Metal–Polypyridyl Catalysts for Electro- and Photoch Hydrogen

Accounts of Chemical Research 48, 2027-2036 DOI: 10.1021/acs.accounts.5b00082

Citation Report

#	Article	IF	CITATIONS
1	Application of the energetic span model to the electrochemical catalysis of proton reduction by a diiron azadithiolate complex. New Journal of Chemistry, 2015, 39, 8073-8079.	1.4	7
2	Synthesis and Characterization of a Tetrapodal NO ₄ ^{4–} Ligand and Its Transition Metal Complexes. Inorganic Chemistry, 2016, 55, 7527-7534.	1.9	4
3	Boosting Photocatalytic Hydrogen Production of a Metal–Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. Angewandte Chemie, 2016, 128, 9535-9539.	1.6	122
4	Boosting Photocatalytic Hydrogen Production of a Metal–Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. Angewandte Chemie - International Edition, 2016, 55, 9389-9393.	7.2	513
5	A Mononuclear Co ^{II} Coordination Complex Locked in a Confined Space and Acting as an Electrochemical Waterâ€Oxidation Catalyst: A "Shipâ€inâ€aâ€Bottle―Approach. Angewandte Chemie - International Edition, 2016, 55, 2425-2430.	7.2	107
6	A Mononuclear Co ^{II} Coordination Complex Locked in a Confined Space and Acting as an Electrochemical Waterâ€Oxidation Catalyst: A "Shipâ€inâ€aâ€Bottle―Approach. Angewandte Chemie, 2016 2471-2476.	, 1 2 8,	28
7	Tracking Co(I) Intermediate in Operando in Photocatalytic Hydrogen Evolution by X-ray Transient Absorption Spectroscopy and DFT Calculation. Journal of Physical Chemistry Letters, 2016, 7, 5253-5258.	2.1	44
8	Highly efficient photocatalytic hydrogen evolution from nickel quinolinethiolate complexes under visible light irradiation. Journal of Power Sources, 2016, 324, 253-260.	4.0	34
9	Photocatalytic hydrogen evolution by Cu(<scp>ii</scp>) complexes. Dalton Transactions, 2016, 45, 5439-5443.	1.6	38
10	The stereoselectivity of bipyrrolidine-based sequential polydentate ligands around Ru(<scp>ii</scp>). Chemical Communications, 2016, 52, 7932-7934.	2.2	3
11	Hydrogen production from water using a bis(imino)pyridine molybdenum electrocatalyst. Chemical Communications, 2016, 52, 11555-11558.	2.2	14
12	Molecular engineered nanomaterials for catalytic hydrogen evolution and oxidation. Chemical Communications, 2016, 52, 13728-13748.	2.2	98
13	[MoO(S ₂) ₂ L] ^{1–} (L = picolinate or pyrimidine-2-carboxylate) Complexes as MoS _{<i>x</i>} -Inspired Electrocatalysts for Hydrogen Production in Aqueous Solution. Journal of the American Chemical Society, 2016, 138, 13726-13731.	6.6	41
14	A water soluble electro-catalyst for generating hydrogen based on a cobalt(III) complex supported by 1,10-phenanthroline. Chemical Physics Letters, 2016, 662, 152-155.	1.2	4
15	Synthesis and Isomeric Analysis of Ru ^{II} Complexes Bearing Pentadentate Scaffolds. Inorganic Chemistry, 2016, 55, 11216-11229.	1.9	17
16	An alkali-ion insertion approach to structurally transform metal–organic frameworks. CrystEngComm, 2016, 18, 7680-7684.	1.3	7
17	Thermodynamic Hydricity of Transition Metal Hydrides. Chemical Reviews, 2016, 116, 8655-8692.	23.0	365
18	Titanocene as a New Acceptor (A) for Arylamine Donors (D) in Dâ^'ï€â€"A Chromophores. Organometallics, 2016, 35, 2575-2578.	1.1	9

#	Article	IF	CITATIONS
19	Redox and Acid–Base Properties of Binuclear 4â€Terphenyldithiophenolate Complexes of Nickel. Chemistry - A European Journal, 2016, 22, 14640-14647.	1.7	14
20	Synthesis of Co ^{II} –NO [–] Complexes and Their Reactivity as a Source of Nitroxyl. Journal of the American Chemical Society, 2016, 138, 12459-12471.	6.6	25
21	Tris(2,2′â€bipyridine)ruthenium Derivatives with Multiple Viologen Acceptors: Quadratic Dependence of Photocatalytic H ₂ Evolution Rate on the Local Concentration of the Acceptor Site. Chemistry - A European Journal, 2016, 22, 12381-12390.	1.7	15
22	Catalytic reduction of proton, oxygen and carbon dioxide with cobalt macrocyclic complexes. Journal of Porphyrins and Phthalocyanines, 2016, 20, 935-949.	0.4	18
23	Supramolecular assembly of cobaloxime on nanoring-coated carbon nanotubes: addressing the stability of the pyridine–cobalt linkage under hydrogen evolution turnover conditions. Chemical Communications, 2016, 52, 11783-11786.	2.2	28
24	Electrocatalytic Hydrogen Evolution under Acidic Aqueous Conditions and Mechanistic Studies of a Highly Stable Molecular Catalyst. Journal of the American Chemical Society, 2016, 138, 14174-14177.	6.6	92
25	Direct Observation by Rapid-Scan FT-IR Spectroscopy of Two-Electron-Reduced Intermediate of Tetraaza Catalyst [Co ^{II} N ₄ H(MeCN)] ²⁺ Converting CO ₂ to CO. Journal of the American Chemical Society, 2016, 138, 9959-9967.	6.6	52
26	A Highly Active and Robust Copper-Based Electrocatalyst toward Hydrogen Evolution Reaction with Low Overpotential in Neutral Solution. ACS Applied Materials & Interfaces, 2016, 8, 30205-30211.	4.0	36
27	Supramolecular Artificial Photosynthesis. Lecture Notes in Quantum Chemistry II, 2016, , 1-66.	0.3	5
28	A polypyridyl Co(<scp>ii</scp>) complex-based water reduction catalyst with double H ₂ evolution sites. Catalysis Science and Technology, 2016, 6, 8482-8489.	2.1	16
29	Facile hydrogen atom transfer to iron(<scp>iii</scp>) imido radical complexes supported by a dianionic pentadentate ligand. Chemical Science, 2016, 7, 5939-5944.	3.7	47
30	Nanofabrication of a Solid tate, Mesoporous Nanoparticle Composite for Efficient Photocatalytic Hydrogen Generation. ChemPlusChem, 2016, 81, 521-525.	1.3	9
31	A Periodic Walk through a Series of First-Row, Oxido-Bridged, Heterodimetallic Molecules: Synthesis and Structure. European Journal of Inorganic Chemistry, 2016, 2016, 1054-1059.	1.0	11
32	Experimental and Theoretical Insight into Electrocatalytic Hydrogen Evolution with Nickel Bis(aryldithiolene) Complexes as Catalysts. Inorganic Chemistry, 2016, 55, 432-444.	1.9	76
33	Visible Lightâ€Driven Hydrogen Evolution from Aqueous Solution in a Nobleâ€Metalâ€Free System Catalyzed by a Cobalt Phthalocyanine. ChemistrySelect, 2016, 1, 425-429.	0.7	13
34	Complexes with Tunable Intramolecular Ferrocene to Ti ^{IV} Electronic Transitions: Models for Solid State Fe ^{II} to Ti ^{IV} Charge Transfer. Inorganic Chemistry, 2016, 55, 2200-2211.	1.9	27
35	Molecular photo-charge-separators enabling single-pigment-driven multi-electron transfer and storage leading to H ₂ evolution from water. Inorganic Chemistry Frontiers, 2016, 3, 671-680.	3.0	21
36	Hydrogen Evolution from Water under Aerobic Conditions Catalyzed by a Cobalt ATCUN Metallopeptide. Inorganic Chemistry, 2016, 55, 1355-1357.	1.9	83

#	Article	IF	CITATIONS
37	Computational Characterization of Redox Non-Innocence in Cobalt-Bis(Diaryldithiolene)-Catalyzed Proton Reduction. Journal of Chemical Theory and Computation, 2016, 12, 223-230.	2.3	30
38	Calix[4]arene based dye-sensitized Pt@UiO-66-NH2 metal-organic framework for efficient visible-light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2017, 206, 426-433.	10.8	117
39	Electrocatalytic generation of H ₂ from neutral water in acetonitrile using manganese polypyridyl complexes with ligand assistance. Dalton Transactions, 2017, 46, 6518-6522.	1.6	12
40	New Cobaltâ€Bisterpyridyl Catalysts for Hydrogen Evolution Reaction. ChemCatChem, 2017, 9, 2099-2105.	1.8	36
41	Competent Electrocatalytic and Photocatalytic Proton Reduction by a Dechelated [Co(tpy) ₂] ²⁺ Scaffold. European Journal of Inorganic Chemistry, 2017, 2017, 3409-3418.	1.0	18
42	Dual cobalt–copper light-driven catalytic reduction of aldehydes and aromatic ketones in aqueous media. Chemical Science, 2017, 8, 4739-4749.	3.7	73
43	Magnetic and electro-catalytic properties of a copper complex with 2-(pyridylmethyl)amino- N , N -bis(2-methylene-4,6-difluorophenol). Chinese Chemical Letters, 2017, 28, 1424-1428.	4.8	7
44	Reactions of Neutral Cobalt(II) Complexes of a Dianionic Tetrapodal Pentadentate Ligand: Cobalt(III) Amides from Imido Radicals. Inorganic Chemistry, 2017, 56, 4157-4168.	1.9	24
45	Electro- and Photocatalytic Hydrogen Production by Molecular Cobalt Complexes With Pentadentate Ligands. Comments on Inorganic Chemistry, 2017, 37, 238-270.	3.0	20
46	A newly synthesized single crystal zinc complex as molecular electrocatalyst for efficient hydrogen generation from neutral aqueous solutions. International Journal of Hydrogen Energy, 2017, 42, 25980-25995.	3.8	11
47	Synthesis, Magnetic and Electrocatalytic Properties of a Dinuclear Triazendioâ€Nickel(II) Complex. ChemistrySelect, 2017, 2, 8673-8678.	0.7	3
48	μ-Pyridine-bridged copper complex with robust proton-reducing ability. Dalton Transactions, 2017, 46, 14869-14879.	1.6	23
49	A cobalt(II) complex of 2,2-bipyridine, a catalyst for electro- and photo-catalytic hydrogen production in purely aqueous media. Inorganic Chemistry Communication, 2017, 86, 276-280.	1.8	17
50	Electrochemical and photochemical hydrogen generation by a water soluble cobalt(II) complex of 2,2-bipyridine. Transition Metal Chemistry, 2017, 42, 711-717.	0.7	6
51	A Bisamide Ruthenium Polypyridyl Complex as a Robust and Efficient Photosensitizer for Hydrogen Production. ChemSusChem, 2017, 10, 4436-4441.	3.6	18
52	Electro―and Photocatalytic Generation of H ₂ Using a Distinctive Co ^{II} "PN ₃ P―Pincer Supported Complex with Water or Saturated Saline as a Hydrogen Source. Chemistry - A European Journal, 2017, 23, 16763-16767.	1.7	9
53	Structure–Activity and Stability Relationships for Cobalt Polypyridylâ€Based Hydrogenâ€Evolving Catalysts in Water. ChemSusChem, 2017, 10, 4570-4580.	3.6	47
54	Precious metal-free approach to hydrogen electrocatalysis for energy conversion: From mechanism understanding to catalyst design. Nano Energy, 2017, 42, 69-89.	8.2	157

#	Article	IF	CITATIONS
55	A coordinatively saturated nickel complex supported by triazenido ligands: a new electrocatalyst for hydrogen generation via ligand-centered proton-transfer. New Journal of Chemistry, 2017, 41, 8503-8508.	1.4	12
56	Synthesis of a pentadentate, polypyrazine ligand and its application in cobalt-catalyzed hydrogen production. Inorganic Chemistry Frontiers, 2017, 4, 1649-1653.	3.0	15
58	Cobalt, nickel, and iron complexes of 8-hydroxyquinoline-di(2-picolyl)amine for light-driven hydrogen evolution. Dalton Transactions, 2017, 46, 16455-16464.	1.6	24
59	A coordinatively saturated cobalt complex as a new kind catalyst for efficient electro- and photo-catalytic hydrogen production in purely aqueous media. International Journal of Hydrogen Energy, 2017, 42, 16428-16435.	3.8	19
60	A Mononuclear Tungsten Photocatalyst for H ₂ Production. ACS Catalysis, 2018, 8, 4838-4847.	5.5	21
61	A Smorgasbord of 17 Cobalt Complexes Active for Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2018, 24, 9820-9832.	1.7	39
62	Boosting Photocatalytic Hydrogen Production of Porphyrinic MOFs: The Metal Location in Metalloporphyrin Matters. ACS Catalysis, 2018, 8, 4583-4590.	5.5	184
63	Redox Chemistry of Bis(pyrrolyl)pyridine Chromium and Molybdenum Complexes: An Experimental and Density Functional Theoretical Study. Inorganic Chemistry, 2018, 57, 1919-1934.	1.9	26
64	Rhodamine-Platinum Diimine Dithiolate Complex Dyads as Efficient and Robust Photosensitizers for Light-Driven Aqueous Proton Reduction to Hydrogen. Journal of the American Chemical Society, 2018, 140, 2575-2586.	6.6	52
65	Effect of metal centers on electrocatalytic hydrogen generation catalyzed by coordinatively saturated metal-1,10-phenanthroline complexes. Polyhedron, 2018, 139, 44-49.	1.0	5
66	Electrocatalytic hydrogen evolution with cobalt–poly(4-vinylpyridine) metallopolymers. Journal of Applied Electrochemistry, 2018, 48, 201-209.	1.5	13
67	Influence of the Metal Ion on the Electrocatalytic Hydrogen Production by a Thiosemicarbazone Palladium Complex. European Journal of Inorganic Chemistry, 2018, 2018, 2259-2266.	1.0	23
68	Artificial photosynthesis by light absorption, charge separation, and multielectron catalysis. Chemical Communications, 2018, 54, 6554-6572.	2.2	42
69	Thermal and photocatalytic production of hydrogen with earth-abundant metal complexes. Coordination Chemistry Reviews, 2018, 355, 54-73.	9.5	116
70	A noble metal-free photocatalytic system based on a novel cobalt tetrapyridyl catalyst for hydrogen production in fully aqueous medium. Sustainable Energy and Fuels, 2018, 2, 553-557.	2.5	37
71	Electrocatalytic Water Reduction Beginning with a {Fe(NO) ₂ } ¹⁰ -Reduced Dinitrosyliron Complex: Identification of Nitrogen-Doped FeO _{<i>x</i>} (OH) _{<i>y</i>} as a Real Heterogeneous Catalyst. Inorganic Chemistry. 2018. 57. 14715-14726.	1.9	11
72	Directing the reactivity of metal hydrides for selective CO ₂ reduction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12686-12691.	3.3	87
73	Oxygen–Oxygen Bond Cleavage and Formation in Co(II)-Mediated Stoichiometric O ₂ Reduction via the Potential Intermediacy of a Co(IV) Oxyl Radical. Journal of the American Chemical Society, 2018, 140, 16094-16105.	6.6	50

#	Article	IF	CITATIONS
75	Reaction mechanism of the selective reduction of CO ₂ to CO by a tetraaza [Co ^{II} N ₄ H] ²⁺ complex in the presence of protons. Physical Chemistry Chemical Physics, 2018, 20, 24058-24064.	1.3	15
76	Multielectron Redox Chemistry of Transition Metal Complexes Supported by a Nonâ€Innocent N 3 P 2 Ligand: Synthesis, Characterization, and Catalytic Properties. European Journal of Inorganic Chemistry, 2018, 2018, 4133-4141.	1.0	1
77	Scandium alkyl and hydride complexes supported by a pentadentate diborate ligand: reactions with CO ₂ and N ₂ O. Dalton Transactions, 2018, 47, 13680-13688.	1.6	23
78	Photocatalytic H ₂ Evolution Using a Ru Chromophore Tethered to Six Viologen Acceptors. Chemistry - A European Journal, 2018, 24, 16620-16629.	1.7	17
79	Electronic and Steric Tuning of Catalytic H ₂ Evolution by Cobalt Complexes with Pentadentate Polypyridyl-Amine Ligands. Journal of the American Chemical Society, 2018, 140, 9219-9229.	6.6	88
80	A nickel(II) complex of S,S′-bis(2-pyridylmethyl)-1,2-thioethane, a cocatalyst for photochemical driven hydrogen evolution from water under visible light. Inorganic Chemistry Communication, 2018, 95, 158-162.	1.8	8
81	A cobalt complex, a highly efficient catalyst for electro- and photochemical driven hydrogen generation in purely aqueous media. Polyhedron, 2018, 154, 295-301.	1.0	14
82	Structure of the Co ^I Intermediate of a Cobalt Pentapyridyl Catalyst for Hydrogen Evolution Revealed by Timeâ€Resolved Xâ€ray Spectroscopy. ChemSusChem, 2018, 11, 3087-3091.	3.6	10
83	A water soluble cocatalyst based on a cobalt(II) complex of S,S'-bis(2-pyridylmethyl)-1,2-thioethane for photochemical driven hydrogen evolution from water under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 650-656.	2.0	8
84	Mechanistic Role of Two-State Reactivity in a Molecular MoS ₂ Edge-Site Analogue for Hydrogen Evolution Electrocatalysis. Inorganic Chemistry, 2018, 57, 9167-9174.	1.9	4
85	Hydrogen Evolution Reactions Catalyzed by a Bis(thiosemicarbazone) Cobalt Complex: An Experimental and Theoretical Study. Chemistry - A European Journal, 2018, 24, 8779-8786.	1.7	50
86	Sodiumâ€Doped C ₃ N ₄ /MOF Heterojunction Composites with Tunable Band Structures for Photocatalysis: Interplay between Light Harvesting and Electron Transfer. Chemistry - A European Journal, 2018, 24, 18403-18407.	1.7	85
87	FeCo/FeCoP _{<i>x</i>} O _{<i>y</i>} (OH) _{<i>z</i>} as Bifunctional Electrodeposited-Film Electrodes for Overall Water Splitting. ACS Applied Energy Materials, 0, , .	2.5	3
88	Inâ€situ Growth of a Bimetallic Cobaltâ€Nickel Organic Framework on Iron Foam: Achieving the Electron Modification on a Robust Selfâ€supported Oxygen Evolution Electrode. ChemCatChem, 2019, 11, 6061-6069.	1.8	33
89	Tuning the Electron Storage Potential of a Chargeâ€Photoaccumulating Ru ^{II} Complex by a DFTâ€Guided Approach. Chemistry - A European Journal, 2019, 25, 13911-13920.	1.7	5
90	All about that base: investigating the role of ligand basicity in pyridyl complexes derived from a copper-Schiff base coordination polymer. Dalton Transactions, 2019, 48, 15553-15559.	1.6	5
91	Design and photophysical studies of iridium(<scp>iii</scp>)–cobalt(<scp>iii</scp>) dyads and their application for dihydrogen photo-evolution. Dalton Transactions, 2019, 48, 15567-15576.	1.6	19
92	Experimental and Theoretical Study of Photochemical Hydrogen Evolution Catalyzed by Paddlewheelâ€Type Dirhodium Complexes with Electron Withdrawing Carboxylate Ligands. ChemCatChem, 2019, 11, 6218-6226.	1.8	16

#	Article	IF	CITATIONS
93	Influence of nitro substituents on the redox, electronic, and proton reduction catalytic behavior of phenolate-based [N ₂ O ₃]-type cobalt(<scp>iii</scp>) complexes. Dalton Transactions, 2019, 48, 14669-14677.	1.6	4
94	Ligand dechelation effect on a [Co(tpy) ₂] ²⁺ scaffold towards electro-catalytic proton and water reduction. New Journal of Chemistry, 2019, 43, 3856-3865.	1.4	12
95	A Molecular Cobalt Hydrogen Evolution Catalyst Showing High Activity and Outstanding Tolerance to CO and O 2. Angewandte Chemie, 2019, 131, 11039-11043.	1.6	9
96	Efficient Light-Driven Hydrogen Evolution Using a Thiosemicarbazone-Nickel (II) Complex. Frontiers in Chemistry, 2019, 7, 405.	1.8	18
97	A Molecular Cobalt Hydrogen Evolution Catalyst Showing High Activity and Outstanding Tolerance to CO and O ₂ . Angewandte Chemie - International Edition, 2019, 58, 10923-10927.	7.2	47
98	Synergistically Directed Assembly of Aromatic Stacks Based Metalâ€Organic Frameworks by Donorâ€Acceptor and Coordination Interactions. Chinese Journal of Chemistry, 2019, 37, 871-877.	2.6	28
99	Proton reduction by a Ni(II) catalyst and foot-of-the wave analysis for H2 evolution. International Journal of Hydrogen Energy, 2019, 44, 16467-16477.	3.8	23
100	Heterogeneous photocatalytic water reduction using a QD-cluster pentacobalt polyoxotungstate complex. New Journal of Chemistry, 2019, 43, 8085-8092.	1.4	2
101	Improved Electro- and Photocatalytic Water Reduction by Confined Cobalt Catalysts in Streptavidin. ACS Catalysis, 2019, 9, 5837-5846.	5.5	28
102	A photocatalytic system with a bis(thiosemicarbazonato)‑nickel over CdS nanorods for hydrogen evolution from water under visible light. Inorganic Chemistry Communication, 2019, 102, 5-9.	1.8	12
103	Synergistic catalysis for light-driven proton reduction using a polyoxometalate-based Cu–Ni heterometallic–organic framework. Chemical Communications, 2019, 55, 3805-3808.	2.2	40
104	Design and reactivity of pentapyridyl metal complexes for ammonia oxidation. Chemical Communications, 2019, 55, 5083-5086.	2.2	27
105	Opto-Electroactive Amino- and Pyridyl-Terminated Monolayers of Rull–Terpyridyl Complexes and Their Usage as Hg2+ Sensors. Journal of Physical Chemistry C, 2019, 123, 6121-6129.	1.5	11
106	Cobalt Complex of a Tetraamido Macrocyclic Ligand as a Precursor for Electrocatalytic Hydrogen Evolution. Organometallics, 2019, 38, 1397-1406.	1.1	11
107	Catalytic H ₂ Evolution by a Mononuclear Cobalt Complex with a Macrocyclic Pentadentate Ligand. European Journal of Inorganic Chemistry, 2019, 2019, 2134-2139.	1.0	14
108	Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chemical Reviews, 2019, 119, 2752-2875.	23.0	615
109	Photochemical Hydrogen Evolution from Neutral Water with a Cobalt Metallopeptide Catalyst. Inorganic Chemistry, 2019, 58, 16402-16410.	1.9	34
110	Selectivity of tungsten mediated dinitrogen splitting <i>vs.</i> proton reduction. Chemical Science, 2019, 10, 10275-10282.	3.7	38

	CITA	ation Report	
#	Article	IF	CITATIONS
111	Coordination/Organometallic Compounds and Composites of Carbon Allotropes. , 2019, , 413-575.		2
112	Metal–Organic Frameworks for Photocatalysis and Photothermal Catalysis. Accounts of Chemical Research, 2019, 52, 356-366.	7.6	880
113	An Amineâ€Functionalized Zirconium Metal–Organic Polyhedron Photocatalyst with High Visibleâ€Li Activity for Hydrogen Production. Chemistry - A European Journal, 2019, 25, 2824-2830.	ght 1.7	53
114	Electrocatalytic Hydrogen Production by a Nickel Complex Containing a Tetradentate Phosphine Ligand. Organometallics, 2019, 38, 1269-1279.	1.1	25
115	pH-Dependent Reactivity of a Water-Soluble Nickel Complex: Hydrogen Evolution vs Selective Electrochemical Hydride Generation. Organometallics, 2019, 38, 1286-1291.	1.1	14
116	Nickel complexes as molecular catalysts for water splitting and CO2 reduction. Coordination Chemistry Reviews, 2019, 378, 237-261.	9.5	174
117	First-row transition metal polypyridine complexes that catalyze proton to hydrogen reduction. Coordination Chemistry Reviews, 2020, 402, 213079.	9.5	66
118	Green fabrication of silver imprinted titania / silica nanospheres as robust visible light-induced photocatalytic wastewater purification. Materials Chemistry and Physics, 2020, 241, 122403.	2.0	23
119	Supramolecular Tuning Enables Selective Oxygen Reduction Catalyzed by Cobalt Porphyrins for Direct Electrosynthesis of Hydrogen Peroxide. Angewandte Chemie - International Edition, 2020, 59, 4902-4907.	7.2	97
120	Bimodal Heterogeneous Functionality in Redoxâ€Active Conjugated Microporous Polymer toward Electrocatalytic Oxygen Reduction and Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2020, 26, 3810-3817.	1.7	11
121	Electrocatalytic Hydrogen Production with a Molecular Cobalt Complex in Aqueous Solution. ChemElectroChem, 2020, 7, 217-221.	1.7	7
122	Electrocatalytic Hydrogen Evolution with a Cobalt Complex Bearing Pendant Proton Relays: Acid Strength and Applied Potential Govern Mechanism and Stability. Journal of the American Chemical Society, 2020, 142, 274-282.	6.6	92
123	Photocatalytic Hydrogen Evolution from Plastoquinol Analogues as a Potential Functional Model of Photosystem I. Inorganic Chemistry, 2020, 59, 14838-14846.	1.9	10
124	Metal–Ligand Cooperativity via Exchange Coupling Promotes Iron- Catalyzed Electrochemical CO ₂ Reduction at Low Overpotentials. Journal of the American Chemical Society, 2020, 142, 20489-20501.	6.6	77
125	Bioinspired metal complexes for energy-related photocatalytic small molecule transformation. Chemical Communications, 2020, 56, 15496-15512.	2.2	22
126	Structureâ€Functional Analysis of Hydrogen Production Catalyzed by Molecular Cobalt Complexes with Pentadentate Ligands in Aqueous Solutions. European Journal of Inorganic Chemistry, 2020, 2020, 3534-3547.	1.0	9
127	Increasing the rate of the hydrogen evolution reaction in neutral water with protic buffer electrolytes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32947-32953.	3.3	16
128	A metal–organic framework with in situ generated low-coordinate binuclear Cu(i) units as a highly effective catalyst for photodriven hydrogen production. Chemical Communications, 2020, 56, 6700-6703.	2.2	13

#	Article	IF	CITATIONS
129	Waterâ€Soluble Polymers with Appending Porphyrins as Bioinspired Catalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 15844-15848.	7.2	76
130	Waterâ€Soluble Polymers with Appending Porphyrins as Bioinspired Catalysts for the Hydrogen Evolution Reaction. Angewandte Chemie, 2020, 132, 15978-15982.	1.6	16
131	Synthesis of two new copper-sandwiched polyoxotungstates and the influence of nuclear number on catalytic hydrogen evolution activity. New Journal of Chemistry, 2020, 44, 11035-11041.	1.4	6
132	N-substituted 2-pyridinecarbothioamides and polypyridyl mixed-ligand cobalt(III)-containing complexes for photocatalytic hydrogen generation. Inorganica Chimica Acta, 2020, 510, 119726.	1.2	4
133	Synthesis, Characterization, and Reactivity of Neutral Octahedral Alkyl-Cobalt(III) Complexes Bearing a Dianionic Pentadentate Ligand. Organometallics, 2020, 39, 2269-2277.	1.1	5
134	Tuning Second Coordination Sphere Interactions in Polypyridyl–Iron Complexes to Achieve Selective Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide. Inorganic Chemistry, 2020, 59, 5206-5217.	1.9	56
135	Preparation of platinum nanoparticles using iron(ii) as reductant and photosensitized H2 generation on an iron storage protein scaffold. RSC Advances, 2020, 10, 5551-5559.	1.7	2
136	Electrocatalytic hydrogen production using the designed hexaphenanthrene iron, cobalt and ruthenium(II) cage complexes as cathode (pre)catalysts immobilized on carbonaceous substrates. International Journal of Hydrogen Energy, 2020, 45, 26206-26216.	3.8	16
137	Kinetics and mechanistic study of electrocatalytic hydrogen evolution by [Co(Fc-tpy)2]2+. Polyhedron, 2020, 187, 114677.	1.0	10
138	Synthesis, Isomerization and Electrocatalytic Properties of Thiolate-Bridged Dicobalt Hydride Complexes with Different Substituents. European Journal of Inorganic Chemistry, 2020, 2020, 2757-2764.	1.0	4
139	Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis. Accounts of Chemical Research, 2020, 53, 575-587.	7.6	93
140	Synthesis and Characterization of Acid-Responsive Luminescent Fe(II) Metallopolymers of Rigid and Flexible Backbone N-Donor Multidentate Conjugated Ligands. Inorganic Chemistry, 2020, 59, 1746-1757.	1.9	12
141	Enhanced Hydrogen Evolution in Neutral Water Catalyzed by a Cobalt Complex with a Softer Polypyridyl Ligand. Angewandte Chemie, 2020, 132, 12794-12797.	1.6	3
142	Tuning the reactivity of cobalt-based H2 production electrocatalysts via the incorporation of the peripheral basic functionalities. Coordination Chemistry Reviews, 2020, 416, 213335.	9.5	46
143	Photophysical, ion-sensing and biological properties of rhodamine-containing transition metal complexes. Coordination Chemistry Reviews, 2020, 416, 213336.	9.5	38
144	Enhanced Hydrogen Evolution in Neutral Water Catalyzed by a Cobalt Complex with a Softer Polypyridyl Ligand. Angewandte Chemie - International Edition, 2020, 59, 12694-12697.	7.2	25
145	Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts. Inorganica Chimica Acta, 2021, 517, 119950.	1.2	34
146	Consistent inclusion of continuum solvation in energy decomposition analysis: theory and application to molecular CO ₂ reduction catalysts. Chemical Science, 2021, 12, 1398-1414.	3.7	41

#	Article	IF	CITATIONS
147	Synthesis, structure, and hydrogen evolution studies of a heteroleptic Co(III) complex. Inorganica Chimica Acta, 2021, 517, 120195.	1.2	1
148	Metal-organic framework photocatalysts for carbon dioxide reduction. , 2021, , 389-420.		0
149	Impact of oxidation state of metal on electro-catalyzed hydrogen production by cobalt complexes of <i>N</i> -phenylpyridin-2-ylmethanimine. Journal of Coordination Chemistry, 2021, 74, 864-876.	0.8	0
150	Rationalizing Photoâ€Triggered Hydrogen Evolution Using Polypyridine Cobalt Complexes: Substituent Effects on Hexadentate Chelating Ligands. ChemSusChem, 2021, 14, 1874-1885.	3.6	12
151	Spectroscopic Investigations Provide a Rationale for the Hydrogen-Evolving Activity of Dye-Sensitized Photocathodes Based on a Cobalt Tetraazamacrocyclic Catalyst. ACS Catalysis, 2021, 11, 3662-3678.	5.5	19
152	Photochemical hydrogen evolution from cobalt microperoxidase-11. Journal of Inorganic Biochemistry, 2021, 217, 111384.	1.5	12
153	Controlled Single-Electron Transfer via Metal–Ligand Cooperativity Drives Divergent Nickel-Electrocatalyzed Radical Pathways. Journal of the American Chemical Society, 2021, 143, 6990-7001.	6.6	24
154	A Supramolecular Porous Organic Cage Platform Promotes Electrochemical Hydrogen Evolution from Water Catalyzed by Cobalt Porphyrins. ChemElectroChem, 2021, 8, 1653-1657.	1.7	23
155	Principales Rutas en la Producción de Hidrógeno. Ingenieria Y Competitividad, 2021, 23, e30111155.	0.1	2
156	Enzymeâ€Inspired Design of Co II â€Based H 2 Generation Catalysts: A Toolbox with Guiding Principles Revealed by a Systematic DFT Study. European Journal of Inorganic Chemistry, 2021, 2021, 2739-2748.	1.0	0
157	Structural and Electronic Influences on Rates of Tertpyridineâ´`Amine Co ^{III} â^'H Formation During Catalytic H ₂ Evolution in an Aqueous Environment. ChemPhysChem, 2021, 22, 1478-1487.	1.0	3
158	Electrocatalytic hydrogen evolution by molecular Cu(II) catalysts. Polyhedron, 2021, 208, 115425.	1.0	7
159	Fluoridation-induced high-performance catalysts for the oxygen evolution reaction: A mini review. Electrochemistry Communications, 2021, 122, 106901.	2.3	29
160	Supramolecular Tuning Enables Selective Oxygen Reduction Catalyzed by Cobalt Porphyrins for Direct Electrosynthesis of Hydrogen Peroxide. Angewandte Chemie, 2020, 132, 4932-4937.	1.6	18
161	A review on the state-of-the-art advances for CO2 electro-chemical reduction using metal complex molecular catalysts. Ecletica Quimica, 2019, 44, 11.	0.2	6
162	Construction of a low-valent thiolate-bridged dicobalt platform and its reactivity toward hydrogen activation and evolution. Chinese Chemical Letters, 2021, , .	4.8	1
163	Electrocatalytic Hydrogen Evolution by Cobalt Complexes with a Redox Non-Innocent Polypyridine Ligand. Inorganic Chemistry, 2021, 60, 17976-17985.	1.9	15
164	Mononuclear Mn complexes featuring N,S-/N,N-donor and 1,3,5-triaza-7-phosphaadamantane ligands: synthesis and electrocatalytic properties. New Journal of Chemistry, 2021, 45, 20272-20279.	1.4	1

#	Article	IF	CITATIONS
165	A newly synthesized bipyridineâ€containing manganese(<scp>II</scp>) complex immobilized on graphene oxide as active electrocatalyst for hydrogen gas production from alkaline solutions: Experimental and theoretical studies. International Journal of Energy Research, 2022, 46, 6577-6593.	2.2	2
166	Indium-Based Metal–Organic Framework for Efficient Photocatalytic Hydrogen Evolution. Inorganic Chemistry, 2022, 61, 2587-2594.	1.9	20
167	Polar Substituents Enable Efficient Catalysis for a Class of Cobalt Polypyridyl Hydrogen Evolving Catalysts. Helvetica Chimica Acta, 0, , .	1.0	1
168	Development and advancement of iridium(III)-based complexes for photocatalytic hydrogen evolution. Coordination Chemistry Reviews, 2022, 459, 214390.	9.5	38
169	Light-driven reduction of aromatic olefins in aqueous media catalysed by aminopyridine cobalt complexes. Chemical Science, 2022, 13, 4270-4282.	3.7	10
170	Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions. Accounts of Chemical Research, 2022, 55, 878-892.	7.6	147
171	Non-Covalent Functionalization of Graphene Oxide-Supported 2-Picolyamine-Based Zinc(II) Complexes as Novel Electrocatalysts for Hydrogen Production. Catalysts, 2022, 12, 389.	1.6	4
172	CO2 to CO Electroreduction, Electrocatalytic H2 Evolution, and Catalytic Degradation of Organic Dyes Using a Co(II) meso-Tetraarylporphyrin. Molecules, 2022, 27, 1705.	1.7	4
173	Recent findings and future directions in photosynthetic hydrogen evolution using polypyridine cobalt complexes. Dalton Transactions, 2022, 51, 10658-10673.	1.6	10
175	Deciphering Distinct Overpotential-Dependent Pathways for Electrochemical CO ₂ Reduction Catalyzed by an Iron–Terpyridine Complex. Inorganic Chemistry, 2022, 61, 6919-6933.	1.9	10
176	Molecular Catalysis in "Green―Hydrogen Production. Frontiers in Catalysis, 2022, 2, .	1.8	5
177	Two routes to hydrogen evolution for a Co-polypyridyl complex with two open sites. Electronic Structure, 0, , .	1.0	1
178	Electronic Structure of Molecular Cobalt Catalysts for H ₂ Production Revealed by Multifrequency EPR. Journal of Physical Chemistry C, 2022, 126, 11889-11899.	1.5	0
179	Synthesis of cobalt A ₂ B triaryl corroles bearing methoxy or hydroxyl groups and their activity in electrocatalytic hydrogen evolution. Applied Organometallic Chemistry, 2023, 37, .	1.7	4
180	Electrocatalytic hydrogen production from neutral water using an aqueous Ni(<scp>ii</scp>) pincer complex. Catalysis Science and Technology, 2022, 12, 7494-7500.	2.1	2
181	Rational development of molecular earth-abundant metal complexes for electrocatalytic hydrogen production. Chinese Journal of Catalysis, 2022, 43, 3019-3045.	6.9	6
182	Electrocatalytic hydrogen evolution from water at low overpotentials with cobalt complexes supported by redox-active bipyridyl-NHC donors. Chinese Journal of Catalysis, 2022, 43, 3187-3194.	6.9	3
183	Photocatalytic Hydrogen Production and Carbon Dioxide Reduction Catalyzed by an Artificial Cobalt Hemoprotein. International Journal of Molecular Sciences, 2022, 23, 14640.	1.8	3

#	Article	IF	CITATIONS
184	Hydrogen Evolution Reaction, Electrochemical CO2 Reduction, and Oxidative Photodegradation of Organic Dyes Catalyzed by Co(II) Trimethoxy-Meso-Arylporphyrin. Inorganics, 2023, 11, 6.	1.2	0
185	Recent progress in homogeneous molecular photoredox catalysis towards hydrogen evolution reaction and future perspective. Applied Catalysis A: General, 2023, 651, 119010.	2.2	4
186	Mechanistic Elucidation of an Alcohol Oxidation Reaction Promoted by a Nickel Azophenolate Complex. Organometallics, 2023, 42, 1759-1765.	1.1	2
188	A Tetrapodal Pentaâ€Carbene Ligand and Iron(III) Complex. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	0
196	Effects of the delocalization state on electrocatalytic CO ₂ reduction: a mini-review. , 2024, 2, 556-563.		0