TDMA-Based MAC Protocols for Vehicular Ad Hoc Netwand Open Research Issues

IEEE Communications Surveys and Tutorials 17, 2461-2492 DOI: 10.1109/comst.2015.2440374

Citation Report

#	Article	lF	CITATIONS
1	Combining Spatial and temporal dynamic scheduling techniques on wireless vehicular communications. , 2016, , .		0
2	Cramer-Rao lower bound for round-trip delay ranging with subcarrier-interleaved OFDMA. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52, 2961-2972.	2.6	8
3	An Infrastructure-Free Slot Assignment Algorithm for Reliable Broadcast of Periodic Messages in Vehicular Ad Hoc Networks. , 2016, , .		23
4	A reliable token-based MAC protocol for V2V communication in urban VANET. , 2016, , .		11
5	A centralized TDMA based scheduling algorithm for real-time communications in vehicular ad hoc networks. , 2016, , .		18
6	A collision-free MAC protocol for fast message dissemination in vehicular strings. , 2016, , .		4
7	A survey on hybrid MAC protocols for vehicular ad-hoc networks. Vehicular Communications, 2016, 6, 29-36.	2.7	18
8	A review on MAC protocols of Vehicular Ad Hoc Networks. , 2016, , .		9
9	A TDMA Based Cooperative Communication MAC Protocol for Vehicular Ad Hoc Networks. , 2016, , .		6
10	TDMA-based MAC protocols for wireless sensor networks: A survey and comparative analysis. , 2016, , .		18
11	Improving time slot acquisition through RSU's coordination for TDMA-based MAC protocol in VANETs. , 2016, , .		10
12	STDMA-based Scheduling Algorithm for Infrastructured Vehicular Networks. Studies in Systems, Decision and Control, 2016, , 81-105.	0.8	5
13	A Proposal for an Improved Distributed MAC Protocol for Vehicular Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2017, , 24-33.	0.2	3
14	Infrastructure-Assisted Message Dissemination for Supporting Heterogeneous Driving Patterns. IEEE Transactions on Intelligent Transportation Systems, 2017, 18, 2865-2876.	4.7	26
15	Survey of medium access control schemes for inter-vehicle communications. Computers and Electrical Engineering, 2017, 64, 450-472.	3.0	11
16	Self-Sorting-Based MAC Protocol for High-Density Vehicular Ad Hoc Networks. IEEE Access, 2017, 5, 7350-7361.	2.6	13
17	A Novel Angle-Based Clustering Algorithm for Vehicular Ad Hoc Networks. Advances in Intelligent Systems and Computing, 2017, , 27-38.	0.5	22
18	TDMA-Aware Routing Protocol for Multi-Hop Communications in Vehicular Ad Hoc Networks. , 2017, , .		12

#	Article	IF	CITATIONS
19	A fixed assignment based window access scheme for enhancing QoS of vehicular adhoc networks. , 2017, , .		1
20	Full-duplex radios for vehicular communications. , 2017, 55, 182-189.		51
21	Hybrid MAC Protocols in VANET: A Survey. Advances in Intelligent Systems and Computing, 2017, , 3-14.	0.5	4
22	Using RA-TDMA to support concurrent collaborative applications in VANETs. , 2017, , .		4
23	Review and Classification of Multichannel MAC Protocols for Low-Power and Lossy Networks. IEEE Access, 2017, 5, 19536-19561.	2.6	18
24	Scalable MAC protocol for D2D communication for future 5G networks. , 2017, , .		5
25	Hybrid time triggered protocol for home wireless communications. , 2017, , .		2
26	Performance evaluation of a TDMA-based multi-hop communication scheme for reliable delivery of warning messages in vehicular networks. , 2017, , .		8
27	MAP: Contention-free MAC protocol for VANETs with PLNC. , 2017, , .		1
28	A review of wireless access vehicular environment multichannel operational medium access control protocols: Quality-of-service analysis and other related issues. International Journal of Distributed Sensor Networks, 2017, 13, 155014771771017.	1.3	13
29	Dynamic time slot allocation and stream control for MIMO STDMA in ad hoc networks. Eurasip Journal on Wireless Communications and Networking, 2017, 2017, .	1.5	1
30	Analysis of event-driven warning message propagation in Vehicular Ad Hoc Networks. Ad Hoc Networks, 2017, 55, 87-96.	3.4	68
31	An Interference-Free Graph Based TDMA Scheduling Protocol for Vehicular Ad-Hoc Networks. , 2017, , .		5
32	Synthesizing Existing CSMA and TDMA Based MAC Protocols for VANETs. Sensors, 2017, 17, 338.	2.1	22
33	An Efficient and QoS Supported Multichannel MAC Protocol for Vehicular Ad Hoc Networks. Sensors, 2017, 17, 2293.	2.1	15
34	Performance Analysis of the IEEE 802.11p Multichannel MAC Protocol in Vehicular Ad Hoc Networks. Sensors, 2017, 17, 2890.	2.1	34
35	Message dissemination scheduling for multiple cooperative drivings. , 2017, , .		3
36	A collision-predicted TDMA MAC protocol in centralized vehicular network. , 2017, , .		4

#	Article	IF	Citations
37	Re-transmission strategy for broadcasting in VANETs. , 2017, , .		1
38	V2X Access Technologies: Regulation, Research, and Remaining Challenges. IEEE Communications Surveys and Tutorials, 2018, 20, 1858-1877.	24.8	289
39	A Latency and Reliability Guaranteed Resource Allocation Scheme for LTE V2V Communication Systems. IEEE Transactions on Wireless Communications, 2018, 17, 3850-3860.	6.1	134
40	SS-MAC: A Novel Time Slot-Sharing MAC for Safety Messages Broadcasting in VANETs. IEEE Transactions on Vehicular Technology, 2018, 67, 3586-3597.	3.9	76
41	Internet of vehicles in big data era. IEEE/CAA Journal of Automatica Sinica, 2018, 5, 19-35.	8.5	440
42	A survey of hybrid MAC protocols for machine-to-machine communications. Telecommunication Systems, 2018, 69, 141-165.	1.6	5
43	A Survey on Adaptive Multi-Channel MAC Protocols in VANETs Using Markov Models. IEEE Access, 2018, 6, 16493-16514.	2.6	46
44	sdnMAC: A Software-Defined Network Inspired MAC Protocol for Cooperative Safety in VANETs. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 2011-2024.	4.7	36
45	A survey of clustering algorithms for cognitive radio ad hoc networks. Wireless Networks, 2018, 24, 1451-1475.	2.0	19
46	Enhanced EDCA with Deterministic Transmission Collision Resolution for Real-Time Communication in Vehicular Ad Hoc Networks. Wireless Personal Communications, 2018, 98, 311-335.	1.8	7
47	Towards Reasoning Vehicles. ACM Computing Surveys, 2018, 50, 1-37.	16.1	21
48	A Clustering-Based Collision-Free Multichannel MAC Protocol for Vehicular Ad Hoc Networks. , 2018, , .		6
49	Review of TDMA-Based MAC Protocols for Vehicular Ad Hoc Networks. , 2018, , .		8
50	A Cross-Layer MAC Aware Pseudonym (MAP) Scheme for the VANET. , 2018, , .		1
51	An Optimized Adhoc Network Routing Protocol For Multi-performance Decision Making. , 2018, , .		2
52	Study on wireless communication aspect of VANETs. , 2018, , .		2
53	Reduction of end-to-end delay using threaded RaptorQ codes in VANETs. International Journal of Vehicle Safety, 2018, 10, 122.	0.2	1
54	If you can't Beat Them, Augment Them: Improving Local WiFi with Only Above-Driver Changes. , 2018, , .		1

#	Article	IF	CITATIONS
55	Contention Intensity Based Distributed Coordination for V2V Safety Message Broadcast. IEEE Transactions on Vehicular Technology, 2018, 67, 12288-12301.	3.9	43
56	Timing Synchronization and Ranging in Networked UAV-Aided OFDM Systems. Journal of Communications and Information Networks, 2018, 3, 45-54.	3.5	10
57	Time Slot Utilization for Efficient Multi-Channel MAC Protocol in VANETs. Sensors, 2018, 18, 3028.	2.1	10
58	Improving EDCA for Efficient Channel Access in Vehicular Communications. IEEE Communications Magazine, 2018, 56, 72-77.	4.9	7
59	MoMAC: Mobility-Aware and Collision-Avoidance MAC for Safety Applications in VANETs. IEEE Transactions on Vehicular Technology, 2018, 67, 10590-10602.	3.9	82
60	Big Data Driven Vehicular Networks. IEEE Network, 2018, 32, 160-167.	4.9	231
61	Multi-hop Fast Conflict Resolution Algorithm for Ad Hoc Networks. ITM Web of Conferences, 2018, 17, 01004.	0.4	0
62	A disjoint frame topology-independent TDMA MAC policy for safety applications in vehicular networks. Ad Hoc Networks, 2018, 79, 43-52.	3.4	10
63	ABC: Adaptive Beacon Control for Rear-End Collision Avoidance in VANETs. , 2018, , .		19
64	BP Network Control for Resource Allocation and QoS Ensurance in UAV Cloud. Journal of Sensors, 2018, 2018, 1-14.	0.6	4
65	CoReCast. , 2018, , .		10
66	Autonomic Vehicular Networks: Safety, Privacy, Cybersecurity and Societal Issues. , 2018, , .		1
67	Internet of everything and everybody: Architecture and service virtualization. Computer Communications, 2018, 131, 66-72.	3.1	19
68	Supporting Beacon and Event-Driven Messages in Vehicular Platoons through Token-Based Strategies. Sensors, 2018, 18, 955.	2.1	13
69	Adaptive multichannel MAC protocol based on SDâ€TDMA mechanism for the vehicular <i>ad hoc</i> network. IET Communications, 2018, 12, 1509-1516.	1.5	12
70	DBCC: Leveraging Link Perception for Distributed Beacon Congestion Control in VANETs. IEEE Internet of Things Journal, 2018, 5, 4237-4249.	5.5	35
71	QCH-MAC: A Qos-Aware Centralized Hybrid MAC Protocol for Vehicular Ad Hoc NETworks. , 2018, , .		9
72	A Cooperative and Reliable RSU-Assisted IEEE 802.11P-Based Multi-Channel MAC Protocol for VANETs. IEEE Access, 2019, 7, 107576-107590.	2.6	23

	CITATION REPORT		
Article		IF	CITATIONS
Review on V2X, I2X, and P2X Communications and Their Applications: A Comprehensiv Time. Sensors, 2019, 19, 2756.	<i>v</i> e Analysis over	2.1	42
A Hard Real-Time Testbed for Distributed TDMA-Based MAC Protocols in VANETs. , 201	9,,.		2
A Topology Independent TDMA-based MAC protocol for Vehicular Networks. , 2019, , .			1
Transmission Rate-based Congestion Control in Vehicular Ad Hoc Networks. , 2019, , .			12
Hop Progress Analysis of Two-Layer VANETs With Variant Transmission Range. IEEE Wi Communications Letters, 2019, 8, 1473-1476.	ireless	3.2	2

75	A Topology Independent TDMA-based MAC protocol for Vehicular Networks. , 2019, , .		1
76	Transmission Rate-based Congestion Control in Vehicular Ad Hoc Networks. , 2019, , .		12
77	Hop Progress Analysis of Two-Layer VANETs With Variant Transmission Range. IEEE Wireless Communications Letters, 2019, 8, 1473-1476.	3.2	2
78	Network-Wide Throughput Optimization for Highway Vehicle-To-Vehicle Communications. Electronics (Switzerland), 2019, 8, 830.	1.8	4
79	Deep Learning-Based Spectrum Prediction Collision Avoidance for Hybrid Wireless Environments. IEEE Access, 2019, 7, 45818-45830.	2.6	28
80	MBER Criterion Assisted Power NOMA Design and Performance Analysis With Estimated Channel. IEEE Transactions on Vehicular Technology, 2019, 68, 11816-11826.	3.9	6
81	Ultra Reliable Distributed Control for Cooperative Vehicular Cyber Physical Systems. , 2019, , .		0
82	TCGMAC: A TDMAâ€based MAC protocol with collision alleviation based on slot declaration and game theory in VANETS. Transactions on Emerging Telecommunications Technologies, 2019, 30, e3730.	2.6	11
83	Enhancements to IEEE 802.15.4 MAC Protocol to Support Vehicle-to-Roadside Communications in VANETs. , 2019, , .		6
84	A Location- and Mobility-Aware Clustering-Based TDMA MAC Protocol for Vehicular Ad-hoc Networks. , 2019, , .		5
85	A Novel Capture-Aware TDMA-Based MAC Protocol for Safety Messages Broadcast in Vehicular Ad Hoc Networks. IEEE Access, 2019, 7, 116542-116554.	2.6	16
86	Fine-Grained TDMA MAC Design toward Ultra-Reliable Broadcast for Autonomous Driving. IEEE Wireless Communications, 2019, 26, 46-53.	6.6	20
87	ASTSMAC: Application Suitable Time-Slot Sharing MAC Protocol for Vehicular Ad Hoc Networks. IEEE Access, 2019, 7, 118077-118087.	2.6	8
88	Machine learning for wireless communications in the Internet of Things: A comprehensive survey. Ad Hoc Networks, 2019, 93, 101913.	3.4	165
89	Enhanced weight-based clustering algorithm to provide reliable delivery for VANET safety applications. PLoS ONE, 2019, 14, e0214664.	1.1	32
90	A Cross-Layer Design for a Multihop, Self-Healing, and Self-Forming Tactical Network. Wireless Communications and Mobile Computing, 2019, 2019, 1-16.	0.8	6

#

73

	CITA	CITATION REPORT	
#	Article	IF	CITATIONS
91	Multi-Layer Problems and Solutions in VANETs: A Review. Electronics (Switzerland), 2019, 8, 204.	1.8	48
92	A comparison of interval division methods in adaptive IEEE 802.11p–based multi-channel medium acc control protocols for vehicular ad hoc networks. International Journal of Distributed Sensor Networks, 2019, 15, 155014771983356.	eess 1.3	2
93	Efficient Mobility-Aware Task Offloading for Vehicular Edge Computing Networks. IEEE Access, 2019, 7, 26652-26664.	2.6	143
94	Performance Analysis of a Polling-Based Access Control Combining with the Sleeping Schema in V2I VANETs for Smart Cities. Sustainability, 2019, 11, 503.	1.6	6
95	A cooperative V2X MAC protocol for vehicular networks. Eurasip Journal on Wireless Communications and Networking, 2019, 2019, .	1.5	10
96	Analysis of a S-TDMA distributed scheduler for ad-hoc cellular-V2X communication. Ad Hoc Networks, 2019, 88, 160-171.	3.4	4
97	A Novel Semi-Distributed Transmission Paradigm for NR V2X. , 2019, , .		2
98	A TDMA-like Access Scheme with Splitting Request and Transmission for Vehicular Networks. , 2019, , .		2
99	Review of Multi-channel MAC Protocols for Vehicular Ad Hoc Networks. , 2019, , .		2
100	An Analytical Model for Performance Analysis of an Active Signaling-based TDMA MAC Protocol for Vehicular Networks. , 2019, , .		7
101	Infrastructure-based Networking for Autonomous Transportation Systems Using IEEE 802.11p. , 2019, ,		1
102	A Request-Transmission Splitting Scheme for V2X Networks: Design and Throughput Analysis. IEEE Access, 2019, 7, 158317-158325.	2.6	3
103	A Comparative Experimental Analysis of Channel Access Protocols in Vehicular Networks. IEEE Access, 2019, 7, 149433-149443.	2.6	9
104	Congestion Avoidance in Vehicular Networks: A Contemporary Survey. IEEE Access, 2019, 7, 173196-173215.	2.6	22
105	Time division multiple access scheduling strategies for emerging vehicular ad hoc network medium access control protocols: a survey. Telecommunication Systems, 2019, 70, 595-616.	1.6	20
106	MAC protocols with dynamic interval schemes for VANETs. Vehicular Communications, 2019, 15, 40-62	. 2.7	18
107	Secured and anonymous data transmission in Manet environment using zoneâ€based intrusion detection system. Concurrency Computation Practice and Experience, 2019, 31, e4734.	on 1.4	1
108	QoS supported adaptive and multichannel MAC protocol in vehicular ad-hoc network. Cluster Computing, 2019, 22, 3325-3337.	3.5	7

#	Article	IF	CITATIONS
109	Modified zone based intrusion detection system for security enhancement in mobile ad hoc networks. Wireless Networks, 2020, 26, 1275-1289.	2.0	38
110	SwarmCom: an infra-red-based mobile ad-hoc network for severely constrained robots. Autonomous Robots, 2020, 44, 93-114.	3.2	8
111	Latency performance analysis for safetyâ€related information broadcasting in VeMAC. Transactions on Emerging Telecommunications Technologies, 2020, 31, e3751.	2.6	6
112	Performance analysis of adaptive MAC protocol in VANETs considering the potential impact on throughput and transmission delays. International Journal of Communication Systems, 2020, 33, e4172.	1.6	5
113	Full-duplex medium access control protocols in wireless networks: a survey. Wireless Networks, 2020, 26, 2825-2843.	2.0	26
114	SDN/NFV-Empowered Future IoV With Enhanced Communication, Computing, and Caching. Proceedings of the IEEE, 2020, 108, 274-291.	16.4	184
115	TA-MAC: A Traffic-Aware TDMA MAC Protocol for Safety Message Dissemination in MEC-assisted VANETs. , 2020, , .		2
116	An efficient message broadcasting MAC protocol for VANETs. Wireless Networks, 2020, 26, 6043-6057.	2.0	5
117	A Joint Scheduling and Power Control Scheme for Hybrid I2V/V2V Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 15668-15681.	3.9	9
118	A Stackelberg Game-Based Caching Incentive Scheme for Roadside Units in VANETs. Sensors, 2020, 20, 6625.	2.1	5
119	A Robust Channel Access Using Cooperative Reinforcement Learning for Congested Vehicular Networks. IEEE Access, 2020, 8, 135540-135557.	2.6	12
120	Energy-Spectral Efficiency Optimization in Vehicular Communications: Joint Clustering and Pricing-Based Robust Power Control Approach. IEEE Transactions on Vehicular Technology, 2020, 69, 13673-13685.	3.9	22
121	Privacy Challenges With Protecting Live Vehicular Location Context. IEEE Access, 2020, 8, 207465-207484.	2.6	6
122	Review of MAC Protocols for Vehicular Ad Hoc Networks. Sensors, 2020, 20, 6709.	2.1	19
123	A Modified RR-ALOHA Protocol for Safety Message Broadcast in VANETs. Journal of Physics: Conference Series, 2020, 1650, 032005.	0.3	1
124	Towards Reliable Message Dissemination for Multiple Cooperative Drivings: A Hybrid Approach. , 2020, , .		0
125	A Trust Framework for Centralized TDMA Scheduling Mechanism in Vehicular Ad hoc Networks. International Journal of Interdisciplinary Telecommunications and Networking, 2020, 12, 74-87.	0.2	1
126	Millimeter-Wave Communication for Internet of Vehicles: Status, Challenges, and Perspectives. IEEE Internet of Things Journal, 2020, 7, 8525-8546.	5.5	124

#	Article	IF	CITATIONS
127	SCMAC: A Slotted-Contention-Based Media Access Control Protocol for Cooperative Safety in VANETs. IEEE Internet of Things Journal, 2020, 7, 3812-3821.	5.5	17
128	Multi-Agent Deep Learning for Multi-Channel Access in Slotted Wireless Networks. IEEE Access, 2020, 8, 95032-95045.	2.6	15
129	Fog Computing Empowered Data Dissemination in Software Defined Heterogeneous VANETs. IEEE Transactions on Mobile Computing, 2021, 20, 3181-3193.	3.9	57
130	Implementation of a Topology Independent MAC (TiMAC) Policy on a Low-Cost IoT System. Future Internet, 2020, 12, 86.	2.4	1
131	Low-Computational Extended Orthogonal Matched Filter Structure for Multiuser Detection. Telecom, 2020, 1, 32-47.	1.6	1
132	VANET-Assisted Interference Mitigation for Millimeter-Wave Automotive Radar Sensors. IEEE Network, 2020, 34, 238-245.	4.9	13
133	Collision Avoidance Method Using Vector-Based Mobility Model in TDMA-Based Vehicular Ad Hoc Networks. Applied Sciences (Switzerland), 2020, 10, 4181.	1.3	14
134	Modeling of Real-Time Multimedia Streaming in Wi-Fi Networks With Periodic Reservations. IEEE Access, 2020, 8, 55633-55653.	2.6	10
135	An extensible frame structure for time division multiple access medium access control in vehicular adâ€hoc networks. Transactions on Emerging Telecommunications Technologies, 2020, 31, e3912.	2.6	2
136	Distributed control plane for safe cooperative vehicular cyber physical systems. IET Cyber-Physical Systems: Theory and Applications, 2020, 5, 85-91.	1.9	1
137	The Role of Vehicular Ad Hoc Networks in Intelligent Transport Systems for Healthcare. , 2021, , 155-183.		4
138	Frame Structure Design for Vehicular-to-Roadside Unit Communications Using Space–Time Line Code Under Time-Varying Channels. IEEE Systems Journal, 2021, 15, 3150-3153.	2.9	12
139	TDMA based contention-free MAC protocols for vehicular ad hoc networks: A survey. Vehicular Communications, 2021, 28, 100308.	2.7	14
140	Research Advances and Challenges of Autonomous and Connected Ground Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 683-711.	4.7	158
141	Joint Range Estimation Using Single Carrier Burst Signals for Networked UAVs. IEEE Access, 2021, 9, 42533-42542.	2.6	4
142	An Efficient Cross-Layer Design for Multi-hop Broadcast of Emergency Warning Messages in Vehicular Networks. Lecture Notes in Networks and Systems, 2021, , 25-38.	0.5	1
143	Performance evaluation of an active signaling based time-slot scheduling scheme for connected vehicles. Annales Des Telecommunications/Annals of Telecommunications, 2021, 76, 363.	1.6	4
144	Applications of Game Theory in Vehicular Networks: A Survey. IEEE Communications Surveys and Tutorials, 2021, 23, 2660-2710.	24.8	22

#	Article	IF	CITATIONS
145	A Dynamic Distributed Multi-Channel TDMA Slot Management Protocol for Ad Hoc Networks. IEEE Access, 2021, 9, 61864-61886.	2.6	7
146	On the Design and Implementation of a Real-Time Testbed for Distributed TDMA-Based MAC Protocols in VANETs. IEEE Access, 2021, 9, 122092-122106.	2.6	3
147	Effective Capacity Maximization in beyond 5G Vehicular Networks: A Hybrid Deep Transfer Learning Method. Wireless Communications and Mobile Computing, 2021, 2021, 1-12.	0.8	7
148	Driverless Cars with Communication System Based On Multiple Access Protocols. IOP Conference Series: Materials Science and Engineering, 2021, 1076, 012039.	0.3	Ο
149	Scientometric analysis of literature on distributed vehicular networks : VOSViewer visualization techniques. Artificial Intelligence Review, 2021, 54, 6309-6341.	9.7	31
151	Prioritized multi-channel MAC protocol in ad hoc networks using a TDMA/CSMA approach. Wireless Networks, 2021, 27, 2629-2640.	2.0	4
152	VehCom: Delay-Guaranteed Message Broadcast for Large-Scale Vehicular Networks. IEEE Transactions on Wireless Communications, 2021, 20, 3883-3896.	6.1	2
153	Countering radiometric signature exploitation using adversarial machine learning based protocol switching. Computer Communications, 2021, 174, 109-121.	3.1	4
154	Review of Communication Technologies for Electric Vehicle Charging Management and Coordination. World Electric Vehicle Journal, 2021, 12, 92.	1.6	25
155	Multi-agent reinforcement learning for edge information sharing in vehicular networks. Digital Communications and Networks, 2022, 8, 267-277.	2.7	13
156	Distributed TDMA for Mobile UWB Network Localization. IEEE Internet of Things Journal, 2021, 8, 13449-13464.	5.5	15
157	Neighbourhood oriented TDMA scheme for the internet of things-enabled remote sensing. European Journal of Remote Sensing, 2023, 56, .	1.7	1
158	A Survey on Machine Learning-Based Performance Improvement of Wireless Networks: PHY, MAC and Network Layer. Electronics (Switzerland), 2021, 10, 318.	1.8	39
160	An Active Signaling Mechanism to Reduce Access Collisions in a Distributed TDMA Based MAC Protocol for Vehicular Networks. Advances in Intelligent Systems and Computing, 2020, , 286-300.	0.5	6
161	Overview of Safety Message Broadcast in Vehicular Networks. Wireless Networks, 2017, , 11-24.	0.3	6
162	Smart Transportation Systems: Architecture, Enabling Technologies, and Open Issues. SpringerBriefs in Computer Science, 2017, , 23-49.	0.2	18
163	Communication–computation tradeoff in distributed consensus optimization for MPC-based coordinated control under wireless communications. Journal of the Franklin Institute, 2017, 354, 3654-3677.	1.9	3
164	Hardware implementation and performance analysis of MPTDâ€CSMA protocol based on fieldâ€programmable gate array in VANET. IET Communications, 2020, 14, 2769-2779.	1.5	2

#	Article	IF	CITATIONS
165	Joint use of DSRC and Câ€V2X for V2X communications in the 5.9 GHz ITS band. IET Intelligent Transport Systems, 2021, 15, 213-224.	1.7	29
166	Physical and MAC Layer Design for Active Signaling Schemes in Vehicular Networks. , 2020, , .		3
167	MAC-aware Routing Protocols for Vehicular Ad Hoc Networks: A Survey. , 2020, , .		8
168	Coexistence of IEEE 802.11p and the TDMA-based AS-DTMAC Protocol. , 2020, , .		2
169	A Flexible TDMA Overlay Protocol for Vehicles Platooning. Lecture Notes in Computer Science, 2018, , 169-180.	1.0	2
170	A Dynamic Reallocation Based Window Access Scheme for Enhancing QoS of Vehicular Ad-hoc Networks (VANETs). Advances in Science, Technology and Engineering Systems, 2018, 3, 322-328.	0.4	0
172	Flying Ad-Hoc Network for Emergency Based on IEEE 802.11p Multichannel MAC Protocol. Lecture Notes in Computer Science, 2019, , 479-494.	1.0	9
173	Infrastructure-Aided Networking for Autonomous Vehicular Systems. Advances in Intelligent Systems and Computing, 2020, , 66-86.	0.5	2
174	Vehicular Networking Techniques for Road-Safety Applications. Wireless Networks, 2020, , 11-23.	0.3	0
175	Multiple Service Class TDMA Protocol for Healthcare Applications. , 2020, , .		0
176	Cyber-physical Autonomous Vehicular System (CAVS): A MAC Layer Perspective. , 2020, , 129-152.		2
177	CTDMA: Color-aware TDMA Network System For Low latency and High Throughput in Dense D2D Wireless Network. , 2020, , .		0
178	Using visible light links in combination with radio communication in a vehicular network. , 2020, , .		0
179	Efficient and Scalable MAC Design. Wireless Networks, 2020, , 53-75.	0.3	0
180	A Refined Topology-Independent Probabilistic TDMA MAC Policy for Ad Hoc Networks. , 2021, , .		1
181	Performance Impact Analysis of Security Attacks on Cross-Layer Routing Protocols in Vehicular Ad hoc Networks. , 2020, , .		3
182	An Analysis on Contemporary MAC Layer Protocols in Vehicular Networks: State-of-the-Art and Future Directions. Future Internet, 2021, 13, 287.	2.4	6
183	Novel Decentralized Voltage-Centered EV Charging Control Algorithm Using DSRC System in Low Voltage Distribution Networks. IEEE Access, 2021, 9, 164779-164800.	2.6	11

#	Article	IF	CITATIONS
184	A Survey on Cooperative Architectures and Maneuvers for Connected and Automated Vehicles. IEEE Communications Surveys and Tutorials, 2022, 24, 380-403.	24.8	24
185	CPA-MAC: A Collision Prediction and Avoidance MAC for Safety Message Dissemination in MEC-Assisted VANETs. IEEE Transactions on Network Science and Engineering, 2022, 9, 783-794.	4.1	7
186	MAC-AC: A Novel Distributed MAC Protocol for Accessing Channel in Vehicular Ad Hoc Networks. , 2020, , .		4
187	TA- TDMA: A traffic aware TDMA MAC protocol for safety applications in VANET. , 2021, , .		5
188	A Performance Analysis of VANETs Propagation Models and Routing Protocols. Sustainability, 2022, 14, 1379.	1.6	16
189	A TDMA-Based MAC Protocol for Mitigating Mobility-Caused Packet Collisions in Vehicular Ad Hoc Networks. Sensors, 2022, 22, 643.	2.1	10
190	Performance Evaluation of Hybrid Distributed-Centralized TDMA in High-Density Vehicular Networks. IEEE Communications Letters, 2022, 26, 952-956.	2.5	2
191	Priority-Based Hybrid MAC Protocol for VANET with UAV-Enabled Roadside Units. Wireless Communications and Mobile Computing, 2022, 2022, 1-13.	0.8	2
192	Distributed Resource Allocation Based on Timeslot Reservation in High-Density VANETs. IEEE Transactions on Vehicular Technology, 2022, 71, 6586-6595.	3.9	3
194	ASMAC: An Adaptive Slot Access MAC Protocol in Distributed VANET. Electronics (Switzerland), 2022, 11, 1145.	1.8	3
195	A survey on vehicular communication for cooperative truck platooning application. Vehicular Communications, 2022, 35, 100460.	2.7	19
196	Hybrid Link States Predicting Model for Cluster Head Selection and its Routing Analysis for WSN MANETS. , 2022, , .		3
197	MAC-Based Secure Data Transmission in Vehicular Ad hoc Networks. Lecture Notes on Data Engineering and Communications Technologies, 2022, , 39-48.	0.5	1
198	Global Resource Allocation for High Throughput and Low Delay in High-Density VANETs. IEEE Transactions on Wireless Communications, 2022, 21, 9509-9518.	6.1	1
199	SATMAC: Self-Adaptive TDMA-Based MAC Protocol for VANETs. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 21712-21728.	4.7	7
200	Channel capacity optimization scheme for safety applications in vehicular ad hoc networks. International Journal of Communication Systems, 0, , .	1.6	0
201	Analytical Methods and Determinants of Frequency and Severity of Road Accidents: A 20-Year Systematic Literature Review. Journal of Advanced Transportation, 2022, 2022, 1-17.	0.9	4
202	Time-Slot Reservation and Channel Switching Using Markovian Model for Multichannel TDMA MAC in VANETs. IEEE Access, 2022, 10, 81250-81268.	2.6	3

#	Article	IF	Citations
203	Load-Aware Distributed Resource Allocation for MF-TDMA Ad Hoc Networks: A Multi-Agent DRL Approach. IEEE Transactions on Network Science and Engineering, 2022, 9, 4426-4443.	4.1	2
204	Optimization transmit rate-based decentralized congestion control scheme in vehicular ad hoc networks. AIP Conference Proceedings, 2022, , .	0.3	2
205	A Directional TDMA Protocol for High Throughput URLLC in mmWave Vehicular Networks. IEEE Transactions on Vehicular Technology, 2023, 72, 3584-3599.	3.9	6
206	Efficient Congestion Control With Information Loss Minimization for Vehicular Ad Hoc Networks. IEEE Transactions on Vehicular Technology, 2023, 72, 3879-3888.	3.9	1
207	A Cluster-Based UE-Scheduling Scheme for NR-V2X. IEEE Transactions on Vehicular Technology, 2023, 72, 4538-4552.	3.9	3
208	On Utilizing Unused Slots In Topology-Transparent TDMA MAC Policies for Ad Hoc Networks. , 2022, , .		1
209	Enhancement of information propagation on the highway in VANET based on Multiple Vehicle Class. , 2022, , .		0
210	Joint Optimization of Relay Selection and Transmission Scheduling for UAV-Aided mmWave Vehicular Networks. IEEE Transactions on Vehicular Technology, 2023, 72, 6322-6334.	3.9	5
211	Deep Reinforcement Learning-Based Resource Allocation for Content Distribution in IoT-Edge-Cloud Computing Environments. Symmetry, 2023, 15, 217.	1.1	8
212	Deep Reinforcement Learning-Based Enhancement of SATMAC for Reliable Channel Access in VANETs. , 2022, , .		0
213	Protocol Design for Safety Message Broadcast. SpringerBriefs in Computer Science, 2023, , 17-48.	0.2	0
214	Overview of Communication and Computing in IoV. SpringerBriefs in Computer Science, 2023, , 9-16.	0.2	0
215	Information dissemination dynamics through Vehicle-to-Vehicle communication built upon traffic flow dynamics over roadway networks. Vehicular Communications, 2023, 41, 100598.	2.7	1
216	Dependable and reliable cloudâ€based architectures for vehicular communications: A systematic literature review. International Journal of Communication Systems, 2023, 36, .	1.6	1
217	Transceiver Beamforming for Over-the-Air Computation in Massive MIMO Systems. IEEE Transactions on Wireless Communications, 2023, 22, 6978-6992.	6.1	1
218	Switch-Beam Antenna Techniques for Bridge Structural Health Monitoring With GaAs-Based Solar Energy Harvesting. Canadian Journal of Electrical and Computer Engineering, 2023, 46, 90-98.	1.5	Ο
219	TDMA-Based MAC Protocols Designed orÂOptimized Using Artificial Intelligence forÂSafety Data Dissemination inÂVehicular Ad-Hoc Network: A Survey. Lecture Notes in Computer Science, 2023, , 88-112.	1.0	0
225	Synchronized ESP-NOW for Improved Energy Efficiency. , 2023, , .		2