroke. Frontiers in Neurology, 2020, 11, 582605.	1.1	16
141	A neutrophil-mimetic magnetic nanoprobe for molecular magnetic resonance imaging of stroke-induced neuroinflammation. Biomaterials Science, 2021, 9, 5247-5258.	2.6	17
142	Microglia-associated neuroinflammation is a potential therapeutic target for ischemic stroke. Neural Regeneration Research, 2021, 16, 6.	1.6	67
143	Environmental enrichment implies GAT-1 as a potential therapeutic target for stroke recovery. Theranostics, 2021, 11, 3760-3780.	4.6	10
144	Nanomedicine Directs Neuronal Differentiation of Neural Stem Cells via Silencing Long Noncoding RNA for Stroke Therapy. Nano Letters, 2021, 21, 806-815.	4.5	36
145	Mechanism underlying treatment of ischemic stroke using acupuncture: transmission and regulation. Neural Regeneration Research, 2021, 16, 944.	1.6	37

#	Article	IF	CITATIONS
146	Ambroxol Upregulates Glucocerebrosidase Expression to Promote Neural Stem Cells Differentiation Into Neurons Through Wnt/β-Catenin Pathway After Ischemic Stroke. Frontiers in Molecular Neuroscience, 2020, 13, 596039.	1.4	9
148	Oxidative Stress, Inflammation, and Autophagy: Potential Targets of Mesenchymal Stem Cells-Based Therapies in Ischemic Stroke. Frontiers in Neuroscience, 2021, 15, 641157.	1.4	54
149	Effects of notoginseng leaf triterpenes on small molecule metabolism after cerebral ischemia/reperfusion injury assessed using MALDI–MS imaging. Annals of Translational Medicine, 2021, 9, 246-246.	0.7	15
150	Nutraceuticals in the Prevention of Neonatal Hypoxia–Ischemia: A Comprehensive Review of their Neuroprotective Properties, Mechanisms of Action and Future Directions. International Journal of Molecular Sciences, 2021, 22, 2524.	1.8	9
151	Attenuation of Inflammation by DJ-1 May Be a Drug Target for Cerebral Ischemia–Reperfusion Injury. Neurochemical Research, 2021, 46, 1470-1479.	1.6	6
152	microRNAâ€186 alleviates oxygenâ€glucose deprivation/reoxygenationâ€induced injury by directly targeting hypoxiaâ€inducible factorâ€1α. Journal of Biochemical and Molecular Toxicology, 2021, 35, 1-11.	1.4	12
153	Dexmedetomidine provides protection to neurons against OGD/R-induced oxidative stress and neuronal apoptosis. Toxicology Mechanisms and Methods, 2021, 31, 374-382.	1.3	7
154	Molecular Hydrogen Application in Stroke: Bench to Bedside. Current Pharmaceutical Design, 2021, 27, 703-712.	0.9	6
155	Calcium/Calmodulin–Dependent Protein Kinase II in Cerebrovascular Diseases. Translational Stroke Research, 2021, 12, 513-529.	2.3	26
156	An analysis of the CatWalk XT and a composite score to assess neurofunctional deficits after photothrombosis in mice. Neuroscience Letters, 2021, 751, 135811.	1.0	9
157	Neuromodulation-Based Stem Cell Therapy in Brain Repair: Recent Advances and Future Perspectives. Neuroscience Bulletin, 2021, 37, 735-745.	1.5	12
158	The functions of repressor element 1-silencing transcription factor in models of epileptogenesis and post-ischemia. Metabolic Brain Disease, 2021, 36, 1135-1150.	1.4	2
159	Relationship Between Acute Neurological Function and Long-Term Prognosis in Patients with Large Arterial Occlusions. Journal of Stroke and Cerebrovascular Diseases, 2021, 30, 105625.	0.7	2
160	Targeting Mitochondrial and Brain Injury Markers in Acquired Brain Injuries: A Randomized, Double-Blind, Placebo-Controlled Study with Melatonin. Advanced Pharmaceutical Bulletin, 2021, 12, 118-127.	0.6	0
161	Inhibiting ferroptosis: A novel approach for stroke therapeutics. Drug Discovery Today, 2021, 26, 916-930.	3.2	35
162	Coding and non-coding nucleotides': The future of stroke gene therapeutics. Genomics, 2021, 113, 1291-1307.	1.3	11
163	Pulsed Focal Ultrasound as a Non-Invasive Method to Deliver Exosomes in the Brain/Stroke. Journal of Biomedical Nanotechnology, 2021, 17, 1170-1183.	0.5	6
164	Repurposing metformin to treat age-related neurodegenerative disorders and ischemic stroke. Life Sciences, 2021, 274, 119343.	2.0	33

#	Article	IF	Citations
165	miRNA-132/212 Gene-Deletion Aggravates the Effect of Oxygen-Glucose Deprivation on Synaptic Functions in the Female Mouse Hippocampus. Cells, 2021, 10, 1709.	1.8	5
166	Repetitive transcranial magnetic stimulation increases neurological function and endogenous neural stem cell migration via the SDF‑1α/CXCR4 axis after cerebral infarction in rats. Experimental and Therapeutic Medicine, 2021, 22, 1037.	0.8	4
167	Scoping Review of Clinical Practice Guidelines for the Early Management of Stroke with Focus on Endovascular Treatment. World Neurosurgery, 2021, 155, e249-e263.	0.7	1
168	Bone Marrow Mesenchymal Stem Cells Exert Protective Effects After Ischemic Stroke Through Upregulation of Glutathione. Stem Cell Reviews and Reports, 2022, 18, 585-594.	1.7	14
170	A ultrasensitive SERS-active tags for GSH-triggered released based on surface-enhanced Raman scattering. Microchemical Journal, 2021, 167, 106035.	2.3	5
171	Mild traumatic brain injury increases vulnerability to cerebral ischemia in mice. Experimental Neurology, 2021, 342, 113765.	2.0	9
172	Dengzhanxixin Injection Ameliorates Cognitive Impairment Through a Neuroprotective Mechanism Based on Mitochondrial Preservation in Patients With Acute Ischemic Stroke. Frontiers in Pharmacology, 2021, 12, 712436.	1.6	5
173	Neuroprotective Effects of Deproteinized Calf Serum in Ischemic Stroke. Frontiers in Neurology, 2021, 12, 636494.	1.1	3
174	Buyang Huanwu Decoction promotes neurogenesis via sirtuinÂ1/autophagy pathway in a cerebral ischemia model. Molecular Medicine Reports, 2021, 24, .	1.1	16
175	Caveolin-1, a novel player in cognitive decline. Neuroscience and Biobehavioral Reviews, 2021, 129, 95-106.	2.9	15
176	N-Methyl-D-Aspartate Receptor Signaling-Protein Kinases Crosstalk in Cerebral Ischemia. Advances in Experimental Medicine and Biology, 2021, 1275, 259-283.	0.8	8
177	miR-18b attenuates cerebral ischemia/reperfusion injury through regulation of ANXA3 and PI3K/Akt signaling pathway. Brain Research Bulletin, 2020, 161, 55-64.	1.4	15
180	Sudden Cardiac Arrest Survivorship: A Scientific Statement From the American Heart Association. Circulation, 2020, 141, e654-e685.	1.6	141
181	Tetramethyl Pyrazine Protects Hippocampal Neurons Against Anoxia/Reoxygenation Injury Through Inhibiting Apoptosis Mediated by JNK/MARK Signal Pathway. Medical Science Monitor, 2016, 22, 5082-5090.	0.5	21
182	Blocking IncRNA H19-miR-19a-Id2 axis attenuates hypoxia/ischemia induced neuronal injury. Aging, 2019, 11, 3585-3600.	1.4	49
183	Protective Effects of Adrenomedullin on Rat Cerebral Tissue After Transient Bilateral Common Carotid Artery Occlusion and Reperfusion. Brazilian Journal of Cardiovascular Surgery, 2020, 35, 314-322.	0.2	5
184	Neuroprotective and Neurorestorative Effects of Epo and VEGF: Perspectives for New Therapeutic Approaches to Neurological Diseases. Current Pharmaceutical Design, 2020, 26, 1263-1276.	0.9	27
185	Pre-clinical to Clinical Translational Failures and Current Status of Clinical Trials in Stroke Therapy: A Brief Review. Current Neuropharmacology, 2020, 18, 596-612.	1.4	31

#	Article	IF	Citations
186	Caveolin-1 in Stroke Neuropathology and Neuroprotection: A Novel Molecular Therapeutic Target for Ischemic-Related Injury. Current Vascular Pharmacology, 2018, 17, 41-49.	0.8	12
187	Long-term window of ischemic tolerance: An evolutionarily conserved form of metabolic plasticity regulated by epigenetic modifications?. Journal of Neurology and Neuromedicine, 2016, 1, 6-12.	0.9	12
188	Neuroprotective effect of baicalin on focal cerebral ischemia in rats. Neural Regeneration Research, 2018, 13, 2129.	1.6	14
189	ESE1 expression correlates with neuronal apoptosis in the hippocampus after cerebral ischemia/reperfusion injury. Neural Regeneration Research, 2019, 14, 841.	1.6	8
190	The cerebral circulation and cerebrovascular disease III: Stroke. Brain Circulation, 2017, 3, 66.	0.7	33
191	2-Methyl-5H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine, an edaravone analog, exerts neuroprotective effects against acute ischemic injury via inhibiting oxidative stress. Journal of Biomedical Research, 2018, 32, 270.	0.7	2
192	Slower EEG alpha generation, synchronization and "flowâ€â€"possible biomarkers of cognitive impairment and neuropathology of minor stroke. PeerJ, 2017, 5, e3839.	0.9	16
193	p53 Inhibition Provides a Pivotal Protective Effect against Cerebral Ischemia-Reperfusion Injury via the Wnt Signaling Pathway. Cerebrovascular Diseases, 2021, 50, 1-9.	0.8	1
195	CD300a blockade enhances efferocytosis by infiltrating myeloid cells and ameliorates neuronal deficit after ischemic stroke. Science Immunology, 2021, 6, eabe7915.	5.6	15
196	Bone Marrow Stem Cell-Stimulating Factors and Brain Recovery After Stroke. , 2017, , 289-310.		0
197	The role of medical gas in stroke: an updated review. Medical Gas Research, 2019, 9, 221.	1.2	5
199	Continuous administration of a p38α inhibitor during the subacute phase after transient ischemia-induced stroke in the rat promotes dose-dependent functional recovery accompanied by increase in brain BDNF protein level. PLoS ONE, 2020, 15, e0233073.	1.1	5
200	Neuroprotective Effects of Cannabidiol Under Cerebral Ischemic Conditions. Revista Brasileira De Farmacognosia, 2021, 31, 579-591.	0.6	0
201	CircDLGAP4 overexpression relieves oxygen-glucose deprivation-induced neuronal injury by elevating NEGR1 through sponging miR-503-3p. Journal of Molecular Histology, 2022, 53, 321-332.	1.0	11
203	Time to Target Stroke: Examining the Circadian System in Stroke. Yale Journal of Biology and Medicine, 2019, 92, 349-357.	0.2	8
204	Allograft of Sertoli Cell Transplantation in Combination with Memantine Alleviates Ischemia-Induced Tissue Damages in An Animal Model of Rat. Cell Journal, 2020, 22, 334-343.	0.2	0
205	Dl-3-N-Butylphthalide Attenuates Hypoxic Injury of Neural Stem Cells by Increasing Hypoxia-Inducible Factor-1alpha. Journal of Stroke and Cerebrovascular Diseases, 2022, 31, 106221.	0.7	4
206	Insulin-Like Growth Factor-1 Differentially Modulates Glutamate-Induced Toxicity and Stress in Cells of the Neurogliovascular Unit. Frontiers in Aging Neuroscience, 2021, 13, 751304.	1.7	9

#	Article	IF	CITATIONS
207	New progress of isoflurane, sevoflurane and propofol in hypoxicâ€ischemic brain injury and related molecular mechanisms based on <i>p</i> 75 neurotrophic factor receptor. , 2021, 7, 132-140.		1
208	Schizophrenia predisposition gene Unc-51-like kinase 4 for the improvement of cerebral ischemia/reperfusion injury. Molecular Biology Reports, 2022, 49, 2933-2943.	1.0	2
209	Analysis of expression profiles and bioinformatics suggests that plasma exosomal circular RNAs may be involved in ischemic stroke in the Chinese Han population. Metabolic Brain Disease, 2022, 37, 665-676.	1.4	9
210	COX-2/PGE2 Pathway Inhibits the Ferroptosis Induced by Cerebral Ischemia Reperfusion. Molecular Neurobiology, 2022, 59, 1619-1631.	1.9	49
211	Dodging blood brain barrier with "nano―warriors: Novel strategy against ischemic stroke. Theranostics, 2022, 12, 689-719.	4.6	29
212	Glial Cells in Neuroinflammation in Various Disease States. , 2022, , 1-25.		6
213	Long-term administration of salvianolic acid A promotes endogenous neurogenesis in ischemic stroke rats through activating Wnt3a/GSK3β/β-catenin signaling pathway. Acta Pharmacologica Sinica, 2022, 43, 2212-2225.	2.8	11
214	Therapeutic Potential of Highly Selective A3 Adenosine Receptor Ligands in the Central and Peripheral Nervous System. Molecules, 2022, 27, 1890.	1.7	7
215	Accidente cerebrovascular isquémico de la arteria cerebral media. Repertorio De Medicina Y Cirugia, 2022, 31, .	0.0	2
216	Neuroprotective Effect of 1,3-dipalmitoyl-2-oleoylglycerol Derived from Rice Bran Oil against Cerebral Ischemia-Reperfusion Injury in Rats. Nutrients, 2022, 14, 1380.	1.7	2
217	Maternal Inflammation Exaggerates Offspring Susceptibility to Cerebral Ischemia–Reperfusion Injury via the COX-2/PGD2/DP2 Pathway Activation. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-16.	1.9	2
218	Whole-transcriptome RNA sequencing revealed the roles of chitin-related genes in the eyestalk abnormality of a novel mud crab hybrid (Scylla serrata ♀Â×ÂS. paramamosain â™,). International Journal of Biological Macromolecules, 2022, 208, 611-626.	3.6	14
219	Role of autophagy and transcriptome regulation in acute brain injury. Experimental Neurology, 2022, 352, 114032.	2.0	4
220	Biological Functions and Regulatory Mechanisms of Hypoxia-Inducible Factor-1α in Ischemic Stroke. Frontiers in Immunology, 2021, 12, 801985.	2.2	46
221	DJ-1 activates the Atg5-Atg12-Atg16L1 complex via Sirt1 to influence microglial polarization and alleviate cerebral ischemia/reperfusion-induced inflammatory injury. Neurochemistry International, 2022, 157, 105341.	1.9	10
226	Antagonism of histamine H3 receptor promotes angiogenesis following focal cerebral ischemia. Acta Pharmacologica Sinica, 2022, 43, 2807-2816.	2.8	3
227	Transanethole protects against Global Cerebral Ischemia through its Anti-inflammatory and Anti apoptotic activity. Research Journal of Pharmacy and Technology, 2022, , 1713-1720.	0.2	1
228	An evaluation of the structure and process of stroke rehabilitation in primary, secondary and tertiary hospitals in Ghana. South African Journal of Physiotherapy, 2022, 78, .	0.3	1

#	Article	IF	CITATIONS
229	Ischemic Brain Stroke and Mesenchymal Stem Cells: An Overview of Molecular Mechanisms and Therapeutic Potential. Stem Cells International, 2022, 2022, 1-15.	1.2	6
230	Hyperglycaemic Metabolic Complications of Ischemic Brain: Current Therapeutics, Anti-Diabetics and Stem Cell Therapy. CNS and Neurological Disorders - Drug Targets, 2023, 22, 832-856.	0.8	0
231	Transplantation of Roxadustatâ€preconditioned bone marrow stromal cells improves neurological function recovery through enhancing grafted cell survival in ischemic stroke rats. CNS Neuroscience and Therapeutics, 2022, 28, 1519-1531.	1.9	14
232	Transplantation of layer-by-layer assembled neural stem cells tethered with vascular endothelial growth factor reservoir promotes neurogenesis and angiogenesis after ischemic stroke in mice. Applied Materials Today, 2022, 28, 101548.	2.3	5
233	A Review of Neuroprotective Effects and Mechanisms of Ginsenosides From Panax Ginseng in Treating Ischemic Stroke. Frontiers in Pharmacology, 0, 13, .	1.6	10
234	Exosomes-based therapy of stroke, an emerging approach toward recovery. Cell Communication and Signaling, 2022, 20, .	2.7	10
235	Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	132
236	Effect of transcranial direct-current stimulation on executive function and resting EEG after stroke: A pilot randomized controlled study. Journal of Clinical Neuroscience, 2022, 103, 141-147.	0.8	2
237	Bone marrow mesenchymal stem cell-derived exosomes carrying long noncoding RNA ZFAS1 alleviate oxidative stress and inflammation in ischemic stroke by inhibiting microRNA-15a-5p. Metabolic Brain Disease, 2022, 37, 2545-2557.	1.4	20
238	Biological and neurological activities of astaxanthin (Review). Molecular Medicine Reports, 2022, 26, .	1.1	18
239	Network pharmacology approach to investigate the multitarget mechanisms of Zhishi Rhubarb Soup on acute cerebral infarction. Pharmaceutical Biology, 2022, 60, 1394-1406.	1.3	5
240	The multifaceted actions of the IncRNA H19 in cardiovascular biology and diseases. Clinical Science, 2022, 136, 1157-1178.	1.8	18
241	The lymphatic drainage systems in the brain: a novel target for ischemic stroke?. Neural Regeneration Research, 2023, 18, 485.	1.6	9
242	The interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases: Implications for therapy. Pharmacological Research, 2022, 184, 106452.	3.1	5
243	The neurovascular unit and systemic biology in stroke — implications for translation and treatment. Nature Reviews Neurology, 2022, 18, 597-612.	4.9	30
244	Delivery of miRNAs through Metal–Organic Framework Nanoparticles for Assisting Neural Stem Cell Therapy for Ischemic Stroke. ACS Nano, 2022, 16, 14503-14516.	7.3	25
245	Circular RNA circPRDX3 mediates neuronal survival apoptosis in ischemic stroke by targeting miR-641 and NPR3. Brain Research, 2022, 1797, 148114.	1.1	1
246	Advances in Optogenetics Applications for Central Nervous System Injuries. Journal of Neurotrauma, 2023, 40, 1297-1316.	1.7	2

#	Article	IF	CITATIONS
247	Melatonin supplementation may benefit patients with acute ischemic stroke not eligible for reperfusion therapies: Results of a pilot study. Journal of Clinical Neuroscience, 2022, 106, 66-75.	0.8	4
248	Glial Cells in Neuroinflammation in Various Disease States. , 2022, , 849-873.		0
249	Rhynchophylline ameliorates cerebral ischemia by improving the synaptic plasticity in a middle cerebral artery occlusion induced stroke model. European Journal of Pharmacology, 2023, 940, 175390.	1.7	2
250	Primary Prevention of Ischemic Stroke. Seminars in Neurology, 2022, 42, 571-582.	0.5	2
251	Eriodictyol: a review of its pharmacological activities and molecular mechanisms related to ischemic stroke. Food and Function, 2023, 14, 1851-1868.	2.1	3
252	Circular RNAs in Ischemic Stroke: Biological Role and Experimental Models. Biomolecules, 2023, 13, 214.	1.8	6
253	Circular RNA CircPDS5B impairs angiogenesis following ischemic stroke through its interaction with hnRNPL to inactivate VEGF-A. Neurobiology of Disease, 2023, 181, 106080.	2.1	4
254	Gasdermin D inhibition ameliorates neutrophil mediated brain damage in acute ischemic stroke. Cell Death Discovery, 2023, 9, .	2.0	4
255	Roles of Bilirubin in Hemorrhagic Transformation of Different Types and Severity. Journal of Clinical Medicine, 2023, 12, 1471.	1.0	0
256	Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders. Neurobiology of Disease, 2023, 179, 106035.	2.1	7
257	Reactive Oxygen Species-Responsive Transformable and Triple-Targeting Butylphthalide Nanotherapy for Precision Treatment of Ischemic Stroke by Normalizing the Pathological Microenvironment. ACS Nano, 2023, 17, 4813-4833.	7.3	16
258	Edaravone combined with Shuxuening versus edaravone alone in the treatment of acute cerebral infarction: A systematic review and meta-analysis. Medicine (United States), 2023, 102, e32929.	0.4	1
259	Elabela-APJ axis mediates angiogenesis via YAP/TAZ pathway in cerebral ischemia/reperfusion injury. Translational Research, 2023, , .	2.2	1
260	Ketone bodies promote stroke recovery via GAT-1-dependent cortical network remodeling. Cell Reports, 2023, 42, 112294.	2.9	2
261	Prospects for the Use of Intranasally Administered Insulin and Insulin-Like Growth Factor-1 in Cerebral Ischemia. Biochemistry (Moscow), 2023, 88, 374-391.	0.7	1
262	3â€hydroxybutyrate in the brain: Biosynthesis, function, and disease therapy. , 2023, 1, .		5
263	Perceptions of health professionals on structure and process of stroke rehabilitation in Ghana. African Journal of Disability, 0, 12, .	0.7	0
264	Degeneration of nigrostriatal pathway in patients with middle cerebral infarct: A diffusion tensor imaging study. Medicine (United States), 2023, 102, e33370.	0.4	1

#	Article	IF	CITATIONS
265	Decoding the molecular crosstalk between grafted stem cells and the stroke-injured brain. Cell Reports, 2023, 42, 112353.	2.9	0
266	Modulation of neurotrophic factors in the treatment of dementia, stroke and TBI: Effects of Cerebrolysin. Medicinal Research Reviews, 2023, 43, 1668-1700.	5.0	7
275	Recent advances in targeted nanoparticle drug delivery systems for ischaemic stroke. Materials Advances, 2023, 4, 5003-5017.	2.6	0
278	Ferroptosis in Central Nervous System Hypoxia–Ischemia. , 2023, , 309-328.		0
279	The role of astrocytes in the glymphatic network: a narrative review. Metabolic Brain Disease, 0, , .	1.4	0
286	Anti-inflammatory interventions to mitigate the cardiovascular risk in metabolic syndrome. , 2024, , 421-437.		0
290	Human Stem Cells and Their Future Application in Neurodegenerative Diseases. , 2024, , .		0
291	Deciphering the Role of Nanomedicines for the Treatment of Ischemic Stroke. , 2023, , 193-217.		0