The formation and degradation of active species during protonated zeotype catalysts

Chemical Society Reviews 44, 7155-7176 DOI: 10.1039/c5cs00304k

Citation Report

#	Article	IF	CITATIONS
1	Effects of Coke Deposits on the Catalytic Performance of Large Zeolite Hâ€ZSMâ€5 Crystals during Alcoholâ€toâ€Hydrocarbon Reactions as Investigated by a Combination of Optical Spectroscopy and Microscopy. Chemistry - A European Journal, 2015, 21, 17324-17335.	1.7	47
2	Synchrotron Infrared Spectroscopy of Microporous Materials. Makara Journal of Science, 2016, 20, .	1.1	1
3	Methane dehydroaromatisation and methanol activation over zeolite catalysts: an overview. Applied Petrochemical Research, 2016, 6, 183-190.	1.3	0
4	Methylation of toluene with methanol over HZSM-5: A periodic density functional theory investigation. Chinese Journal of Catalysis, 2016, 37, 1882-1890.	6.9	18
5	Coke Formation in a Zeolite Crystal During the Methanolâ€ŧoâ€Hydrocarbons Reaction as Studied with Atom Probe Tomography. Angewandte Chemie, 2016, 128, 11339-11343.	1.6	16
6	Radicals in carbonaceous residue deposited on mordenite from methanol. Journal of Materials Chemistry A, 2016, 4, 7036-7044.	5.2	3
7	Isoparaffin-rich gasoline synthesis from DME over Ni-modified HZSM-5. Catalysis Science and Technology, 2016, 6, 8089-8097.	2.1	15
8	Methylation of benzene with methanol over HZSM-11 and HZSM-5: A density functional theory study. Journal of Molecular Catalysis A, 2016, 424, 351-357.	4.8	30
9	Coke Formation in a Zeolite Crystal During the Methanolâ€ŧoâ€Hydrocarbons Reaction as Studied with Atom Probe Tomography. Angewandte Chemie - International Edition, 2016, 55, 11173-11177.	7.2	74
10	Suppression of the Aromatic Cycle in Methanolâ€ŧoâ€Olefins Reaction over ZSMâ€5 by Post‧ynthetic Modification Using Calcium. ChemCatChem, 2016, 8, 3057-3063.	1.8	71
11	Synthesis of hierarchical SAPO-34 nanocrystals with improved catalytic performance for methanol to olefins. Chemical Physics Letters, 2016, 665, 59-63.	1.2	24
12	Initial Carbon–Carbon Bond Formation during the Early Stages of the Methanolâ€ŧoâ€Olefin Process Proven by Zeoliteâ€Trapped Acetate and Methyl Acetate. Angewandte Chemie, 2016, 128, 16072-16077.	1.6	56
13	Initial Carbon–Carbon Bond Formation during the Early Stages of the Methanolâ€ŧoâ€Olefin Process Proven by Zeoliteâ€Trapped Acetate and Methyl Acetate. Angewandte Chemie - International Edition, 2016, 55, 15840-15845.	7.2	170
14	Application of Inelastic Neutron Scattering to the Methanol-to-Gasoline Reaction Over a ZSM-5 Catalyst. Catalysis Letters, 2016, 146, 1242-1248.	1.4	16
15	Disruptive catalysis by zeolites. Catalysis Science and Technology, 2016, 6, 2485-2501.	2.1	68
16	Room temperature methoxylation in zeolites: insight into a key step of the methanol-to-hydrocarbons process. Chemical Communications, 2016, 52, 2897-2900.	2.2	58
17	Stability and Reactivity of Intermediates of Methanol Related Reactions and C–C Bond Formation over H-ZSM-5 Acidic Catalyst: A Computational Analysis. Journal of Physical Chemistry C, 2016, 120, 6075-6087.	1.5	50
18	Insight into the Effect of Water on the Methanol-to-Olefins Conversion in H-SAPO-34 from Molecular Simulations and in Situ Microspectroscopy. ACS Catalysis, 2016, 6, 1991-2002.	5.5	110

#	Article	IF	Citations
19	Towards molecular control of elementary reactions in zeolite catalysis by advanced molecular simulations mimicking operating conditions. Catalysis Science and Technology, 2016, 6, 2686-2705.	2.1	38
20	Confinement effects in methanol to olefins catalysed by zeolites: A computational review. Frontiers of Chemical Science and Engineering, 2016, 10, 76-89.	2.3	22
21	Regulation of Framework Aluminum Siting and Acid Distribution in H-MCM-22 by Boron Incorporation and Its Effect on the Catalytic Performance in Methanol to Hydrocarbons. ACS Catalysis, 2016, 6, 2299-2313.	5.5	113
22	Methanol-to-olefin conversion over H-MCM-22 catalyst. Journal of Molecular Catalysis A, 2016, 411, 311-316.	4.8	14
23	Insights into the catalytic cycle and activity of methanol-to-olefin conversion over low-silica AlPO-34 zeolites with controllable BrÄ́,nsted acid density. Catalysis Science and Technology, 2017, 7, 607-618.	2.1	58
24	Implications of methanol disproportionation on catalyst lifetime for methanol-to-olefins conversion by HSSZ-13. Journal of Catalysis, 2017, 346, 154-160.	3.1	89
25	Effect of alkene co-feed on the MTO reactions over SAPO-34. Chemical Engineering Journal, 2017, 316, 187-195.	6.6	19
26	An assessment of hydrocarbon species in the methanol-to-hydrocarbon reaction over a ZSM-5 catalyst. Faraday Discussions, 2017, 197, 447-471.	1.6	34
27	New insights into catalyst deactivation and product distribution of zeolites in the methanol-to-hydrocarbons (MTH) reaction with methanol and dimethyl ether feeds. Catalysis Science and Technology, 2017, 7, 2700-2716.	2.1	106
28	Comparative study of MTO kinetics over SAPO-34 catalyst in fixed and fluidized bed reactors. Chemical Engineering Journal, 2017, 329, 35-44.	6.6	38
29	Direct Mechanism of the First Carbon–Carbon Bond Formation in the Methanolâ€ŧoâ€Hydrocarbons Process. Angewandte Chemie - International Edition, 2017, 56, 9039-9043.	7.2	128
30	Direct Mechanism of the First Carbon–Carbon Bond Formation in the Methanolâ€ŧoâ€Hydrocarbons Process. Angewandte Chemie, 2017, 129, 9167-9171.	1.6	29
31	lonothermal preparation of triclinic SAPO-34 and its catalytic performance in the MTO process. Catalysis Today, 2017, 296, 239-246.	2.2	18
32	Insights into the Activity and Deactivation of the Methanol-to-Olefins Process over Different Small-Pore Zeolites As Studied with Operando UV–vis Spectroscopy. ACS Catalysis, 2017, 7, 4033-4046.	5.5	122
33	Structure–deactivation relationships in zeolites during the methanol–to-hydrocarbons reaction: Complementary assessments of the coke content. Journal of Catalysis, 2017, 351, 33-48.	3.1	82
34	Effect of framework topology of SAPO catalysts on selectivity and deactivation profile in the methanol-to-olefins reaction. Journal of Catalysis, 2017, 352, 191-207.	3.1	72
35	Bifunctional Strategy Coupling Y ₂ O ₃ -Catalyzed Alkanal Decomposition with Methanol-to-Olefins Catalysis for Enhanced Lifetime. ACS Catalysis, 2017, 7, 4417-4422.	5.5	49
36	Flexible regulation of C 3 = /C 2 = ratio in methanol-to-hydrocarbons by delicate control of acidity of ZSM-5 catalyst. Chinese Chemical Letters, 2017, 28, 1318-1323.	4.8	15

#	Article	IF	CITATIONS
37	Microfibrous-Structured SS-fiber@meso-HZSM-5 Catalyst for Methanol-to-Propylene: Steam-Assisted Crystallization Synthesis and Insight into the Stability Enhancement. ACS Sustainable Chemistry and Engineering, 2017, 5, 1840-1853.	3.2	28
38	Unraveling the Mechanism of the Initiation Reaction of the Methanol to Olefins Process Using ab Initio and DFT Calculations. ACS Catalysis, 2017, 7, 7987-7994.	5.5	118
39	Neutron spectroscopy as a tool in catalytic science. Chemical Communications, 2017, 53, 12164-12176.	2.2	44
40	A Straightforward Descriptor for the Deactivation of Zeolite Catalyst H-ZSM-5. ACS Catalysis, 2017, 7, 8235-8246.	5.5	77
41	Conversion of Synthesis Gas to Light Olefins: Impact of Hydrogenation Activity of Methanol Synthesis Catalyst on the Hybrid Process Selectivity over Cr–Zn and Cu–Zn with SAPO-34. Industrial & Engineering Chemistry Research, 2017, 56, 13392-13401.	1.8	37
42	A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catalysis Science and Technology, 2017, 7, 4580-4598.	2.1	385
43	Impact of hierarchical pore structure on the catalytic performances of MFI zeolites modified by ZnO for the conversion of methanol to aromatics. Catalysis Science and Technology, 2017, 7, 3598-3612.	2.1	54
44	Hydrogen Transfer versus Methylation: On the Genesis of Aromatics Formation in the Methanol-To-Hydrocarbons Reaction over H-ZSM-5. ACS Catalysis, 2017, 7, 5773-5780.	5.5	102
45	Bifunctional Catalysts for One-Step Conversion of Syngas into Aromatics with Excellent Selectivity and Stability. CheM, 2017, 3, 334-347.	5.8	377
46	Complex relationship between SAPO framework topology, content and distribution of Si and catalytic behaviour in the MTO reaction. Catalysis Science and Technology, 2017, 7, 3892-3901.	2.1	22
47	Influence of the Reaction Temperature on the Nature of the Active and Deactivating Species During Methanol-to-Olefins Conversion over H-SAPO-34. ACS Catalysis, 2017, 7, 5268-5281.	5.5	95
48	Conversion of methanol to light olefins over Hâ€< scp>MCMâ€22 dealuminated with different methods. Journal of Chemical Technology and Biotechnology, 2017, 92, 1353-1361.	1.6	5
49	Time- and space-resolved study of the methanol to hydrocarbons (MTH) reaction – influence of zeolite topology on axial deactivation patterns. Faraday Discussions, 2017, 197, 421-446.	1.6	39
51	Production of Light Olefins from Methanol and Ethanol Using ZSM-5 Type Zeolite Catalysts. Journal of the Japan Petroleum Institute, 2017, 60, 263-276.	0.4	6
52	Nature and Location of Carbonaceous Species in a Composite HZSM-5 Zeolite Catalyst during the Conversion of Dimethyl Ether into Light Olefins. Catalysts, 2017, 7, 254.	1.6	40
53	Theoretical Insights into the Effect of the Framework on the Initiation Mechanism of the MTO Process. Catalysis Letters, 2018, 148, 1246-1253.	1.4	46
54	Spatiotemporal coke formation over zeolite ZSM-5 during the methanol-to-olefins process as studied with <i>operando</i> UV-vis spectroscopy: a comparison between H-ZSM-5 and Mg-ZSM-5. Catalysis Science and Technology, 2018, 8, 1632-1644.	2.1	55
55	Deactivation of Zeolite Catalyst H-ZSM-5 during Conversion of Methanol to Gasoline: Operando Time- and Space-Resolved X-ray Diffraction. Journal of Physical Chemistry Letters, 2018, 9, 1324-1328.	2.1	33

#	Article	IF	CITATIONS
56	In Situ Luminescence Thermometry To Locally Measure Temperature Gradients during Catalytic Reactions. ACS Catalysis, 2018, 8, 2397-2401.	5.5	91
57	Reactions of Dimethylether in Single Crystals of the Silicoaluminophosphate STA-7 Studied via Operando Synchrotron Infrared Microspectroscopy. Topics in Catalysis, 2018, 61, 199-212.	1.3	3
58	Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV–vis Spectroscopy. ACS Catalysis, 2018, 8, 2060-2070.	5.5	62
59	Mechanism of SAPO-34 catalyst deactivation in the course of MTO conversion in a slurry reactor. Catalysis Science and Technology, 2018, 8, 1564-1577.	2.1	24
60	Effect of reaction conditions on methanol to gasoline conversion over nanocrystal ZSM-5 zeolite. Catalysis Today, 2018, 314, 107-113.	2.2	21
61	Reaction Mechanism for Direct Cyclization of Linear C ₅ , C ₆ , and C ₇ Alkenes over Hâ€ITQâ€I 3 Zeolite Investigated Using Density Functional Theory. ChemPhysChem, 2018, 19, 496-503.	1.0	18
62	Effect of <i>n</i> -Butanol Cofeeding on the Methanol to Aromatics Conversion over Ga-Modified Nano H-ZSM-5 and Its Mechanistic Interpretation. ACS Catalysis, 2018, 8, 1352-1362.	5.5	88
63	Robust nickel cluster@Mes-HZSM-5 composite nanostructure with enhanced catalytic activity in the DTG reaction. Journal of Catalysis, 2018, 363, 26-33.	3.1	19
64	High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics. Journal of Catalysis, 2018, 362, 146-163.	3.1	120
65	Impact of post-synthetic treatments on unidirectional H-ZSM-22 zeolite catalyst: Towards improved clean MTG catalytic process. Catalysis Today, 2018, 299, 135-145.	2.2	21
66	Optimized Synthesis of ZSMâ€11 Catalysts using 1,8â€Diaminooctane as a Structureâ€Directing Agent. ChemPhysChem, 2018, 19, 529-537.	1.0	27
67	Effect of Some Technological Parameters on the Conversion of Dimethyl Ether to Light Olefins in a Slurry Reactor. Russian Journal of Applied Chemistry, 2018, 91, 1773-1778.	0.1	4
68	Room temperature methoxylation in zeolite H-ZSM-5: an <i>operando</i> DRIFTS/mass spectrometric study. Chemical Communications, 2018, 54, 12875-12878.	2.2	25
69	Fast detection and structural identification of carbocations on zeolites by dynamic nuclear polarization enhanced solid-state NMR. Chemical Science, 2018, 9, 8184-8193.	3.7	38
70	Kinetic Modeling of Catalytic Olefin Cracking and Methanol-to-Olefins (MTO) over Zeolites: A Review. Catalysts, 2018, 8, 626.	1.6	33
71	Understanding of the dissolution–crystallization fabrication strategy towards macro/microporous ZSM-5 single crystals. CrystEngComm, 2018, 20, 6786-6794.	1.3	10
72	Insight into the Deactivation and Regeneration of HZSM-5 Zeolite Catalysts in the Conversion of Dimethyl Ether to Olefins. Industrial & Engineering Chemistry Research, 2018, 57, 13689-13702.	1.8	56
73	Hydrogen transfer versus olefins methylation: On the formation trend of propene in the methanol-to-hydrocarbons reaction over Beta zeolites. Journal of Catalysis, 2018, 368, 248-260.	3.1	22

#	Article	IF	CITATIONS
74	Kinetic modeling of methanol to olefins process over SAPOâ€34 catalyst based on the dualâ€cycle reaction mechanism. AICHE Journal, 2019, 65, 662-674.	1.8	26
75	Co-reaction of methanol with butene over a high-silica H-ZSM-5 catalyst. Journal of Catalysis, 2018, 367, 315-325.	3.1	16
76	Deconvoluting the Competing Effects of Zeolite Framework Topology and Diffusion Path Length on Methanol to Hydrocarbons Reaction. ACS Catalysis, 2018, 8, 11042-11053.	5.5	69
77	Topology-dependent hydrocarbon transformations in the methanol-to-hydrocarbons reaction studied by <i>operando</i> UV-Raman spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 26580-26590.	1.3	18
78	Bridging the Gap between the Direct and Hydrocarbon Pool Mechanisms of the Methanolâ€ŧoâ€Hydrocarbons Process. Angewandte Chemie - International Edition, 2018, 57, 8095-8099.	7.2	104
79	Mechanistic insights into the catalytic role of various acid sites on ZSM-5 zeolite in the carbonylation of methanol and dimethyl ether. Catalysis Science and Technology, 2018, 8, 3193-3204.	2.1	29
80	BrÃ,nsted/Lewis acid sites synergistically promote the initial C–C bond formation in the MTO reaction. Chemical Science, 2018, 9, 6470-6479.	3.7	56
81	Deactivation kinetics with activity coefficient of the methanol to aromatics process over modified ZSM-5. Fuel, 2018, 233, 283-290.	3.4	25
82	New insights about coke deposition in methanol-to-DME reaction over MOR-, MFI- and FER-type zeolites. Journal of Industrial and Engineering Chemistry, 2018, 68, 196-208.	2.9	41
83	Evolution of C–C Bond Formation in the Methanol-to-Olefins Process: From Direct Coupling to Autocatalysis. ACS Catalysis, 2018, 8, 7356-7361.	5.5	54
84	Tuning Zeolite Properties for a Highly Efficient Synthesis of Propylene from Methanol. Chemistry - A European Journal, 2018, 24, 13136-13149.	1.7	35
85	Small-Pore Zeolites: Synthesis and Catalysis. Chemical Reviews, 2018, 118, 5265-5329.	23.0	534
86	Deactivation Kinetics of Solid Acid Catalyst with Laterally Interacting Protons. ACS Catalysis, 2018, 8, 9016-9033.	5.5	13
87	Low crystalline 2D CoSx derived from cobalt carbonate hydroxide by sulfidation at room temperature for supercapacitor. Electrochimica Acta, 2018, 286, 14-21.	2.6	17
88	A Novel Raman Setup Based on Magnetic-Driven Rotation of Sample. Topics in Catalysis, 2018, 61, 1491-1498.	1.3	22
89	Olefin methylation and cracking reactions in H-SSZ-13 investigated with <i>ab initio</i> and DFT calculations. Catalysis Science and Technology, 2018, 8, 4420-4429.	2.1	26
90	Investigating the Coke Formation Mechanism of H-ZSM-5 during Methanol Dehydration Using Operando UV–Raman Spectroscopy. ACS Catalysis, 2018, 8, 9207-9215.	5.5	64
91	Bridging the Gap between the Direct and Hydrocarbon Pool Mechanisms of the Methanolâ€ŧoâ€Hydrocarbons Process. Angewandte Chemie, 2018, 130, 8227-8231.	1.6	17

#	Article	IF	CITATIONS
92	Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nature Catalysis, 2018, 1, 398-411.	16.1	507
93	The effects of MTG catalysis on methanol mobility in ZSM-5. Catalysis Science and Technology, 2018, 8, 3304-3312.	2.1	23
94	Study of the coke distribution in MTO fluidized bed reactor with MPâ€₽IC approach. Canadian Journal of Chemical Engineering, 2019, 97, 500-510.	0.9	19
95	The template-assisted zinc ion incorporation in SAPO-34 and the enhanced ethylene selectivity in MTO reaction. Journal of Energy Chemistry, 2019, 32, 174-181.	7.1	21
96	Deactivation of Zeolites and Zeotypes in Methanol-to-Hydrocarbons Catalysis: Mechanisms and Circumvention. Accounts of Chemical Research, 2019, 52, 2647-2656.	7.6	65
97	Influence of Precursors on the Induction Period and Transition Regime of Dimethyl Ether Conversion to Hydrocarbons over ZSM-5 Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 16479-16488.	1.8	9
98	Surface enhanced dynamic nuclear polarization solid-state NMR spectroscopy sheds light on BrÃ,nsted–Lewis acid synergy during the zeolite catalyzed methanol-to-hydrocarbon process. Chemical Science, 2019, 10, 8946-8954.	3.7	30
99	Dual Effects of Zinc Species on Active Sites in Bifunctional Composite Catalysts Zr/H[Zn]ZSM-5 for Alkylation of Benzene with Syngas. Journal of Physical Chemistry C, 2019, 123, 18993-19004.	1.5	23
100	Kinetic and Deactivation Differences Among Methanol, Dimethyl Ether and Chloromethane as Stock for Hydrocarbons. ChemCatChem, 2019, 11, 5444-5456.	1.8	11
101	First molecule with carbon–carbon bond in methanol-to-olefins process. Chemical Physics Letters, 2019, 737, 136844.	1.2	11
102	A Supramolecular View on the Cooperative Role of BrÃ,nsted and Lewis Acid Sites in Zeolites for Methanol Conversion. Journal of the American Chemical Society, 2019, 141, 14823-14842.	6.6	80
103	From CO ₂ methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. Chemical Society Reviews, 2019, 48, 205-259.	18.7	205
104	Boosting the turnover number of core–shell Al-ZSM-5@B-ZSM-5 zeolite for methanol to propylene reaction by modulating its gradient acid site distribution and low consumption diffusion. Catalysis Science and Technology, 2019, 9, 659-671.	2.1	33
105	Spray-dried zeotype/clay nanocatalyst for methanol to light olefins in fluidized bed reactor: Comparison of active and non-active filler. Applied Clay Science, 2019, 170, 70-85.	2.6	19
106	Unraveling the Homologation Reaction Sequence of the Zeoliteâ€Catalyzed Ethanolâ€ŧoâ€Hydrocarbons Process. Angewandte Chemie - International Edition, 2019, 58, 3908-3912.	7.2	38
107	Unraveling the Homologation Reaction Sequence of the Zeoliteâ€Catalyzed Ethanolâ€ŧoâ€Hydrocarbons Process. Angewandte Chemie, 2019, 131, 3948-3952.	1.6	8
108	Dynamic processing of dimethyl ether and methanol to gasoline (DMTG): Investigation of kinetic transitions at fluctuating workloads under isothermal conditions. Chemical Engineering Journal, 2019, 373, 1295-1308.	6.6	2
109	New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO ₂ into hydrocarbon chemicals and fuels. Chemical Society Reviews, 2019, 48, 3193-3228.	18.7	742

#	Article	IF	CITATIONS
110	Elementary Steps in the Formation of Hydrocarbons from Surface Methoxy Groups in HZSM-5 Seen by Synchrotron Infrared Microspectroscopy. ACS Catalysis, 2019, 9, 6564-6570.	5.5	48
111	Role of Acetaldehyde in the Roadmap from Initial Carbon–Carbon Bonds to Hydrocarbons during Methanol Conversion. ACS Catalysis, 2019, 9, 6491-6501.	5.5	60
112	Mechanistic Basis for Effects of High-Pressure H ₂ Cofeeds on Methanol-to-Hydrocarbons Catalysis over Zeolites. ACS Catalysis, 2019, 9, 6407-6414.	5.5	48
113	Dimethyl ether carbonylation over zeolites. Journal of Energy Chemistry, 2019, 36, 51-63.	7.1	61
114	Identification of different carbenium ion intermediates in zeolites with identical chabazite topology via13C–13C through-bond NMR correlations. RSC Advances, 2019, 9, 12415-12418.	1.7	11
115	Multiscale Mechanistic Insights of Shaped Catalyst Body Formulations and Their Impact on Catalytic Properties. ACS Catalysis, 2019, 9, 4792-4803.	5.5	72
116	Verifying the olefin formation mechanism of the methanol-to-hydrocarbons reaction over H-ZSM-48. Catalysis Science and Technology, 2019, 9, 2132-2143.	2.1	13
117	Identification of the Reaction Sequence of the MTO Initiation Mechanism Using Ab Initio-Based Kinetics. Journal of the American Chemical Society, 2019, 141, 5908-5915.	6.6	64
118	Transient kinetic studies and microkinetic modeling of primary olefin formation from dimethyl ether over ZSMâ€5 catalysts. International Journal of Chemical Kinetics, 2019, 51, 528-537.	1.0	17
119	Tuning the product selectivity of SAPO-18 catalysts in MTO reaction via cavity modification. Chinese Journal of Catalysis, 2019, 40, 477-485.	6.9	14
120	Direct and Oriented Conversion of CO ₂ into Valueâ€Added Aromatics. Chemistry - A European Journal, 2019, 25, 5149-5153.	1.7	89
121	Kinetic and Deactivation Differences Among Methanol, Dimethyl Ether and Chloromethane as Stock for Hydrocarbons. ChemCatChem, 2019, 11, 5406-5406.	1.8	0
122	21. Fischer–Tropsch synthesis using CO ₂ . , 2019, , 413-432.		1
123	What Is Measured When Measuring Acidity in Zeolites with Probe Molecules?. ACS Catalysis, 2019, 9, 1539-1548.	5.5	111
124	Origin and evolution of the initial hydrocarbon pool intermediates in the transition period for the conversion of methanol to olefins over H-ZSM-5 zeolite. Journal of Catalysis, 2019, 369, 382-395.	3.1	72
125	Investigation of ZSM-5 catalysts for dimethylether conversion using inelastic neutron scattering. Applied Catalysis A: General, 2019, 569, 1-7.	2.2	17
126	Mesoporogenâ€Free Synthesis of Highâ€Silica Hierarchically Structured ZSMâ€5 Zeolites and their Superior Performance for the Methanolâ€ŧoâ€Propylene Reaction. European Journal of Inorganic Chemistry, 2019, 2019, 51-58.	1.0	13
127	Novel Zeolite Catalysts for Methanol to Hydrocarbon Transformation. , 2019, , 321-356.		Ο

#	Article	IF	CITATIONS
128	A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation. Catalysis Today, 2019, 330, 61-75.	2.2	214
129	Synthesis of mesoporous ZSM-5 zeolite encapsulated in an ultrathin protective shell of silicalite-1 for MTH conversion. Microporous and Mesoporous Materials, 2020, 292, 109730.	2.2	44
130	Slowing down the deactivation of H-ZSM-5 zeolite catalyst in the methanol-to-olefin (MTO) reaction by P or Zn modifications. Catalysis Today, 2020, 348, 243-256.	2.2	59
131	Mechanism of Methanolâ€ŧoâ€hydrocarbon Reaction over Zeolites: A solidâ€state NMR Perspective. ChemCatChem, 2020, 12, 965-980.	1.8	33
133	Highly shapeâ€selective Znâ€P/HZSMâ€5 zeolite catalyst for methanol conversion to light aromatics. Applied Organometallic Chemistry, 2020, 34, e5932.	1.7	8
134	Review of Catalyst Design and Mechanistic Studies for the Production of Olefins from Anthropogenic CO ₂ . ACS Catalysis, 2020, 10, 14258-14282.	5.5	66
135	Two-in-One Catalyst Turns Carbon Dioxide in Base Chemicals. CheM, 2020, 6, 3167-3169.	5.8	1
136	Influence of Topology and BrÃ,nsted Acid Site Presence on Methanol Diffusion in Zeolites Beta and MFI. Catalysts, 2020, 10, 1342.	1.6	11
137	Elucidating Zeolite Channel Geometry–Reaction Intermediate Relationships for the Methanolâ€ŧoâ€Hydrocarbon Process. Angewandte Chemie - International Edition, 2020, 59, 20024-20030.	7.2	30
138	Reactor–Regenerator System for the Dimethyl Ether-to-Olefins Process over HZSM-5 Catalysts: Conceptual Development and Analysis of the Process Variables. Industrial & Engineering Chemistry Research, 2020, 59, 14689-14702.	1.8	27
139	Direct conversion of syngas into light aromatics over Cu-promoted ZSM-5 with ceria–zirconia solid solution. Catalysis Science and Technology, 2020, 10, 6562-6572.	2.1	18
140	Elucidating Zeolite Channel Geometry–Reaction Intermediate Relationships for the Methanolâ€ŧoâ€Hydrocarbon Process. Angewandte Chemie, 2020, 132, 20199-20205.	1.6	3
141	Influence of Acidity on the Methanol-to-DME Reaction in Zeotypes: A First Principles-Based Microkinetic Study. Journal of Physical Chemistry C, 2020, 124, 14658-14663.	1.5	21
142	Insight into the effects of confined hydrocarbon species on the lifetime of methanol conversion catalysts. Nature Materials, 2020, 19, 1081-1087.	13.3	52
143	Non-oxidative dehydrogenation of isobutane over supported vanadium oxide: nature of the active sites and coke formation. Catalysis Science and Technology, 2020, 10, 6139-6151.	2.1	12
144	Hierarchically Structured Zeolites: From Design to Application. Chemical Reviews, 2020, 120, 11194-11294.	23.0	328
145	Activation of n-pentane while prolonging HZSM-5 catalyst lifetime during its combined reaction with methanol or dimethyl ether. Catalysis Today, 2022, 383, 320-329.	2.2	19
146	How Accurately Do Approximate Density Functionals Predict Trends in Acidic Zeolite Catalysis?. Journal of Physical Chemistry Letters, 2020, 11, 4305-4310.	2.1	27

		CITATION REPORT		
#	Article		IF	Citations
147	Deactivation Kinetics of the Catalytic Alkylation Reaction. ACS Catalysis, 2020, 10, 698	38-7006.	5.5	9
148	Catalytic conversion of ethane to valuable products through non-oxidative dehydrogen dehydroaromatization. RSC Advances, 2020, 10, 21427-21453.	ation and	1.7	81
149	The Effect of Co-feeding Methyl Acetate on the H-ZSM5 Catalysed Methanol-to-Hydroc Topics in Catalysis, 2020, 63, 370-377.	arbons Reaction.	1.3	6
150	On the conversion of CO2 to value added products over composite PdZn and H-ZSM-5 Zn over Pd, a compromise or a penalty?. Catalysis Science and Technology, 2020, 10, 4		2.1	13
151	Insight into the Methylation of Alkenes and Aromatics with Methanol over Zeolite Cata Scaling Relations. Journal of Physical Chemistry C, 2020, 124, 13789-13798.	lysts by Linear	1.5	11
152	Effect of n-butanol cofeeding on the deactivation of methanol to olefin conversion ove HZSM-5: A mechanism and kinetic study. Chemical Engineering Science, 2020, 226, 11		1.9	10
153	Methanol loading dependent methoxylation in zeolite H-ZSM-5. Chemical Science, 202	0, 11, 6805-6814.	3.7	21
154	Effects of crystal size on methanol to hydrocarbon conversion over single crystals of ZS by synchrotron infrared microspectroscopy. Physical Chemistry Chemical Physics, 2020 18849-18859.	SM-5 studied), 22,	1.3	10
155	Contrasting Arene, Alkene, Diene, and Formaldehyde Hydrogenation in H-ZSM-5, H-SSZ Frameworks during MTO. ACS Catalysis, 2020, 10, 4593-4607.	'-13, and H-SAPO-34	5.5	38
156	Methylcyclopentenyl Cations Linking Initial Stage and Highly Efficient Stage in Methanol-to-Hydrocarbon Process. ACS Catalysis, 2020, 10, 4510-4516.		5.5	30
157	Quenching the Deactivation in the Methanol-to-Olefin Reaction by Using Tandem Fixed and SAPO-18 Catalysts. Industrial & amp; Engineering Chemistry Research, 2020, 59, 13	l-Beds of ZSM-5 3892-13905.	1.8	12
158	Ï€â€Interactions between Cyclic Carbocations and Aromatics Cause Zeolite Deactivation Methanolâ€toâ€Hydrocarbon Conversion. Angewandte Chemie, 2020, 132, 7265-7265		1.6	7
159	Lower olefins from methane: recent advances. Russian Chemical Reviews, 2020, 89, 19	1-224.	2.5	19
160	Ï€â€Interactions between Cyclic Carbocations and Aromatics Cause Zeolite Deactivation Methanolâ€toâ€Hydrocarbon Conversion. Angewandte Chemie - International Edition,		7.2	35
161	Formation and Fate of Formaldehyde in Methanolâ€ŧoâ€Hydrocarbon Reaction: In Situ Radiation Photoionization Mass Spectrometry Study. Angewandte Chemie, 2020, 132,		1.6	2
162	Formation and Fate of Formaldehyde in Methanolâ€ŧoâ€Hydrocarbon Reaction: In Situ Radiation Photoionization Mass Spectrometry Study. Angewandte Chemie - Internatior 59, 4873-4878.	Synchrotron nal Edition, 2020,	7.2	50
163	A temporal analysis of products (TAP) study of C2-C4 alkene reactions with a well-defir methylating species on ZSM-22 zeolite. Journal of Catalysis, 2020, 385, 300-312.	ied pool of	3.1	23
164	Insight into the Effects of Water on the Ethene to Aromatics Reaction with HZSM-5. AC 2020, 10, 5288-5298.	CS Catalysis,	5.5	39

#	Article	IF	CITATIONS
165	Experimental and DFT Calculated IR Spectra of Guests in Zeolites: Acyclic Olefins and Host–Guest Interactions. Journal of Physical Chemistry C, 2020, 124, 10561-10572.	1.5	8
166	Onset of Propene Oligomerization Reactivity in ZSM-5 Studied by Inelastic Neutron Scattering Spectroscopy. ACS Omega, 2020, 5, 7762-7770.	1.6	9
167	Neutron spectroscopy studies of methanol to hydrocarbons catalysis over ZSM-5. Catalysis Today, 2021, 368, 20-27.	2.2	7
168	Fluoride-free synthesis of mesoporous [Al]-[B]-ZSM-5 using cetyltrimethylammonium bromide and methanol-to-olefin activity with high propene selectivity. Applied Catalysis A: General, 2021, 610, 117915.	2.2	8
169	Regulating Al distribution of ZSM-5 by Sn incorporation for improving catalytic properties in methanol to olefins. Applied Catalysis B: Environmental, 2021, 280, 119391.	10.8	61
170	Enhancing propene selectivity in methanol and/or butene conversion by regulating channel systems over ZSM-5/ZSM-48 composite zeolites. Microporous and Mesoporous Materials, 2021, 312, 110803.	2.2	8
171	Conversion of syngas into light olefins over bifunctional ZnCeZrO/SAPO-34 catalysts: regulation of the surface oxygen vacancy concentration and its relation to the catalytic performance. Catalysis Science and Technology, 2021, 11, 338-348.	2.1	25
172	Combined Ex and In Situ Measurements Elucidate the Dynamics of Retained Species in ZSMâ€5 and SAPOâ€18 Catalysts Used in the Methanolâ€ŧoâ€Olefins Reaction. Chemistry - A European Journal, 2021, 27, 6719-6731.	1.7	7
173	Density functional theory calculations of diffusion barriers of organic molecules through the 8-ring of H-SSZ-13. Chemical Physics, 2021, 541, 111033.	0.9	9
174	Cooperative catalytically active sites for methanol activation by single metal ion-doped H-ZSM-5. Chemical Science, 2021, 12, 210-219.	3.7	15
175	Finding the active species: The conversion of methanol to aromatics over Zn-ZSM-5/alumina shaped catalysts. Journal of Catalysis, 2021, 394, 416-428.	3.1	29
176	Unique structure of fibrous ZSM-5 catalyst expedited prolonged hydrogen atom restoration for selective production of propylene from methanol. International Journal of Hydrogen Energy, 2021, 46, 24652-24665.	3.8	25
177	The intrinsic effect of co-feeding water on the formation of active/deactivating species in the methanol-to-hydrocarbons reaction on ZSM-5 zeolite. Catalysis Science and Technology, 2021, 11, 1269-1281.	2.1	8
178	Solid acid catalysis. Part II, Catalytic chemistry of proton activation. , 2021, , .		0
179	Studies of propene conversion over H-ZSM-5 demonstrate the importance of propene as an intermediate in methanol-to-hydrocarbons chemistry. Catalysis Science and Technology, 2021, 11, 2924-2938.	2.1	7
180	Improved lifetime and stability of copper species in hierarchical, copper-incorporated CuSAPO-34 verified by catalytic model reactions. Physical Chemistry Chemical Physics, 2021, 23, 16785-16794.	1.3	2
181	Synthesis and application of (nano) zeolites. , 2021, , .		2
182	Solid acid catalysis; part I, the zeolite protonic site. , 2021, , .		1

ARTICLE IF CITATIONS Effect of Impurities on the Initiation of the Methanol-to-Olefins Process: Kinetic Modeling Based on 183 1.4 4 Ab Initio Rate Constants. Catalysis Letters, 2021, 151, 2595-2602. Designing the right protection. Science, 2021, 371, 577-577. 184 6.0 185 Dynamic Activation of C1 Molecules Evoked by Zeolite Catalysis. ACS Central Science, 2021, 7, 681-687. 5.3 14 Kinetic Evaluation of Deactivation Pathways in Methanol-to-Hydrocarbon Catalysis on HZSM-5 with 186 Formaldehyde, Olefinic, Dieneic, and Aromatic Co-Feeds. ACS Catalysis, 2021, 11, 3628-3637. Highly Selective and Stable Production of Aromatics via High-Pressure Methanol Conversion. ACS 187 5.5 39 Catalysis, 2021, 11, 3602-3613. Influence of Confinement on Barriers for Alkoxide Formation in Acidic Zeolites. ChemCatChem, 2021, 188 1.8 13, 2451-2458. Methanol-to-olefin conversion over ZSM-5: influence of zeolite chemical composition and 189 1.5 2 experimental conditions on propylene formation. Chemical Engineering Communications, 0, , 1-13. Direct aromatization of CO2 via combined CO2 hydrogenation and zeolite-based acid catalysis. Journal 3.3 of CO2 Utilization, 2021, 45, 101405. Catalysts and shape selective catalysis in the methanol-to-olefin (MTO) reaction. Journal of Catalysis, 191 3.1 55 2021, 396, 23-31. Two-dimensional zeolites in catalysis: current state-of-the-art and perspectives. Catalysis Reviews -5.7 Science and Engineering, 2021, 63, 234-301. Oxide–Zeolite-Based Composite Catalyst Concept That Enables Syngas Chemistry beyond 193 23.0 180 Fischer–Tropsch Synthesis. Chemical Reviews, 2021, 121, 6588-6609. New Spectroscopic Insight into the Deactivation of a ZSMâ€5 Methanolâ€toâ€Hydrocarbons Catalyst. 194 1.8 ChemĊatChem, 2021, 13, 2625-2633. Implications of Coâ€Feeding Water on the Growth Mechanisms of Retained Species on a SAPOâ€18 Catalyst 195 1.8 11 during the Methanolâ€toâ€Olefins Reaction. ChemCatChem, 2021, 13, 3140-3154. Visualizing Element Migration over Bifunctional Metalâ€Zeolite Catalysts and its Impact on Catalysis. Angewandte Chemie, 2021, 133, 17876-17884. 1.6 Dimethyl ether conversion to light olefins in slurry and fixedâ€bed reactors: coke nature and location 197 1.6 3 on Mg/ZSM â€5 catalyst. Journal of Chemical Technology and Biotechnology, 2021, 96, 2696-2703. Spectroscopic insight into carbon speciation and removal on a Cu/BEA catalyst during renewable high-octane hydrocarbon synthesis. Applied Catalysis B: Environmental, 2021, 287, 119925. Aromatics Production via Methanol-Mediated Transformation Routes. ACS Catalysis, 2021, 11, 7780-7819. 199 5.592 Visualizing Element Migration over Bifunctional Metalâ€Zeolite Catalysts and its Impact on Catalysis. 99 Angewandte Chemie - International Edition, 2021, 60, 17735-17743.

#	Article	IF	CITATIONS
201	A Spectroscopic Paradox: The Interaction of Methanol with ZSM-5 at Room Temperature. Topics in Catalysis, 2021, 64, 672-684.	1.3	5
202	Trends in the Reactivity of Proximate Aluminum Sites in H-SSZ-13. Journal of Physical Chemistry C, 2021, 125, 16508-16515.	1.5	7
203	Synthesis and characterization of BZSM-5 and its catalytic performance in the methanol to hydrocarbons reaction. Chinese Journal of Chemical Engineering, 2021, 35, 196-203.	1.7	3
204	Catalytic roles of the acid sites in different pore channels of H-ZSM-5 zeolite for methanol-to-olefins conversion. Chinese Journal of Catalysis, 2021, 42, 1126-1136.	6.9	23
205	Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion. Nature Communications, 2021, 12, 4661.	5.8	32
206	Mechanistic insights into the conversion of dimethyl ether over ZSM-5 catalysts: A combined temperature-programmed surface reaction and microkinetic modelling study. Chemical Engineering Science, 2021, 239, 116620.	1.9	9
207	Kinetics of Direct Olefin Synthesis from Syngas over Mixed Beds of Zn–Zr Oxides and SAPO-34. Industrial & Engineering Chemistry Research, 2021, 60, 14166-14175.	1.8	5
208	The first carbon-carbon bond formation mechanism in methanol-to-hydrocarbons process over chabazite zeolite. CheM, 2021, 7, 2415-2428.	5.8	24
209	Hydrothermally modified nanosheet ZSM-5 with MnOx nanoparticles and its high MTP performance. Microporous and Mesoporous Materials, 2021, 326, 111374.	2.2	6
210	A quantitative multiscale perspective on primary olefin formation from methanol. Physical Chemistry Chemical Physics, 2021, 23, 21437-21469.	1.3	8
212	Insight into Carbocation Induced Nonâ€covalent Interactions in Methanolâ€toâ€olefins Reaction over ZSMâ€5 Zeolite from Solidâ€State NMR Spectroscopy. Angewandte Chemie, 0, , .	1.6	2
213	How Many Molecules Can Fit in a Zeolite Pore? Implications for the Hydrocarbon Pool Mechanism of the Methanol-to-Hydrocarbons Process. Catalysts, 2021, 11, 1204.	1.6	3
214	Insight into Carbocationâ€Induced Noncovalent Interactions in the Methanolâ€toâ€Olefins Reaction over ZSMâ€5 Zeolite by Solidâ€State NMR Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 26847-26854.	7.2	9
215	Review on COx-free hydrogen from methane cracking: Catalysts, solar energy integration and applications. Energy Conversion and Management: X, 2021, 12, 100117.	0.9	4
216	Nano-scale insights regarding coke formation in zeolite SSZ-13 subject to the methanol-to-hydrocarbons reaction. Catalysis Science and Technology, 2022, 12, 1220-1228.	2.1	13
217	Site-specific scaling relations observed during methanol-to-olefin conversion over ZSM-5 catalysts. Chemical Engineering Science, 2022, 251, 117424.	1.9	8
218	Pressurized ex-situ catalytic co-pyrolysis of polyethylene and lignin: Efficient BTEX production and process mechanism analysis. Chemical Engineering Journal, 2022, 431, 134122.	6.6	47
219	Streamlining the estimation of kinetic parameters using periodic reaction conditions: The methanol-to-hydrocarbon reaction as a case study. Chemical Engineering Journal, 2022, 435, 134800.	6.6	1

#	Article	IF	CITATIONS
220	Trace Compounds Confined in SAPO-34 and a Probable Evolution Route of Coke in the MTO Process. ACS Omega, 2022, 7, 3277-3283.	1.6	9
223	The concept of active site in heterogeneous catalysis. Nature Reviews Chemistry, 2022, 6, 89-111.	13.8	218
224	The intricacies of the "steady-state―regime in methanol-to-hydrocarbon experimentation over H-ZSM-5. Catalysis Science and Technology, 2022, 12, 855-868.	2.1	6
225	MAPO-18 Catalysts for the Methanol to Olefins Process: Influence of Catalyst Acidity in a High-Pressure Syngas (CO and H ₂) Environment. ACS Catalysis, 2022, 12, 1520-1531.	5.5	23
226	Carbene-like reactivity of methoxy groups in a single crystal SAPO-34 MTO catalyst. Catalysis Science and Technology, 2022, 12, 2289-2305.	2.1	4
227	Effective conversion of CO ₂ into light olefins over a bifunctional catalyst consisting of La-modified ZnZrO _{<i>x</i>} oxide and acidic zeolite. Catalysis Science and Technology, 2022, 12, 2566-2577.	2.1	15
228	Plate-Like ZSM-5 Zeolites as Robust Catalysts for the Cracking of Hydrocarbons. ACS Applied Materials & Interfaces, 2022, 14, 11415-11424.	4.0	20
229	Effect of Preparation Method on the Catalytic Performance of HZSM-5 Zeolite Catalysts in the MTH Reaction. Materials, 2022, 15, 2206.	1.3	5
230	Catalytic Activation of Polyethylene Model Compounds Over Metalâ€Exchanged Beta Zeolites. ChemSusChem, 2022, 15, .	3.6	5
231	Spectro-kinetics of the methanol to hydrocarbons reaction combining online product analysis with UV–vis and FTIR spectroscopies throughout the space time evolution. Journal of Catalysis, 2022, 408, 115-127.	3.1	13
232	Kinetics on the Integration of Methanol Aromatization with Raffinate Oil over ZSM-5/ZSM-11 Zeolite. Industrial & Engineering Chemistry Research, 2021, 60, 18293-18303.	1.8	2
233	Synthesis and Applications of SAPOâ€34 Molecular Sieves. Chemistry - A European Journal, 2022, 28, e202102787.	1.7	10
234	Catalyst sites and active species in the early stages of MTO conversion over cobalt AlPO-18 followed by IR spectroscopy. Catalysis Science and Technology, 2022, 12, 2775-2792.	2.1	8
235	Machine learning potential era of zeolite simulation. Chemical Science, 2022, 13, 5055-5068.	3.7	15
236	Theoretical investigation of the olefin cycle in H-SSZ-13 for the ethanol-to-olefins process using <i>ab initio</i> calculations and kinetic modeling. Catalysis Science and Technology, 2022, 12, 3311-3321.	2.1	2
238	Unraveling the morphological evolution mechanism of solid sulfur species in lithium-sulfur batteries with operando light microscopy. Journal of Energy Chemistry, 2022, 73, 460-468.	7.1	6
239	A scanning pulse reaction technique for transient analysis of the methanol-to-hydrocarbons reaction. Catalysis Today, 2023, 417, 113740.	2.2	4
240	Controlling diffusion resistance, selectivity and deactivation of ZSM-5 catalysts by crystal thickness and defects. Journal of Catalysis, 2022, 410, 320-332.	3.1	13

ARTICLE IF CITATIONS # An integrated approach to the key parameters in methanol-to-olefins reaction catalyzed by MFI/MEL 241 6.9 6 zeolite materials. Chinese Journal of Catalysis, 2022, 43, 1879-1893. "Znalcrox&Hzsm-5―Bifunctional Catalyst for One-Step Alkylation of Naphthalene and Syngas. 242 0.4 SSRN Electronic Journal, 0, , . Recent advances in the routes and catalysts for ethanol synthesis from syngas. Chemical Society 243 18.7 40 Reviews, 2022, 51, 5606-5659. Conversion of dimethyl ether to lower olefines. AIP Conference Proceedings, 2022, , . 244 0.3 Recent progress on MTO reaction mechanisms and regulation of acid site distribution in the zeolite 245 2.9 20 framework. Chem Catalysis, 2022, 2, 1657-1685. Oxygenate-based routes regulate syngas conversion over oxide–zeolite bifunctional catalysts. Nature 16.1 Catalysis, 2022, 5, 594-604. Visible-Light-Driven C-C Coupling Over Plasmonic Catalysts for Photothermal Mto Reaction. SSRN 247 0.4 0 Electronic Journal, 0, , . Elucidation of radical- and oxygenate-driven paths in zeolite-catalysed conversion of methanol and 248 16.1 methyl chloride to hydrocarbons. Nature Catalysis, 2022, 5, 605-614. 249 Zeolite facilitates selective olefins production. Nature Nanotechnology, 0, , . 15.6 0 Atomic imaging of zeolite-confined single molecules by electron microscopy. Nature, 2022, 607, 13.7 49 703-707. Evaluating catalytic (gasâ€"solid) spectroscopic cells as intrinsic kinetic reactors: 251 3 6.6 Methanol-to-hydrocarbon reaction as a case study. Chemical Engineering Journal, 2022, 450, 137865. Benchmarking Cu/BEA and HBEA catalysts for high-octane gasoline synthesis. Applied Catalysis A: 2.2 General, 2022, 643, 118799. Ketenes in the Induction of the Methanolâ€toâ€Olefins Process. Angewandte Chemie, 2022, 134, . 253 1.6 3 First-Generation Organic Reaction Intermediates in Zeolite Chemistry and Catalysis. Chemical Reviews, 254 23.0 2022, 122, 14275-14345. Ketenes in the Induction of the Methanolâ€toâ€Olefins Process. Angewandte Chemie - International 255 7.2 11 Edition, 2022, 61, . Conversion of methanol to hydrocarbons over H-MCM-22 zeolite: deactivation behaviours related to acid density and distribution. Catalysis Science and Technology, 2022, 12, 6268-6284. Impact of Acid Site Concentration and Temperature on the Operating Regime, Activity and Selectivity in 257 0.4 0 Methanol-to-Olefins Conversion Over H-Zsm-5. SSRN Electronic Journal, Ö, , . Coking and decoking chemistry for resource utilization of polycyclic aromatic hydrocarbons (PAHs) 7.1 and low-carbon process. Journal of Energy Chemistry, 2023, 76, 105-116.

#	Article	IF	CITATIONS
259	"ZnAlCrOx&HZSM-5―bifunctional catalyst for one-step alkylation of naphthalene and syngas. Fuel, 2023, 332, 126093.	3.4	0
260	Real-time regeneration of a working zeolite monitored <i>via operando</i> X-ray diffraction and crystallographic imaging: how coke flees the MFI framework. Dalton Transactions, 2022, 51, 16845-16851.	1.6	8
261	Detecting Cage Crossing and Filling Clusters of Magnesium and Carbon Atoms in Zeolite SSZ-13 with Atom Probe Tomography. Jacs Au, 2022, 2, 2501-2513.	3.6	3
262	Directional Construction of Active Naphthalenic Species within SAPO-34 Crystals toward More Efficient Methanol-to-Olefin Conversion. Journal of the American Chemical Society, 2022, 144, 21408-21416.	6.6	8
263	Combining Quasielastic Neutron Scattering and Molecular Dynamics to Study Methane Motions in ZSM-5. Journal of Chemical Physics, 0, , .	1.2	1
264	Impact of acid site concentration and temperature on the operating regime, activity and selectivity in methanol-to-olefins conversion over H-ZSM-5. Applied Catalysis A: General, 2022, 648, 118918.	2.2	4
265	Zeolite Nanocrystals (MOR, EU-1, and ZSM-12) Synthesized Using a Versatile Diquaternary Ammonium Template as Robust Catalysts. ACS Applied Nano Materials, 2022, 5, 16862-16871.	2.4	5
266	Counting the Acid Sites in a Commercial ZSM-5 Zeolite Catalyst. ACS Physical Chemistry Au, 2023, 3, 74-83.	1.9	4
267	The effects of CO co-feed on the catalytic performance of Methanol-to-Hydrocarbons conversion on HZSM-5. Chemical Engineering Journal, 2023, 456, 140867.	6.6	3
268	Untangling Framework Confinements: A Dynamical Study on Bulky Aromatic Molecules in MFI Zeolites. ACS Catalysis, 2022, 12, 15288-15297.	5.5	1
269	Evaluating the Role of Descriptor- and Spectator-Type Reaction Intermediates During the Early Phases of Zeolite Catalysis. ACS Catalysis, 2022, 12, 15463-15500.	5.5	14
270	Mechanisms for Conversion of Oxygenates to Light Olefins over Nanozeolite Catalysts. Petroleum Chemistry, 0, , .	0.4	0
271	Tracking Structural Deactivation of H-Ferrierite Zeolite Catalyst During MTH with XRD. Topics in Catalysis, 2023, 66, 1418-1426.	1.3	4
272	Rational design of bifunctional catalysts with proper integration manners for CO and CO2 hydrogenation into value-added products: A review. Chemical Engineering Journal, 2023, 463, 142262.	6.6	6
273	Strategies to control reversible and irreversible deactivation of ZSM-5 zeolite during the conversion of methanol to propylene (MTP): A review. Chemical Engineering Science, 2023, 273, 118639.	1.9	11
274	The novel contribution of non-noble metal catalysts for intensified carbon dioxide hydrogenation: Recent challenges and opportunities. Energy Conversion and Management, 2023, 279, 116755.	4.4	27
275	Direct synthesis of Al-rich ZSM-5 nanocrystals with improved catalytic performance in aromatics formation from methane and methanol. Microporous and Mesoporous Materials, 2023, 351, 112485.	2.2	2
276	Hydrogen transfer reaction contributes to the dynamic evolution of zeolite-catalyzed methanol and dimethyl ether conversions: Insight into formaldehyde. Chinese Journal of Catalysis, 2023, 46, 11-27.	6.9	8

#	Article	IF	CITATIONS
277	Ca Cations Impact the Local Environment inside HZSM-5 Pores during the Methanol-to-Hydrocarbons Reaction. ACS Catalysis, 2023, 13, 3471-3484.	5.5	12
278	Influence of active-site proximity in zeolites on BrÃ,nsted acid-catalyzed reactions at the microscopic and mesoscopic levels. Chem Catalysis, 2023, 3, 100540.	2.9	6
279	Better Performance in C ₂ -Conversion to Aromatics by Optimized Feed and Catalysts. Energy & Fuels, 2023, 37, 4566-4579.	2.5	3
280	Addition of Pore-Forming Agents and Their Effect on the Pore Architecture and Catalytic Behavior of Shaped Zeolite-Based Catalyst Bodies. , 0, , .		0
281	Neutron scattering studies of the methanol-to-hydrocarbons reaction. Catalysis Science and Technology, 2023, 13, 1976-1990.	2.1	2
282	Metrics of performance relevant in methanol-to-hydrocarbons catalysis. Journal of Catalysis, 2023, 421, 198-209.	3.1	5
283	Elemental zoning enhances mass transport in zeolite catalysts for methanol to hydrocarbons. Nature Catalysis, 2023, 6, 254-265.	16.1	11
284	Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application. Chinese Journal of Catalysis, 2023, 47, 67-92.	6.9	7
285	Role of Catalyst Domain Size in the Hydrogenation of CO ₂ to Aromatics over ZnZrO _{<i>x</i>} /ZSM-5 Catalysts. Journal of Physical Chemistry C, 2023, 127, 6356-6370.	1.5	2
286	Efficient photothermal alcohol dehydration over a plasmonic W18O49 nanostructure under visible-to-near-infrared irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 441, 114728.	2.0	0
287	Molecular Views on Mechanisms of BrÃ,nsted Acid-Catalyzed Reactions in Zeolites. Chemical Reviews, 2023, 123, 6107-6196.	23.0	22
288	Mapping the Methanolâ€ŧoâ€Gasoline Process Over Zeolite Beta. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
289	Mapping the Methanolâ€ŧoâ€Gasoline Process Over Zeolite Beta. Angewandte Chemie, 2023, 135, .	1.6	0
290	Carbon Deposit Analysis in Catalyst Deactivation, Regeneration, and Rejuvenation. Angewandte Chemie, 0, , .	1.6	0
291	Carbon Deposit Analysis in Catalyst Deactivation, Regeneration, and Rejuvenation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
292	Mechanism of Hydrocarbon Formation in Methane and Methanol Conversion over Copper-Containing Mordenite. ACS Catalysis, 0, , 5864-5875.	5.5	2