Human Endothelial Colony-Forming Cells Protect again

American Journal of Pathology 185, 2309-2323 DOI: 10.1016/j.ajpath.2015.04.010

Citation Report

#	Article	IF	CITATIONS
1	Preterm Cord Blood Contains a Higher Proportion of Immature Hematopoietic Progenitors Compared to Term Samples. PLoS ONE, 2015, 10, e0138680.	1.1	24
2	Promoting vascular repair in the retina: can stem/progenitor cells help?. Eye and Brain, 2016, 8, 113.	3.8	9
3	CCR2 Positive Exosome Released by Mesenchymal Stem Cells Suppresses Macrophage Functions and Alleviates Ischemia/Reperfusion-Induced Renal Injury. Stem Cells International, 2016, 2016, 1-9.	1.2	155
4	Exosomes from Human Synovial-Derived Mesenchymal Stem Cells Prevent Glucocorticoid-Induced Osteonecrosis of the Femoral Head in the Rat. International Journal of Biological Sciences, 2016, 12, 1262-1272.	2.6	81
5	Exosomes Derived from Human Endothelial Progenitor Cells Accelerate Cutaneous Wound Healing by Promoting Angiogenesis Through Erk1/2 Signaling. International Journal of Biological Sciences, 2016, 12, 1472-1487.	2.6	191
6	Postischemic microvasculopathy and endothelial progenitor cell-based therapy in ischemic AKI: update and perspectives. American Journal of Physiology - Renal Physiology, 2016, 311, F382-F394.	1.3	20
7	Effect on Intermittent Hypoxia on Plasma Exosomal Micro RNA Signature and Endothelial Function in Healthy Adults. Sleep, 2016, 39, 2077-2090.	0.6	75
8	Therapeutic Potential of Human-Derived Endothelial Colony-Forming Cells in Animal Models. Tissue Engineering - Part B: Reviews, 2016, 22, 371-382.	2.5	66
9	Combination of adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes for protecting kidney from acute ischemia–reperfusion injury. International Journal of Cardiology, 2016, 216, 173-185.	0.8	188
10	Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Research and Therapy, 2016, 7, 136.	2.4	302
11	MicroRNAs in extracellular vesicles protect kidney fromÂischemic injury: from endothelial to tubular epithelial. Kidney International, 2016, 90, 1150-1152.	2.6	11
12	Transfer of microRNA-486-5p from human endothelial colony forming cell–derived exosomes reduces ischemic kidney injury. Kidney International, 2016, 90, 1238-1250.	2.6	177
13	Extracellular vesicles in diagnosis and therapy of kidney diseases. American Journal of Physiology - Renal Physiology, 2016, 311, F844-F851.	1.3	140
14	Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Research and Therapy, 2016, 7, 24.	2.4	195
15	Decreased phosphorylation of PDGFR-Î ² impairs the angiogenic potential of expanded endothelial progenitor cells via the inhibition of PI3K/Akt signaling. International Journal of Molecular Medicine, 2017, 39, 1492-1504.	1.8	5
16	Extracellular vesicles of ETV2 transfected fibroblasts stimulate endothelial cells and improve neovascularization in a murine model of hindlimb ischemia. Cytotechnology, 2017, 69, 801-814.	0.7	4
17	Renal Regenerative Potential of Different Extracellular Vesicle Populations Derived from Bone Marrow Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2017, 23, 1262-1273.	1.6	159
18	MicroRNAâ€containing extracellular vesicles released from endothelial colonyâ€forming cells modulate angiogenesis during ischaemic retinopathy. Journal of Cellular and Molecular Medicine, 2017, 21, 3405-3419.	1.6	35

CITATION REPORT

#	Article	IF	CITATIONS
19	High glucose increases the formation and pro-oxidative activity of endothelial microparticles. Diabetologia, 2017, 60, 1791-1800.	2.9	79
20	Endothelial colony-forming cells ameliorate endothelial dysfunction via secreted factors following ischemia-reperfusion injury. American Journal of Physiology - Renal Physiology, 2017, 312, F897-F907.	1.3	42
21	Exosome production and its regulation of EGFR during wound healing in renal tubular cells. American Journal of Physiology - Renal Physiology, 2017, 312, F963-F970.	1.3	53
22	Therapeutic application of extracellular vesicles in kidney disease: promises and challenges. Journal of Cellular and Molecular Medicine, 2018, 22, 728-737.	1.6	62
24	Therapeutic application of extracellular vesicles in acute and chronic renal injury. Nefrologia, 2017, 37, 126-137.	0.2	6
25	Renal Tubular Cell-Derived Extracellular Vesicles Accelerate the Recovery of Established Renal Ischemia Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2017, 28, 3533-3544.	3.0	79
26	HIF-1-mediated production of exosomes during hypoxia is protective in renal tubular cells. American Journal of Physiology - Renal Physiology, 2017, 313, F906-F913.	1.3	110
27	Endothelial Colony Forming Cells (ECFCs) in murine AKI – implications for future cell-based therapies. BMC Nephrology, 2017, 18, 53.	0.8	12
28	Uso terapéutico de las vesÃculas extracelulares en insuficiencia renal aguda y crónica. Nefrologia, 2017, 37, 126-137.	0.2	12
29	Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway. Theranostics, 2017, 7, 733-750.	4.6	225
30	Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics, 2017, 7, 180-195.	4.6	507
31	Extracellular Vesicles in Renal Pathophysiology. Frontiers in Molecular Biosciences, 2017, 4, 37.	1.6	68
32	Endothelial progenitor cell-derived extracellular vesicle-meditated cell-to-cell communication regulates the proliferation and osteoblastic differentiation of bone mesenchymal stromal cells. Molecular Medicine Reports, 2017, 16, 7018-7024.	1.1	18
33	Stem cell extracellular vesicles and kidney injury. Stem Cell Investigation, 2017, 4, 90-90.	1.3	37
34	Exosomes and regenerative medicine: state of the art and perspectives. Translational Research, 2018, 196, 1-16.	2.2	107
35	Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 19-34.	1.8	284
36	Endothelial colonyâ€forming cells and proâ€angiogenic cells: clarifying definitions and their potential role in mitigating acute kidney injury. Acta Physiologica, 2018, 222, e12914.	1.8	29
37	Tissue regeneration using endothelial colony-forming cells: promising cells for vascular repair. Pediatric Research, 2018, 83, 283-290.	1.1	80

#	Article	IF	CITATIONS
38	Extracellular vesicles as immune mediators in response to kidney injury. American Journal of Physiology - Renal Physiology, 2018, 314, F9-F21.	1.3	12
39	Preclinical Evaluation and Optimization of a Cell Therapy Using Human Cord Blood-Derived Endothelial Colony-Forming Cells for Ischemic Retinopathies. Stem Cells Translational Medicine, 2018, 7, 59-67.	1.6	42
40	The Vasoreparative Potential of Endothelial Colony Forming Cells: A Journey Through Pre-clinical Studies. Frontiers in Medicine, 2018, 5, 273.	1.2	39
41	Receptor-Ligand Interaction Mediates Targeting of Endothelial Colony Forming Cell-derived Exosomes to the Kidney after Ischemic Injury. Scientific Reports, 2018, 8, 16320.	1.6	65
42	Recent Advances in Endothelial Colony Forming Cells Toward Their Use in Clinical Translation. Frontiers in Medicine, 2018, 5, 295.	1.2	78
43	Recent Advances in Endothelial Progenitor Cells Toward Their Use in Clinical Translation. Frontiers in Medicine, 2018, 5, 354.	1.2	55
44	Endothelial colony-forming cell therapy for heart morphological changes after neonatal high oxygen exposure in rats, a model of complications of prematurity. Physiological Reports, 2018, 6, e13922.	0.7	3
45	Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Research and Therapy, 2018, 9, 247.	2.4	309
46	The potential role of exosomes in the diagnosis and therapy of ischemic diseases. Cytotherapy, 2018, 20, 1204-1219.	0.3	23
47	Endothelial Extracellular Vesicles in Pulmonary Function and Disease. Current Topics in Membranes, 2018, 82, 197-256.	0.5	35
48	Endothelial Progenitor Cells and Kidney Diseases. Kidney and Blood Pressure Research, 2018, 43, 701-718.	0.9	33
49	Endogenous Radionanomedicine: Validation of Therapeutic Potential. Biological and Medical Physics Series, 2018, , 167-182.	0.3	1
50	Stem cell properties of peripheral blood endothelial progenitors are stimulated by soluble CD146 via miR-21: potential use in autologous cell therapy. Scientific Reports, 2018, 8, 9387.	1.6	9
51	Human Liver Stem Cell-Derived Extracellular Vesicles Prevent Aristolochic Acid-Induced Kidney Fibrosis. Frontiers in Immunology, 2018, 9, 1639.	2.2	48
52	Endothelial Progenitor Cells: New Targets for Therapeutics for Inflammatory Conditions With High Cardiovascular Risk. Frontiers in Medicine, 2018, 5, 200.	1.2	38
53	Therapeutic Potential of Human Adipose-Derived Stem Cell Exosomes in Stress Urinary Incontinence – An in Vitro and in Vivo Study. Cellular Physiology and Biochemistry, 2018, 48, 1710-1722.	1.1	46
54	Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis. Theranostics, 2018, 8, 1607-1623.	4.6	266
55	Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models. Frontiers in Medicine, 2018, 5, 179.	1.2	45

#	Article	IF	CITATIONS
56	Endothelial Colony-forming Cells Attenuate Ventilator-induced Lung Injury in Rats with Acute Respiratory Distress Syndrome. Archives of Medical Research, 2018, 49, 172-181.	1.5	5
57	Exosomes derived from endothelial progenitor cells ameliorate acute lung injury by transferring miR-126. Experimental Cell Research, 2018, 370, 13-23.	1.2	96
58	Endothelial colony-forming cell-derived exosomes restore blood-brain barrier continuity in mice subjected to traumatic brain injury. Experimental Neurology, 2018, 307, 99-108.	2.0	61
59	PBI-4050 via GPR40 activation improves adenine-induced kidney injury in mice. Clinical Science, 2019, 133, 1587-1602.	1.8	8
60	The therapeutic effects of microRNAs in preclinical studies of acute kidney injury: a systematic review protocol. Systematic Reviews, 2019, 8, 235.	2.5	6
61	Injectable Supramolecular Ureidopyrimidinone Hydrogels Provide Sustained Release of Extracellular Vesicle Therapeutics. Advanced Healthcare Materials, 2019, 8, e1900847.	3.9	61
62	Potential Therapeutic Applications of Exosomes in Bone Regenerative Medicine. , 2019, , .		1
63	miRNAs in stem cell-derived extracellular vesicles for acute kidney injury treatment: comprehensive review of preclinical studies. Stem Cell Research and Therapy, 2019, 10, 281.	2.4	32
64	Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics, 2019, 9, 2439-2459.	4.6	280
65	Mesenchymal stem cell-derived exosomes attenuate phosgene-induced acute lung injury in rats. Inhalation Toxicology, 2019, 31, 52-60.	0.8	43
66	Role of extracellular vesicles in stem cell biology. American Journal of Physiology - Cell Physiology, 2019, 317, C303-C313.	2.1	44
67	Phosphoinositide 3 Kinase Signaling in Human Stem Cells from Reprogramming to Differentiation: A Tale in Cytoplasmic and Nuclear Compartments. International Journal of Molecular Sciences, 2019, 20, 2026.	1.8	24
68	Extracellular Vesicles: Opportunities and Challenges for the Treatment of Renal Diseases. Frontiers in Physiology, 2019, 10, 226.	1.3	56
69	Adipose-derived mesenchymal stem cell exosomes: a novel pathway for tissues repair. Cell and Tissue Banking, 2019, 20, 153-161.	0.5	54
70	NOX4 is a major regulator of cord blood-derived endothelial colony-forming cells which promotes post-ischaemic revascularization. Cardiovascular Research, 2019, 116, 393-405.	1.8	10
71	Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38, ERK, and Akt pathways. In Vitro Cellular and Developmental Biology - Animal, 2019, 55, 203-210.	0.7	87
72	Mesenchymal stem cell-derived exosomes: a new therapeutic approach to osteoarthritis?. Stem Cell Research and Therapy, 2019, 10, 340.	2.4	185
73	Primary chondrocyte exosomes mediate osteoarthritis progression by regulating mitochondrion and immune reactivity. Nanomedicine, 2019, 14, 3193-3212.	1.7	50

CITATION REPORT

#	Article	IF	CITATIONS
74	Exosomes derived from platelet-rich plasma present a novel potential in alleviating knee osteoarthritis by promoting proliferation and inhibiting apoptosis of chondrocyte via Wnt/β-catenin signaling pathway. Journal of Orthopaedic Surgery and Research, 2019, 14, 470.	0.9	104
75	Endothelial progenitor cells attenuate the lung ischemia/reperfusion injury following lung transplantation via the endothelial nitric oxide synthase pathway. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 803-814.	0.4	17
76	New insight into the role of extracellular vesicles in kidney disease. Journal of Cellular and Molecular Medicine, 2019, 23, 731-739.	1.6	60
77	Application potential of stem/progenitor cell-derived extracellular vesicles in renal diseases. Stem Cell Research and Therapy, 2019, 10, 8.	2.4	33
78	On the Choice of the Extracellular Vesicles for Therapeutic Purposes. International Journal of Molecular Sciences, 2019, 20, 236.	1.8	81
79	Preconditioning strategies for improving the survival rate and paracrine ability of mesenchymal stem cells in acute kidney injury. Journal of Cellular and Molecular Medicine, 2019, 23, 720-730.	1.6	51
80	Vascular Regeneration for Ischemic Retinopathies: Hope from Cell Therapies. Current Eye Research, 2020, 45, 372-384.	0.7	20
81	Mesenchymal stromal cell-derived extracellular vesicles for regenerative therapy and immune modulation: Progress and challenges toward clinical application. Stem Cells Translational Medicine, 2020, 9, 39-46.	1.6	72
82	The exosome-mediated autocrine and paracrine actions of plasma gelsolin in ovarian cancer chemoresistance. Oncogene, 2020, 39, 1600-1616.	2.6	85
83	Extracellular vesicles for acute kidney injury in preclinical rodent models: a meta-analysis. Stem Cell Research and Therapy, 2020, 11, 11.	2.4	32
84	Therapeutic Potential of Endothelial Colony-Forming Cells in Ischemic Disease: Strategies to Improve their Regenerative Efficacy. International Journal of Molecular Sciences, 2020, 21, 7406.	1.8	30
85	Human endothelial colony-forming cells in regenerative therapy: A systematic review of controlled preclinical animal studies. Stem Cells Translational Medicine, 2020, 9, 1344-1352.	1.6	12
86	An Analysis of Mesenchymal Stem Cell-Derived Extracellular Vesicles for Preclinical Use. ACS Nano, 2020, 14, 9728-9743.	7.3	72
87	AKI: an increasingly recognized risk factor for CKD development and progression. Journal of Nephrology, 2020, 33, 1171-1187.	0.9	87
88	The Functionality of Endothelial-Colony-Forming Cells from Patients with Diabetes Mellitus. Cells, 2020, 9, 1731.	1.8	10
89	Extracellular Vesicles-Based Drug Delivery Systems: A New Challenge and the Exemplum of Malignant Pleural Mesothelioma. International Journal of Molecular Sciences, 2020, 21, 5432.	1.8	33
90	Transfer of MicroRNA-216a-5p From Exosomes Secreted by Human Urine-Derived Stem Cells Reduces Renal Ischemia/Reperfusion Injury. Frontiers in Cell and Developmental Biology, 2020, 8, 610587.	1.8	25
91	BMSC-derived exosomes from congenital polydactyly tissue alleviate osteoarthritis by promoting chondrocyte proliferation. Cell Death Discovery, 2020, 6, 142.	2.0	24

#	Article	IF	CITATIONS
92	Mitochondrial-Derived Vesicles Protect Cardiomyocytes Against Hypoxic Damage. Frontiers in Cell and Developmental Biology, 2020, 8, 214.	1.8	39
93	Endothelial Progenitor Cellâ€Derived Extracellular Vesicles: A Novel Candidate for Regenerative Medicine and Disease Treatment. Advanced Healthcare Materials, 2020, 9, e2000255.	3.9	33
94	Endothelial TRPV1 as an Emerging Molecular Target to Promote Therapeutic Angiogenesis. Cells, 2020, 9, 1341.	1.8	36
95	Systemic lupus erythematosus, endothelial progenitor cells and intracellular Ca2+ signaling: A novel approach for an old disease. Journal of Autoimmunity, 2020, 112, 102486.	3.0	10
96	Extracellular Vesicles as Mediators of Cellular Crosstalk Between Immune System and Kidney Graft. Frontiers in Immunology, 2020, 11, 74.	2.2	57
97	Endothelial colony-forming cells reduced the lung injury induced by cardiopulmonary bypass in rats. Stem Cell Research and Therapy, 2020, 11, 246.	2.4	6
98	Plasma Gelsolin Inhibits CD8+ T-cell Function and Regulates Glutathione Production to Confer Chemoresistance in Ovarian Cancer. Cancer Research, 2020, 80, 3959-3971.	0.4	28
99	Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis. Stem Cell Research and Therapy, 2020, 11, 276.	2.4	181
100	Integration of Human Umbilical Cord Mesenchymal Stem Cells-Derived Exosomes with Hydroxyapatite-Embedded Hyaluronic Acid-Alginate Hydrogel for Bone Regeneration. ACS Biomaterials Science and Engineering, 2020, 6, 1590-1602.	2.6	99
101	Using umbilical cord blood for regenerative therapy: Proof or promise?. Stem Cells, 2020, 38, 590-595.	1.4	15
102	Stem cells in the eye. , 2020, , 1115-1133.		0
103	The secretome of liver X receptor agonist-treated early outgrowth cells decreases atherosclerosis in <i>Ldlr</i> â^'/â^' mice. Stem Cells Translational Medicine, 2021, 10, 479-491.	1.6	5
104	Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration. Biomaterials, 2021, 269, 120539.	5.7	184
105	Exosomes derived from stem cells from apical papilla promote craniofacial soft tissue regeneration by enhancing Cdc42-mediated vascularization. Stem Cell Research and Therapy, 2021, 12, 76.	2.4	26
106	Cartilage Repair by Mesenchymal Stem Cell-Derived Exosomes: Preclinical and Clinical Trial Update and Perspectives. Advances in Experimental Medicine and Biology, 2021, 1326, 73-93.	0.8	13
107	Vascular endothelial cell-secreted exosomes facilitate osteoarthritis pathogenesis by promoting chondrocyte apoptosis. Aging, 2021, 13, 4647-4662.	1.4	21
108	PAC-Mediated AKI Protection Is Critically Mediated but Does Not Exclusively Depend on Cell-Derived Microvesicles. International Journal of Nephrology, 2021, 2021, 1-12.	0.7	0
109	FGF23 ameliorates ischemia-reperfusion induced acute kidney injury via modulation of endothelial progenitor cells: targeting SDF-1/CXCR4 signaling. Cell Death and Disease, 2021, 12, 409.	2.7	12

#	Article	IF	CITATIONS
110	Exosomes Secreted from Hypoxia-Preconditioned Mesenchymal Stem Cells Prevent Steroid-Induced Osteonecrosis of the Femoral Head by Promoting Angiogenesis in Rats. BioMed Research International, 2021, 2021, 1-13.	0.9	28
111	Combined topical and systemic administration with human adipose-derived mesenchymal stem cells (hADSC) and hADSC-derived exosomes markedly promoted cutaneous wound healing and regeneration. Stem Cell Research and Therapy, 2021, 12, 257.	2.4	44
112	Circulating small extracellular vesicles increase after an acute bout of moderate-intensity exercise in pregnant compared to non-pregnant women. Scientific Reports, 2021, 11, 12615.	1.6	5
113	Extracellular vesicles derived from LPS-preconditioned human synovial mesenchymal stem cells inhibit extracellular matrix degradation and prevent osteoarthritis of the knee in a mouse model. Stem Cell Research and Therapy, 2021, 12, 427.	2.4	29
114	micro-RNA-486-5p protects against kidney ischemic injury and modifies the apoptotic transcriptome in proximal tubules. Kidney International, 2021, 100, 597-612.	2.6	14
115	Enhancement of acellular cartilage matrix scaffold by Wharton's jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration. Bioactive Materials, 2021, 6, 2711-2728.	8.6	90
116	Regeneration and replacement of endothelial cells and renal vascular repair. , 2022, , 129-144.		1
117	Vasculogenic Stem and Progenitor Cells in Human: Future Cell Therapy Product or Liquid Biopsy for Vascular Disease. Advances in Experimental Medicine and Biology, 2019, 1201, 215-237.	0.8	17
118	The Role of Extracellular Vesicles as Paracrine Effectors in Stem Cell-Based Therapies. Advances in Experimental Medicine and Biology, 2019, 1201, 175-193.	0.8	26
119	Sex diversity in proximal tubule and endothelial gene expression in mice with ischemic acute kidney injury. Clinical Science, 2020, 134, 1887-1909.	1.8	21
120	Extracellular vesicles as regulators of kidney function and disease. Intensive Care Medicine Experimental, 2020, 8, 22.	0.9	13
121	Distinct Anti-Fibrotic Effects of Exosomes Derived from Endothelial Colony-Forming Cells Cultured Under Normoxia and Hypoxia. Medical Science Monitor, 2018, 24, 6187-6199.	0.5	20
122	Comparison of exosomes derived from induced pluripotent stem cells and mesenchymal stem cells as therapeutic nanoparticles for treatment of corneal epithelial defects. Aging, 2020, 12, 19546-19562.	1.4	28
123	The Emerging Role of Exosomal Non-coding RNAs in Musculoskeletal Diseases. Current Pharmaceutical Design, 2020, 25, 4523-4535.	0.9	22
124	Exosomes in Sepsis and Inflammatory Tissue Injury. Current Pharmaceutical Design, 2020, 25, 4486-4495.	0.9	28
125	Therapeutic Potential of Endothelial Colony Forming Cells Derived from Human Umbilical Cord Blood. Current Stem Cell Research and Therapy, 2019, 14, 460-465.	0.6	7
126	Clonal isolation of endothelial colony-forming cells from early gestation chorionic villi of human placenta for fetal tissue regeneration. World Journal of Stem Cells, 2020, 12, 123-138.	1.3	12
128	Hypoxia-Induced Glioma-Derived Exosomal miRNA-199a-3p Promotes Ischemic Injury of the Peritumoral Neurons in Glioma by Inhibiting the mTOR Pathway: A Novel Ischemic Injury Mechanism in Peritumoral Neurons. SSRN Electronic Journal, 0, , .	0.4	1

.

#	Article	IF	CITATIONS
129	BMSC-Derived Exosomes Ameliorate Osteoarthritis by Inhibiting Pyroptosis of Cartilage via Delivering miR-326 Targeting HDAC3 and STAT1//NF-κB p65 to Chondrocytes. Mediators of Inflammation, 2021, 2021, 1-26.	1.4	42
130	Adipose-derived mesenchymal stem cell-derived exosomes alleviate overwhelming systemic inflammatory reaction and organ damage and improve outcome in rat sepsis syndrome. American Journal of Translational Research (discontinued), 2018, 10, 1053-1070.	0.0	41
131	Potential role of exosomes in the pathophysiology, diagnosis, and treatment of hypoxic diseases. American Journal of Translational Research (discontinued), 2019, 11, 1184-1201.	0.0	22
132	Synergistic effect of combined melatonin and adipose-derived mesenchymal stem cell (ADMSC)-derived exosomes on amelioration of dextran sulfate sodium (DSS)-induced acute colitis. American Journal of Translational Research (discontinued), 2019, 11, 2706-2724.	0.0	11
133	Comparison of endothelial cell- and endothelial progenitor cell-derived exosomes in promoting vascular endothelial cell repair. International Journal of Clinical and Experimental Pathology, 2019, 12, 2793-2800.	0.5	9
134	Cardioprotective Roles of Endothelial Progenitor Cell-Derived Exosomes. Frontiers in Cardiovascular Medicine, 2021, 8, 717536.	1.1	6
135	Cardioprotective Roles of Endothelial Progenitor Cell-Derived Exosomes. Frontiers in Cardiovascular Medicine, 2021, 8, 717536.	1.1	19
136	Extracorporeal Cardiac Shock Wave-Induced Exosome Derived From Endothelial Colony-Forming Cells Carrying miR-140-3p Alleviate Cardiomyocyte Hypoxia/Reoxygenation Injury via the PTEN/PI3K/AKT Pathway. Frontiers in Cell and Developmental Biology, 2021, 9, 779936.	1.8	7
137	Renoprotective effects of extracellular vesicles: A systematic review. Gene Reports, 2022, 26, 101491.	0.4	8
139	Extracellular vesicles in gestational diabetes mellitus: A scoping review. Diabetes and Vascular Disease Research, 2022, 19, 147916412210939.	0.9	7
140	Umbilical Cord Blood-Derived Exosomes in Maternal–Fetal Disease: a Review. Reproductive Sciences, 2023, 30, 54-61.	1.1	2
141	Isolation of Platelet-Derived Exosomes from Human Platelet-Rich Plasma: Biochemical and Morphological Characterization. International Journal of Molecular Sciences, 2022, 23, 2861.	1.8	17
142	Stem Cell-Derived Extracellular Vesicles as Potential Therapeutic Approach for Acute Kidney Injury. Frontiers in Immunology, 2022, 13, 849891.	2.2	9
143	Human Endothelial Colony-Forming Cells. Cold Spring Harbor Perspectives in Medicine, 2022, , a041154.	2.9	4
144	Modern Approaches to Acellular Therapy in Bone and Dental Regeneration. International Journal of Molecular Sciences, 2021, 22, 13454.	1.8	8
150	Exploring Endothelial Colony-Forming Cells to Better Understand the Pathophysiology of Disease: An Updated Review. Stem Cells International, 2022, 2022, 1-14.	1.2	4
151	Bioactive extracellular vesicles from a subset of endothelial progenitor cells rescue retinal ischemia and neurodegeneration. JCI Insight, 2022, 7, .	2.3	6
152	Extracellular vesicles in kidney disease. Nature Reviews Nephrology, 2022, 18, 499-513.	4.1	64

#	Article	IF	CITATIONS
153	A Review Into the Insights of the Role of Endothelial Progenitor Cells on Bone Biology. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	3
154	Exosomes Derived From Mesenchymal Stem Cells Pretreated With Ischemic Rat Heart Extracts Promote Angiogenesis via the Delivery of DMBT1. Cell Transplantation, 2022, 31, 096368972211028.	1.2	12
155	Strategies for Regenerative Vascular Tissue Engineering. Advanced Biology, 2023, 7, .	1.4	4
156	The divergent roles of exosomes in kidney diseases: Pathogenesis, diagnostics, prognostics and therapeutics. International Journal of Biochemistry and Cell Biology, 2022, 149, 106262.	1.2	9
157	Exosome-based strategy for degenerative disease in orthopedics: Recent progress and perspectives. Journal of Orthopaedic Translation, 2022, 36, 8-17.	1.9	9
158	Exosomes in osteoarthritis: Updated insights on pathogenesis, diagnosis, and treatment. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	13
159	Therapeutic perspectives of exosomes in glucocorticoid-induced osteoarthrosis. Frontiers in Surgery, 0, 9, .	0.6	0
160	Exosomes derived from bone marrow mesenchymal stem cells attenuate neurological damage in traumatic brain injury by alleviating glutamate-mediated excitotoxicity. Experimental Neurology, 2022, 357, 114182.	2.0	18
161	ECFC-derived exosomal THBS1 mediates angiogenesis and osteogenesis in distraction osteogenesis via the PI3K/AKT/ERK pathway. Journal of Orthopaedic Translation, 2022, 37, 12-22.	1.9	6
162	Hsp20 Promotes Endothelial Progenitor Cell Angiogenesis via Activation of PI3K/Akt Signaling Pathway under Hypoxia. Tissue Engineering and Regenerative Medicine, 0, , .	1.6	2
163	Extracellular vesicles for ischemia/reperfusion injury-induced acute kidney injury: a systematic review and meta-analysis of data from animal models. Systematic Reviews, 2022, 11, .	2.5	4
165	Extracellular Vesicles in Inner Ear Therapies—Pathophysiological, Manufacturing, and Clinical Considerations. Journal of Clinical Medicine, 2022, 11, 7455.	1.0	3
166	The vascular phenotype of BPD: new basic science insights—new precision medicine approaches. Pediatric Research, 0, , .	1.1	6
167	HWJMSC-derived extracellular vesicles ameliorate IL-1β-induced chondrocyte injury through regulation of the BMP2/RUNX2 axis via up-regulation TFRC. Cellular Signalling, 2023, , 110604.	1.7	1
168	Rejuvenation of tendon stem/progenitor cells for functional tendon regeneration through platelet-derived exosomes loaded with recombinant Yap1. Acta Biomaterialia, 2023, 161, 80-99.	4.1	16
169	Functionalization of in vivo tissue-engineered living biotubes enhance patency and endothelization without the requirement of systemic anticoagulant administration. Bioactive Materials, 2023, 26, 292-305.	8.6	7
170	Exosomes for angiogenesis induction in ischemic disorders. Journal of Cellular and Molecular Medicine, 2023, 27, 763-787.	1.6	12
171	The Influence of Exercise-Associated Small Extracellular Vesicles on Trophoblasts In Vitro. Biomedicines, 2023, 11, 857.	1.4	0

#	Article	IF	CITATIONS
172	Androgen-induced exosomal miR-379-5p release determines granulosa cell fate: cellular mechanism involved in polycystic ovaries. Journal of Ovarian Research, 2023, 16, .	1.3	2
180	Cell-Derived Extracellular Vesicles for Immune Modulation: Preclinical and Clinical Perspectives. , 2023, , 1-12.		0
182	Stem cell therapeutic approaches and signaling pathways in rheumatoid arthritis and osteoarthritis. , 2024, , 415-436.		0

CITATION REPORT