The promise and peril of chemical probes

Nature Chemical Biology 11, 536-541 DOI: 10.1038/nchembio.1867

Citation Report

#	Article	IF	CITATIONS
1	Unlocking the potential of chemical probes for methyl-lysine reader proteins. Future Medicinal Chemistry, 2015, 7, 1831-1833.	1.1	4
2	A Cell Biologist's Field Guide to Aurora Kinase Inhibitors. Frontiers in Oncology, 2015, 5, 285.	1.3	80
3	Investigating Apoptozole as a Chemical Probe for HSP70 Inhibition. PLoS ONE, 2015, 10, e0140006.	1.1	22
4	Hitting the target. Nature Methods, 2015, 12, 1127-1128.	9.0	0
5	Chemical modulators of ribosome biogenesis as biological probes. Nature Chemical Biology, 2015, 11, 924-932.	3.9	15
6	Tackling reproducibility in academic preclinical drug discovery. Nature Reviews Drug Discovery, 2015, 14, 733-734.	21.5	62
8	Inhibitors of BCATm: A Tough Nut To Crack. Journal of Medicinal Chemistry, 2015, 58, 7138-7139.	2.9	4
9	Guidelines for manuscript submission in the peer-reviewed pharmacological literature. Biochemical Pharmacology, 2015, 97, 225-235.	2.0	41
10	Phosphate Chemical Probes Designed for Location Specific Inhibition of Intracellular Carbonic Anhydrases. Journal of Medicinal Chemistry, 2015, 58, 7580-7590.	2.9	12
11	Histone Methylation Modifiers in Medical Therapeutics. , 2016, , 705-729.		1
12	The arsenal of pathogens and antivirulence therapeutic strategies for disarming them. Drug Design, Development and Therapy, 2016, 10, 1795.	2.0	31
13	A Dormant Microbial Component in the Development of Preeclampsia. Frontiers in Medicine, 2016, 3, 60.	1.2	64
14	A High-Throughput Screening-Compatible Strategy for the Identification of Inositol Pyrophosphate Kinase Inhibitors. PLoS ONE, 2016, 11, e0164378.	1.1	2
15	Targeting Histone Methylation. , 2016, , 209-238.		1
16	Glycogen Synthase Kinase 3β Promotes the Endocytosis of Transferrin in the African Trypanosome. ACS Infectious Diseases, 2016, 2, 518-528.	1.8	12
17	Public–Private Partnerships in Lead Discovery: Overview and Case Studies. Archiv Der Pharmazie, 2016, 349, 692-697.	2.1	12
19	Glycanâ€Mediated, Ligandâ€Controlled Click Chemistry for Drugâ€Target Identification. ChemBioChem, 2016, 17, 150-154.	1.3	4
20	A Modular Probe Strategy for Drug Localization, Target Identification and Target Occupancy Measurement on Single Cell Level. ACS Chemical Biology. 2016. 11. 2541-2550.	1.6	70

	CITATION	Report	
#	Article	IF	CITATIONS
21	Discovery of a Selective Covalent Inhibitor of Lysophospholipase-like 1 (LYPLAL1) as a Tool to Evaluate the Role of this Serine Hydrolase in Metabolism. ACS Chemical Biology, 2016, 11, 2529-2540.	1.6	17
22	Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition. Nature Chemical Biology, 2016, 12, 672-679.	3.9	136
23	Scaffold Diversity Synthesis and Its Application in Probe and Drug Discovery. Angewandte Chemie - International Edition, 2016, 55, 7586-7605.	7.2	150
24	Chemical Genetic Approaches for the Investigation of Neutral Lipid Metabolism. ChemBioChem, 2016, 17, 358-377.	1.3	2
25	Glial cells as drug targets: What does it take?. Glia, 2016, 64, 1742-1754.	2.5	24
26	Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology. Future Medicinal Chemistry, 2016, 8, 1655-1680.	1.1	47
27	CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil. Nature Communications, 2016, 7, 11040.	5.8	126
28	Bioorthogonal Probes for the Study of MDM2â€p53 Inhibitors in Cells and Development of Highâ€Content Screening Assays for Drug Discovery. Angewandte Chemie, 2016, 128, 16260-16264.	1.6	3
29	Intracellular delivery of chemical probes using a glutathione-responsive traceless tag. Chemical Communications, 2016, 52, 7715-7718.	2.2	14
30	Identification of a Chemical Probe for Family VIII Bromodomains through Optimization of a Fragment Hit. Journal of Medicinal Chemistry, 2016, 59, 4800-4811.	2.9	79
31	Preclinical Data on Efficacy of 10 Drug-Radiation Combinations: Evaluations, Concerns, and Recommendations. Translational Oncology, 2016, 9, 46-56.	1.7	48
32	Discovery and Characterization of a Highly Potent and Selective Aminopyrazoline-Based in Vivo Probe (BAY-598) for the Protein Lysine Methyltransferase SMYD2. Journal of Medicinal Chemistry, 2016, 59, 4578-4600.	2.9	69
34	Mapping the chemical chromatin reactivation landscape identifies BRD4-TAF1 cross-talk. Nature Chemical Biology, 2016, 12, 504-510.	3.9	43
35	Counting on natural products for drug design. Nature Chemistry, 2016, 8, 531-541.	6.6	879
36	Non-substrate based, small molecule inhibitors of the human isoprenylcysteine carboxyl methyltransferase. MedChemComm, 2016, 7, 1016-1021.	3.5	3
37	Badapple: promiscuity patterns from noisy evidence. Journal of Cheminformatics, 2016, 8, 29.	2.8	85
38	Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clinical Epigenetics, 2016, 8, 57.	1.8	333
39	Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain. Nature Chemical Biology, 2016, 12, 931-936.	3.9	153

#	Article	IF	CITATIONS
40	Chemical genetics approaches for selective intervention in epigenetics. Current Opinion in Chemical Biology, 2016, 33, 186-194.	2.8	24
41	Chemical Biology Approaches for Characterization of Epigenetic Regulators. Methods in Enzymology, 2016, 574, 79-103.	0.4	5
42	Structural features and inhibitors of bromodomains. Drug Discovery Today: Technologies, 2016, 19, 3-15.	4.0	23
43	Molecular Modeling and Chemoinformatics to Advance the Development of Modulators of Epigenetic Targets. Advances in Protein Chemistry and Structural Biology, 2016, 105, 1-26.	1.0	6
44	The emerging role of lysine methyltransferase SETD8 in human diseases. Clinical Epigenetics, 2016, 8, 102.	1.8	77
45	The Evolving Role of the Medicinal Chemist. Progress in Medicinal Chemistry, 2016, 55, 193-226.	4.1	3
46	Oligosaccharyltransferase inhibition induces senescence in RTK-driven tumor cells. Nature Chemical Biology, 2016, 12, 1023-1030.	3.9	88
47	Development of chemical probes for the bromodomains of BRD7 and BRD9. Drug Discovery Today: Technologies, 2016, 19, 73-80.	4.0	13
48	Chemoselective Preparation of Clickable Aryl Sulfonyl Fluoride Monomers: A Toolbox of Highly Functionalized Intermediates for Chemical Biology Probe Synthesis. ChemBioChem, 2016, 17, 1925-1930.	1.3	47
49	Unveiling (â^)â€Englerin A as a Modulator of Lâ€Type Calcium Channels. Angewandte Chemie, 2016, 128, 11243-11247.	1.6	7
50	Dual action antifungal small molecule modulates multidrug efflux and TOR signaling. Nature Chemical Biology, 2016, 12, 867-875.	3.9	79
51	Rational Design of Small Molecules Targeting Oncogenic Noncoding RNAs from Sequence. Accounts of Chemical Research, 2016, 49, 2698-2704.	7.6	60
52	Latest Advances Towards Ras Inhibition: A Medicinal Chemistry Perspective. Angewandte Chemie - International Edition, 2016, 55, 15982-15988.	7.2	14
53	Fortschritte bei der Rasâ€Inhibition aus medizinischâ€chemischer Perspektive. Angewandte Chemie, 2016, 128, 16215-16221.	1.6	0
54	Development of small molecule inhibitors of BRPF1 and TRIM24 bromodomains. Drug Discovery Today: Technologies, 2016, 19, 65-71.	4.0	10
55	Evidence-Based and Quantitative Prioritization of Tool Compounds in Phenotypic Drug Discovery. Cell Chemical Biology, 2016, 23, 862-874.	2.5	52
56	Deciphering the true antiproliferative target of an MK2 activation inhibitor in glioblastoma. Cell Death and Disease, 2016, 7, e2069-e2069.	2.7	3
57	Early Perspective. Journal of Biomolecular Screening, 2016, 21, 1019-1033.	2.6	24

#	Article	IF	CITATIONS
58	Unveiling (â°')â€Englerinâ€A as a Modulator of Lâ€Type Calcium Channels. Angewandte Chemie - International Edition, 2016, 55, 11077-11081.	7.2	37
59	Development of ethynyl-2′-deoxyuridine chemical probes for cell proliferation. Bioorganic and Medicinal Chemistry, 2016, 24, 4272-4280.	1.4	6
60	Focusing on probe-modified peptides: a quick and effective method for target identification. Chemical Communications, 2016, 52, 10225-10228.	2.2	7
61	In-gel activity-based protein profiling of a clickable covalent ERK1/2 inhibitor. Molecular BioSystems, 2016, 12, 2867-2874.	2.9	18
62	Recent developments of small molecule chemical probes for fluorescence-based detection of human carbonic anhydrase II and IX. MedChemComm, 2016, 7, 2045-2062.	3.5	11
63	Meeting the Challenge: Using Cytological Profiling to Discover Chemical Probes from Traditional Chinese Medicines against Parkinson's Disease. ACS Chemical Neuroscience, 2016, 7, 1628-1634.	1.7	12
64	Bioorthogonal Probes for the Study of MDM2â€p53 Inhibitors in Cells and Development of Highâ€Content Screening Assays for Drug Discovery. Angewandte Chemie - International Edition, 2016, 55, 16026-16030.	7.2	17
65	Adaptive Resistance to an Inhibitor of Chromosomal Instability in Human Cancer Cells. Cell Reports, 2016, 17, 1755-1763.	2.9	45
66	Design and characterization of bivalent BET inhibitors. Nature Chemical Biology, 2016, 12, 1089-1096.	3.9	115
67	Potent and selective bivalent inhibitors of BET bromodomains. Nature Chemical Biology, 2016, 12, 1097-1104.	3.9	109
68	Benefits of Strategic Small-Scale Targeted Screening. Assay and Drug Development Technologies, 2016, 14, 329-332.	0.6	2
69	Characterization of Hedgehog Acyltransferase Inhibitors Identifies a Small Molecule Probe for Hedgehog Signaling by Cancer Cells. ACS Chemical Biology, 2016, 11, 3256-3262.	1.6	43
70	Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition. Nature Communications, 2016, 7, 13312.	5.8	167
71	Targeting AMPK for the Alleviation of Pathological Pain. Exs, 2016, 107, 257-285.	1.4	29
72	Enhancer of Zeste Homolog 2 Inhibition Stimulates Bone Formation and Mitigates Bone Loss Caused by Ovariectomy in Skeletally Mature Mice. Journal of Biological Chemistry, 2016, 291, 24594-24606.	1.6	78
73	Pharmacological Tool Compounds for the Free Fatty Acid Receptor 4 (FFA4/GPR120). Handbook of Experimental Pharmacology, 2016, 236, 33-56.	0.9	12
74	AMP-activated Protein Kinase. Exs, 2016, , .	1.4	10
75	Studying epigenetic complexes and their inhibitors with the proteomics toolbox. Clinical Epigenetics, 2016, 8, 76.	1.8	15

		CITATION REPORT		
#	Article		IF	CITATIONS
76	Tubulin is a molecular target of the Wnt-activating chemical probe. BMC Biochemistry,	2016, 17, 9.	4.4	13
77	GerüstdiversitÃæbasierte Synthese und ihre Anwendung bei der Sonden―und Wirk Angewandte Chemie, 2016, 128, 7712-7732.	stoffsuche.	1.6	33
78	Interpreting the behavior of concentration–response curves of hyaluronidase inhibit DMSO-perturbed assay conditions. Bioorganic and Medicinal Chemistry Letters, 2016,	ərs under 26, 3153-3157.	1.0	7
79	Modern advances in heterocyclic chemistry in drug discovery. Organic and Biomolecula 2016, 14, 6611-6637.	ar Chemistry,	1.5	540
80	Is there a robust future for research in reproduction?. Molecular Human Reproduction,	2016, 22, 1-2.	1.3	6
81	BI 1002494, a Novel Potent and Selective Oral Spleen Tyrosine Kinase Inhibitor, Display Potency in Human Basophils and B Cells. Journal of Pharmacology and Experimental Th 357, 554-561.	ys Differential erapeutics, 2016,	1.3	17
82	Bacterial Expression and HTS Assessment of Soluble Epoxide Hydrolase Phosphatase. J Biomolecular Screening, 2016, 21, 689-694.	ournal of	2.6	13
84	CZ415, a Highly Selective mTOR Inhibitor Showing <i>in Vivo</i> Efficacy in a Collager Arthritis Model. ACS Medicinal Chemistry Letters, 2016, 7, 768-773.	Induced	1.3	14
85	Chromodomain Ligand Optimization via Target-Class Directed Combinatorial Repurpos Chemical Biology, 2016, 11, 2475-2483.	sing. ACS	1.6	46
86	Chemical probes for methyl lysine reader domains. Current Opinion in Chemical Biolog 135-141.	y, 2016, 33,	2.8	24
87	Chemical Biology Probes from Advanced DNA-encoded Libraries. ACS Chemical Biology	ı, 2016, 11, 296-307.	1.6	105
88	Small Molecule Inhibitors of Protein Arginine Methyltransferases. Expert Opinion on In Drugs, 2016, 25, 335-358.	vestigational	1.9	100
89	Irreproducibility in Preclinical Biomedical Research: Perceptions, Uncertainties, and Kno Trends in Pharmacological Sciences, 2016, 37, 290-302.	wledge Gaps.	4.0	95
90	Small molecules targeting Mcl-1: the search for a silver bullet in cancer therapy. MedCl 2016, 7, 778-787.	nemComm,	3.5	16
91	Potent and Selective Inhibitors of MTH1 Probe Its Role in Cancer Cell Survival. Journal of Chemistry, 2016, 59, 2346-2361.	of Medicinal	2.9	121
92	DREADDs for Neuroscientists. Neuron, 2016, 89, 683-694.		3.8	1,210
93	Feeling Nature's PAINS: Natural Products, Natural Product Drugs, and Pan Assay In Compounds (PAINS). Journal of Natural Products, 2016, 79, 616-628.	terference	1.5	410
94	The Impact of Chemical Probes in Drug Discovery: A Pharmaceutical Industry Perspecti Chemical Biology, 2016, 23, 10-17.	ve. Cell	2.5	63

		CITATION REPORT		
#	Article		IF	CITATIONS
95	eCF309: a potent, selective and cell-permeable mTOR inhibitor. MedChemComm, 2016	, 7, 471-477.	3.5	18
96	Exploring and Understanding the Biochemical Diversity of the Human Microbiota. Cell C Biology, 2016, 23, 18-30.	Chemical	2.5	115
97	KATching-Up on Small Molecule Modulators of Lysine Acetyltransferases. Journal of Med Chemistry, 2016, 59, 1249-1270.	dicinal	2.9	64
98	Docking Screens for Novel Ligands Conferring New Biology. Journal of Medicinal Chemi 4103-4120.	stry, 2016, 59,	2.9	218
99	Structure-Based Design of an in Vivo Active Selective BRD9 Inhibitor. Journal of Medicin 2016, 59, 4462-4475.	al Chemistry,	2.9	172
100	Structure-Guided Discovery of Selective Antagonists for the Chromodomain of Polycom Protein CBX7. ACS Medicinal Chemistry Letters, 2016, 7, 601-605.	b Repressive	1.3	55
101	Decoupling Activation of Heme Biosynthesis from Anaerobic Toxicity in a Molecule Activ <i>Staphylococcus aureus</i> . ACS Chemical Biology, 2016, 11, 1354-1361.	ve in	1.6	10
102	Chemical Inhibitors of Epigenetic Methyllysine Reader Proteins. Biochemistry, 2016, 55,	, 1570-1583.	1.2	36
103	Identification and Visualization of Kinase-Specific Subpockets. Journal of Chemical Infor Modeling, 2016, 56, 335-346.	mation and	2.5	18
104	The Biochemistry of Chromatin Remodeling. Biochemistry, 2016, 55, 1555-1556.		1.2	0
105	Metal-binding effects of sirtuin inhibitor sirtinol. Supramolecular Chemistry, 2016, 28, 1	.08-116.	1.5	5
106	Disrupting Acetyl-Lysine Recognition: Progress in the Development of Bromodomain Inl Journal of Medicinal Chemistry, 2016, 59, 1271-1298.	nibitors.	2.9	171
107	Beyond PAINs: Chemotype Sensitivity of Protein Methyltransferases in Screens. ACS Me Chemistry Letters, 2016, 7, 156-161.	dicinal?	1.3	4
108	Synthesis and mode of action of oligomeric sesquiterpene lactones. Natural Product Re 602-611.	ports, 2016, 33,	5.2	21
109	Malaria Parasite Metabolic Pathways (MPMP) Upgraded with Targeted Chemical Compo Parasitology, 2016, 32, 7-9.	ounds. Trends in	1.5	37
110	How to Triage PAINS-Full Research. Assay and Drug Development Technologies, 2016, 1	4, 168-174.	0.6	68
111	Characterizing the Covalent Targets of a Small Molecule Inhibitor of the Lysine Acetyltr P300. ACS Medicinal Chemistry Letters, 2016, 7, 151-155.	ansferase	1.3	53
112	The first international workshop on the epigenetics of osteoarthritis. Connective Tissue 2017, 58, 37-48.	Research,	1.1	6

#	Article	IF	CITATIONS
113	Applications of chemogenomic library screening in drug discovery. Nature Reviews Drug Discovery, 2017, 16, 285-296.	21.5	145
114	Design of a Biased Potent Small Molecule Inhibitor of the Bromodomain and PHD Finger-Containing (BRPF) Proteins Suitable for Cellular and in Vivo Studies. Journal of Medicinal Chemistry, 2017, 60, 668-680.	2.9	38
115	Discovery of hyaluronidase inhibitors from natural products and their mechanistic characterization under DMSO-perturbed assay conditions. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1620-1623.	1.0	14
116	Cellular analysis of the action of epigenetic drugs and probes. Epigenetics, 2017, 12, 308-322.	1.3	5
117	Chemical probes targeting epigenetic proteins: Applications beyond oncology. Epigenetics, 2017, 12, 378-400.	1.3	26
118	Arylmethylamino steroids as antiparasitic agents. Nature Communications, 2017, 8, 14478.	5.8	36
119	Non-kinase targets of protein kinase inhibitors. Nature Reviews Drug Discovery, 2017, 16, 424-440.	21.5	102
120	The Ecstasy and Agony of Assay Interference Compounds. Journal of Medicinal Chemistry, 2017, 60, 2165-2168.	2.9	113
121	The Ecstasy and Agony of Assay Interference Compounds. ACS Central Science, 2017, 3, 143-147.	5.3	78
122	The Ecstasy and Agony of Assay Interference Compounds. ACS Chemical Biology, 2017, 12, 575-578.	1.6	14
123	The Ecstasy and Agony of Assay Interference Compounds. ACS Chemical Neuroscience, 2017, 8, 420-423.	1.7	8
124	The Ecstasy and Agony of Assay Interference Compounds. Biochemistry, 2017, 56, 1363-1366.	1.2	8
125	The Ecstasy and Agony of Assay Interference Compounds. Journal of Chemical Information and Modeling, 2017, 57, 387-390.	2.5	20
126	The Ecstasy and Agony of Assay Interference Compounds. ACS Medicinal Chemistry Letters, 2017, 8, 379-382.	1.3	35
127	The Necessary Nitrogen Atom: A Versatile High-Impact Design Element for Multiparameter Optimization. Journal of Medicinal Chemistry, 2017, 60, 3552-3579.	2.9	212
128	Characterisation of Photoaffinityâ€Based Chemical Probes by Fluorescence Imaging and Nativeâ€State Mass Spectrometry. ChemBioChem, 2017, 18, 739-754.	1.3	6
129	Selective targeting of epigenetic reader domains. Expert Opinion on Drug Discovery, 2017, 12, 449-463.	2.5	17
130	Structural insight into inhibitors of flavin adenine dinucleotide-dependent lysine demethylases. Epigenetics, 2017, 12, 340-352.	1.3	45

#	Article	IF	CITATIONS
131	Benzoisoquinolinediones as Potent and Selective Inhibitors of BRPF2 and TAF1/TAF1L Bromodomains. Journal of Medicinal Chemistry, 2017, 60, 4002-4022.	2.9	47
132	Translating Molecules into Medicines. AAPS Advances in the Pharmaceutical Sciences Series, 2017, , .	0.2	2
133	Epigenetic Control of Osteoblast Differentiation by Enhancer of Zeste Homolog 2 (EZH2). Current Molecular Biology Reports, 2017, 3, 94-106.	0.8	15
134	Harnessing public domain data to discover and validate therapeutic targets. Expert Opinion on Drug Discovery, 2017, 12, 687-693.	2.5	6
135	Epigenetic assays for chemical biology and drug discovery. Clinical Epigenetics, 2017, 9, 41.	1.8	25
136	Curcumin May (Not) Defy Science. ACS Medicinal Chemistry Letters, 2017, 8, 467-470.	1.3	30
137	Phenotypic chemical biology for predicting safety and efficacy. Drug Discovery Today: Technologies, 2017, 23, 53-60.	4.0	29
138	Design of Clinical Studies in Early Development. AAPS Advances in the Pharmaceutical Sciences Series, 2017, , 297-315.	0.2	0
139	Fluorescent Probes and Selective Inhibitors for Biological Studies of Hydrogen Sulfide- and Polysulfide-Mediated Signaling. Antioxidants and Redox Signaling, 2017, 27, 669-683.	2.5	44
140	Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 1262-1271.	2.9	262
141	Joining Forces: The Chemical Biology–Medicinal Chemistry Continuum. Cell Chemical Biology, 2017, 24, 1058-1065.	2.5	20
142	Deorphanization strategies for dark chemical matter. Drug Discovery Today: Technologies, 2017, 23, 69-74.	4.0	11
143	The Ecstasy and Agony of Assay Interference Compounds. ACS Infectious Diseases, 2017, 3, 259-262.	1.8	4
144	Lectin, Galactoside-Binding Soluble 3 Binding Protein Promotes 17-N-Allylamino-17-demethoxygeldanamycin Resistance through PI3K/Akt Pathway in Lung Cancer Cell Line. Molecular Cancer Therapeutics, 2017, 16, 1355-1365.	1.9	14
145	Applications of CRISPR genome editing technology in drug target identification and validation. Expert Opinion on Drug Discovery, 2017, 12, 541-552.	2.5	15
146	Discovery of a PCAF Bromodomain Chemical Probe. Angewandte Chemie, 2017, 129, 845-849.	1.6	10
147	A Versatile Method to Determine the Cellular Bioavailability of Small-Molecule Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 157-169.	2.9	25
148	Broad-Spectrum Kinase Profiling in Live Cells with Lysine-Targeted Sulfonyl Fluoride Probes. Journal of the American Chemical Society, 2017, 139, 680-685.	6.6	256

#	Article	IF	CITATIONS
149	Discovery of a Potent, Cell Penetrant, and Selective p300/CBP-Associated Factor (PCAF)/General Control Nonderepressible 5 (GCN5) Bromodomain Chemical Probe. Journal of Medicinal Chemistry, 2017, 60, 695-709.	2.9	70
150	Discovery of a PCAF Bromodomain Chemical Probe. Angewandte Chemie - International Edition, 2017, 56, 827-831.	7.2	69
151	Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 2017, 68, 210-223.e6.	4.5	197
152	Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nature Communications, 2017, 8, 830.	5.8	184
153	Report and Application of a Tool Compound Data Set. Journal of Chemical Information and Modeling, 2017, 57, 2699-2706.	2.5	4
154	Isoform-Selective ATAD2 Chemical Probe with Novel Chemical Structure and Unusual Mode of Action. ACS Chemical Biology, 2017, 12, 2730-2736.	1.6	69
155	Developing antineoplastic agents that target peroxisomal enzymes: cytisine-linked isoflavonoids as inhibitors of hydroxysteroid 17-beta-dehydrogenase-4 (HSD17B4). Organic and Biomolecular Chemistry, 2017, 15, 7623-7629.	1.5	24
156	Multiplex quantitative assays indicate a need for reevaluating reported small-molecule TrkB agonists. Science Signaling, 2017, 10, .	1.6	65
157	Small molecules and their role in effective preclinical target validation. Future Medicinal Chemistry, 2017, 9, 1579-1582.	1.1	3
158	Family-wide Analysis of the Inhibition of Arf Guanine Nucleotide Exchange Factors with Small Molecules: Evidence of Unique Inhibitory Profiles. Biochemistry, 2017, 56, 5125-5133.	1.2	25
159	Genotoxicity testing: progress and prospects for the next decade. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 1089-1098.	1.5	73
160	Peptide Technologies in the Development of Chemical Tools for Chromatinâ€Associated Machinery. Drug Development Research, 2017, 78, 300-312.	1.4	4
161	Structural characterization of human Vaccinia-Related Kinases (VRK) bound to small-molecule inhibitors identifies different P-loop conformations. Scientific Reports, 2017, 7, 7501.	1.6	21
162	Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening. Nature Communications, 2017, 8, 16081.	5.8	57
163	Phosphatase activity of soluble epoxide hydrolase. Prostaglandins and Other Lipid Mediators, 2017, 133, 88-92.	1.0	25
164	Probes & Drugs portal: an interactive, open data resource for chemical biology. Nature Methods, 2017, 14, 759-760.	9.0	59
165	How Phenotypic Screening Influenced Drug Discovery: Lessons from Five Years of Practice. Assay and Drug Development Technologies, 2017, 15, 239-246.	0.6	58
167	Assay interference and off-target liabilities of reported histone acetyltransferase inhibitors. Nature Communications, 2017, 8, 1527.	5.8	98

#	Article	IF	CITATIONS
168	Chemical modulators for epigenome reader domains as emerging epigenetic therapies for cancer and inflammation. Current Opinion in Chemical Biology, 2017, 39, 116-125.	2.8	38
169	Choose and Use Your Chemical Probe Wisely to Explore Cancer Biology. Cancer Cell, 2017, 32, 9-25.	7.7	183
170	HIV and HIV-Tat inhibit LPS-induced IL-27 production in human macrophages by distinct intracellular signaling pathways. Journal of Leukocyte Biology, 2017, 102, 925-939.	1.5	8
171	Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nature Reviews Drug Discovery, 2017, 16, 531-543.	21.5	607
172	Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nature Reviews Genetics, 2017, 18, 24-40.	7.7	159
173	A Perspective on the Kinetics of Covalent and Irreversible Inhibition. SLAS Discovery, 2017, 22, 3-20.	1.4	229
174	Discovery of a Chemical Probe Bisamide (CCT251236): An Orally Bioavailable Efficacious Pirin Ligand from a Heat Shock Transcription Factor 1 (HSF1) Phenotypic Screen. Journal of Medicinal Chemistry, 2017, 60, 180-201.	2.9	47
175	Potential of Enzymomics Methodologies to Characterize Disease-Related Protein Functions. Chemical and Pharmaceutical Bulletin, 2017, 65, 605-610.	0.6	4
176	Drug Discovery for Targeted Pharmacotherapy of Fragile XÂSyndrome. , 2017, , 363-399.		1
177	Structural Characterization of Maize SIRK1 Kinase Domain Reveals an Unusual Architecture of the Activation Segment. Frontiers in Plant Science, 2017, 8, 852.	1.7	10
178	Drug discovery. , 2017, , 281-420.		1
179	Chemical Proteomics for Target Discovery of Head-to-Tail Cyclized Mini-Proteins. Frontiers in Chemistry, 2017, 5, 73.	1.8	6
180	Kinase-Centric Computational Drug Development. Annual Reports in Medicinal Chemistry, 2017, , 197-236.	0.5	9
181	Progress towards a public chemogenomic set for protein kinases and a call for contributions. PLoS ONE, 2017, 12, e0181585.	1.1	131
182	Establishing a reliable framework for harnessing the creative power of the scientific crowd. PLoS Biology, 2017, 15, e2001387.	2.6	10
183	More Haste, Less Speed: Could Public–Private Partnerships Advance Cellular Immunotherapies?. Frontiers in Medicine, 2017, 4, 134.	1.2	8
184	Research and discovery. , 2017, , 421-436.		0
185	Structure-based drug design: aiming for a perfect fit. Essays in Biochemistry, 2017, 61, 431-437.	2.1	75

#	Article	IF	CITATIONS
186	Chemical genetics and strigolactone perception. F1000Research, 2017, 6, 975.	0.8	7
187	Multiobjective Optimization of Biological and Physical Properties in Drug Discovery. , 2017, , 64-93.		0
188	The SGC beyond structural genomics: redefining the role of 3D structures by coupling genomic stratification with fragment-based discovery. Essays in Biochemistry, 2017, 61, 495-503.	2.1	12
189	Creation of a Novel Class of Potent and Selective MutT Homologue 1 (MTH1) Inhibitors Using Fragment-Based Screening and Structure-Based Drug Design. Journal of Medicinal Chemistry, 2018, 61, 2533-2551.	2.9	28
191	Data Mining and Computational Modeling of High-Throughput Screening Datasets. Methods in Molecular Biology, 2018, 1755, 197-221.	0.4	7
192	Dissecting the Contributions of Cooperating Gene Mutations to Cancer Phenotypes and Drug Responses with Patient-Derived iPSCs. Stem Cell Reports, 2018, 10, 1610-1624.	2.3	43
193	Reporter Gene Assays. Methods in Molecular Biology, 2018, , .	0.4	0
194	Proteostasis in Huntington's disease: disease mechanisms and therapeutic opportunities. Acta Pharmacologica Sinica, 2018, 39, 754-769.	2.8	57
195	Chemical probes and drug leads from advances in synthetic planning and methodology. Nature Reviews Drug Discovery, 2018, 17, 333-352.	21.5	182
196	Reviewing Hit Discovery Literature for Difficult Targets: Clutathione Transferase Omega-1 as an Example. Journal of Medicinal Chemistry, 2018, 61, 7448-7470.	2.9	14
197	An organizing role for the TGF-β signaling pathway in axes formation of the annelid Capitella teleta. Developmental Biology, 2018, 435, 26-40.	0.9	19
198	Atropisomerism in medicinal chemistry: challenges and opportunities. Future Medicinal Chemistry, 2018, 10, 409-422.	1.1	230
199	New 1,2-Dihydropyridine-Based Fluorophores and Their Applications as Fluorescent Probes. ACS Omega, 2018, 3, 856-862.	1.6	10
200	Targeted NUDT5 inhibitors block hormone signaling in breast cancer cells. Nature Communications, 2018, 9, 250.	5.8	56
201	Optimization of a "bump-and-hole―approach to allele-selective BET bromodomain inhibition. Chemical Science, 2018, 9, 2452-2468.	3.7	34
202	Drug Target Commons: A Community Effort to Build a Consensus Knowledge Base for Drug-Target Interactions. Cell Chemical Biology, 2018, 25, 224-229.e2.	2.5	124
203	Objective, Quantitative, Data-Driven Assessment of Chemical Probes. Cell Chemical Biology, 2018, 25, 194-205.e5.	2.5	71
204	New Perspectives, Opportunities, and Challenges in Exploring the Human Protein Kinome. Cancer Research, 2018, 78, 15-29.	0.4	124

		CITATION REPORT	
#	Article	IF	Citations
205	CRISPR Approaches to Small Molecule Target Identification. ACS Chemical Biology, 2018, 13, 366-375.	1.6	68
206	DNA-Encoded Chemical Libraries: A Selection System Based on Endowing Organic Compounds with Amplifiable Information. Annual Review of Biochemistry, 2018, 87, 479-502.	5.0	294
207	The role of ZA channel water-mediated interactions in the design of bromodomain-selective BET inhibitors. Journal of Molecular Graphics and Modelling, 2018, 81, 197-210.	1.3	18
208	Big Data in Drug Discovery. Progress in Medicinal Chemistry, 2018, 57, 277-356.	4.1	36
209	Reconciling Selectivity Trends from a Comprehensive Kinase Inhibitor Profiling Campaign with Known Activity Data. ACS Omega, 2018, 3, 3113-3119.	1.6	12
210	Inhibitors of Protein Methyltransferases and Demethylases. Chemical Reviews, 2018, 118, 989-1068.	23.0	222
211	Reproducibility of science: Fraud, impact factors and carelessness. Journal of Molecular and Cellular Cardiology, 2018, 114, 364-368.	0.9	46
212	Modulators of 14-3-3 Protein–Protein Interactions. Journal of Medicinal Chemistry, 2018, 61, 3755-3778.	2.9	202
213	Medicinal chemistry in drug discovery in big pharma: past, present and future. Drug Discovery Today, 2018, 23, 219-234.	3.2	61
214	Ein Instrumentarium von αvâ€RGDâ€Integrinâ€Inhibitoren: Wirkstoffsuche, Herausforderungen und Möglichkeiten. Angewandte Chemie, 2018, 130, 3354-3379.	1.6	12
215	Group-Based Optimization of Potent and Cell-Active Inhibitors of the von Hippel–Lindau (VHL) E3 Ubiquitin Ligase: Structure–Activity Relationships Leading to the Chemical Probe (2 <i>S</i> ,4 <i>R</i>)-1-((<i>S</i>)-2-(1-Cyanocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy- <i>I (VH298). Journal of Medicinal Chemistry, 2018, 61, 599-618.</i>	N≯:94-(4-	methylthiazol
216	An αvâ€RGD Integrin Inhibitor Toolbox: Drug Discovery Insight, Challenges and Opportunities. Angewandte Chemie - International Edition, 2018, 57, 3298-3321.	7.2	94
217	Cheminformatics in the Service of GPCR Drug Discovery. Methods in Molecular Biology, 2018, 1705, 395-411.	0.4	4
218	Defining Metabolic and Nonmetabolic Regulation of Histone Acetylation by NSAID Chemotypes. Molecular Pharmaceutics, 2018, 15, 729-736.	2.3	4
219	Seven Year Itch: Pan-Assay Interference Compounds (PAINS) in 2017—Utility and Limitations. ACS Chemical Biology, 2018, 13, 36-44.	1.6	444
220	The Elements of Translational Chemical Biology. Cell Chemical Biology, 2018, 25, 128-134.	2.5	16
221	Exploiting a water network to achieve enthalpy-driven, bromodomain-selective BET inhibitors. Bioorganic and Medicinal Chemistry, 2018, 26, 25-36.	1.4	23
222	Interactive visual analysis of drug–target interaction networks using Drug Target Profiler, with applications to precision medicine and drug repurposing. Briefings in Bioinformatics, 2018, , .	3.2	25

#	Article	IF	CITATIONS
223	A chemical genetic screen reveals that iminosugar inhibitors of plant glucosylceramide synthase inhibit root growth in Arabidopsis and cereals. Scientific Reports, 2018, 8, 16421.	1.6	4
224	Quantitative Interpretation of Intracellular Drug Binding and Kinetics Using the Cellular Thermal Shift Assay. Biochemistry, 2018, 57, 6715-6725.	1.2	16
225	Affinity Enhancement of Protein Ligands by Reversible Covalent Modification of Neighboring Lysine Residues. Angewandte Chemie - International Edition, 2018, 57, 17178-17182.	7.2	44
226	Affinity Enhancement of Protein Ligands by Reversible Covalent Modification of Neighboring Lysine Residues. Angewandte Chemie, 2018, 130, 17424-17428.	1.6	14
227	Data-Driven Exploration of Selectivity and Off-Target Activities of Designated Chemical Probes. Molecules, 2018, 23, 2434.	1.7	9
228	Opportunities for Lipid-Based Probes in the Field of Immunology. Current Topics in Microbiology and Immunology, 2018, 420, 283-319.	0.7	4
229	Allosteric Inhibition of a Mammalian Lectin. Journal of the American Chemical Society, 2018, 140, 14915-14925.	6.6	35
230	Target Identification Using Chemical Probes. Methods in Enzymology, 2018, 610, 27-58.	0.4	9
231	Development of Chaetocin and S â€Adenosylmethionine Analogues as Tools for Studying Protein Methylation. Chemical Record, 2018, 18, 1660-1671.	2.9	9
232	Cutting Edge Therapeutic Insights Derived from Molecular Biology of Pediatric High-Grade Glioma and Diffuse Intrinsic Pontine Glioma (DIPG). Bioengineering, 2018, 5, 88.	1.6	15
233	Risk Management in Early Discovery Medicinal Chemistry. Methods in Enzymology, 2018, 610, 1-25.	0.4	1
234	High-throughput screen for compounds that modulate neurite growth of human induced pluripotent stem cell derived neurons. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	63
235	Chemical Instability and Promiscuity of Arylmethylidenepyrazolinone-Based MDMX Inhibitors. ACS Chemical Biology, 2018, 13, 2849-2854.	1.6	12
236	Drug Target Commons 2.0: a community platform for systematic analysis of drug–target interaction profiles. Database: the Journal of Biological Databases and Curation, 2018, 2018, 1-13.	1.4	36
237	How Selective Are Pharmacological Inhibitors of Cell-Cycle-Regulating Cyclin-Dependent Kinases?. Journal of Medicinal Chemistry, 2018, 61, 9105-9120.	2.9	76
238	RNA-modifying proteins as anticancer drug targets. Nature Reviews Drug Discovery, 2018, 17, 435-453.	21.5	107
239	<scp>iNEXT</scp> : a European facility network to stimulate translational structural biology. FEBS Letters, 2018, 592, 1909-1917.	1.3	4
240	Reagent Validation to Facilitate Experimental Reproducibility. Current Protocols in Pharmacology, 2018, 81, e40.	4.0	4

#	ARTICLE	IF	CITATIONS
241	Donated chemical probes for open science. ELife, 2018, 7, .	2.8	80
242	Applications of NMR Spectroscopy in FBDD. , 2018, , 2211-2231.		2
243	Changes in cell morphology guide identification of tubulin as the off-target for protein kinase inhibitors. Pharmacological Research, 2018, 134, 166-178.	3.1	8
244	Reproducibility in Biomedical Research. , 2018, , 1-66.		1
245	High-throughput screening with nucleosome substrate identifies small-molecule inhibitors of the human histone lysine methyltransferase NSD2. Journal of Biological Chemistry, 2018, 293, 13750-13765.	1.6	46
246	New tools for evaluating protein tyrosine sulfation: tyrosylprotein sulfotransferases (TPSTs) are novel targets for RAF protein kinase inhibitors. Biochemical Journal, 2018, 475, 2435-2455.	1.7	33
247	Unveiling epidithiodiketopiperazine as a non-histone arginine methyltransferase inhibitor by chemical protein methylome analyses. Chemical Communications, 2018, 54, 9202-9205.	2.2	12
248	Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them. Cancer and Metastasis Reviews, 2018, 37, 409-423.	2.7	27
249	A new quinoline-based chemical probe inhibits the autophagy-related cysteine protease ATG4B. Scientific Reports, 2018, 8, 11653.	1.6	33
250	The Endocannabinoid Reuptake Inhibitor WOBE437 Is Orally Bioavailable and Exerts Indirect Polypharmacological Effects via Different Endocannabinoid Receptors. Frontiers in Molecular Neuroscience, 2018, 11, 180.	1.4	15
251	Remarkable Progress with Small-Molecule Modulation of TRPC1/4/5 Channels: Implications for Understanding the Channels in Health and Disease. Cells, 2018, 7, 52.	1.8	47
252	Facile target validation in an animal model with intracellularly expressed monobodies. Nature Chemical Biology, 2018, 14, 895-900.	3.9	27
253	Modeling Small-Molecule Reactivity Identifies Promiscuous Bioactive Compounds. Journal of Chemical Information and Modeling, 2018, 58, 1483-1500.	2.5	28
254	Chemoproteomics and Chemical Probes for Target Discovery. Trends in Biotechnology, 2018, 36, 1275-1286.	4.9	86
255	Modulating the masters: chemical tools to dissect CBP and p300 function. Current Opinion in Chemical Biology, 2018, 45, 195-203.	2.8	46
256	Targeting Pim Kinases and DAPK3 to Control Hypertension. Cell Chemical Biology, 2018, 25, 1195-1207.e32.	2.5	21
257	Phenotypic Screening. Methods in Molecular Biology, 2018, , .	0.4	0
258	Quantitative Prioritization of Tool Compounds for Phenotypic Screening. Methods in Molecular Biology, 2018, 1787, 195-206.	0.4	3

ARTICLE IF CITATIONS Experimental Planning and Execution., 2018,, 67-106. 1 259 Novel selective thiadiazine DYRK1A inhibitor lead scaffold with human pancreatic Î²-cell proliferation 2.6 activity. European Journal of Medicinal Chemistry, 2018, 157, 1005-1016. Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian 261 1.9 67 genome editing experiments. Journal of Biotechnology, 2018, 284, 91-101. Integrative Chemical Proteomics-Metabolomics Approach Reveals Acaca/Acacb as Direct Molecular Targets of PFOA. Analytical Chemistry, 2018, 90, 11092-11098. Developing Smallâ€Molecule Inhibitors of HECTâ€Type Ubiquitin Ligases for Therapeutic Applications: 263 1.3 27 Challenges and Opportunities. ChemBioChem, 2018, 19, 2123-2135. 264 Insights into the development of chemical probes for RNA. Nucleic Acids Research, 2018, 46, 8025-8037. 6.5 265 Editorial. Bioorganic and Medicinal Chemistry, 2018, 26, 2919-2920. 1.4 0 DNA-encoded libraries – an efficient small molecule discovery technology for the biomedical 1.2 266 sciences. Biological Chemistry, 2018, 399, 691-710. <i>Assay Guidance Manual</i>: Quantitative Biology and Pharmacology in Preclinical Drug Discovery. 267 1.5 38 Clinical and Translational Science, 2018, 11, 461-470. Dissecting the role of the tubulin code in mitosis. Methods in Cell Biology, 2018, 144, 33-74. ALARM NMR for HTS Triage and Chemical Probe Validation. Current Protocols in Chemical Biology, 269 1.7 22 2018, 10, 91-117. Polypharmacology by Design: A Medicinal Chemist's Perspective on Multitargeting Compounds. Journal 314 of Medicinal Chemistry, 2019, 62, 420-444. Leveraging Atropisomerism to Obtain a Selective Inhibitor of RET Kinase with Secondary Activities 2711.6 17 toward EGFR Mutants. ACS Chemical Biology, 2019, 14, 1930-1939. Selective, Small-Molecule Co-Factor Binding Site Inhibition of a Su(var)3–9, Enhancer of Zeste, Trithorax Domain Containing Lysine Methyltransferase. Journal of Medicinal Chemistry, 2019, 62, 14 7669-7683. Using Physicochemical Measurements to Influence Better Compound Design. SLAS Discovery, 2019, 24, 273 1.4 24 791-801. Cytotoxic unsaturated electrophilic compounds commonly target the ubiquitin proteasome system. 274 Scientific Reports, 2019, 9, 98'41. Transforming cancer drug discovery with Big Data and Al. Expert Opinion on Drug Discovery, 2019, 14, 275 2.522 1089-1095. Can Cysteine Protease Cross-Class Inhibitors Achieve Selectivity?. Journal of Medicinal Chemistry, 276 2019, 62, 10497-10525.

#	Article	IF	CITATIONS
277	Rational Adaptation of L3MBTL1 Inhibitors to Create Smallâ€Molecule Cbx7 Antagonists. ChemMedChem, 2019, 14, 1444-1456.	1.6	5
278	Discovery of a Potent and Selective Fragment-like Inhibitor of Methyllysine Reader Protein Spindlin 1 (SPIN1). Journal of Medicinal Chemistry, 2019, 62, 8996-9007.	2.9	20
279	Target 2035: probing the human proteome. Drug Discovery Today, 2019, 24, 2111-2115.	3.2	103
280	Bromodomains: a new target class forÂdrug development. Nature Reviews Drug Discovery, 2019, 18, 609-628.	21.5	302
281	Cytosolic delivery of inhibitory antibodies with cationic lipids. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22132-22139.	3.3	39
282	Chemogenomic Analysis of the Druggable Kinome and Its Application to Repositioning and Lead Identification Studies. Cell Chemical Biology, 2019, 26, 1608-1622.e6.	2.5	14
283	Recent Advances in Selective and Irreversible Covalent Ligand Development and Validation. Cell Chemical Biology, 2019, 26, 1486-1500.	2.5	110
284	R-BIND: An Interactive Database for Exploring and Developing RNA-Targeted Chemical Probes. ACS Chemical Biology, 2019, 14, 2691-2700.	1.6	57
285	Discovery of BAY-298 and BAY-899: Tetrahydro-1,6-naphthyridine-Based, Potent, and Selective Antagonists of the Luteinizing Hormone Receptor Which Reduce Sex Hormone Levels in Vivo. Journal of Medicinal Chemistry, 2019, 62, 10321-10341.	2.9	13
286	Covalentâ€Allosteric Inhibitors to Achieve Akt Isoformâ€5electivity. Angewandte Chemie, 2019, 131, 18999-19005.	1.6	7
287	Covalentâ€Allosteric Inhibitors to Achieve Akt Isoformâ€5electivity. Angewandte Chemie - International Edition, 2019, 58, 18823-18829.	7.2	44
288	Labelled chemical probes for demonstrating direct target engagement in living systems. Future Medicinal Chemistry, 2019, 11, 1195-1224.	1.1	10
289	A Biased Agonist at Immunometabolic Receptor GPR84 Causes Distinct Functional Effects in Macrophages. ACS Chemical Biology, 2019, 14, 2055-2064.	1.6	27
290	Microglial Drug Targets in AD: Opportunities and Challenges in Drug Discovery and Development. Frontiers in Pharmacology, 2019, 10, 840.	1.6	25
291	Chemical proteomics reveals target selectivity of clinical Jak inhibitors in human primary cells. Scientific Reports, 2019, 9, 14159.	1.6	39
292	A Chemical Probe for Tudor Domain Protein Spindlin1 to Investigate Chromatin Function. Journal of Medicinal Chemistry, 2019, 62, 9008-9025.	2.9	30
293	Dynamic modifications of biomacromolecules: mechanism and chemical interventions. Science China Life Sciences, 2019, 62, 1459-1471.	2.3	14
294	Nonparametric Analysis of Thermal Proteome Profiles Reveals Novel Drug-binding Proteins*. Molecular and Cellular Proteomics, 2019, 18, 2506-2515.	2.5	75

#	Article	IF	CITATIONS
295	Discovery and Characterization of a Cellular Potent Positive Allosteric Modulator of the Polycomb Repressive Complex 1 Chromodomain, CBX7. Cell Chemical Biology, 2019, 26, 1365-1379.e22.	2.5	38
296	Synthesis of Aza-acyclic Nucleoside Libraries of Purine, Pyrimidine, and 1,2,4-Triazole. ACS Combinatorial Science, 2019, 21, 183-191.	3.8	2
297	Illuminating the dark phosphoproteome. Science Signaling, 2019, 12, .	1.6	219
298	Assembly of Divalent Ligands and Their Effect on Divalent Binding to <i>Pseudomonas aeruginosa</i> Lectin LecA. Journal of Organic Chemistry, 2019, 84, 2470-2488.	1.7	27
299	A fast and specific fluorescent probe for thioredoxin reductase that works via disulphide bond cleavage. Nature Communications, 2019, 10, 2745.	5.8	70
300	Drugging K-RasG12C through covalent inhibitors: Mission possible?. , 2019, 202, 1-17.		63
301	Fluorophore-Dependent Cleavage of Disulfide Bond Leading to a Highly Selective Fluorescent Probe of Thioredoxin. Analytical Chemistry, 2019, 91, 8524-8531.	3.2	26
302	A chemoprobe tracks its target. Journal of Biological Chemistry, 2019, 294, 8323-8324.	1.6	1
303	Pharmacological Modulation of Transcriptional Coregulators in Cancer. Trends in Pharmacological Sciences, 2019, 40, 388-402.	4.0	9
304	Validation and Invalidation of Chemical Probes for the Human N-myristoyltransferases. Cell Chemical Biology, 2019, 26, 892-900.e4.	2.5	33
305	Phenotypic Screening Combined with Machine Learning for Efficient Identification of Breast Cancer-Selective Therapeutic Targets. Cell Chemical Biology, 2019, 26, 970-979.e4.	2.5	34
306	A Medicinal Chemist's Perspective on Transitioning from Industry to Academic Drug Discovery. ACS Medicinal Chemistry Letters, 2019, 10, 687-689.	1.3	5
307	Computational advances in combating colloidal aggregation in drug discovery. Nature Chemistry, 2019, 11, 402-418.	6.6	51
308	A chemical toolbox for the study of bromodomains and epigenetic signaling. Nature Communications, 2019, 10, 1915.	5.8	85
309	Encoded Library Technologies as Integrated Lead Finding Platforms for Drug Discovery. Molecules, 2019, 24, 1629.	1.7	71
310	CRISPR/Cas9 – An evolving biological tool kit for cancer biology and oncology. Npj Precision Oncology, 2019, 3, 8.	2.3	61
311	Systematic computational identification of promiscuity cliff pathways formed by inhibitors of the human kinome. Journal of Computer-Aided Molecular Design, 2019, 33, 559-572.	1.3	8
312	Discovery of GSK8612, a Highly Selective and Potent TBK1 Inhibitor. ACS Medicinal Chemistry Letters, 2019, 10, 780-785.	1.3	48

#	Article	IF	CITATIONS
314	FragLites—Minimal, Halogenated Fragments Displaying Pharmacophore Doublets. An Efficient Approach to Druggability Assessment and Hit Generation. Journal of Medicinal Chemistry, 2019, 62, 3741-3752.	2.9	62
315	Unique photoaffinity probes to study TGFÎ ² signaling and receptor fates. Chemical Communications, 2019, 55, 4323-4326.	2.2	3
316	Cheminformatics Tools for Analyzing and Designing Optimized Small-Molecule Collections and Libraries. Cell Chemical Biology, 2019, 26, 765-777.e3.	2.5	59
317	Bromodomain inhibition of the coactivators CBP/EP300 facilitate cellular reprogramming. Nature Chemical Biology, 2019, 15, 519-528.	3.9	67
318	Selective Inhibition of Histone Deacetylase 10: Hydrogen Bonding to the Gatekeeper Residue is Implicated. Journal of Medicinal Chemistry, 2019, 62, 4426-4443.	2.9	56
319	The Impact of Chemical Biology on Drug Discovery. Israel Journal of Chemistry, 2019, 59, 29-36.	1.0	1
320	SGC-GAK-1: A Chemical Probe for Cyclin G Associated Kinase (GAK). Journal of Medicinal Chemistry, 2019, 62, 2830-2836.	2.9	56
321	Open Targets Platform: new developments and updates two years on. Nucleic Acids Research, 2019, 47, D1056-D1065.	6.5	364
323	TOR inhibitors: from mammalian outcomes to pharmacogenetics in plants and algae. Journal of Experimental Botany, 2019, 70, 2297-2312.	2.4	23
324	Minimum Information and Quality Standards for Conducting, Reporting, and Organizing In Vitro Research. Handbook of Experimental Pharmacology, 2019, 257, 177-196.	0.9	12
326	Discovery and Characterization of the Potent and Selective P2X4 Inhibitor <i>N</i> -[4-(3-Chlorophenoxy)-3-sulfamoylphenyl]-2-phenylacetamide (BAY-1797) and Structure-Guided Amelioration of Its CYP3A4 Induction Profile. Journal of Medicinal Chemistry, 2019, 62, 11194-11217.	2.9	35
327	Towards the Development of an In vivo Chemical Probe for Cyclin G Associated Kinase (GAK). Molecules, 2019, 24, 4016.	1.7	16
330	Metal-free synthesis of chromeno[4,3-c]pyrazol-3(2H)-one derivatives. Tetrahedron Letters, 2019, 60, 362-365.	0.7	0
331	Identification and characterization of cancer vulnerabilities via targeted protein degradation. Drug Discovery Today: Technologies, 2019, 31, 81-90.	4.0	25
332	A chemical biology toolbox to study protein methyltransferases and epigenetic signaling. Nature Communications, 2019, 10, 19.	5.8	113
333	Neuroprotective Effects of Gabapentin Against Cerebral Ischemia Reperfusion-Induced Neuronal Autophagic Injury via Regulation of the PI3K/Akt/mTOR Signaling Pathways. Journal of Neuropathology and Experimental Neurology, 2019, 78, 157-171.	0.9	44
334	Mapping biologically active chemical space to accelerate drug discovery. Nature Reviews Drug Discovery, 2019, 18, 83-84.	21.5	11
335	Selective Inhibitors of a Human Prolyl Hydroxylase (OGFOD1) Involved in Ribosomal Decoding. Chemistry - A European Journal, 2019, 25, 2019-2024.	1.7	5

#	Article	IF	CITATIONS
336	Hydrazonophenol, a Food Vacuole-Targeted and Ferriprotoporphyrin IX-Interacting Chemotype Prevents Drug-Resistant Malaria. ACS Infectious Diseases, 2019, 5, 63-73.	1.8	6
337	Encounter and React: Computer-Guided Design of Covalent Inhibitors. Cell Chemical Biology, 2019, 26, 6-8.	2.5	14
338	Advancements in the Development of nonâ€BET Bromodomain Chemical Probes. ChemMedChem, 2019, 14, 362-385.	1.6	36
339	EU-OPENSCREEN: A Novel Collaborative Approach to Facilitate Chemical Biology. SLAS Discovery, 2019, 24, 398-413.	1.4	12
340	canSAR: update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Research, 2019, 47, D917-D922.	6.5	75
341	Advances in Lead Generation. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 517-524.	1.0	25
342	Fluorescence anisotropy imaging in drug discovery. Advanced Drug Delivery Reviews, 2019, 151-152, 262-288.	6.6	51
343	Targeting der kleinen GTPasen über ihre regulatorischen Proteine. Angewandte Chemie, 2020, 132, 6402-6428.	1.6	1
344	Targeting the Small GTPase Superfamily through Their Regulatory Proteins. Angewandte Chemie - International Edition, 2020, 59, 6342-6366.	7.2	87
345	BAX, BAK, and BOK: A Coming of Age for the BCL-2 Family Effector Proteins. Cold Spring Harbor Perspectives in Biology, 2020, 12, a036319.	2.3	106
346	The Symbiotic Relationship Between Drug Discovery and Organic Chemistry. Chemistry - A European Journal, 2020, 26, 1196-1237.	1.7	97
347	Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening. SLAS Discovery, 2020, 25, 9-20.	1.4	10
348	Ubiquitin Câ€Terminal Hydrolase L1: Biochemical and Cellular Characterization of a Covalent Cyanopyrrolidineâ€Based Inhibitor. ChemBioChem, 2020, 21, 712-722.	1.3	32
349	Early identification of promiscuous attributes of aldose reductase inhibitors using a DMSO-perturbation assay. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126815.	1.0	1
350	Perspective on CETSA Literature: Toward More Quantitative Data Interpretation. SLAS Discovery, 2020, 25, 118-126.	1.4	30
351	A High-Throughput BRET Cellular Target Engagement Assay Links Biochemical to Cellular Activity for Bruton's Tyrosine Kinase. SLAS Discovery, 2020, 25, 176-185.	1.4	7
352	Developing Inhibitors of the p47phox–p22phox Protein–Protein Interaction by Fragment-Based Drug Discovery. Journal of Medicinal Chemistry, 2020, 63, 1156-1177.	2.9	25
353	Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation. Accounts of Chemical Research, 2020, 53, 20-31.	7.6	89

#	Article	IF	CITATIONS
354	Comment on: Food for Bone: Evidence for a Role for Delta-Tocotrienol in the Physiological Control of Osteoblast Migration. Int. J. Mol. Sci. 2020, 21, 4661. International Journal of Molecular Sciences, 2020, 21, 6674.	1.8	3
355	Detectives and helpers: Natural products as resources for chemical probes and compound libraries. , 2020, 216, 107688.		11
356	Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease. Nature Communications, 2020, 11, 5047.	5.8	376
357	A Single‣tranded DNAâ€Encoded Chemical Library Based on a Stereoisomeric Scaffold Enables Ligand Discovery by Modular Assembly of Building Blocks. Advanced Science, 2020, 7, 2001970.	5.6	30
358	A Chemical Probe for Dark Kinase STK17B Derives Its Potency and High Selectivity through a Unique P-Loop Conformation. Journal of Medicinal Chemistry, 2020, 63, 14626-14646.	2.9	17
359	Pan-SMARCA/PB1 Bromodomain Inhibitors and Their Role in Regulating Adipogenesis. Journal of Medicinal Chemistry, 2020, 63, 14680-14699.	2.9	21
360	GSK789: A Selective Inhibitor of the First Bromodomains (BD1) of the Bromo and Extra Terminal Domain (BET) Proteins. Journal of Medicinal Chemistry, 2020, 63, 9045-9069.	2.9	59
361	Inducers of the endothelial cell barrier identified through chemogenomic screening in genome-edited hPSC-endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19854-19865.	3.3	35
362	Systematic Chemogenetic Library Assembly. Cell Chemical Biology, 2020, 27, 1124-1129.	2.5	37
363	The European Federation for Medicinal Chemistry (EFMC) Best Practice Initiative: Validating Chemical Probes. ChemMedChem, 2020, 15, 2388-2390.	1.6	11
364	Discovery and Characterization of BAY 1214784, an Orally Available Spiroindoline Derivative Acting as a Potent and Selective Antagonist of the Human Gonadotropin-Releasing Hormone Receptor as Proven in a First-In-Human Study in Postmenopausal Women. Journal of Medicinal Chemistry, 2020, 63, 11854-11881.	2.9	13
365	EFMC, Medicinal Chemistry and Chemical Biology in Europe. ChemMedChem, 2020, 15, 2334-2337.	1.6	5
366	From Phenotypic Hit to Chemical Probe: Chemical Biology Approaches to Elucidate Small Molecule Action in Complex Biological Systems. Molecules, 2020, 25, 5702.	1.7	14
367	Discovery of a Novel Class of Covalent Dual Inhibitors Targeting the Protein Kinases BMX and BTK. International Journal of Molecular Sciences, 2020, 21, 9269.	1.8	16
368	Evolution of Novartis' Small Molecule Screening Deck Design. Journal of Medicinal Chemistry, 2020, 63, 14425-14447.	2.9	31
369	Targeting the Water Network in Cyclin Gâ€Associated Kinase (GAK) with 4â€Anilinoâ€quin(az)oline Inhibitors. ChemMedChem, 2020, 15, 1200-1215.	1.6	9
370	Pharmacological Inhibition of Soluble Epoxide Hydrolase as a New Therapy for Alzheimer's Disease. Neurotherapeutics, 2020, 17, 1825-1835.	2.1	45
371	â€~Design, synthesis, and strategic use of small chemical probes towardÂidentification of novel targets for drug development'. Current Opinion in Chemical Biology, 2020, 56, 91-97.	2.8	9

#	Article	IF	CITATIONS
372	An exon skipping screen identifies antitumor drugs that are potent modulators of pre-mRNA splicing, suggesting new therapeutic applications. PLoS ONE, 2020, 15, e0233672.	1.1	11
373	Gini Coefficients as a Single Value Metric to Define Chemical Probe Selectivity. ACS Chemical Biology, 2020, 15, 2031-2040.	1.6	13
374	Enhancing Chemogenomics with Predictive Pharmacology. Journal of Medicinal Chemistry, 2020, 63, 12243-12255.	2.9	3
375	Discovering and validating cancer genetic dependencies: approaches and pitfalls. Nature Reviews Genetics, 2020, 21, 671-682.	7.7	41
376	Chemical Toolbox to Decode the Microbiota Lexicon. Chemistry - an Asian Journal, 2020, 15, 2117-2128.	1.7	4
377	The chemical probe – scopes, limitations and challenges. Expert Opinion on Drug Discovery, 2020, 15, 1365-1367.	2.5	5
378	A Highly Selective Chemical Probe for Activin Receptor-like Kinases ALK4 and ALK5. ACS Chemical Biology, 2020, 15, 862-870.	1.6	15
379	A phenotypic approach to probing cellular outcomes using heterobivalent constructs. Chemical Communications, 2020, 56, 4216-4219.	2.2	0
380	Critical Assessment of Targeted Protein Degradation as a Research Tool and Pharmacological Modality. Trends in Pharmacological Sciences, 2020, 41, 305-317.	4.0	56
381	Quantifying Target Occupancy of Small Molecules Within Living Cells. Annual Review of Biochemistry, 2020, 89, 557-581.	5.0	41
382	Phenotypic Screening of Chemical Libraries Enriched by Molecular Docking to Multiple Targets Selected from Glioblastoma Genomic Data. ACS Chemical Biology, 2020, 15, 1424-1444.	1.6	4
383	Complexation with a Cognate Antibody Fragment Facilitates Affinity Measurements of Fluorescein-Linked Small Molecule Ligands. Analytical Chemistry, 2020, 92, 10822-10829.	3.2	9
384	The transcriptional repressor REV-ERB as a novel target for disease. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127395.	1.0	18
385	Discovery and pharmacology of the covalent GLP-1 receptor (GLP-1R) allosteric modulator BETP: A novel tool to probe GLP-1R pharmacology. Advances in Pharmacology, 2020, 88, 173-191.	1.2	10
386	Transcription Factor Inhibition: Lessons Learned and Emerging Targets. Trends in Molecular Medicine, 2020, 26, 508-518.	3.5	63
387	Natural products as modulators of eukaryotic protein secretion. Natural Product Reports, 2020, 37, 717-736.	5.2	31
388	Structure-based view of the druggable genome. Drug Discovery Today, 2020, 25, 561-567.	3.2	12
389	Development of 2-(4-pyridyl)-benzimidazoles as PKN2 chemical tools to probe cancer. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127040.	1.0	14

#	Article	IF	CITATIONS
390	Tryptophan scanning mutagenesis as a way to mimic the compound-bound state and probe the selectivity of allosteric inhibitors in cells. Chemical Science, 2020, 11, 1892-1904.	3.7	13
391	Click Chemistry in Proteomic Investigations. Cell, 2020, 180, 605-632.	13.5	215
392	Characterization of the Menin-MLL Interaction as Therapeutic Cancer Target. Cancers, 2020, 12, 201.	1.7	25
395	Probing biological mechanisms with chemical tools. Pharmacological Research, 2020, 153, 104656.	3.1	4
396	Highly Selective, Amineâ€Đerived Cannabinoid Receptor 2 Probes. Chemistry - A European Journal, 2020, 26, 1380-1387.	1.7	17
397	Synthesis and Biological Validation of a Harmine-Based, Central Nervous System (CNS)-Avoidant, Selective, Human β-Cell Regenerative Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase A (DYRK1A) Inhibitor. Journal of Medicinal Chemistry, 2020, 63, 2986-3003.	2.9	36
398	QSAR without borders. Chemical Society Reviews, 2020, 49, 3525-3564.	18.7	427
399	Positional Analogue Scanning: An Effective Strategy for Multiparameter Optimization in Drug Design. Journal of Medicinal Chemistry, 2020, 63, 8956-8976.	2.9	30
400	Protein S-Glyco-Modification through an Elimination–Addition Mechanism. Journal of the American Chemical Society, 2020, 142, 9382-9388.	6.6	79
402	Reflections and Outlook on Targeting HSP90, HSP70 and HSF1 in Cancer: A Personal Perspective. Advances in Experimental Medicine and Biology, 2020, 1243, 163-179.	0.8	18
403	Dissecting Programmed Cell Death with Small Molecules. Accounts of Chemical Research, 2020, 53, 1034-1045.	7.6	28
404	Online informatics resources to facilitate cancer target and chemical probe discovery. RSC Medicinal Chemistry, 2020, 11, 611-624.	1.7	3
405	Hydrogen improves cell viability partly through inhibition of autophagy and activation of PI3K/Akt/GSK3β signal pathway in a microvascular endothelial cell model of traumatic brain injury. Neurological Research, 2020, 42, 487-496.	0.6	22
406	Getting a handle on chemical probes of chomatin readers. Future Medicinal Chemistry, 2021, 13, 749-763.	1.1	4
407	Remodelin Is a Cryptic Assay Interference Chemotype That Does Not Inhibit NAT10-Dependent Cytidine Acetylation. ACS Medicinal Chemistry Letters, 2021, 12, 887-892.	1.3	16
408	Identifying novel B-cell targets for chronic inflammatory autoimmune disease by screening of chemical probes in a patient-derived cell assay. Translational Research, 2021, 229, 69-82.	2.2	1
409	Design and Applications of Bifunctional Small Molecules in Biology. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140534.	1.1	4
410	The Dark Kinase Knowledgebase: an online compendium of knowledge and experimental results of understudied kinases. Nucleic Acids Research, 2021, 49, D529-D535.	6.5	75

#	Article	IF	CITATIONS
411	Open Targets Platform: supporting systematic drug–target identification and prioritisation. Nucleic Acids Research, 2021, 49, D1302-D1310.	6.5	265
412	Improving target assessment in biomedical research: the GOT-IT recommendations. Nature Reviews Drug Discovery, 2021, 20, 64-81.	21.5	86
413	canSAR: update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Research, 2021, 49, D1074-D1082.	6.5	63
414	Target Validation Using PROTACs: Applying the Four Pillars Framework. SLAS Discovery, 2021, 26, 474-483.	1.4	22
415	Public resources for chemical probes: the journey so far and the road ahead. Future Medicinal Chemistry, 2021, 13, 731-747.	1.1	24
416	Human carboxylesterases and fluorescent probes to image their activity in live cells. RSC Medicinal Chemistry, 2021, 12, 1142-1153.	1.7	22
417	Will the chemical probes please stand up?. RSC Medicinal Chemistry, 2021, 12, 1428-1441.	1.7	7
418	The right tools for the job: the central role for next generation chemical probes and chemistry-based target deconvolution methods in phenotypic drug discovery. RSC Medicinal Chemistry, 2021, 12, 646-665.	1.7	6
419	Computational Prediction of Chemical Tools for Identification and Validation of Synthetic Lethal Interaction Networks. Methods in Molecular Biology, 2021, 2381, 333-358.	0.4	0
420	The potent AMPK inhibitor BAY-3827 shows strong efficacy in androgen-dependent prostate cancer models. Cellular Oncology (Dordrecht), 2021, 44, 581-594.	2.1	14
421	Impact of structural biologists and the Protein Data Bank on small-molecule drug discovery and development. Journal of Biological Chemistry, 2021, 296, 100559.	1.6	23
422	The Kinase Chemogenomic Set (KCGS): An Open Science Resource for Kinase Vulnerability Identification. International Journal of Molecular Sciences, 2021, 22, 566.	1.8	62
423	Development and biological applications of sulfur–triazole exchange (SuTEx) chemistry. RSC Chemical Biology, 2021, 2, 322-337.	2.0	18
425	Identification of β-strand mediated protein–protein interaction inhibitors using ligand-directed fragment ligation. Chemical Science, 2021, 12, 2286-2293.	3.7	3
426	Pseudoreplication in physiology: More means less. Journal of General Physiology, 2021, 153, .	0.9	46
427	Inhibitors of cullin-RING E3 ubiquitin ligase 4 with antitumor potential. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
428	Gains from no real PAINS: Where â€~Fair Trial Strategy' stands in the development of multi-target ligands. Acta Pharmaceutica Sinica B, 2021, 11, 3417-3432.	5.7	10
429	Nuisance compounds in cellular assays. Cell Chemical Biology, 2021, 28, 356-370.	2.5	37

#	Article	IF	CITATIONS
430	Transcriptome screening followed by integrated physicochemical and structural analyses for investigating RNA-mediated berberine activity. Nucleic Acids Research, 2021, 49, 8449-8461.	6.5	11
431	Extracellular vesicle drug occupancy enables real-time monitoring of targeted cancer therapy. Nature Nanotechnology, 2021, 16, 734-742.	15.6	51
432	Chemoproteomic-enabled phenotypic screening. Cell Chemical Biology, 2021, 28, 371-393.	2.5	20
433	The Promise and Peril of Chemical Probe Negative Controls. ACS Chemical Biology, 2021, 16, 579-585.	1.6	28
435	Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nature Reviews Drug Discovery, 2021, 20, 509-530.	21.5	186
436	Ten-Year Retrospective of the Vanderbilt Institute of Chemical Biology Chemical Synthesis Core. ACS Chemical Biology, 2021, 16, 787-793.	1.6	0
438	Fast-acting chemical tools to delineate causality in transcriptional control. Molecular Cell, 2021, 81, 1617-1630.	4.5	44
439	Evaluating and evolving a screening library in academia: the St Jude approach. Drug Discovery Today, 2021, 26, 1060-1069.	3.2	6
441	Functionalized Scout Fragments for Site-Specific Covalent Ligand Discovery and Optimization. ACS Central Science, 2021, 7, 613-623.	5.3	27
443	Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene, 2021, 40, 3637-3654.	2.6	66
445	A New Chemical Probe Challenges the Broad Cancer Essentiality of CK2. Trends in Pharmacological Sciences, 2021, 42, 313-315.	4.0	16
446	Pharmacological inhibition of PI5P4Kα/β disrupts cell energy metabolism and selectively kills p53-null tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
447	Discovery of the SMYD3 Inhibitor BAY-6035 Using Thermal Shift Assay (TSA)-Based High-Throughput Screening. SLAS Discovery, 2021, 26, 947-960.	1.4	14
448	Crowdsourced mapping of unexplored target space of kinase inhibitors. Nature Communications, 2021, 12, 3307.	5.8	41
449	Recent developments in ligands and chemical probes targeting solute carrier transporters. Current Opinion in Chemical Biology, 2021, 62, 53-63.	2.8	12
450	Opportunities and challenges in translational science. Clinical and Translational Science, 2021, 14, 1629-1647.	1.5	59
451	The role of reversible and irreversible covalent chemistry in targeted protein degradation. Cell Chemical Biology, 2021, 28, 952-968.	2.5	51
453	Validation strategies for identifying drug targets in dermal fibrotic disorders. Drug Discovery Today, 2021, 26, 2474-2485.	3.2	1

ARTICLE IF CITATIONS # The PROTACtable genome. Nature Reviews Drug Discovery, 2021, 20, 789-797. 21.5 112 454 Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. Journal of Medicinal Chemistry, 23 2021, 64, 9677-9710. Retinoic acid-related orphan receptor gamma t (RORÎ³t) inverse agonists/antagonists for the treatment of inflammatory diseases â€" where are we presently?. Expert Opinion on Drug Discovery, 2021, 16, 456 2.5 24 1517-1535. Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 439 2021, 5, 726-749. Efficient Entropyâ€Driven Inhibition of Dipeptidyl Peptidase III by Hydroxyethylene Transitionâ€State 459 1.7 6 Peptidomimetics. Chemistry - A European Journal, 2021, 27, 14108-14120. Enhancer of Zeste Homolog 2 (EZH2) Contributes to Rod Photoreceptor Death Process in Several Forms of Retinal Degeneration and Its Activity Can Serve as a Biomarker for Therapy Efficacy. International Journal of Molecular Sciences, 2021, 22, 9331. 460 1.8 Functional interrogation and therapeutic targeting of protein tyrosine phosphatases. Biochemical 461 1.6 15 Society Transactions, 2021, 49, 1723-1734. Combating small-molecule aggregation with machine learning. Cell Reports Physical Science, 2021, 2, 462 2.8 100573. Chemical Probes for Understudied Kinases: Challenges and Opportunities. Journal of Medicinal 463 2.9 15 Chemistry, 2022, 65, 1132-1170. Emerging therapeutic opportunities for integrin inhibitors. Nature Reviews Drug Discovery, 2022, 21, 464 21.5 60-78 Rational design of ASCT2 inhibitors using an integrated experimental-computational approach. 465 3.3 35 Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Structural and functional characterization of ubiquitin variant inhibitors for the JAMM-family 1.6 deubiquitinases STAMBP and STAMBPL1. Journal of Biological Chemistry, 2021, 297, 101107. Chaetocin: A review of its anticancer potentials and mechanisms. European Journal of Pharmacology, 468 1.7 14 2021, 910, 174459. Characterizing the role of the dark kinome in neurodegenerative disease – A mini review. Biochimica 1.1 Et Biophysica Acta - General Subjects, 2021, 1865, 130014. The histone methyltransferase inhibitor A-366 enhances hemoglobin expression in erythroleukemia 470 2.2 2 cells upon coâ€exposure with chemical inducers in culture. Journal of Biological Research, 2021, 28, 2. Insights on Targeting Small Molecules to the Mitochondrial Matrix and the Preparation of MitoB and 471 MitoP as Exomarkers of Mitochondrial Hydrogen Peroxide. Methods in Molecular Biology, 2021, 2275, 87-117. A critical overview of computational approaches employed for COVID-19 drug discovery. Chemical 472 18.7 128 Society Reviews, 2021, 50, 9121-9151. 473 Histone methylation modifiers in medical therapeutics., 2021, , 693-720.

#	Article	IF	CITATIONS
474	Chemogenomics for drug discovery: clinical molecules from open access chemical probes. RSC Chemical Biology, 2021, 2, 759-795.	2.0	11
476	Small-Molecule Probes of Plant Glycopolymer Metabolism. , 2017, , .		2
477	Quantitative, Wide-Spectrum Kinase Profiling in Live Cells for Assessing the Effect of Cellular ATP on Target Engagement. Cell Chemical Biology, 2018, 25, 206-214.e11.	2.5	197
478	Natural allosteric modulators and their biological targets: molecular signatures and mechanisms. Natural Product Reports, 2020, 37, 488-514.	5.2	18
479	Chemical probes to potently and selectively inhibit endocannabinoid cellular reuptake. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5006-E5015.	3.3	72
492	An open source pharma roadmap. PLoS Medicine, 2017, 14, e1002276.	3.9	26
493	A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases. PLoS Neglected Tropical Diseases, 2016, 10, e0004300.	1.3	38
494	Inhibition of mTOR-kinase destabilizes MYCN and is a potential therapy for MYCN-dependent tumors. Oncotarget, 2016, 7, 57525-57544.	0.8	42
496	Anti-Inflammatory Properties of Chemical Probes in Human Whole Blood: Focus on Prostaglandin E2 Production. Frontiers in Pharmacology, 2020, 11, 613.	1.6	2
497	In Depth Analysis of Kinase Cross Screening Data to Identify CAMKK2 Inhibitory Scaffolds. Molecules, 2020, 25, 325.	1.7	22
498	SKI-178: A multitargeted inhibitor of sphingosine kinase and microtubule dynamics demonstrating therapeutic efficacy in acute myeloid leukemia models. Cancer Translational Medicine, 2017, 3, 109.	0.2	27
499	Challenges in validating candidate therapeutic targets in cancer. ELife, 2018, 7, .	2.8	25
500	Propargylic <i>Se</i> -adenosyl- <scp><</scp> -selenomethionine: A Chemical Tool for Methylome Analysis. Accounts of Chemical Research, 2021, 54, 3818-3827.	7.6	15
501	Discovery and Characterization of the Potent and Highly Selective 1,7-Naphthyridine-Based Inhibitors BAY-091 and BAY-297 of the Kinase PIP4K2A. Journal of Medicinal Chemistry, 2021, 64, 15883-15911.	2.9	15
502	Scientists unite to warn against flawed chemical reagents. Nature, 0, , .	13.7	0
504	Applications of NMR Spectroscopy in FBDD. , 2017, , 1-22.		0
508	Cheminformatics Tools for Analyzing and Designing Optimized Small Molecule Collections and Libraries. SSRN Electronic Journal, 0, , .	0.4	0
509	Discovery of novel inhibitors of the phosphatase activity of the soluble epoxide hydrolase. FASEB Journal, 2018, 32, 558.3.	0.2	0

#	ARTICLE	IF	CITATIONS
517	Cyclic Peptides as Chemical Probes. Chemical Biology, 2020, , 100-123.	0.1	0
519	Selectivity aspects of activity-based (chemical) probes. Drug Discovery Today, 2022, 27, 519-528.	3.2	7
520	Research fronts of Chemical Biology. Pure and Applied Chemistry, 2021, 93, 1473-1485.	0.9	0
521	Targeting the Ubiquitin Proteasome System in Pulmonary Fibrosis. RSC Drug Discovery Series, 2020, , 165-184.	0.2	0
522	Chemical proteomics of reactive molecules. , 2022, , 157-189.		1
523	Utility of chemical probes for mass spectrometry based chemical proteomics. , 2022, , 129-156.		Ο
524	Precious metal complexes of bis(pyridyl)allenes: synthesis and catalytic and medicinal applications. Dalton Transactions, 2021, 50, 16739-16750.	1.6	6
526	Targeted Protein Degradation Chemical Probes. Chemical Biology, 2020, , 150-181.	0.1	0
527	Assays to Characterize the Cellular Pharmacology of a Chemical Probe. Chemical Biology, 2020, , 247-275.	0.1	1
529	Immediate and Selective Control of Protein Abundance Using the dTAG System. RSC Drug Discovery Series, 2020, , 55-74.	0.2	1
530	Introduction to Chemical Probes. Chemical Biology, 2020, , 1-13.	0.1	2
534	Accelerating Chemical Tool Discovery by Academic Collaborative Models. , 0, , .		0
536	A chemical probe targeting the PWWP domain alters NSD2 nucleolar localization. Nature Chemical Biology, 2022, 18, 56-63.	3.9	41
537	Exploration of Aberrant E3 Ligases Implicated in Alzheimer's Disease and Development of Chemical Tools to Modulate Their Function. Frontiers in Cellular Neuroscience, 2021, 15, 768655.	1.8	13
538	Understanding the ancillary ligand effect on luminescent cyclometalated Ir(III) complex as a reporter for 2-acetylaminofluorene DNA(AAF-dG) adduct. Journal of Biological Inorganic Chemistry, 2022, 27, 189-199.	1.1	1
539	Small-molecule antagonism of the interaction of the RAGE cytoplasmic domain with DIAPH1 reduces diabetic complications in mice. Science Translational Medicine, 2021, 13, eabf7084.	5.8	28
540	High-Throughput Screening Platform in Postnatal Heart Cells and Chemical Probe Toolbox to Assess Cardiomyocyte Proliferation. Journal of Medicinal Chemistry, 2022, 65, 1505-1524.	2.9	3
541	Developing nociceptor-selective treatments for acute and chronic pain. Science Translational Medicine, 2021, 13, eabj9837.	5.8	22

#	Article	IF	CITATIONS
542	Apoptolidin family glycomacrolides target leukemia through inhibition of ATP synthase. Nature Chemical Biology, 2022, 18, 360-367.	3.9	20
543	High-Throughput Screening (HTS) Technology. , 2021, , 787-799.		1
544	Repurposing the Damage Repair Protein Methyl Guanine Methyl Transferase as a Ligand Inducible Fusion Degron. ACS Chemical Biology, 2022, 17, 24-31.	1.6	4
545	Genetically encoded sensors for Chloride concentration. Journal of Neuroscience Methods, 2022, 368, 109455.	1.3	16
546	Chemical Probes for Histamine Receptor Subtypes. Current Topics in Behavioral Neurosciences, 2021, , 29-76.	0.8	1
548	Motor usage imprints microtubule stability along the shaft. Developmental Cell, 2022, 57, 5-18.e8.	3.1	30
550	Lysine methyltransferase inhibitors: where we are now. RSC Chemical Biology, 2022, 3, 359-406.	2.0	21
551	Target 2035 – update on the quest for a probe for every protein. RSC Medicinal Chemistry, 2022, 13, 13-21.	1.7	39
552	Fascinating Transformation of SAM-Competitive Protein Methyltransferase Inhibitors from Nucleoside Analogues to Non-Nucleoside Analogues. Journal of Medicinal Chemistry, 2022, 65, 1662-1684.	2.9	11
554	Probing Embryonic Development Enables the Discovery of Unique Small-Molecule Bone Morphogenetic Protein Potentiators. Journal of Medicinal Chemistry, 2022, 65, 3978-3990.	2.9	7
555	Structure-Based Design of a Chemical Probe Set for the 5-HT _{5A} Serotonin Receptor. Journal of Medicinal Chemistry, 2022, 65, 4201-4217.	2.9	17
556	Image-Based Annotation of Chemogenomic Libraries for Phenotypic Screening. Molecules, 2022, 27, 1439.	1.7	19
557	Selective Inhibition of Cysteine-Dependent Enzymes by Bioorthogonal Tethering. Journal of Molecular Biology, 2022, 434, 167524.	2.0	2
558	Redox active or thiol reactive? Optimization of rapid screens to identify less evident nuisance compounds. Drug Discovery Today, 2022, 27, 1733-1742.	3.2	12
559	The emerging role of mass spectrometry-based proteomics in drug discovery. Nature Reviews Drug Discovery, 2022, 21, 637-654.	21.5	110
561	ICBS 2021: Looking Toward the Next Decade of Chemical Biology. ACS Chemical Biology, 2022, 17, 728-743.	1.6	1
562	Triterpenoids as Reactive Oxygen Species Modulators of Cell Fate. Chemical Research in Toxicology, 2022, 35, 569-584.	1.7	12
564	Validating Small Molecule Chemical Probes for Biological Discovery. Annual Review of Biochemistry, 2022, 91, 61-87.	5.0	13

		CITATION REPORT		
#	Article		IF	CITATIONS
565	Drugging Fuzzy Complexes in Transcription. Frontiers in Molecular Biosciences, 2021, 8	s, 795743.	1.6	9
566	Discovery of Potent Peptidomimetic Antagonists for Heterochromatin Protein 1 Family Omega, 2022, 7, 716-732.	Proteins. ACS	1.6	3
567	Epigenetic Modulators as Treatment Alternative to Diverse Types of Cancer. Current Me Chemistry, 2021, 29, .	edicinal	1.2	2
568	Lysate and cell-based assays to probe the translational role of RNA helicases. Methods i 2022, , 141-168.	n Enzymology,	0.4	2
569	Use of AD Informer Set compounds to explore validity of novel targets in Alzheimer's di pathology. Alzheimer's and Dementia: Translational Research and Clinical Interventions e12253.	sease , 2022, 8,	1.8	3
571	Industrial Organic Synthesis in Life Sciences – Today and Tomorrow. European Journa Chemistry, 2022, 2022, .	l of Organic	1.2	1
572	Identification of 4â€anilinoâ€quin(az)oline as a cell active Protein Kinase Novel 3 (PKN3 chemotype. ChemMedChem, 2022, , .) inhibitor	1.6	2
573	The Polypharmacology Gap Between Chemical Biology and Drug Discovery. Chemical Biology 349-370.	ology, 2017, ,	0.1	0
577	opnMe.com: a digital initiative for sharing tools with the biomedical research communit Reviews Drug Discovery, 2022, 21, 475-476.	zy. Nature	21.5	10
578	AD Informer Set: Chemical tools to facilitate Alzheimer's disease drug discovery. Alzheir Dementia: Translational Research and Clinical Interventions, 2022, 8, e12246.	ner's and	1.8	4
579	Bioluminescent Zebrafish Transplantation Model for Drug Discovery. Frontiers in Pharm 2022, 13, 893655.	acology,	1.6	5
580	Target deconvolution of HDAC pharmacopoeia reveals MBLAC2 as common off-target. Biology, 2022, 18, 812-820.	Nature Chemical	3.9	36
581	On the Study of Deubiquitinases: Using the Right Tools for the Job. Biomolecules, 2022	, 12, 703.	1.8	3
582	Design and synthesis of efficient fluororethylene-peptidomimetic inhibitors of dipeptidy (DPP3). Bioorganic and Medicinal Chemistry, 2022, , 116831.	l peptidase III	1.4	3
584	Detection of the oxidation products of thiols: Disulfides, and sulfenic, sulfinic, and sulfc 2022, , 133-152.	nic acids. ,		0
585	Phenotypic drug discovery: recent successes, lessons learned and new directions. Natur Drug Discovery, 2022, 21, 899-914.	e Reviews	21.5	81
586	canSAR chemistry registration and standardization pipeline. Journal of Cheminformatics	s, 2022, 14, .	2.8	5
587	Evaluation of a Selective Chemical Probe Validates That CK2 Mediates Neuroinflammati Induced Pluripotent Stem Cell-Derived Microglial Model. Frontiers in Molecular Neurosc	on in a Human ience, 0, 15, .	1.4	11

#	Article	IF	CITATIONS
588	Chemical biology and pharmacology of histone lysine methylation inhibitors. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, 1865, 194840.	0.9	12
589	Host Kinase CSNK2 is a Target for Inhibition of Pathogenic SARS-like β-Coronaviruses. ACS Chemical Biology, 2022, 17, 1937-1950.	1.6	16
590	IPP/CNRS-A017: A chemical probe for human dihydroorotate dehydrogenase (hDHODH). Current Research in Chemical Biology, 2022, 2, 100034.	1.4	0
591	A Target Engagement Assay to Assess Uptake, Potency, and Retention of Antibiotics in Living Bacteria. ACS Infectious Diseases, 2022, 8, 1449-1467.	1.8	1
592	Development of Small-Molecule Fluorescent Probes Targeting Enzymes. Molecules, 2022, 27, 4501.	1.7	10
593	Neuromodulation by selective angiotensin-converting enzyme 2 inhibitors. Neuroscience, 2022, 498, 155-173.	1.1	2
595	A conversation on using chemical probes to study protein function in cells and organisms. Nature Communications, 2022, 13, .	5.8	6
597	Optimization of the 4-anilinoquin(az)oline scaffold as epidermal growth factor receptor (EGFR) inhibitors for chordoma utilizing a toxicology profiling assay platform. Scientific Reports, 2022, 12, .	1.6	5
598	Cycloaddition of 4-Acyl-1H-pyrrole-2,3-diones Fused at [e]-Side and Cyanamides: Divergent Approach to 4H-1,3-Oxazines. Molecules, 2022, 27, 5257.	1.7	0
599	Dbf4-Cdc7 (DDK) Inhibitor PHA-767491 Displays Potent Anti-Proliferative Effects via Crosstalk with the CDK2-RB-E2F Pathway. Biomedicines, 2022, 10, 2012.	1.4	1
600	In Vitro Evaluation of In Silico Screening Approaches in Search for Selective ACE2 Binding Chemical Probes. Molecules, 2022, 27, 5400.	1.7	1
601	ChemBioPort: an online portal to navigate the structure, function and chemical inhibition of the human proteome. Database: the Journal of Biological Databases and Curation, 2022, 2022, .	1.4	2
602	PROTAC degraders as chemical probes for studying target biology and target validation. Chemical Society Reviews, 2022, 51, 7971-7993.	18.7	28
603	Chemical Approaches for Beta-cell Biology. RSC Nanoscience and Nanotechnology, 2022, , 1-52.	0.2	1
604	On drug discovery against infectious diseases and academic medicinal chemistry contributions. Beilstein Journal of Organic Chemistry, 0, 18, 1355-1378.	1.3	0
605	Combinatorial Anticancer Drug Screen Identifies Off-Target Effects of Epigenetic Chemical Probes. ACS Chemical Biology, 2022, 17, 2801-2816.	1.6	4
606	Targeting the ubiquitin system by fragment-based drug discovery. Frontiers in Molecular Biosciences, 0, 9, .	1.6	7
607	Systematic profiling of conditional degron tag technologies for target validation studies. Nature Communications, 2022, 13, .	5.8	11

#	Article	IF	Citations
608	Comparative Analysis of Small-Molecule LIMK1/2 Inhibitors: Chemical Synthesis, Biochemistry, and Cellular Activity. Journal of Medicinal Chemistry, 2022, 65, 13705-13713.	2.9	3
609	It's ok to be outnumbered – sub-stoichiometric modulation of homomeric protein complexes. RSC Medicinal Chemistry, 2023, 14, 22-46.	1.7	2
611	The Chemical Probes Portal: an expert review-based public resource to empower chemical probe assessment, selection and use. Nucleic Acids Research, 2023, 51, D1492-D1502.	6.5	21
612	BAY-069, a Novel (Trifluoromethyl)pyrimidinedione-Based BCAT1/2 Inhibitor and Chemical Probe. Journal of Medicinal Chemistry, 2022, 65, 14366-14390.	2.9	3
613	Innovative CRISPR Screening Promotes Drug Target Identification. ACS Central Science, 0, , .	5.3	0
614	Development of new 1, 3-dihydroxyacridone derivatives as Akt pathway inhibitors in skeletal muscle cells. Bioorganic Chemistry, 2023, 130, 106222.	2.0	0
616	The era of high-quality chemical probes. RSC Medicinal Chemistry, 2022, 13, 1446-1459.	1.7	15
617	Applying HT-SAXS to chemical ligand screening. Methods in Enzymology, 2023, , 331-350.	0.4	1
618	Targeted Small Molecule Drug Discovery. Pediatric Oncology, 2022, , 9-24.	0.5	0
619	Photoaffinity Labeling Chemistries Used to Map Biomolecular Interactions. Israel Journal of Chemistry, 2023, 63, .	1.0	12
620	canSAR: update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Research, 2023, 51, D1212-D1219.	6.5	4
621	Rational Design of a New RXR Agonist Scaffold Enabling Single-Subtype Preference for RXRα, RXRβ, and RXRγ. Journal of Medicinal Chemistry, 2023, 66, 333-344.	2.9	5
622	Developing, Choosing, and Using the Chemical Toolbox for Infectious Diseases Research. ACS Infectious Diseases, 2023, 9, 2-4.	1.8	0
623	MSC-1186, a Highly Selective Pan-SRPK Inhibitor Based on an Exceptionally Decorated Benzimidazole-Pyrimidine Core. Journal of Medicinal Chemistry, 2023, 66, 837-854.	2.9	2
624	Chemical synthesis of a reported p47phox/p22phox inhibitor and characterization of its instability and irreproducible activity. Frontiers in Pharmacology, 0, 13, .	1.6	4
625	Covalent chemical probes for protein kinases. Current Research in Chemical Biology, 2023, 3, 100040.	1.4	2
626	Discovery of a Chemical Probe to Study Implications of BPTF Bromodomain Inhibition in Cellular and <i>inâ€vivo</i> Experiments. ChemMedChem, 2023, 18, .	1.6	2
627	Combining nano-differential scanning fluorimetry and microscale thermophoresis to investigate VDAC1 interaction with small molecules. Journal of Enzyme Inhibition and Medicinal Chemistry, 2023, 38.	2.5	1

		CITATION REPORT		
#	Article		IF	CITATIONS
629	EFMC: Trends in Medicinal Chemistry and Chemical Biology. ChemBioChem, 2023, 24,		1.3	2
630	Fluorescent Probe Combined with Photoelectric Analysis Technology for Detection of E coli. Biosensors, 2023, 13, 150.	ischerichia	2.3	1
631	Opportunities and challenges in targeting orphan nuclear receptors. Chemical Commu 59, 4551-4561.	nications, 2023,	2.2	5
632	Drug discovery: Standing on the shoulders of giants. , 2023, , 207-338.			0
633	Kinase Degraders, Activators, and Inhibitors: Highlights and Synthesis Routes to the Ch on opnMe.com, Partâ€1. ChemMedChem, 2023, 18, .	emical Probes	1.6	0
634	Discovery of a Novel Potent and Selective HSD17B13 Inhibitor, BI-3231, a Well-Charact Probe Available for Open Science. Journal of Medicinal Chemistry, 2023, 66, 2832-2850	terized Chemical).	2.9	7
635	Proteomeâ€Wide Fragmentâ€Based Ligand and Target Discovery. Israel Journal of Cher	mistry, 2023, 63, .	1.0	1
636	Discovery and Characterization of BAY-805, a Potent and Selective Inhibitor of Ubiquiti Protease USP21. Journal of Medicinal Chemistry, 2023, 66, 3431-3447.	n-Specific	2.9	4
637	Scale-Up Synthesis of 1-Methyladamantane and Its Functionalization as a Key Point for Antiviral Agents. Organic Process Research and Development, 2023, 27, 477-487.	Promising	1.3	1
638	Chaetocin disrupts the SUV39H1–HP1 interaction independent of SUV39H1 methyl Biochemical Journal, 2023, 480, 421-432.	ransferase activity.	1.7	1
639	Target 2035 – an update on private sector contributions. RSC Medicinal Chemistry, 2	2023, 14, 1002-1011.	1.7	1
640	Research and discovery: Essential partners but just a start. , 2023, , 513-527.			0
641	Drug discovery processes: When and where the rubber meets the road. , 2023, , 339-4	15.		1
642	Chemical and Biomolecular Insights into the <i>Staphylococcus aureus</i> Agr Quorur System: Current Progress and Ongoing Challenges. Israel Journal of Chemistry, 2023, 6	n Sensing 3, .	1.0	1
643	Deep Annotation of Donated Chemical Probes (DCP) in Organotypic Human Liver Cultu Patient-Derived Organoids from Tumor and Normal Colorectum. ACS Chemical Biology 822-836.	ıres and , 2023, 18,	1.6	0
644	Chemical Space Virtual Screening against Hard-to-Drug RNA Methyltransferases DNMT International Journal of Molecular Sciences, 2023, 24, 6109.	2 and NSUN6.	1.8	3
645	Reference compounds for characterizing cellular injury in high-content cellular morpho Nature Communications, 2023, 14, .	ogy assays.	5.8	4
646	Open resources for chemical probes and their implications for future drug discovery. Ex on Drug Discovery, 2023, 18, 505-513.	pert Opinion	2.5	0

#	Article	IF	CITATIONS
647	Comparison of CX-4945 and SGC-CK2-1 as inhibitors of CSNK2 using quantitative phosphoproteomics: Triple SILAC in combination with inhibitor-resistant CSNK2. Current Research in Chemical Biology, 2023, 3, 100041.	1.4	5
648	Targeting the human gut microbiome with small-molecule inhibitors. Nature Reviews Chemistry, 2023, 7, 319-339.	13.8	4
664	Compilation of Custom Compound/Bioactivity Datasets from Public Repositories. Methods in Molecular Biology, 2023, , 25-50.	0.4	0
666	An Introduction to Chemogenomics. Methods in Molecular Biology, 2023, , 1-10.	0.4	0
667	Developing a Kinase Chemogenomic Set: Facilitating Investigation into Kinase Biology by Linking Phenotypes to Targets. Methods in Molecular Biology, 2023, , 11-24.	0.4	1
677	Improving data quality in chemical biology. Nature Chemical Biology, 0, , .	3.9	0