Forging a signature of in vivo senescence

Nature Reviews Cancer 15, 397-408

DOI: 10.1038/nrc3960

Citation Report

#	Article	IF	CITATIONS
2	The senescent methylome and its relationship with cancer, ageing and germline genetic variation in humans. Genome Biology, 2015, 16, 194.	3.8	40
3	Celecoxib inhibits proliferation and survival of chronic myelogeous leukemia (CML) cells via AMPK-dependent regulation of \hat{l}^2 -catenin and mTORC1/2. Oncotarget, 2016, 7, 81555-81570.	0.8	16
4	Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging, 2016, 8, 2915-2926.	1.4	188
5	Finding Ponce de Leon's Pill: Challenges in Screening for Anti-Aging Molecules. F1000Research, 2016, 5, 406.	0.8	20
6	HSP27 Alleviates Cardiac Aging in Mice via a Mechanism Involving Antioxidation and Mitophagy Activation. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-13.	1.9	33
7	DNA Damage: A Main Determinant of Vascular Aging. International Journal of Molecular Sciences, 2016, 17, 748.	1.8	64
8	miR-541 Contributes to Microcystin-LR-Induced Reproductive Toxicity through Regulating the Expression of p15 in Mice. Toxins, 2016, 8, 260.	1.5	13
9	RNA-Binding Protein FXR1 Regulates p21 and TERC RNA to Bypass p53-Mediated Cellular Senescence in OSCC. PLoS Genetics, 2016, 12, e1006306.	1.5	52
10	Cellular senescence and aging. Oral Diseases, 2016, 22, 587-590.	1.5	9
11	Aberrant splicing of the <scp>DMP1</scp> â€ <scp>ARF</scp> â€ <scp>MDM2</scp> â€p53 pathway in cancer. International Journal of Cancer, 2016, 139, 33-41.	2.3	35
12	Telomere dysfunction and chromothripsis. International Journal of Cancer, 2016, 138, 2905-2914.	2.3	42
13	Aging, Clonality, and Rejuvenation of Hematopoietic Stem Cells. Trends in Molecular Medicine, 2016, 22, 701-712.	3.5	135
14	Modulation of therapy-induced senescence by reactive lipid aldehydes. Cell Death Discovery, 2016, 2, .	2.0	29
15	Werner syndrome through the lens of tissue and tumour genomics. Scientific Reports, 2016, 6, 32038.	1.6	16
16	SASP: Tumor Suppressor or Promoter? Yes!. Trends in Cancer, 2016, 2, 676-687.	3.8	153
17	Senescence: novel insight into DLX3 mutations leading to enhanced bone formation in Tricho-Dento-Osseous syndrome. Scientific Reports, 2016, 6, 38680.	1.6	12
18	Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Nonâ€"Small Cell Lung Cancer, and Other Solid Tumors. Cancer Discovery, 2016, 6, 740-753.	7.7	565
19	Biomarkers to identify and isolate senescent cells. Ageing Research Reviews, 2016, 29, 1-12.	5.0	115

#	Article	IF	CITATIONS
20	Disc cell senescence in intervertebral disc degeneration: Causes and molecular pathways. Cell Cycle, 2016, 15, 1674-1684.	1.3	202
21	Ageing and the pathogenesis of osteoarthritis. Nature Reviews Rheumatology, 2016, 12, 412-420.	3.5	745
22	The germline/soma dichotomy: implications for aging and degenerative disease. Regenerative Medicine, 2016, 11, 331-334.	0.8	2
23	The Werner syndrome RECQ helicase targets G4 DNA in human cells to modulate transcription. Human Molecular Genetics, 2016, 25, 2060-2069.	1.4	81
24	IFI16, an amplifier of DNA-damage response: Role in cellular senescence and aging-associated inflammatory diseases. Ageing Research Reviews, 2016, 28, 27-36.	5.0	52
25	Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia, 2016, 59, 1579-1593.	2.9	71
26	Aging of the Liver: What This Means for Patients with HIV. Current HIV/AIDS Reports, 2016, 13, 309-317.	1.1	8
27	Regenerative potential of human airway stem cells in lung epithelial engineering. Biomaterials, 2016, 108, 111-119.	5.7	66
28	Chemotherapy and Stem Cell Transplantation Increase p16 INK4a Expression, a Biomarker of T-cell Aging. EBioMedicine, 2016, 11, 227-238.	2.7	49
29	The Dual Role of Senescence in Pancreatic Ductal Adenocarcinoma. Advances in Cancer Research, 2016, 131, 1-20.	1.9	16
30	Ageâ€associated downregulation of vasohibinâ€1 in vascular endothelial cells. Aging Cell, 2016, 15, 885-892.	3.0	26
31	To clear, or not to clear (senescent cells)? That is the question. Inside the Cell, 2016, 1, 87-95.	0.4	2
32	To clear, or not to clear (senescent cells)? That is the question. BioEssays, 2016, 38, S56-64.	1.2	88
33	Targeting Senescent Cells: Possible Implications for Delaying Skin Aging: A Mini-Review. Gerontology, 2016, 62, 513-518.	1.4	48
34	Hydroxylated-graphene quantum dots induce cells senescence in both p53-dependent and -independent manner. Toxicology Research, 2016, 5, 1639-1648.	0.9	32
35	Deficient Activity of the Nuclease MRE11A Induces T Cell Aging and Promotes Arthritogenic Effector Functions in Patients with Rheumatoid Arthritis. Immunity, 2016, 45, 903-916.	6.6	88
36	Reed-Sternberg cells in Hodgkin's lymphoma present features of cellular senescence. Cell Death and Disease, 2016, 7, e2457-e2457.	2.7	24
37	Assessment and consequences of cell senescence in atherosclerosis. Current Opinion in Lipidology, 2016, 27, 431-438.	1.2	13

#	Article	IF	Citations
38	Ras signaling through RASSF proteins. Seminars in Cell and Developmental Biology, 2016, 58, 86-95.	2.3	79
39	HIF-1α and rapamycin act as gerosuppressant in multiple myeloma cells upon genotoxic stress. Cell Cycle, 2016, 15, 2174-2182.	1.3	8
40	Senescence in chronic liver disease: Is the future in aging?. Journal of Hepatology, 2016, 65, 825-834.	1.8	113
41	Systemic DNA damage responses in aging and diseases. Seminars in Cancer Biology, 2016, 37-38, 26-35.	4.3	89
42	Targeting CDK4 and CDK6: From Discovery to Therapy. Cancer Discovery, 2016, 6, 353-367.	7.7	717
43	Mitochondrial Dysfunction Meets Senescence. Trends in Biochemical Sciences, 2016, 41, 207-209.	3.7	42
44	Cellular senescence and tumor promotion: Is aging the key?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 155-167.	3.3	67
45	Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature, 2016, 530, 184-189.	13.7	2,016
46	Targeting CDK4/6 in patients with cancer. Cancer Treatment Reviews, 2016, 45, 129-138.	3.4	356
47	Depleting senescent cells to combat aging. Nature Medicine, 2016, 22, 23-24.	15.2	9
48	Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration. Osteoarthritis and Cartilage, 2016, 24, 398-408.	0.6	306
49	Ataxia-telangiectasia (A-T): An emerging dimension of premature ageing. Ageing Research Reviews, 2017, 33, 76-88.	5.0	88
50	Genome instability: Linking ageing and brain degeneration. Mechanisms of Ageing and Development, 2017, 161, 4-18.	2.2	11
51	Therapeutic interventions for aging: the case of cellular senescence. Drug Discovery Today, 2017, 22, 786-795.	3.2	149
52	Sphere-Induced Rejuvenation of Swine and Human MÃ $^1\!4$ ller Glia Is Primarily Caused by Telomere Elongation. Stem Cells, 2017, 35, 1579-1591.	1.4	8
53	Endothelial Notch1 Activity Facilitates Metastasis. Cancer Cell, 2017, 31, 355-367.	7.7	237
54	The Strange Case of CDK4/6 Inhibitors: Mechanisms, Resistance, and Combination Strategies. Trends in		
	Cancer, 2017, 3, 39-55.	3.8	206

#	ARTICLE	IF	CITATIONS
56	Downregulation of miR-130b~301b cluster is mediated by aberrant promoter methylation and impairs cellular senescence in prostate cancer. Journal of Hematology and Oncology, 2017, 10, 43.	6.9	48
57	Epidermal p16 <scp>^{INK}</scp> ^{4a} expression is more frequently and intensely upregulated in lichen planus than in eczema, psoriasis, drug eruption and graftâ€versusâ€host disease. Journal of Dermatology, 2017, 44, 343-344.	0.6	2
58	The impact of cellular senescence in skin ageing: A notion of mosaic and therapeutic strategies. Biochemical Pharmacology, 2017, 142, 1-12.	2.0	77
59	Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nature Medicine, 2017, 23, 775-781.	15.2	994
60	p16 controls epithelial cell growth and suppresses carcinogenesis through mechanisms that do not require RB1 function. Oncogenesis, 2017, 6, e320-e320.	2.1	8
61	Targeting the interleukin-1 pathway in patients with hematological disorders. Blood, 2017, 129, 3155-3164.	0.6	60
62	Cellular Senescence in Mouse Hippocampus After Irradiation and the Role of p53 and p21. Journal of Neuropathology and Experimental Neurology, 2017, 76, 260-269.	0.9	21
63	Induction of senescence in primary glioblastoma cells by serum and TGFβ. Scientific Reports, 2017, 7, 2156.	1.6	17
64	Cell Division Machinery and Disease. Advances in Experimental Medicine and Biology, 2017, , .	0.8	4
65	Intrinsic protein disorder in oncogenic KRAS signaling. Cellular and Molecular Life Sciences, 2017, 74, 3245-3261.	2.4	45
66	Senescence in Health and Disease. Cell, 2017, 169, 1000-1011.	13.5	1,137
67	Unbalanced Growth, Senescence and Aging. Advances in Experimental Medicine and Biology, 2017, 1002, 189-208.	0.8	13
68	Senotherapy: growing old and staying young?. Pflugers Archiv European Journal of Physiology, 2017, 469, 1051-1059.	1.3	30
69	Ochratoxin A induced premature senescence in human renal proximal tubular cells. Toxicology, 2017, 382, 75-83.	2.0	23
70	Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives. Journal of the American Heart Association, 2017, 6, .	1.6	178
71	Stromal Senescence By Prolonged CDK4/6 Inhibition Potentiates Tumor Growth. Molecular Cancer Research, 2017, 15, 237-249.	1.5	71
72	Premature senescence of endothelial cells upon chronic exposure to TNFα can be prevented by N-acetyl cysteine and plumericin. Scientific Reports, 2017, 7, 39501.	1.6	104
73	Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma. Gut, 2017, 66, 1286-1296.	6.1	198

#	ARTICLE	IF	Citations
74	The Chromatin-Associated Phf12 Protein Maintains Nucleolar Integrity and Prevents Premature Cellular Senescence. Molecular and Cellular Biology, 2017, 37, .	1.1	9
75	KO of 5-InsP ₇ kinase activity transforms the HCT116 colon cancer cell line into a hypermetabolic, growth-inhibited phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11968-11973.	3.3	62
76	The potential of targeting Sin3B and its associated complexes for cancer therapy. Expert Opinion on Therapeutic Targets, 2017, 21, 1051-1061.	1.5	7
77	DLX3 promotes bone marrow mesenchymal stem cell proliferation through H19/miR-675 axis. Clinical Science, 2017, 131, 2721-2735.	1.8	15
78	Unmasking Transcriptional Heterogeneity in Senescent Cells. Current Biology, 2017, 27, 2652-2660.e4.	1.8	559
79	DNA sensing in senescence. Nature Cell Biology, 2017, 19, 1008-1009.	4.6	18
80	Epigenetic regulation in cell senescence. Journal of Molecular Medicine, 2017, 95, 1257-1268.	1.7	37
81	ATRX is a regulator of therapy induced senescence in human cells. Nature Communications, 2017, 8, 386.	5.8	59
82	Techniques to Induce and Quantify Cellular Senescence. Journal of Visualized Experiments, 2017, , .	0.2	105
83	Senescent cells: an emerging target for diseases of ageing. Nature Reviews Drug Discovery, 2017, 16, 718-735.	21.5	788
84	The emerging role of alternative splicing in senescence and aging. Aging Cell, 2017, 16, 918-933.	3.0	141
85	FOXQ1 regulates senescence-associated inflammation via activation of SIRT1 expression. Cell Death and Disease, 2017, 8, e2946-e2946.	2.7	27
86	Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses?. Cellular and Molecular Life Sciences, 2017, 74, 4471-4509.	2.4	55
87	p53 loss does not permit escape from BrafV600E-induced senescence in a mouse model of lung cancer. Oncogene, 2017, 36, 6325-6335.	2.6	9
88	Modeling Glaucoma: Retinal Ganglion Cells Generated from Induced Pluripotent Stem Cells of Patients with SIX6 Risk Allele Show Developmental Abnormalities. Stem Cells, 2017, 35, 2239-2252.	1.4	49
89	Serine protease inhibitor SerpinB2 binds and stabilizes p21 in senescent cells. Journal of Cell Science, 2017, 130, 3272-3281.	1.2	28
90	Caveolin-1 regulates oxidative stress-induced senescence in nucleus pulposus cells primarily via the p53/p21 signaling pathway in vitro. Molecular Medicine Reports, 2017, 16, 9521-9527.	1.1	17
91	Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma. Nature Communications, 2017, 8, 1819.	5.8	76

#	Article	IF	Citations
92	Heterogeneous Rupturing Dendrimers. Journal of the American Chemical Society, 2017, 139, 17660-17666.	6.6	12
93	Murine mesenchymal cells that express elevated levels of the CDK inhibitor p16(Ink4a) <i>in vivo</i> are not necessarily senescent. Cell Cycle, 2017, 16, 1526-1533.	1.3	28
94	PIG3 promotes NSCLC cell mitotic progression and is associated with poor prognosis of NSCLC patients. Journal of Experimental and Clinical Cancer Research, 2017, 36, 39.	3.5	14
95	Oncogene-Induced Senescence. Methods in Molecular Biology, 2017, , .	0.4	4
96	The Immortal Senescence. Methods in Molecular Biology, 2017, 1534, 1-15.	0.4	7
97	Detection of Oncogene-Induced Senescence In Vivo. Methods in Molecular Biology, 2017, 1534, 185-198.	0.4	8
98	Detecting Markers of Therapy-Induced Senescence in Cancer Cells. Methods in Molecular Biology, 2017, 1534, 41-52.	0.4	11
99	Oncogenic and tumor-suppressive mouse models for breast cancer engaging HER2/neu. International Journal of Cancer, 2017, 140, 495-503.	2.3	30
100	Stimulation of cellular senescent processes, including secretory phenotypes and anti-oxidant responses, after androgen deprivation therapy in human prostate cancer. Journal of Steroid Biochemistry and Molecular Biology, 2017, 165, 219-227.	1.2	13
101	Cellular senescence: Implications for metabolic disease. Molecular and Cellular Endocrinology, 2017, 455, 93-102.	1.6	63
102	p16 ^{INK4A} induces senescence and inhibits EMT through microRNAâ€141/microRNAâ€146bâ€5pâ€dependent repression of AUF1. Molecular Carcinogenesis, 2017, 56, 985-999.	1.3	24
103	Progress with palbociclib in breast cancer: latest evidence and clinical considerations. Therapeutic Advances in Medical Oncology, 2017, 9, 83-105.	1.4	45
104	The Regulation of Cellular Functions by the p53 Protein: Cellular Senescence. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026112.	2.9	42
105	The Role of Kinase Modulators in Cellular Senescence for Use in Cancer Treatment. Molecules, 2017, 22, 1411.	1.7	23
106	Genomic Destabilization Triggered by Replication Stress during Senescence. Cancers, 2017, 9, 159.	1.7	4
107	The Potential Role of Senescence As a Modulator of Platelets and Tumorigenesis. Frontiers in Oncology, 2017, 7, 188.	1.3	17
108	Ataxia-Telangiectasia Mutated Modulation of Carbon Metabolism in Cancer. Frontiers in Oncology, 2017, 7, 291.	1.3	36
109	The footprint of the ageing stroma in older patients with breast cancer. Breast Cancer Research, 2017, 19, 78.	2.2	22

#	Article	IF	CITATIONS
110	Brain tumor initiating cells: with great technology will come greater understanding. Future Neurology, 2017, 12, 223-236.	0.9	1
111	p16(Ink4a) and senescence-associated \hat{l}^2 -galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging, 2017, 9, 1867-1884.	1.4	244
112	Molecular and phenotypic biomarkers of aging. F1000Research, 2017, 6, 860.	0.8	129
113	p16INK4a Expression in Porokeratosis. Annals of Dermatology, 2017, 29, 373.	0.3	1
114	Hallmarks of Cellular Senescence. Trends in Cell Biology, 2018, 28, 436-453.	3.6	1,474
115	Reconstructing the molecular life history of gliomas. Acta Neuropathologica, 2018, 135, 649-670.	3.9	61
116	Down-regulation of cancer-associated gene CDC73 contributes to cellular senescence. Biochemical and Biophysical Research Communications, 2018, 499, 809-814.	1.0	2
117	The 9p21 locus as a potential therapeutic target and prognostic marker in colorectal cancer. Pharmacogenomics, 2018, 19, 463-474.	0.6	9
118	Senescence drives non-cell autonomous tumorigenesis in the pituitary gland. Molecular and Cellular Oncology, 2018, 5, e1435180.	0.3	8
119	Mice with reduced expression of the telomereâ€associated protein Ft1 develop p53â€sensitive progeroid traits. Aging Cell, 2018, 17, e12730.	3.0	24
120	BRD4 regulates cellular senescence in gastric cancer cells via E2F/miR-106b/p21 axis. Cell Death and Disease, 2018, 9, 203.	2.7	54
121	<i>CDKN2A/B</i> T2D Genome-Wide Association Study Risk SNPs Impact Locus Gene Expression and Proliferation in Human Islets. Diabetes, 2018, 67, 872-884.	0.3	41
122	Regulation of senescence escape by the cdk4–EZH2–AP2M1 pathway in response to chemotherapy. Cell Death and Disease, 2018, 9, 199.	2.7	47
123	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
124	Cellular senescence in the aging and diseased kidney. Journal of Cell Communication and Signaling, 2018, 12, 69-82.	1.8	119
125	Senescence promotes inÂvivo reprogramming through p16 <scp>^{INK}</scp> ^{4a} and <scp>IL</scp> â€6. Aging Cell, 2018, 17, e12711.	3.0	133
127	Chemoprevention and Treatment of Pancreatic Cancer: Update and Review of the Literature. Digestion, 2018, 97, 275-287.	1.2	17
128	Resistance Mechanisms to Cyclin-Dependent Kinase Inhibitors. Resistance To Targeted Anti-cancer Therapeutics, 2018, , 181-210.	0.1	3

#	Article	IF	CITATIONS
129	Cellular Senescence Biomarker p16INK4a+ Cell Burden in Thigh Adipose is Associated With Poor Physical Function in Older Women. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 939-945.	1.7	92
130	Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function. Antioxidants and Redox Signaling, 2018, 29, 149-168.	2.5	109
131	Association of <i>CDKN2A/CDKN2B</i> with inflammatory bowel disease in Koreans. Journal of Gastroenterology and Hepatology (Australia), 2018, 33, 887-893.	1.4	7
132	LSD1 promotes S-phase entry and tumorigenesis via chromatin co-occupation with E2F1 and selective H3K9 demethylation. Oncogene, 2018, 37, 534-543.	2.6	40
133	DNA damage, metabolism and aging in pro-inflammatory T cells. Experimental Gerontology, 2018, 105, 118-127.	1.2	53
134	Senescence and aging: Causes, consequences, and therapeutic avenues. Journal of Cell Biology, 2018, 217, 65-77.	2.3	757
135	Age-induced and photoinduced changes in gene expression profiles in facial skin of Caucasian females across 6Âdecades of age. Journal of the American Academy of Dermatology, 2018, 78, 29-39.e7.	0.6	50
136	Senescent cells: a therapeutic target for cardiovascular disease. Journal of Clinical Investigation, 2018, 128, 1217-1228.	3.9	138
137	Arginine-Depleting Enzymes – An Increasingly Recognized Treatment Strategy for Therapy-Refractory Malignancies. Cellular Physiology and Biochemistry, 2018, 51, 854-870.	1.1	58
138	Urothelial Senescence in the Pathophysiology of Diabetic Bladder Dysfunction—A Novel Hypothesis. Frontiers in Surgery, 2018, 5, 72.	0.6	13
139	NK cell–mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science, 2018, 362, 1416-1422.	6.0	267
140	Rapamycin, proliferation and geroconversion to senescence. Cell Cycle, 2018, 17, 2655-2665.	1.3	46
141	Endocytosis in proliferating, quiescent and terminally differentiated cells. Journal of Cell Science, 2018, 131, .	1.2	53
142	The Senescence–Stemness Alliance – A Cancer-Hijacked Regeneration Principle. Trends in Cell Biology, 2018, 28, 1049-1061.	3.6	73
143	Ageing, Cellular Senescence and Neurodegenerative Disease. International Journal of Molecular Sciences, 2018, 19, 2937.	1.8	248
144	Biomedical Research in Aging. , 2018, , 25-54.		0
145	CDKN2A and CDKN2B Gene Variants in Acute Lymphoblastic Leukemia in Tunisian Population. Journal of Leukemia (Los Angeles, Calif), 2018, 06, .	0.1	2
146	Does Joint Injury Make Young Joints Old?. Journal of the American Academy of Orthopaedic Surgeons, The, 2018, 26, e455-e456.	1.1	5

#	ARTICLE	IF	Citations
147	Genome amplification and cellular senescence are hallmarks of human placenta development. PLoS Genetics, 2018, 14, e1007698.	1.5	64
148	Aging and Malignant Hemopathies: A Complex Multistep Process. , 2018, , 1-13.		1
149	Inhibition of TRF2 accelerates telomere attrition and DNA damage in na \tilde{A} -ve CD4 T cells during HCV infection. Cell Death and Disease, 2018, 9, 900.	2.7	27
150	Elimination of senescent cells prevents neurodegeneration in mice. Nature, 2018, 562, 503-504.	13.7	3
151	A Quantitative Measurement of Reactive Oxygen Species and Senescence-associated Secretory Phenotype in Normal Human Fibroblasts During Oncogene-induced Senescence. Journal of Visualized Experiments, 2018, , .	0.2	0
152	The Basics of Biogerontology. , 2018, , .		1
153	Switching off IMMP2L signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. Cell Research, 2018, 28, 625-643.	5.7	37
154	<scp>CD</scp> 57 identifies T cells with functional senescence before terminal differentiation and relative telomere shortening in patients with activated <scp>PI</scp> 3 kinase delta syndrome. Immunology and Cell Biology, 2018, 96, 1060-1071.	1.0	29
155	p53 Mediates Vast Gene Expression Changes That Contribute to Poor Chemotherapeutic Response in a Mouse Model of Breast Cancer. Translational Oncology, 2018, 11, 930-940.	1.7	13
156	SOHO State of the Art Update and Next Questions: Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 439-446.	0.2	20
157	E47 Governs the MYC-CDKN1B/p27 KIP1 -RB Network to Growth Arrest PDA Cells Independent of CDKN2A/p16 INK4A and Wild-Type p53. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 181-198.	2.3	14
158	Conditioned medium from stimulated macrophages inhibits growth but induces an inflammatory phenotype in breast cancer cells. Biomedicine and Pharmacotherapy, 2018, 106, 247-254.	2.5	12
159	Inflammageing: chronic inflammation in ageing, cardiovascular disease, andÂfrailty. Nature Reviews Cardiology, 2018, 15, 505-522.	6.1	1,760
160	Role of the Inflammation-Autophagy-Senescence Integrative Network in Osteoarthritis. Frontiers in Physiology, 2018, 9, 706.	1.3	100
161	CDK4/6 inhibition in breast cancer: current practice and future directions. Therapeutic Advances in Medical Oncology, 2018, 10, 175883591878645.	1.4	218
162	Age- and Tissue-Specific Expression of Senescence Biomarkers in Mice. Frontiers in Genetics, 2018, 9, 59.	1.1	87
163	A versatile drug delivery system targeting senescent cells. EMBO Molecular Medicine, 2018, 10, .	3.3	204
164	Out with the old, in with the new: senescence in development. Current Opinion in Cell Biology, 2018, 55, 74-80.	2.6	19

#	Article	IF	CITATIONS
165	Expression of p16 <scp>^{INK}</scp> ^{4a} is a biomarker of chondrocyte aging but does not cause osteoarthritis. Aging Cell, 2018, 17, e12771.	3.0	111
166	Cellular Senescence: The Sought or the Unwanted?. Trends in Molecular Medicine, 2018, 24, 871-885.	3.5	141
167	Cellular senescence in tissue repair: every cloud has a silver lining. International Journal of Developmental Biology, 2018, 62, 591-604.	0.3	34
168	Biomarkers of Cellular Senescence and Skin Aging. Frontiers in Genetics, 2018, 9, 247.	1.1	258
169	Antioxidant treatment ameliorates phenotypic features of SMC1A-mutated Cornelia de Lange syndrome in vitro and in vivo. Human Molecular Genetics, 2018, 27, 3002-3011.	1.4	24
170	Werner Syndrome as a Model of Human Aging. , 2018, , 3-19.		1
171	Induction and Validation of Cellular Senescence in Primary Human Cells. Journal of Visualized Experiments, 2018, , .	0.2	27
172	Vascular smooth muscle cell senescence and age-related diseases: State of the art. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1810-1821.	1.8	96
173	Long non-coding RNA H19 regulates endothelial cell aging via inhibition of STAT3 signalling. Cardiovascular Research, 2019, 115, 230-242.	1.8	105
174	Esculetin Prevents the Induction of Matrix Metalloproteinase-1 by Hydrogen Peroxide in Skin Keratinocytes. Journal of Cancer Prevention, 2019, 24, 123-128.	0.8	5
175	Targeting normal and cancer senescent cells as a strategy of senotherapy. Ageing Research Reviews, 2019, 55, 100941.	5.0	37
176	Controlled induction and targeted elimination of p16 INK4a â€expressing chondrocytes in cartilage explant culture. FASEB Journal, 2019, 33, 12364-12373.	0.2	35
177	Mitofusins modulate the increase in mitochondrial length, bioenergetics and secretory phenotype in therapy-induced senescent melanoma cells. Biochemical Journal, 2019, 476, 2463-2486.	1.7	17
178	New Insights into Chronological Mobility of Retrotransposons In Vivo. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.	1.9	4
179	Stressâ€induced and ATF7â€dependent epigenetic change influences cellular senescence. Genes To Cells, 2019, 24, 627-635.	0.5	5
180	Senescence Evasion in Chemotherapy: A Sweet Spot for p21. Cell, 2019, 178, 267-269.	13.5	14
181	Time for the systems-level integration of aging: Resilience enhancing strategies to prevent Alzheimer's disease. Progress in Neurobiology, 2019, 181, 101662.	2.8	38
182	Putting the brakes on the cell cycle: mechanisms of cellular growth arrest. Current Opinion in Cell Biology, 2019, 60, 106-113.	2.6	89

#	Article	IF	CITATIONS
183	Genomic Instability: DNA Repair and Cancer. Learning Materials in Biosciences, 2019, , 75-96.	0.2	0
184	Cellular Senescence: Defining a Path Forward. Cell, 2019, 179, 813-827.	13.5	1,551
185	Graded regulation of cellular quiescence depth between proliferation and senescence by a lysosomal dimmer switch. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22624-22634.	3.3	84
186	SASP-Dependent Interactions between Senescent Cells and Platelets Modulate Migration and Invasion of Cancer Cells. International Journal of Molecular Sciences, 2019, 20, 5292.	1.8	14
187	Senescenceâ€induced immunophenotype, gene expression and electrophysiology changes in human amniocytes. Journal of Cellular and Molecular Medicine, 2019, 23, 7233-7245.	1.6	7
188	Typhoid toxin exhausts the RPA response to DNA replication stress driving senescence and Salmonella infection. Nature Communications, 2019, 10, 4040.	5.8	41
189	Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival. Journal of Cell Biology, 2019, 218, 3827-3844.	2.3	80
190	Identification of reference genes for RT-qPCR data normalisation in aging studies. Scientific Reports, 2019, 9, 13970.	1.6	25
191	BET Proteins Are Required for Transcriptional Activation of the Senescent Islet Cell Secretome in Type 1 Diabetes. International Journal of Molecular Sciences, 2019, 20, 4776.	1.8	23
192	A Unique SUMO-Interacting Motif of Trx2 Is Critical for Its Mitochondrial Presequence Processing and Anti-oxidant Activity. Frontiers in Physiology, 2019, 10, 1089.	1.3	11
193	Connective tissue fibroblasts from highly regenerative mammals are refractory to ROS-induced cellular senescence. Nature Communications, 2019, 10, 4400.	5.8	56
194	Viewpoint on the role of tissue maintenance in ageing: focus on biomarkers of bone, cartilage, muscle, and brain tissue maintenance. Ageing Research Reviews, 2019, 56, 100964.	5.0	8
195	Cells exhibiting strong $\langle i \rangle p16 \langle i \rangle \langle sup \rangle \langle i \rangle INK4a \langle i \rangle \langle sup \rangle$ promoter activation in vivo display features of senescence. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2603-2611.	3.3	218
196	Epstein–Barr virus miR-BART3-3p promotes tumorigenesis by regulating the senescence pathway in gastric cancer. Journal of Biological Chemistry, 2019, 294, 4854-4866.	1.6	35
197	Recent advances with cyclin-dependent kinase inhibitors: therapeutic agents for breast cancer and their role in immuno-oncology. Expert Review of Anticancer Therapy, 2019, 19, 569-587.	1.1	21
198	Unmasking senescence: context-dependent effects of SASP in cancer. Nature Reviews Cancer, 2019, 19, 439-453.	12.8	465
199	Molecular and Cell Biology of Cancer. Learning Materials in Biosciences, 2019, , .	0.2	3
200	Role of melanoma inhibitory activity in melanocyte senescence. Pigment Cell and Melanoma Research, 2019, 32, 777-791.	1.5	20

#	Article	IF	CITATIONS
201	Regulation of Survival Networks in Senescent Cells: From Mechanisms to Interventions. Journal of Molecular Biology, 2019, 431, 2629-2643.	2.0	100
202	LncRNAs Regulatory Networks in Cellular Senescence. International Journal of Molecular Sciences, 2019, 20, 2615.	1.8	71
203	Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nature Communications, 2019, 10, 2387.	5.8	281
204	β‑catenin signalling inhibits cartilage endplate chondrocyte homeostasis in�vitro. Molecular Medicine Reports, 2019, 20, 567-572.	1.1	5
205	The transcription factor Slug represses p16lnk4a and regulates murine muscle stem cell aging. Nature Communications, 2019, 10, 2568.	5.8	38
206	Emerging senolytic agents derived from natural products. Mechanisms of Ageing and Development, 2019, 181, 1-6.	2.2	69
207	Chromatin remodeling factor BAZ1A regulates cellular senescence in both cancer and normal cells. Life Sciences, 2019, 229, 225-232.	2.0	12
208	A cmap-enabled gene expression signature-matching approach identifies small-molecule inducers of accelerated cell senescence. BMC Genomics, 2019, 20, 290.	1.2	11
209	Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6995-7004.	3.3	140
210	Negative Regulation of p53-Induced Senescence by N-WASP Is Crucial for DMBA/TPA-Induced Skin Tumor Formation. Cancer Research, 2019, 79, 2167-2181.	0.4	13
211	<p>MLL3 promotes the senescence of esophageal squamous cell carcinoma</p> . OncoTargets and Therapy, 2019, Volume 12, 1575-1582.	1.0	1
212	Targeting glutamine-addiction and overcoming CDK4/6 inhibitor resistance in human esophageal squamous cell carcinoma. Nature Communications, 2019, 10, 1296.	5.8	7 3
213	The effects of HSP27 against UVB-induced photoaging in rat skin. Biochemical and Biophysical Research Communications, 2019, 512, 435-440.	1.0	18
214	Connective Tissue and Age-Related Diseases. Sub-Cellular Biochemistry, 2019, 91, 281-310.	1.0	28
215	Consequences of senotherapies for tissue repair and reprogramming. Translational Medicine of Aging, 2019, 3, 31-36.	0.6	1
216	Functional screening to identify senescence regulators in cancer. Current Opinion in Genetics and Development, 2019, 54, 17-24.	1.5	5
217	Proteomics Approaches to Define Senescence Heterogeneity and Chemotherapy Response. Proteomics, 2019, 19, 1800447.	1.3	6
218	The resistant effect of SIRT1 in oxidative stress-induced senescence of rat nucleus pulposus cell is regulated by Akt-FoxO1 pathway. Bioscience Reports, 2019, 39, .	1.1	30

#	ARTICLE	IF	CITATIONS
219	Approaches towards Longevity: Reprogramming, Senolysis, and Improved Mitotic Competence as Anti-Aging Therapies. International Journal of Molecular Sciences, 2019, 20, 938.	1.8	17
220	p16Ink4a deletion in cells of the intervertebral disc affects their matrix homeostasis and senescence associated secretory phenotype without altering onset of senescence. Matrix Biology, 2019, 82, 54-70.	1.5	68
221	miR-499-5p Attenuates Mitochondrial Fission and Cell Apoptosis via p21 in Doxorubicin Cardiotoxicity. Frontiers in Genetics, 2018, 9, 734.	1.1	48
222	Converging Paths of Pulmonary Arterial Hypertension and Cellular Senescence. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 11-20.	1.4	25
223	Targeted Elimination of Senescent Beta Cells Prevents Type 1 Diabetes. Cell Metabolism, 2019, 29, 1045-1060.e10.	7.2	232
224	Targeting senescent cells in translational medicine. EMBO Molecular Medicine, 2019, 11, e10234.	3.3	194
225	Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of aging. Genome Research, 2019, 29, 2088-2103.	2.4	132
226	p53 Isoforms in Cellular Senescence- and Ageing-Associated Biological and Physiological Functions. International Journal of Molecular Sciences, 2019, 20, 6023.	1.8	32
227	Cellular senescence in ionizing radiation (Review). Oncology Reports, 2019, 42, 883-894.	1.2	28
228	Tumor cell escape from therapy-induced senescence. Biochemical Pharmacology, 2019, 162, 202-212.	2.0	105
229	Turning back time with emerging rejuvenation strategies. Nature Cell Biology, 2019, 21, 32-43.	4.6	120
230	The dynamic nature of senescence in cancer. Nature Cell Biology, 2019, 21, 94-101.	4.6	394
231	Pan-senescence transcriptome analysis identified RRAD as a marker and negative regulator of cellular senescence. Free Radical Biology and Medicine, 2019, 130, 267-277.	1.3	19
232	Manipulation of molecular pathways and senescence hallmarks by natural compounds in fibroblast cells /b>. Journal of Cellular Biochemistry, 2019, 120, 6209-6222.	1.2	23
233	Mouse Models of Accelerated Cellular Senescence. Methods in Molecular Biology, 2019, 1896, 203-230.	0.4	30
234	Genotoxic Stress-Induced Senescence. Methods in Molecular Biology, 2019, 1896, 93-105.	0.4	15
235	Cellular Senescence. Methods in Molecular Biology, 2019, , .	0.4	3
236	Intracellular RNA Sensing in Mammalian Cells: Role in Stress Response and Cancer Therapies. International Review of Cell and Molecular Biology, 2019, 344, 31-89.	1.6	30

#	Article	IF	Citations
237	Cell type-dependent function of LATS1/2 in cancer cell growth. Oncogene, 2019, 38, 2595-2610.	2.6	29
238	HMGB1/RAGE Mediates UVB-Induced Secretory Inflammatory Response and Resistance to Apoptosis in Human Melanocytes. Journal of Investigative Dermatology, 2019, 139, 202-212.	0.3	19
239	Noncoding RNAs in the Vascular System Response to Oxidative Stress. Antioxidants and Redox Signaling, 2019, 30, 992-1010.	2.5	26
240	In situ evidence of cellular senescence in Thymic Epithelial Cells (TECs) during human thymic involution. Mechanisms of Ageing and Development, 2019, 177, 88-90.	2.2	28
241	Plasma exosomes in OSA patients promote endothelial senescence: effect of long-term adherent continuous positive airway pressure. Sleep, 2020, 43, .	0.6	33
242	Human geroprotector discovery by targeting the converging subnetworks of aging and age-related diseases. GeroScience, 2020, 42, 353-372.	2.1	50
243	Too MAD or not MAD enough: The duplicitous role of the spindle assembly checkpoint protein MAD2 in cancer. Cancer Letters, 2020, 469, 11-21.	3.2	18
244	Genomic profiling of a dedifferentiated mucosal melanoma following exposure to immunotherapy. Melanoma Research, 2020, 30, 213-218.	0.6	4
245	Cellular senescence and chronological age in various human tissues: A systematic review and metaâ€analysis. Aging Cell, 2020, 19, e13083.	3.0	89
246	Proliferation of adult human bronchial epithelial cells without a telomere maintenance mechanism for over 200 population doublings. FASEB Journal, 2020, 34, 386-398.	0.2	10
247	Gut stem cell aging is driven by mTORC1 via a p38 MAPK-p53 pathway. Nature Communications, 2020, 11, 37.	5.8	87
248	Impact of ageâ€related Tâ€cell dynamics on the identification of biomarkers predictive of immunotherapy discontinuation: A prospective cohort study. Aging and Cancer, 2020, 1, 58-70.	0.5	1
249	MYSM1 Suppresses Cellular Senescence and the Aging Process to Prolong Lifespan. Advanced Science, 2020, 7, 2001950.	5.6	8
250	Cellular senescence in cancer: from mechanisms to detection. Molecular Oncology, 2021, 15, 2634-2671.	2.1	78
251	ROCK inhibition modulates the senescenceâ€associated secretory phenotype (SASP) in oral keratinocytes. FEBS Open Bio, 2020, 10, 2740-2749.	1.0	24
252	The ageing kidney: Molecular mechanisms and clinical implications. Ageing Research Reviews, 2020, 63, 101151.	5.0	64
253	H3K9me3-mediated epigenetic regulation of senescence in mice predicts outcome of lymphoma patients. Nature Communications, 2020, 11, 3651.	5.8	15
254	Dysfunction of B Cell Leading to Failure of Immunoglobulin Response Is Ameliorated by Dietary Silk Peptide in 14-Month-Old C57BL/6 Mice. Frontiers in Nutrition, 2020, 7, 583186.	1.6	3

#	Article	IF	Citations
255	Cell dormancy plasticity: quiescence deepens into senescence through a dimmer switch. Physiological Genomics, 2020, 52, 558-562.	1.0	25
256	Mini-Review on Lipofuscin and Aging: Focusing on The Molecular Interface, The Biological Recycling Mechanism, Oxidative Stress, and The Gut-Brain Axis Functionality. Medicina (Lithuania), 2020, 56, 626.	0.8	8
257	<p>Resistance and Overcoming Resistance in Breast Cancer</p> . Breast Cancer: Targets and Therapy, 2020, Volume 12, 211-229.	1.0	50
258	Molecular Mechanisms to Target Cellular Senescence in Hepatocellular Carcinoma. Cells, 2020, 9, 2540.	1.8	19
259	Silver nanoparticle-activated COX2/PGE2 axis involves alteration of lung cellular senescence in vitro and in vivo. Ecotoxicology and Environmental Safety, 2020, 204, 111070.	2.9	16
260	<i>In Vivo</i> Imaging of Senescent Vascular Cells in Atherosclerotic Mice Using a β-Galactosidase-Activatable Nanoprobe. Analytical Chemistry, 2020, 92, 12613-12621.	3.2	33
261	Informing patients about their mutation tests: CDKN2A c.256G>A in melanoma as an example. Hereditary Cancer in Clinical Practice, 2020, 18, 15.	0.6	3
262	WISP2 promotes cell proliferation via targeting ERK and YAP in ovarian cancer cells. Journal of Ovarian Research, 2020, 13, 85.	1.3	10
263	MDM2 inhibition in combination with endocrine therapy and CDK4/6 inhibition for the treatment of ER-positive breast cancer. Breast Cancer Research, 2020, 22, 87.	2.2	37
264	A Senescence-Centric View of Aging: Implications for Longevity and Disease. Trends in Cell Biology, 2020, 30, 777-791.	3.6	138
265	Melatonin antagonizes ovarian aging via YTHDF2-MAPK-NF-κB pathway. Genes and Diseases, 2022, 9, 494-509.	1.5	13
266	A Blueprint for Characterizing Senescence. Cell, 2020, 183, 1143-1146.	13.5	60
267	Generation of a p16 Reporter Mouse and Its Use to Characterize and Target p16high Cells InÂVivo. Cell Metabolism, 2020, 32, 814-828.e6.	7.2	93
268	The role of telomeres and telomerase in the senescence of postmitotic cells. DNA Repair, 2020, 95, 102956.	1.3	18
269	Depletion of senescent-like neuronal cells alleviates cisplatin-induced peripheral neuropathy in mice. Scientific Reports, 2020, 10, 14170.	1.6	41
270	Sulfated syndecan 1 is critical to preventing cellular senescence by modulating fibroblast growth factor receptor endocytosis. FASEB Journal, 2020, 34, 10316-10328.	0.2	17
271	The Interaction of Viruses with the Cellular Senescence Response. Biology, 2020, 9, 455.	1.3	25
272	Nano-Based Theranostic Tools for the Detection and Elimination of Senescent Cells. Cells, 2020, 9, 2659.	1.8	13

#	ARTICLE	IF	CITATIONS
273	Continuous Exposure to Low Doses of Ultrafine Black Carbon Reduces the Vitality of Immortalized Lung-Derived Cells and Activates Senescence. Journal of Toxicology, 2020, 2020, 1-13.	1.4	4
274	Beta Cell Therapies for Preventing Type 1 Diabetes: From Bench to Bedside. Biomolecules, 2020, 10, 1681.	1.8	17
275	Cell senescence: basic mechanisms and the need for computational networks in vascular ageing. Cardiovascular Research, 2021, 117, 1841-1858.	1.8	19
276	The role of senescent T cells in immunopathology. Aging Cell, 2020, 19, e13272.	3.0	50
277	Molecular changes in glaucomatous trabecular meshwork. Correlations with retinal ganglion cell death and novel strategies for neuroprotection. Progress in Brain Research, 2020, 256, 151-188.	0.9	7
278	Deletion of JNK Enhances Senescence in Joint Tissues and Increases the Severity of Ageâ€Related Osteoarthritis in Mice. Arthritis and Rheumatology, 2020, 72, 1679-1688.	2.9	21
279	New aspects of hepatic endothelial cells in physiology and nonalcoholic fatty liver disease. American Journal of Physiology - Cell Physiology, 2020, 318, C1200-C1213.	2.1	27
280	Senescent Cells in Cancer Therapy: Friends or Foes?. Trends in Cancer, 2020, 6, 838-857.	3.8	259
281	DNA Damage Response. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e193-e202.	1.1	21
282	Ageâ€related factors that affect B cell responses to vaccination in mice and humans. Immunological Reviews, 2020, 296, 142-154.	2.8	29
283	Classical and Nonclassical Intercellular Communication in Senescence and Ageing. Trends in Cell Biology, 2020, 30, 628-639.	3.6	109
284	Effects of GH/IGF on the Aging Mitochondria. Cells, 2020, 9, 1384.	1.8	30
285	Experimental Models of Sarcopenia: Bridging Molecular Mechanism and Therapeutic Strategy. Cells, 2020, 9, 1385.	1.8	70
286	Senolytic CAR T cells reverse senescence-associated pathologies. Nature, 2020, 583, 127-132.	13.7	483
287	First-generation species-selective chemical probes for fluorescence imaging of human senescence-associated \hat{l}^2 -galactosidase. Chemical Science, 2020, 11, 7292-7301.	3.7	55
288	Role of immune cells in the removal of deleterious senescent cells. Immunity and Ageing, 2020, 17, 16.	1.8	187
289	Mitochondrial Bioenergetics and Dynamics in Secretion Processes. Frontiers in Endocrinology, 2020, 11, 319.	1.5	19
290	Cellular Senescence and Senotherapies in the Kidney: Current Evidence and Future Directions. Frontiers in Pharmacology, 2020, 11, 755.	1.6	26

#	Article	IF	Citations
291	<p>Fulvestrant in Combination with CDK4/6 Inhibitors for HER2- Metastatic Breast Cancers: Current Perspectives</p> . Breast Cancer: Targets and Therapy, 2020, Volume 12, 45-56.	1.0	15
292	Role of p53 in the Regulation of Cellular Senescence. Biomolecules, 2020, 10, 420.	1.8	267
293	The Emerging Role of Senescence in Ocular Disease. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-19.	1.9	35
294	Cellular senescence and Alzheimer disease: the egg and the chicken scenario. Nature Reviews Neuroscience, 2020, 21, 433-444.	4.9	132
295	Structural Refinement of the Tubulin Ligand (+)-Discodermolide to Attenuate Chemotherapy-Mediated Senescence. Molecular Pharmacology, 2020, 98, 156-167.	1.0	4
296	The NLRP3 Inflammasome as a Critical Actor in the Inflammaging Process. Cells, 2020, 9, 1552.	1.8	33
297	Targeting Cardiac Stem Cell Senescence to Treat Cardiac Aging and Disease. Cells, 2020, 9, 1558.	1.8	75
298	Clearance of therapyâ€induced senescent tumor cells by the senolytic ABTâ€263 via interference with BCLâ€X _L –BAX interaction. Molecular Oncology, 2020, 14, 2504-2519.	2.1	90
299	Metformin loaded cholesterol-lysine conjugate nanoparticles: A novel approach for protecting HDFs against UVB-induced senescence. International Journal of Pharmaceutics, 2020, 586, 119603.	2.6	10
300	Cellular senescence: from anti-cancer weapon to anti-aging target. Science China Life Sciences, 2020, 63, 332-342.	2.3	29
301	Chronic irradiation of human cells reduces histone levels and deregulates gene expression. Scientific Reports, 2020, 10, 2200.	1.6	18
302	Senesce to Survive: YAP-Mediated Dormancy Escapes EGFR/MEK Inhibition. Cancer Cell, 2020, 37, 1-2.	7.7	12
303	Uncoupled inflammatory, proliferative, and cytoskeletal responses in senescent human gingival fibroblasts. Journal of Periodontal Research, 2020, 55, 432-440.	1.4	13
304	A unified model of dementias and ageâ€related neurodegeneration. Alzheimer's and Dementia, 2020, 16, 365-383.	0.4	13
305	Regenerative and protective effects of calcium silicate on senescent fibroblasts induced by high glucose. Wound Repair and Regeneration, 2020, 28, 315-325.	1.5	20
306	Senescence-associated genes and non-coding RNAs function in pancreatic cancer progression. RNA Biology, 2020, 17, 1693-1706.	1.5	7
307	Stereotactic Lung Irradiation in Mice Promotes Long-Term Senescence and Lung Injury. International Journal of Radiation Oncology Biology Physics, 2020, 106, 1017-1027.	0.4	17
308	Regenerative and protective effects of dMSC-sEVs on high-glucose-induced senescent fibroblasts by suppressing RAGE pathway and activating Smad pathway. Stem Cell Research and Therapy, 2020, 11, 166.	2.4	40

#	Article	IF	CITATIONS
310	A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biology, 2020, 21, 91.	3.8	177
311	The Cbs Locus Affects the Expression of Senescence Markers and mtDNA Copy Number, but not Telomere Dynamics in Mice. International Journal of Molecular Sciences, 2020, 21, 2520.	1.8	2
312	<p>ls there a CDKN2A-centric networkÂinÂpancreatic ductal adenocarcinoma?</p> . OncoTargets and Therapy, 2020, Volume 13, 2551-2562.	1.0	11
313	Senescent Cells: Emerging Targets for Human Aging and Age-Related Diseases. Trends in Biochemical Sciences, 2020, 45, 578-592.	3.7	126
314	Elimination of senescent cells by \hat{l}^2 -galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Research, 2020, 30, 574-589.	5.7	187
315	Compressionâ€induced senescence of nucleus pulposus cells by promoting mitophagy activation via the PINK1/PARKIN pathway. Journal of Cellular and Molecular Medicine, 2020, 24, 5850-5864.	1.6	26
316	Therapy-Induced Senescence: An "Old―Friend Becomes the Enemy. Cancers, 2020, 12, 822.	1.7	168
317	Heterochronic parabiosis regulates the extent of cellular senescence in multiple tissues. GeroScience, 2020, 42, 951-961.	2.1	48
318	Galactoâ€conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell, 2020, 19, e13142.	3.0	131
319	From Development to Aging: The Path to Cellular Senescence. Antioxidants and Redox Signaling, 2021, 34, 294-307.	2.5	15
320	Cisplatin-induced peripheral neuropathy is associated with neuronal senescence-like response. Neuro-Oncology, 2021, 23, 88-99.	0.6	36
321	Inflammation-Associated Senescence Promotes Helicobacter pylori–Induced Atrophic Gastritis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 857-880.	2.3	26
322	MicroRNAs are critical regulators of senescence and aging in mesenchymal stem cells. Bone, 2021, 142, 115679.	1.4	21
323	Autophagy displays divergent roles during intermittent amino acid starvation and toxic stressâ€induced senescence in cultured skeletal muscle cells. Journal of Cellular Physiology, 2021, 236, 3099-3113.	2.0	4
324	Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cellular and Molecular Life Sciences, 2021, 78, 1329-1354.	2.4	39
325	The combination of mitogenic stimulation and DNA damage induces chondrocyte senescence. Osteoarthritis and Cartilage, 2021, 29, 402-412.	0.6	21
326	Stuck in a Moment: Does Abnormal Persistence of Epithelial Progenitors Drive Pulmonary Fibrosis?. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 667-669.	2.5	13
327	Counteracting CAR T cell dysfunction. Oncogene, 2021, 40, 421-435.	2.6	76

#	Article	IF	Citations
328	Resveratrol attenuates excessive ethanol exposure-induced \hat{l}^2 -cell senescence in rats: A critical role for the NAD+/SIRT1-p38MAPK/p16 pathway. Journal of Nutritional Biochemistry, 2021, 89, 108568.	1.9	15
329	Cellular senescence as a response to multiwalled carbon nanotube (MWCNT) exposure in human mesothelial cells. Mechanisms of Ageing and Development, 2021, 193, 111412.	2.2	11
330	A guide to assessing cellular senescence <i>inÂvitro</i> and <i>inÂvivo</i> . FEBS Journal, 2021, 288, 56-80.	2.2	251
331	Harnessing α- <scp>l</scp> -fucosidase for <i>iin vivo</i> cellular senescence imaging. Chemical Science, 2021, 12, 10054-10062.	3.7	25
332	Cellular senescence and its role in white adipose tissue. International Journal of Obesity, 2021, 45, 934-943.	1.6	38
334	CDC25B induces cellular senescence and correlates with tumor suppression in a p53-dependent manner. Journal of Biological Chemistry, 2021, 296, 100564.	1.6	9
335	Is Senescence-Associated \hat{l}^2 -Galactosidase a Reliable in vivo Marker of Cellular Senescence During Embryonic Development?. Frontiers in Cell and Developmental Biology, 2021, 9, 623175.	1.8	53
336	Chronic senescent human mesenchymal stem cells as possible contributor to the wound healing disorder after exposure to the alkylating agent sulfur mustard. Archives of Toxicology, 2021, 95, 727-747.	1.9	5
337	Cellular Senescence in Liver Disease and Regeneration. Seminars in Liver Disease, 2021, 41, 050-066.	1.8	26
338	Ageing, cellular senescence and the impact of diet: an overview. Porto Biomedical Journal, 2021, 6, e120.	0.4	18
339	Human Chromosome Telomeres. , 2021, , 207-243.		2
340	Bcl-xL as a Modulator of Senescence and Aging. International Journal of Molecular Sciences, 2021, 22, 1527.	1.8	20
341	Senolytics for Cancer Therapy: Is All that Glitters Really Gold?. Cancers, 2021, 13, 723.	1.7	68
343	The aging proteostasis decline: From nematode to human. Experimental Cell Research, 2021, 399, 112474.	1.2	20
344	Isolation methodology is essential to the evaluation of the extracellular vesicle component of the senescenceâ€associated secretory phenotype. Journal of Extracellular Vesicles, 2021, 10, e12041.	5.5	11
346	RNF168 regulates R-loop resolution and genomic stability in BRCA1/2-deficient tumors. Journal of Clinical Investigation, 2021, 131, .	3.9	38
347	A role for 4-hydroxy-2-nonenal in premature placental senescence in preeclampsia and intrauterine growth restriction. Free Radical Biology and Medicine, 2021, 164, 303-314.	1.3	11
349	Renovascular Disease Induces Senescence in Renal Scattered Tubular-Like Cells and Impairs Their Reparative Potency. Hypertension, 2021, 77, 507-518.	1.3	13

#	Article	IF	Citations
350	Early growth response 2 (EGR2) is a novel regulator of the senescence programme. Aging Cell, 2021, 20, e13318.	3.0	16
351	Transcriptional coregualtor NUPR1 maintains tamoxifen resistance in breast cancer cells. Cell Death and Disease, 2021, 12, 149.	2.7	15
352	WNT inhibition creates a BRCAâ€like state in Wntâ€addicted cancer. EMBO Molecular Medicine, 2021, 13, e13349.	3.3	28
353	Cellular hallmarks of aging emerge in the ovary prior to primordial follicle depletion. Mechanisms of Ageing and Development, 2021, 194, 111425.	2.2	30
354	Senescent cells as promising targets to tackle age-related diseases. Ageing Research Reviews, 2021, 66, 101251.	5.0	28
355	Genes and pathways involved in senescence bypass identified by functional genetic screens. Mechanisms of Ageing and Development, 2021, 194, 111432.	2.2	8
356	Cellular senescence: Silent operator and therapeutic target in cancer. IUBMB Life, 2021, 73, 530-542.	1.5	6
357	Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Frontiers in Cell and Developmental Biology, 2021, 9, 645593.	1.8	608
358	Transcriptomic Analysis of Cellular Senescence: One Step Closer to Senescence Atlas. Molecules and Cells, 2021, 44, 136-145.	1.0	11
359	Shikimic acid protects skin cells from UV-induced senescence through activation of the NAD+-dependent deacetylase SIRT1. Aging, 2021, 13, 12308-12333.	1.4	11
360	Long non-coding RNA Meg3 deficiency impairs glucose homeostasis and insulin signaling by inducing cellular senescence of hepatic endothelium in obesity. Redox Biology, 2021, 40, 101863.	3.9	27
362	Therapy-Induced Senescence: Opportunities to Improve Anticancer Therapy. Journal of the National Cancer Institute, 2021, 113, 1285-1298.	3.0	156
363	Human skin aging is associated with increased expression of the histone variant H2A.J in the epidermis. Npj Aging and Mechanisms of Disease, 2021, 7, 7.	4. 5	32
364	Loss of p16: A Bouncer of the Immunological Surveillance?. Life, 2021, 11, 309.	1.1	10
365	Neuroinflammation in Alzheimer's Disease. Biomedicines, 2021, 9, 524.	1.4	120
366	B7-H3 suppresses doxorubicin-induced senescence-like growth arrest in colorectal cancer through the AKT/TM4SF1/SIRT1 pathway. Cell Death and Disease, 2021, 12, 453.	2.7	18
367	Diabetic Endothelial Cells Differentiated From Patient iPSCs Show Dysregulated Glycine Homeostasis and Senescence Associated Phenotypes. Frontiers in Cell and Developmental Biology, 2021, 9, 667252.	1.8	12
368	Radiation-Induced Senescence Reprograms Secretory and Metabolic Pathways in Colon Cancer HCT-116 Cells. International Journal of Molecular Sciences, 2021, 22, 4835.	1.8	13

#	Article	IF	CITATIONS
369	Potential role of senescent macrophages in radiation-induced pulmonary fibrosis. Cell Death and Disease, 2021, 12, 527.	2.7	39
370	Cellular Senescence in Human Aldosterone-Producing Adrenocortical Cells and Related Disorders. Biomedicines, 2021, 9, 567.	1.4	4
371	An update in toxicology of ageing. Environmental Toxicology and Pharmacology, 2021, 84, 103611.	2.0	7
372	Expression of Therapy-Induced Senescence Markers in Breast Cancer Samples Upon Incomplete Response to Neoadjuvant Chemotherapy. Bioscience Reports, 2021, 41, .	1.1	17
373	Ranking Biomarkers of Aging by Citation Profiling and Effort Scoring. Frontiers in Genetics, 2021, 12, 686320.	1.1	40
374	An aged immune system drives senescence and ageing of solid organs. Nature, 2021, 594, 100-105.	13.7	368
376	Elimination of Senescent Endothelial Cells: Good or Bad Idea?. Trends in Cell Biology, 2021, 31, 327-330.	3.6	9
377	Vascular Endothelial Senescence: Pathobiological Insights, Emerging Long Noncoding RNA Targets, Challenges and Therapeutic Opportunities. Frontiers in Physiology, 2021, 12, 693067.	1.3	29
378	Bacterial genotoxins induce TÂcell senescence. Cell Reports, 2021, 35, 109220.	2.9	20
380	Impact of Progerin Expression on Adipogenesis in Hutchinson—Gilford Progeria Skin-Derived Precursor Cells. Cells, 2021, 10, 1598.	1.8	7
381	When dormancy fuels tumour relapse. Communications Biology, 2021, 4, 747.	2.0	59
382	Gasotransmitter CO Attenuates Bleomycin-Induced Fibroblast Senescence via Induction of Stress Granule Formation. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-21.	1.9	2
383	Disruption of nucleocytoplasmic trafficking as a cellular senescence driver. Experimental and Molecular Medicine, 2021, 53, 1092-1108.	3.2	19
384	Aging and Mesenchymal Stem Cells: Therapeutic Opportunities and Challenges in the Older Group. Gerontology, 2022, 68, 339-352.	1.4	16
385	Role of single nucleotide polymorphisms in susceptibility of stroke: A systemic review. Meta Gene, 2021, 28, 100879.	0.3	1
386	Interferonâ€induced proteinÂ16 expression in colorectal cancer and its correlation with proliferation and immune signature markers. Oncology Letters, 2021, 22, 687.	0.8	2
387	Cellular senescence or stemness: hypoxia flips the coin. Journal of Experimental and Clinical Cancer Research, 2021, 40, 243.	3.5	22
389	Cellular senescence in vascular wall mesenchymal stromal cells, a possible contribution to the development of aortic aneurysm. Mechanisms of Ageing and Development, 2021, 197, 111515.	2.2	11

#	Article	IF	Citations
390	Glial AP1 is activated with aging and accelerated by traumatic brain injury. Nature Aging, 2021, 1, 585-597.	5.3	9
392	Intervertebral Disk Degeneration: The Microenvironment and Tissue Engineering Strategies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 592118.	2.0	32
393	Antifungal agent Terbinafine restrains tumor growth in preclinical models of hepatocellular carcinoma via AMPK-mTOR axis. Oncogene, 2021, 40, 5302-5313.	2.6	11
394	Antigen presentation capability and AP-1 activation accompany methotrexate-induced colon cancer cell senescence in the context of aberrant \hat{l}^2 -catenin signaling. Mechanisms of Ageing and Development, 2021, 197, 111517.	2.2	3
395	α- <scp> </scp> -Arabinofuranosidase as an Orthogonal Enzyme for Human Cells. Chemistry Letters, 2021, 50, 1493-1495.	0.7	2
396	IL-1/IL-1R Signaling in Head and Neck Cancer. Frontiers in Oral Health, 2021, 2, 722676.	1.2	11
397	p16INK4a Regulates Cellular Senescence in PD-1-Expressing Human T Cells. Frontiers in Immunology, 2021, 12, 698565.	2.2	16
399	Delayed Senescence of Human Vascular Endothelial Cells by Molecular Mobility of Supramolecular Biointerfaces. Macromolecular Bioscience, 2021, 21, 2100216.	2.1	6
400	Evaluating causality of cellular senescence in non-alcoholic fatty liver disease. JHEP Reports, 2021, 3, 100301.	2.6	30
401	Transcriptomic Analysis of HCN-2 Cells Suggests Connection among Oxidative Stress, Senescence, and Neuron Death after SARS-CoV-2 Infection. Cells, 2021, 10, 2189.	1.8	14
404	The Paradoxical Role of Cellular Senescence in Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 722205.	1.8	51
405	Sargahydroquinoic acid (SHQA) suppresses cellular senescence through Akt/mTOR signaling pathway. Experimental Gerontology, 2021, 151, 111406.	1.2	6
406	Androgen-deprivation induced senescence in prostate cancer cells is permissive for the development of castration-resistance but susceptible to senolytic therapy. Biochemical Pharmacology, 2021, 193, 114765.	2.0	20
407	Potential Use of Senolytics for Pharmacological Targeting of Precancerous Lesions. Molecular Pharmacology, 2021, 100, 580-587.	1.0	6
408	Nuclear IMPDH Filaments in Human Gliomas. Journal of Neuropathology and Experimental Neurology, 2021, 80, 944-954.	0.9	8
409	Senescence in HBV-, HCV- and NAFLD- Mediated Hepatocellular Carcinoma and Senotherapeutics: Current Evidence and Future Perspective. Cancers, 2021, 13, 4732.	1.7	12
410	Myocardial Ischemia-Reperfusion Injury: Therapeutics from a Mitochondria-Centric Perspective. Cardiology, 2021, 146, 781-792.	0.6	45
411	Cellular senescence in knee osteoarthritis: molecular mechanisms and therapeutic implications. Ageing Research Reviews, 2021, 70, 101413.	5.0	62

#	Article	IF	Citations
412	Diverse Roles of Cellular Senescence in Skeletal Muscle Inflammation, Regeneration, and Therapeutics. Frontiers in Pharmacology, 2021, 12, 739510.	1.6	23
413	Senescence and senolytics in cardiovascular disease: Promise and potential pitfalls. Mechanisms of Ageing and Development, 2021, 198, 111540.	2.2	52
414	Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nature Communications, 2021, 12, 5213.	5.8	148
415	TFEB protein expression is reduced in aged brains and its overexpression mitigates senescence-associated biomarkers and memory deficits in mice. Neurobiology of Aging, 2021, 106, 26-36.	1.5	17
416	Keeping zombies alive: The ER-mitochondria Ca2+ transfer in cellular senescence. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119099.	1.9	18
417	Hepatic stellate cell senescence in liver fibrosis: Characteristics, mechanisms and perspectives. Mechanisms of Ageing and Development, 2021, 199, 111572.	2.2	38
418	Transcriptional features of biological age maintained in human cultured cardiac interstitial cells. Genomics, 2021, 113, 3705-3717.	1.3	1
419	Absolute quantification of senescence mediators in cells using multiple reaction monitoring liquid chromatography-Tandem mass spectrometry. Analytica Chimica Acta, 2021, 1184, 339009.	2.6	6
420	Methods to Study Myc-Regulated Cellular Senescence: An Update. Methods in Molecular Biology, 2021, 2318, 241-254.	0.4	3
421	A Two-Photon Probe Based on Naphthalimide-Styrene Fluorophore for the <i>In Vivo</i> Tracking of Cellular Senescence. Analytical Chemistry, 2021, 93, 3052-3060.	3.2	29
422	Autophagy and senescence in cancer therapy. Advances in Cancer Research, 2021, 150, 1-74.	1.9	16
423	Senotherapeutics: Experimental therapy of cellular senescence. , 2021, , 251-284.		0
424	DNA damageâ€"how and why we age?. ELife, 2021, 10, .	2.8	184
425	The palette of techniques for cell cycle analysis. FEBS Letters, 2020, 594, 2084-2098.	1.3	24
426	An Overview of the Molecular and Cellular Biomarkers of Aging. Healthy Ageing and Longevity, 2019, , 67-78.	0.2	3
427	An Update on the Molecular Pillars of Aging. , 2020, , 1-25.		2
428	Targeted Senolytic Strategies Based on the Senescent Surfaceome. Healthy Ageing and Longevity, 2020, , 103-130.	0.2	3
429	The Impact of Aging on Cancer Progression and Treatment. , 2016, , 53-83.		2

#	Article	IF	CITATIONS
430	Hematopoietic Stem Cell Aging and Malignant Hemopathies., 2018,, 1-13.		2
431	Ginsenoside Rg1 protects against d-galactose induced fatty liver disease in a mouse model via FOXO1 transcriptional factor. Life Sciences, 2020, 254, 117776.	2.0	26
432	The bright and dark side of extracellular vesicles in the senescence-associated secretory phenotype. Mechanisms of Ageing and Development, 2020, 189, 111263.	2.2	49
433	Regulation of cellular senescence by microRNAs. Mechanisms of Ageing and Development, 2020, 189, 111264.	2.2	17
434	Targeting tumor cell senescence and polyploidy as potential therapeutic strategies. Seminars in Cancer Biology, 2022, 81, 37-47.	4.3	32
435	Cellular senescence in gastrointestinal diseases: from pathogenesis to therapeutics. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 81-95.	8.2	62
436	Similarities and interplay between senescent cells and macrophages. Journal of Cell Biology, 2021, 220,	2.3	57
441	Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell, 2020, 19, e13094.	3.0	172
442	DCAF1 regulates Treg senescence via the ROS axis during immunological aging. Journal of Clinical Investigation, 2020, 130, 5893-5908.	3.9	71
443	Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. Journal of Clinical Investigation, 2018, 128, 1208-1216.	3.9	289
444	Senescent cells and osteoarthritis: a painful connection. Journal of Clinical Investigation, 2018, 128, 1229-1237.	3.9	215
445	Mechanisms and functions of cellular senescence. Journal of Clinical Investigation, 2018, 128, 1238-1246.	3.9	696
446	Exploring the multiple roles of guardian of the genome: P53. Egyptian Journal of Medical Human Genetics, 2020, 21, .	0.5	55
447	The role of the MAD2-TLR4-MyD88 axis in paclitaxel resistance in ovarian cancer. PLoS ONE, 2020, 15, e0243715.	1.1	7
448	Overcoming CDK4/6 inhibitor resistance in ER-positive breast cancer. Endocrine-Related Cancer, 2019, 26, R15-R30.	1.6	96
449	Aberrant expression of p16INK4a in human cancers – a new biomarker?. Cancer Reports and Reviews, 2018, 2, .	0.6	35
450	Aberrant expression of ETS1 and ETS2 proteins in cancer. Cancer Reports and Reviews, 2018, 2, .	0.6	32
451	Translocations involving ETS family proteins in human cancer. Integrative Cancer Science and Therapeutics, 2018, 5, .	0.1	7

#	Article	lF	Citations
452	Do senescence markers correlate in vitro and in situ within individual human donors?. Aging, 2018, 10, 278-289.	1.4	16
453	lncRNA miat functions as a ceRNA to upregulate sirt1 by sponging miR-22-3p in HCC cellular senescence. Aging, 2019, 11, 7098-7122.	1.4	57
454	Aging and stress induced \hat{l}^2 cell senescence and its implication in diabetes development. Aging, 2019, 11, 9947-9959.	1.4	33
455	The RXFP3 receptor is functionally associated with cellular responses to oxidative stress and DNA damage. Aging, 2019, 11, 11268-11313.	1.4	10
456	Navitoclax (ABT263) reduces inflammation and promotes chondrogenic phenotype by clearing senescent osteoarthritic chondrocytes in osteoarthritis. Aging, 2020, 12, 12750-12770.	1.4	62
457	Signatures of cell stress and altered bioenergetics in skin fibroblasts from patients with multiple sclerosis. Aging, 2020, 12, 15134-15156.	1.4	8
458	p21 can be a barrier to ferroptosis independent of p53. Aging, 2020, 12, 17800-17814.	1.4	42
459	<i>p16INK4a</i> suppresses BRCA1-deficient mammary tumorigenesis. Oncotarget, 2016, 7, 84496-84507.	0.8	10
460	Caloric restriction delays early phases of carcinogenesis via effects on the tissue microenvironment. Oncotarget, 2017, 8, 36020-36032.	0.8	19
461	Aging with ING: a comparative study of different forms of stress induced premature senescence. Oncotarget, 2015, 6, 34118-34127.	0.8	19
462	Parthenolide induces MITF-M downregulation and senescence in patient-derived MITF-Mhigh melanoma cell populations. Oncotarget, 2016, 7, 9026-9040.	0.8	16
464	New Entrants into Clinical Trials for Targeted Therapy of Breast Cancer: An Insight. Anti-Cancer Agents in Medicinal Chemistry, 2020, 19, 2156-2176.	0.9	4
465	Mitochondrial Protection Partly Mitigates Kidney Cellular Senescence in Swine Atherosclerotic Renal Artery Stenosis. Cellular Physiology and Biochemistry, 2019, 52, 617-632.	1.1	32
466	Carnosine Stimulates Macrophage-Mediated Clearance of Senescent Skin Cells Through Activation of the AKT2 Signaling Pathway by CD36 and RAGE. Frontiers in Pharmacology, 2020, 11, 593832.	1.6	17
467	Oxidative stress, cellular senescence and ageing. AIMS Molecular Science, 2016, 3, 300-324.	0.3	82
468	MicroRNA controls of cellular senescence. BMB Reports, 2018, 51, 493-499.	1.1	68
469	Silica Induced Lung Fibrosis Is Associated With Senescence, Fgr, and Recruitment of Bone Marrow Monocyte/Macrophages. In Vivo, 2021, 35, 3053-3066.	0.6	5
470	Transcriptomic Analysis of Polyhexamethyleneguanidine-Induced Lung Injury in Mice after a Long-Term Recovery. Toxics, 2021, 9, 253.	1.6	4

#	ARTICLE	IF	CITATIONS
471	Obesity and hyperinsulinemia drive adipocytes to activate a cell cycle program and senesce. Nature Medicine, 2021, 27, 1941-1953.	15.2	79
472	Senescence markers in focal nodular hyperplasia of the liver: pathogenic considerations on the basis of immunohistochemical results. Modern Pathology, 2022, 35, 87-95.	2.9	4
473	A Murine Model With JAK2V617F Expression in Both Hematopoietic Cells and Vascular Endothelial Cells Recapitulates the Key Features of Human Myeloproliferative Neoplasm. Frontiers in Oncology, 2021, 11, 753465.	1.3	1
474	The tumor suppression theory of aging. Mechanisms of Ageing and Development, 2021, 200, 111583.	2.2	8
475	Exploiting Senescence for Cancer Treatment. Molecular Biology (Los Angeles, Calif), 2016, 05, .	0.0	1
476	Senescence Markers: One is not Good Enough, We Need More!. Open Access Journal of Microbiology $\&$ Biotechnology, 2016, $1,.$	0.1	0
477	Senescence., 2017,, 289-310.		0
478	Grundlagen der Biogerontologie. , 2018, , 105-135.		0
481	Aging and Malignant Hemopathies: A Complex Multistep Process. , 2019, , 2267-2279.		0
482	Application of Quantitative Phase Imaging mass accumulation measurements to research and clinical problems in cancer. , 2019, , .		2
485	The Pivotal Role of Senescence in Cell Death and Aging: Where Do We Stand?. Current Molecular Biology Reports, 2020, 6, 91-101.	0.8	0
489	Hematopoietic Stem Cell Aging and Malignant Hemopathies. , 2020, , 169-181.		0
491	Novel Probes and Carriers to Target Senescent Cells. Healthy Ageing and Longevity, 2020, , 163-180.	0.2	2
493	Dysfunctional TRPM8 signalling in the vascular response to environmental cold in ageing. ELife, 2021, 10, .	2.8	11
494	Senolytic Therapy for Cerebral Ischemia-Reperfusion Injury. International Journal of Molecular Sciences, 2021, 22, 11967.	1.8	26
495	Skeletal muscle aging, cellular senescence, and senotherapeutics: Current knowledge and future directions. Mechanisms of Ageing and Development, 2021, 200, 111595.	2.2	31
497	Lactose induced redox-dependent senescence and activated Nrf2 pathway. International Journal of Clinical and Experimental Pathology, 2019, 12, 2034-2045.	0.5	3
499	Cellular senescence and its impact on the circadian clock. Journal of Biochemistry, 2022, 171, 493-500.	0.9	10

#	Article	IF	Citations
500	Coordination between cell proliferation and apoptosis after DNA damage in Drosophila. Cell Death and Differentiation, 2022, 29, 832-845.	5.0	21
501	Skin Aging, Cellular Senescence and Natural Polyphenols. International Journal of Molecular Sciences, 2021, 22, 12641.	1.8	79
502	The right time for senescence. ELife, 2021, 10, .	2.8	56
503	Senescent Cells in Cancer: Wanted or Unwanted Citizens. Cells, 2021, 10, 3315.	1.8	9
504	Research Progress on the Role of Regulatory T Cell in Tumor Microenvironment in the Treatment of Breast Cancer. Frontiers in Oncology, 2021, 11, 766248.	1.3	7
505	Role of Senescence and Aging in SARS-CoV-2 Infection and COVID-19 Disease. Cells, 2021, 10, 3367.	1.8	42
506	Chromothripsis in Chronic Lymphocytic Leukemia: A Driving Force of Genome Instability. Frontiers in Oncology, 2021, 11, 771664.	1.3	3
507	Ferroptosis Induction in Multiple Myeloma Cells Triggers DNA Methylation and Histone Modification Changes Associated with Cellular Senescence. International Journal of Molecular Sciences, 2021, 22, 12234.	1.8	20
508	Immune ageing at single-cell resolution. Nature Reviews Immunology, 2022, 22, 484-498.	10.6	128
509	Senescence in chronic wounds and potential targeted therapies. Burns and Trauma, 2022, 10, tkab045.	2.3	16
510	Activatable senoprobes and senolytics: Novel strategies to detect and target senescent cells. Mechanisms of Ageing and Development, 2022, 202, 111618.	2.2	16
511	Senescence induction dictates response to chemo- and immunotherapy in preclinical models of ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	33
512	A GATA4-regulated secretory program suppresses tumors through recruitment of cytotoxic CD8 T cells. Nature Communications, 2022, 13, 256.	5.8	8
513	Nrg1/ErbB signalingâ€mediated regulation of fibrosis after myocardial infarction. FASEB Journal, 2022, 36, e22150.	0.2	17
514	Loss of p19Arf Promotes Fibroblast Survival During Leucine Deprivation. Biology Open, 2022, , .	0.6	1
515	CDK4/6 inhibitors induce replication stress to cause longâ€term cell cycle withdrawal. EMBO Journal, 2022, 41, e108599.	3.5	48
516	The landscape of human tissue and cell type specific expression and co-regulation of senescence genes. Molecular Neurodegeneration, 2022, 17, 5.	4.4	34
517	Oxidative Stress and Cellular Senescence Are Involved in the Aging Kidney. Antioxidants, 2022, 11, 301.	2.2	21

#	Article	IF	CITATIONS
518	Mesenchymal Stem/Stromal Cell Senescence: Hallmarks, Mechanisms, and Combating Strategies. Stem Cells Translational Medicine, 2022, 11, 356-371.	1.6	62
519	Skin senescence: mechanisms and impact on whole-body aging. Trends in Molecular Medicine, 2022, 28, 97-109.	3.5	69
520	Characterization of radiation-induced micronuclei associated with premature senescence, and their selective removal by senolytic drug, ABT-263. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2022, 876-877, 503448.	0.9	0
521	Dynamic Spatiotemporal Expression Pattern of the Senescence-Associated Factor p16lnk4a in Development and Aging. Cells, 2022, 11, 541.	1.8	11
522	MicroRNA-Mediated Downregulation of HMGB2 Contributes to Cellular Senescence in Microvascular Endothelial Cells. Cells, 2022, 11, 584.	1.8	7
523	Senescence and the tumor-immune landscape: Implications for cancer immunotherapy. Seminars in Cancer Biology, 2022, 86, 827-845.	4.3	33
525	Untangling senescent and damageâ€associated microglia in the aging and diseased brain. FEBS Journal, 2023, 290, 1326-1339.	2.2	20
526	Phosphate and Cellular Senescence. Advances in Experimental Medicine and Biology, 2022, 1362, 55-72.	0.8	5
527	Altered p16Ink4a, IL- $1\hat{l}^2$, and Lamin b1 Protein Expression Suggest Cellular Senescence in Deep Endometriotic Lesions. International Journal of Molecular Sciences, 2022, 23, 2476.	1.8	5
528	The Expression of the Senescence-Associated Biomarker Lamin B1 in Human Breast Cancer. Diagnostics, 2022, 12, 609.	1.3	4
529	Senescent skeletal cells cross-talk with synovial cells plays a key role in the pathogenesis of osteoarthritis. Arthritis Research and Therapy, 2022, 24, 59.	1.6	22
530	Engineering Antibodies Targeting p16 MHC-Peptide Complexes. ACS Chemical Biology, 2022, 17, 545-555.	1.6	3
531	Molecular Mechanisms of Alveolar Epithelial Stem Cell Senescence and Senescence-Associated Differentiation Disorders in Pulmonary Fibrosis. Cells, 2022, 11, 877.	1.8	13
532	Fatal COVID-19 and Non–COVID-19 Acute Respiratory Distress Syndrome Is Associated with Incomplete Alveolar Type 1 Epithelial Cell Differentiation from the Transitional State without Fibrosis. American Journal of Pathology, 2022, 192, 454-467.	1.9	18
533	Characteristics of Whale MÃ $\frac{1}{4}$ ller Glia in Primary and Immortalized Cultures. Frontiers in Neuroscience, 2022, 16, 854278.	1.4	2
534	KMT2C methyltransferase domain regulated INK4A expression suppresses prostate cancer metastasis. Molecular Cancer, 2022, 21, 89.	7.9	21
535	Lipids as Regulators of Cellular Senescence. Frontiers in Physiology, 2022, 13, 796850.	1.3	37
536	Cellular Senescence and Ageing: Mechanisms and Interventions. Frontiers in Aging, 2022, 3, .	1.2	34

#	Article	IF	CITATIONS
537	Reciprocal regulation of p21 and Chk1 controls the cyclin D1-RB pathway to mediate senescence onset after G2 arrest. Journal of Cell Science, 2022, 135 , .	1.2	9
538	Differential sensitivity of assays for determining vein endothelial cell senescence. Clinical Hemorheology and Microcirculation, 2022, 81, 191-203.	0.9	2
539	Exploiting senescence for the treatment of cancer. Nature Reviews Cancer, 2022, 22, 340-355.	12.8	254
540	Applications of nanodiamonds in the diagnosis and treatment of neurological diseases. Journal of Nanoparticle Research, 2022, 24, .	0.8	8
541	Exercise, healthy ageing, and the potential role of small extracellular vesicles. Journal of Physiology, 2023, 601, 4937-4951.	1.3	9
542	Altered regulation of mesenchymal cell senescence in adipose tissue promotes pathological changes associated with diabetic wound healing. Communications Biology, 2022, 5, 310.	2.0	14
543	Cellular senescence signaling in cancer: A novel therapeutic target to combat human malignancies. Biochemical Pharmacology, 2022, 199, 114989.	2.0	9
544	Mechano-signaling via Piezo1 prevents activation and p53-mediated senescence of muscle stem cells. Redox Biology, 2022, 52, 102309.	3.9	26
545	GH and Senescence: A New Understanding of Adult GH Action. Journal of the Endocrine Society, 2022, 6, bvab177.	0.1	2
546	The protective effects of etomidate against interleukin- $1\hat{l}^2$ (IL- $1\hat{l}^2$)-induced oxidative stress, extracellular matrix alteration and cellular senescence in chondrocytes. Bioengineered, 2022, 13, 985-994.	1.4	6
547	Pancreatic Cancer and Cellular Senescence: Tumor Microenvironment under the Spotlight. International Journal of Molecular Sciences, 2022, 23, 254.	1.8	33
548	Mechanisms and Regulation of Cellular Senescence. International Journal of Molecular Sciences, 2021, 22, 13173.	1.8	116
549	Senolytic-Mediated Elimination of Head and Neck Tumor Cells Induced Into Senescence by Cisplatin. Molecular Pharmacology, 2022, 101, 168-180.	1.0	13
550	Loss of laminâ€B1 and defective nuclear morphology are hallmarks of astrocyte senescence in vitro and in the aging human hippocampus. Aging Cell, 2022, 21, e13521.	3.0	53
551	Senescence Alterations in Pulmonary Hypertension. Cells, 2021, 10, 3456.	1.8	11
552	Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs. International Journal of Molecular Sciences, 2022, 23, 4168.	1.8	36
553	Cellular senescence in the aging brain: A promising target for neurodegenerative diseases. Mechanisms of Ageing and Development, 2022, 204, 111675.	2.2	25
554	Senescence-Associated Molecules and Tumor-Immune-Interactions as Prognostic Biomarkers in Colorectal Cancer. Frontiers in Medicine, 2022, 9, 865230.	1.2	9

#	ARTICLE	IF	CITATIONS
558	Unveiling a novel serpinB2-tripeptidyl peptidase II signaling axis during senescence. Journal of Cell Science, 2022, 135, .	1.2	2
560	1,25-Dihydroxyvitamin D deficiency induces sarcopenia by inducing skeletal muscle cell senescence American Journal of Translational Research (discontinued), 2021, 13, 12638-12649.	0.0	0
561	Nutrition Interventions of Herbal Compounds on Cellular Senescence. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-17.	1.9	0
562	Inhibition of matrix metalloproteinase expression by selective clearing of senescent dermal fibroblasts attenuates ultraviolet-induced photoaging. Biomedicine and Pharmacotherapy, 2022, 150, 113034.	2.5	17
563	The origins of cancer cell dormancy. Current Opinion in Genetics and Development, 2022, 74, 101914.	1.5	11
564	Eukaryotic Cell Size Control and Its Relation to Biosynthesis and Senescence. Annual Review of Cell and Developmental Biology, 2022, 38, 291-319.	4.0	44
565	Alterations in Molecular Profiles Affecting Glioblastoma Resistance to Radiochemotherapy: Where Does the Good Go?. Cancers, 2022, 14, 2416.	1.7	13
566	Cellular senescence due to physical inactivity: A review., 2019, 8, 1.		0
568	Re-Evaluation of Different Senescent Hallmarks in Therapy-Induced Senescence of Oral Squamous Cell Carcinoma. SSRN Electronic Journal, 0, , .	0.4	0
569	p16INK4A dependent senescence in the bone marrow niche drives age-related metabolic changes of hematopoietic progenitors. Blood Advances, 0 , , .	2.5	4
570	Cellular Senescence in Normal Mammary Gland and Breast Cancer. Implications for Cancer Therapy. Genes, 2022, 13, 994.	1.0	7
571	Translation of Cellular Senescence to Novel Therapeutics: Insights From Alternative Tools and Models. Frontiers in Aging, 2022, 3, .	1.2	4
572	Senescent cells in tissue engineering. Current Opinion in Biotechnology, 2022, 76, 102737.	3.3	2
574	Selective Elimination of Senescent Fibroblasts by Targeting the Cell Surface Protein ACKR3. International Journal of Molecular Sciences, 2022, 23, 6531.	1.8	4
575	The Senescence Markers p16INK4A, p14ARF/p19ARF, and p21 in Organ Development and Homeostasis. Cells, 2022, 11, 1966.	1.8	35
576	Clinical genomic profiling in the management of patients with soft tissue and bone sarcoma. Nature Communications, $2022, 13, \dots$	5.8	51
577	\hat{l}^2 -Klotho inhibits CSF-1 secretion and delays the development of endometrial cancer. Cell Cycle, 2022, 21, 2132-2144.	1.3	0
578	Potential Methods of Targeting Cellular Aging Hallmarks to Reverse Osteoarthritic Phenotype of Chondrocytes. Biology, 2022, 11, 996.	1.3	3

#	Article	IF	CITATIONS
579	A Four-Cell-Senescence-Regulator-Gene Prognostic Index Verified by Genome-Wide CRISPR Can Depict the Tumor Microenvironment and Guide Clinical Treatment of Bladder Cancer. Frontiers in Immunology, 0, 13 , .	2.2	6
580	Contextâ€dependent roles of cellular senescence in normal, aged, and disease states. FEBS Journal, 2023, 290, 1161-1185.	2.2	6
581	Induction of senescence upon loss of the Ash2l core subunit of H3K4 methyltransferase complexes. Nucleic Acids Research, 2022, 50, 7889-7905.	6.5	6
582	Nicotinamide Mononucleotide Ameliorates Cellular Senescence and Inflammation Caused by Sodium Iodate in RPE. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-23.	1.9	8
583	CpG-binding protein CFP1 promotes ovarian cancer cell proliferation by regulating BST2 transcription. Cancer Gene Therapy, 2022, 29, 1895-1907.	2.2	3
584	Artesunate Inhibits the Cell Growth in Colorectal Cancer by Promoting ROS-Dependent Cell Senescence and Autophagy. Cells, 2022, 11, 2472.	1.8	16
585	Identification of Four Biomarkers of Human Skin Aging by Comprehensive Single Cell Transcriptome, Transcriptome, and Proteomics. Frontiers in Genetics, $0,13,.$	1.1	4
586	Senescence Markers in Peripheral Blood Mononuclear Cells in Amnestic Mild Cognitive Impairment and Alzheimer's Disease. International Journal of Molecular Sciences, 2022, 23, 9387.	1.8	9
587	A motor neuron disease mouse model reveals a non-canonical profile of senescence biomarkers. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	10
588	Cellular senescence and senolytics: the path to the clinic. Nature Medicine, 2022, 28, 1556-1568.	15.2	257
589	Type 2 Diabetes, Independent of Obesity and Age, Is Characterized by Senescent and Dysfunctional Mature Human Adipose Cells. Diabetes, 2022, 71, 2372-2383.	0.3	7
590	Identification of senescence-related subtypes, establishment of a prognosis model, and characterization of a tumor microenvironment infiltration in breast cancer. Frontiers in Immunology, $0,13,1$	2.2	6
591	Cellular senescence: a key therapeutic target in aging and diseases. Journal of Clinical Investigation, 2022, 132, .	3.9	115
592	Increasing cell size remodels the proteome and promotes senescence. Molecular Cell, 2022, 82, 3255-3269.e8.	4.5	65
593	Maternal anxiety affects embryo implantation via impairing adrenergic receptor signaling in decidual cells. Communications Biology, 2022, 5, .	2.0	2
594	Strategies for immortalisation of amnionâ€derived mesenchymal and epithelial cells. Cell Biology International, 2022, 46, 1999-2008.	1.4	1
595	Antiaging: Is it possible?., 2023,, 155-160.		0
596	P16INK4A—More Than a Senescence Marker. Life, 2022, 12, 1332.	1.1	27

#	ARTICLE	IF	CITATIONS
597	Cultured Human Foreskin as a Model System for Evaluating Ionizing Radiation-Induced Skin Injury. International Journal of Molecular Sciences, 2022, 23, 9830.	1.8	5
598	Paving the Way to Solid Tumors: Challenges and Strategies for Adoptively Transferred Transgenic T Cells in the Tumor Microenvironment. Cancers, 2022, 14, 4192.	1.7	6
599	Senescence and cancer â€" role and therapeutic opportunities. Nature Reviews Clinical Oncology, 2022, 19, 619-636.	12.5	141
600	<i>InÂvitro</i> characterization and rational analog design of a novel inhibitor of telomerase assembly in MDA MB 231 breast cancer cell line. Oncology Reports, 2022, 48, .	1.2	0
601	Different Approaches for the Profiling of Cancer Pathway-Related Genes in Glioblastoma Cells. International Journal of Molecular Sciences, 2022, 23, 10883.	1.8	6
603	Endothelial senescence mediates hypoxia-induced vascular remodeling by modulating PDGFB expression. Frontiers in Medicine, 0, 9, .	1.2	3
604	Delineation of proteome changes driven by cell size and growth rate. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	10
605	A Phase II, Two-Stage Study of Letrozole and Abemaciclib in Estrogen Receptor–Positive Recurrent Endometrial Cancer. Journal of Clinical Oncology, 2023, 41, 599-608.	0.8	21
607	Human cutaneous interfollicular melanocytes differentiate temporarily under genotoxic stress. IScience, 2022, , 105238.	1.9	2
608	COVID-19 and cellular senescence. Nature Reviews Immunology, 2023, 23, 251-263.	10.6	54
609	Oxidative stress, lipid peroxidation and premature placental senescence in preeclampsia. Archives of Biochemistry and Biophysics, 2022, 730, 109416.	1.4	6
610	Downregulation of P300/CBP-Associated Factor Protects from Vascular Aging via Nrf2 Signal Pathway Activation. International Journal of Molecular Sciences, 2022, 23, 12574.	1.8	4
611	Extrinsic apoptosis and senescence involved in growth kinetics of seminoma to cisplatin. Clinical and Experimental Pharmacology and Physiology, 2023, 50, 140-148.	0.9	2
612	Asiaticoside Prevents Oxidative Stress and Apoptosis in Endothelial Cells by Activating ROS-dependent p53/Bcl-2/Caspase-3 Signaling Pathway. Current Molecular Medicine, 2023, 23, 1116-1129.	0.6	3
613	Recent advances in cellâ€based and cellâ€free therapeutic approaches for sarcopenia. FASEB Journal, 2022, 36, .	0.2	2
614	Molecular Characterization of Acquired Resistance to KRASG12C–EGFR Inhibition in Colorectal Cancer. Cancer Discovery, 2023, 13, 41-55.	7.7	25
615	The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. International Journal of Molecular Sciences, 2022, 23, 13577.	1.8	8
616	Effect of Sex Differences in Silicotic Mice. International Journal of Molecular Sciences, 2022, 23, 14203.	1.8	3

#	Article	IF	CITATIONS
617	Bioactive coumarin-derivative esculetin decreases hepatic stellate cell activation via induction of cellular senescence via the PI3K-Akt-GSK3β pathway. Food Bioscience, 2022, 50, 102164.	2.0	3
618	Major depression and the biological hallmarks of aging. Ageing Research Reviews, 2023, 83, 101805.	5.0	13
619	Quantification of beta-galactosidase activity as a marker of radiation-driven cellular senescence. Methods in Cell Biology, 2023, , 113-126.	0.5	0
621	Preconditioned Mesenchymal Stromal Cell-Derived Extracellular Vesicles (EVs) Counteract Inflammaging. Cells, 2022, 11, 3695.	1.8	2
622	An evaluation of aging measures: from biomarkers to clocks. Biogerontology, 0, , .	2.0	2
623	Chrysanthemum coronarium L. Protects against Premature Senescence in Human Endothelial Cells. Current Issues in Molecular Biology, 2022, 44, 5839-5847.	1.0	2
624	Senescent cells suppress macrophage-mediated corpse removal via upregulation of the CD47-QPCT/L axis. Journal of Cell Biology, 2023, 222, .	2.3	16
626	NIH SenNet Consortium to map senescent cells throughout the human lifespan to understand physiological health. Nature Aging, 2022, 2, 1090-1100.	5.3	27
627	Dietary restriction in senolysis and prevention and treatment of disease. Critical Reviews in Food Science and Nutrition, 0, , 1-27.	5.4	1
628	Senolytic Therapy: A Potential Approach for the Elimination of Oncogene-Induced Senescent HPV-Positive Cells. International Journal of Molecular Sciences, 2022, 23, 15512.	1.8	5
629	The systemic factors of mitigating the contribution of the reversible phenotypic transitions of malignant cells to therapeutic resistance. Voprosy Onkologii, 2022, 68, 708-716.	0.1	1
630	A prognostic model and immune regulation analysis of uterine corpus endometrial carcinoma based on cellular senescence. Frontiers in Oncology, 0, 12, .	1.3	0
631	Disruption of Multiple Overlapping Functions Following Stepwise Inactivation of the Extended Myc Network. Cells, 2022, 11, 4087.	1.8	6
632	Focal adhesion alterations in <scp>G0</scp> â€positive melanoma cells. Cancer Medicine, 0, , .	1.3	1
633	Puerariae lobatae radix protects against UVB-induced skin aging via antagonism of REV-ERBÎ \pm in mice. Frontiers in Pharmacology, 0, 13, .	1.6	3
634	Engineering Hierarchical Recognitionâ€Mediated Senolytics for Reliable Regulation of Cellular Senescence and Antiâ€Atherosclerosis Therapy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
635	Dissecting the influence of cellular senescence on cell mechanics and extracellular matrix formation in vitro. Aging Cell, 2023, 22, .	3.0	6
636	Engineering Hierarchical Recognitionâ€Mediated Senolytics for Reliable Regulation of Cellular Senescence and Antiâ€Atherosclerosis Therapy. Angewandte Chemie, 0, , .	1.6	0

#	Article	IF	CITATIONS
637	The BET inhibitor/degrader ARV-825 prolongs the growth arrest response to Fulvestrant + Palbociclib and suppresses proliferative recovery in ER-positive breast cancer. Frontiers in Oncology, 0, 12, .	1.3	5
638	Noncancerous disease-targeting AlEgens. Chemical Society Reviews, 2023, 52, 1024-1067.	18.7	30
639	The Role of Metallodrugs in Cellular Senescence. European Journal of Inorganic Chemistry, 0, , .	1.0	0
640	Transcriptional landscape of oncogene-induced senescence: a machine learning-based meta-analytic approach. Ageing Research Reviews, 2023, 85, 101849.	5.0	6
641	ML216 Prevents DNA Damage-Induced Senescence by Modulating DBC1–BLM Interaction. Cells, 2023, 12, 145.	1.8	2
642	$\hat{l}^2-Galactosidase-Activatable Nile Blue-Based NIR Senoprobe for the Real-Time Detection of Cellular Senescence. Analytical Chemistry, 0, , .$	3.2	2
643	Chemotherapyâ€Induced Senescence Reprogramming Promotes Nasopharyngeal Carcinoma Metastasis by circRNAâ€Mediated PKR Activation. Advanced Science, 2023, 10, .	5.6	6
644	Insights into the role of senescence in tumor dormancy: mechanisms and applications. Cancer and Metastasis Reviews, 2023, 42, 19-35.	2.7	9
645	The variant <scp>senescenceâ€associated secretory phenotype</scp> induced by centrosome amplification constitutes a pathway that activates <scp>hypoxiaâ€inducible factor</scp> â€lî±. Aging Cell, 2023, 22, .	3.0	5
646	Yearning for machine learning: applications for the classification and characterisation of senescence. Cell and Tissue Research, 2023, 394, 1-16.	1.5	4
647	Repurposing digoxin for geroprotection in patients with frailty and multimorbidity. Ageing Research Reviews, 2023, 86, 101860.	5.0	2
648	Cellular Senescence: From Mechanisms to Current Biomarkers and Senotherapies. Pharmacological Reviews, 2023, 75, 675-713.	7.1	12
649	A novel role of Fas in delaying cellular senescence. Heliyon, 2023, 9, e13451.	1.4	0
650	Basic Methods of Cell Cycle Analysis. International Journal of Molecular Sciences, 2023, 24, 3674.	1.8	8
651	A Senomorphicâ€Conjugated Scaffold for Application of Senescent Cells in Regenerative Medicine. Advanced Therapeutics, 0, , 2200276.	1.6	0
652	Implications of Senescent Cell Burden and NRF2 Pathway in Uremic Calcification: A Translational Study. Cells, 2023, 12, 643.	1.8	3
653	P16INK4a Regulates ROS-Related Autophagy and CDK4/6-Mediated Proliferation: A New Target of Myocardial Regeneration Therapy. Oxidative Medicine and Cellular Longevity, 2023, 2023, 1-23.	1.9	0
654	Selective photodynamic eradication of senescent cells with a \hat{l}^2 -galactosidase-activated photosensitiser. Chemical Communications, 2023, 59, 3471-3474.	2.2	5

#	Article	IF	CITATIONS
655	Long-term intensive endurance exercise training is associated to reduced markers of cellular senescence in the colon mucosa of older adults. , $2023, 9, .$		3
656	Impact of Cellular Senescence on Cellular Clocks. Healthy Ageing and Longevity, 2023, , 105-125.	0.2	0
657	Loss of p16 does not protect against premature ovarian insufficiency caused by alkylating agents. BMC Pregnancy and Childbirth, 2023, 23, .	0.9	0
658	Emerging Therapeutic Approaches to Target the Dark Side of Senescent Cells: New Hopes to Treat Aging as a Disease and to Delay Age-Related Pathologies. Cells, 2023, 12, 915.	1.8	6
660	Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. Journal of Hematology and Oncology, 2023, 16 , .	6.9	5
661	Senescent Stromal Cells in the Tumor Microenvironment: Victims or Accomplices?. Cancers, 2023, 15, 1927.	1.7	2
662	Effect of peripheral cellular senescence on brain aging and cognitive decline. Aging Cell, 2023, 22, .	3.0	12
663	A three-marker signature identifies senescence in human breast cancer exposed to neoadjuvant chemotherapy. Cancer Chemotherapy and Pharmacology, 2023, 91, 345-360.	1.1	7
664	Gut Microbiota is Associated with Agingâ€Related Processes of a Small Mammal Species under Highâ€Density Crowding Stress. Advanced Science, 2023, 10, .	5.6	2
665	Sub-lethal doses of chemotherapeutic agents induce senescence in T cells and upregulation of PD-1 expression. Clinical and Experimental Medicine, 2023, 23, 2695-2703.	1.9	2
666	Cellular Senescence and Frailty in Transplantation. Current Transplantation Reports, 0, , .	0.9	1
667	The impact of cellular senescence and senescenceâ€associated secretory phenotype in cancerâ€associated fibroblasts on the malignancy of pancreatic cancer. Oncology Reports, 2023, 49, .	1.2	3
668	Immunotherapeutic approach to reduce senescent cells and alleviate senescenceâ€associated secretory phenotype in mice. Aging Cell, 2023, 22, .	3.0	6
669	Sesamin Metabolites Suppress the Induction of Cellular Senescence. Nutrients, 2023, 15, 1627.	1.7	0
670	p21 facilitates chronic lung inflammation via epithelial and endothelial cells. Aging, 2023, 15, 2395-2417.	1.4	0
671	Metformin Ameliorates D-Galactose-Induced Senescent Human Bone Marrow-Derived Mesenchymal Stem Cells by Enhancing Autophagy. Stem Cells International, 2023, 2023, 1-14.	1.2	2
672	Spurious intragenic transcription is a feature of mammalian cellular senescence and tissue aging. Nature Aging, 2023, 3, 402-417.	5.3	9
673	A stress-induced cilium-to-PML-NB route drives senescence initiation. Nature Communications, 2023, 14, .	5.8	2

#	Article	IF	CITATIONS
674	Single-cell transcriptomic analysis uncovers diverse and dynamic senescent cell populations. Aging, 0,	1.4	2
675	Biomarkers of aging. Science China Life Sciences, 2023, 66, 893-1066.	2.3	60
676	Connecting the dots: Neuronal senescence, stress granules, and neurodegeneration. Gene, 2023, 871, 147437.	1.0	5
677	RBM4 dictates ESCC cell fate switch from cellular senescence to glutamine-addiction survival through inhibiting LKB1-AMPK-axis. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	4
683	Heart Disease and Ageing: The Roles of Senescence, Mitochondria, and Telomerase in Cardiovascular Disease. Sub-Cellular Biochemistry, 2023, , 45-78.	1.0	6
688	"Bone-SASP―in Skeletal Aging. Calcified Tissue International, 2023, 113, 68-82.	1.5	3
692	Cellular senescence and neurodegeneration. Human Genetics, 2023, 142, 1247-1262.	1.8	4
717	Basic knowledge and research methods. , 2024, , 3-29.		0
748	Targeting therapy-induced senescence as a novel strategy to combat chemotherapy-induced peripheral neuropathy. Supportive Care in Cancer, 2024, 32, .	1.0	0
759	Cellular senescence of renal tubular epithelial cells in acute kidney injury. Cell Death Discovery, 2024, $10,$	2.0	1
768	Age-related disease: Kidneys. , 2024, , 91-117.		0