Multilocus Species Trees Show the Recent Adaptive Rad Butterflies

Systematic Biology 64, 505-524 DOI: 10.1093/sysbio/syv007

Citation Report

#	Article	IF	CITATIONS
1	Wing patterning genes and coevolution of Müllerian mimicry in <i>Heliconius</i> butterflies: Support from phylogeography, cophylogeny, and divergence times. Evolution; International Journal of Organic Evolution, 2015, 69, 3082-3096.	1.1	19
2	External morphology of the immature stages of Neotropical heliconians: X. Heliconius sara apseudes (Lepidoptera, Nymphalidae, Heliconiinae). Iheringia - Serie Zoologia, 2015, 105, 523-533.	0.5	3
3	Estimation of the Spontaneous Mutation Rate in Heliconius melpomene. Molecular Biology and Evolution, 2015, 32, 239-243.	3.5	220
4	The Functional Basis of Wing Patterning in <i>Heliconius</i> Butterflies: The Molecules Behind Mimicry. Genetics, 2015, 200, 1-19.	1.2	106
5	The diversification of <i>Heliconius</i> butterflies: what have we learned in 150 years?. Journal of Evolutionary Biology, 2015, 28, 1417-1438.	0.8	144
6	Extensive range overlap between heliconiine sister species: evidence for sympatric speciation in butterflies?. BMC Evolutionary Biology, 2015, 15, 125.	3.2	32
7	Selection of Valid Reference Genes for Reverse Transcription Quantitative PCR Analysis in <i>Heliconius numata</i> (Lepidoptera: Nymphalidae). Journal of Insect Science, 2016, 16, 50.	0.6	13
8	Subspecific Differentiation Events of Montane Stag Beetles (Coleoptera, Lucanidae) Endemic to Formosa Island. PLoS ONE, 2016, 11, e0156600.	1.1	8
9	Investigating the timing of origin and evolutionary processes shaping regional species diversity: Insights from simulated data and neotropical butterfly diversification rates. Evolution; International Journal of Organic Evolution, 2016, 70, 1638-1650.	1.1	15
10	Speciesâ€delimitation and phylogenetic analyses of some cosmopolitan species of <i>Hypnea</i> (Rhodophyta) reveal synonyms and misapplied names to <i>H.Âcervicornis</i> , including a new species from Brazil. Journal of Phycology, 2016, 52, 774-792.	1.0	27
11	Coral snakes predict the evolution of mimicry across New World snakes. Nature Communications, 2016, 7, 11484.	5.8	126
12	Putting <i>Parasemia</i> in its phylogenetic place: a molecular analysis of the subtribe Arctiina (Lepidoptera). Systematic Entomology, 2016, 41, 844-853.	1.7	55
13	Diversification of clearwing butterflies with the rise of the Andes. Journal of Biogeography, 2016, 43, 44-58.	1.4	54
14	Natural Selection and Genetic Diversity in the Butterfly <i>Heliconius melpomene</i> . Genetics, 2016, 203, 525-541.	1.2	94
15	A new amplicon based approach of whole mitogenome sequencing for phylogenetic and phylogeographic analysis: An example of East African white-eyes (Aves, Zosteropidae). Molecular Phylogenetics and Evolution, 2016, 102, 74-85.	1.2	9
16	Gene Duplication and Gene Expression Changes Play a Role in the Evolution of Candidate Pollen Feeding Genes in <i>Heliconius</i> Butterflies. Genome Biology and Evolution, 2016, 8, 2581-2596.	1.1	21
17	Phylogenetic incongruence and the evolutionary origins of cardenolide-resistant forms of Na ⁺ ,K ⁺ .ATPase in <i>Danaus</i> butterflies. Evolution; International Journal of Organic Evolution, 2016, 70, 1913-1921.	1.1	16
18	A test of color-based taxonomy in nudibranchs: Molecular phylogeny and species delimitation of the Felimida clenchi (Mollusca: Chromodorididae) species complex. Molecular Phylogenetics and Evolution, 2016, 103, 215-229.	1.2	44

#	Article	IF	Citations
	Variation in cyanogenic compounds concentration within a Heliconius butterfly community: does		
19	mimicry explain everything?. BMC Evolutionary Biology, 2016, 16, 272.	3.2	20
20	Unlinked Mendelian inheritance of red and black pigmentation in snakes: Implications for Batesian mimicry. Evolution; International Journal of Organic Evolution, 2016, 70, 944-953.	1.1	14
21	Genome-wide analysis of ionotropic receptors provides insight into their evolution in Heliconius butterflies. BMC Genomics, 2016, 17, 254.	1.2	38
22	Brain composition in <i>Heliconius</i> butterflies, posteclosion growth and experienceâ€dependent neuropil plasticity. Journal of Comparative Neurology, 2016, 524, 1747-1769.	0.9	90
23	Major Improvements to the <i>Heliconius melpomene</i> Genome Assembly Used to Confirm 10 Chromosome Fusion Events in 6ÂMillion Years of Butterfly Evolution. G3: Genes, Genomes, Genetics, 2016, 6, 695-708.	0.8	149
24	Dynamic diversification history with rate upshifts in Holarctic bellâ€flowers (<i>Campanula</i> and) Tj ETQq1 1 ().784314 ı 1.5	rg&T_/Overloo
25	Comparative morphology of the prothoracic leg in heliconian butterflies: Tracing size allometry, podite fusions and losses in ontogeny and phylogeny. Arthropod Structure and Development, 2017, 46, 462-471.	0.8	3
26	Sexual Dimorphism and Retinal Mosaic Diversification following the Evolution of a Violet Receptor in Butterflies. Molecular Biology and Evolution, 2017, 34, 2271-2284.	3.5	46
27	Interrelationships and diversification of <i><scp>A</scp>rgynnis</i> <scp>F</scp> abricius and <i><scp>S</scp>peyeria</i> <scp>S</scp> cudder butterflies. Systematic Entomology, 2017, 42, 635-649.	1.7	23
28	What shapes the continuum of reproductive isolation? Lessons from <i>Heliconius</i> butterflies. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170335.	1.2	54
29	Fossil butterflies, calibration points and the molecular clock (Lepidoptera: Papilionoidea). Zootaxa, 2017, 4270, 1-63.	0.2	35
30	A new subspecies in a Heliconius butterfly adaptive radiation (Lepidoptera: Nymphalidae). Zoological Journal of the Linnean Society, 2017, 180, 805-818.	1.0	11
31	Divergence in brain composition during the early stages of ecological specialization in <i>Heliconius</i> butterflies. Journal of Evolutionary Biology, 2017, 30, 571-582.	0.8	41
32	No evidence for maintenance of a sympatric <i>Heliconius</i> species barrier by chromosomal inversions. Evolution Letters, 2017, 1, 138-154.	1.6	90
33	Evolution of novel mimicry rings facilitated by adaptive introgression in tropical butterflies. Molecular Ecology, 2017, 26, 5160-5172.	2.0	70
34	The Scent Chemistry of Heliconius Wing Androconia. Journal of Chemical Ecology, 2017, 43, 843-857.	0.9	36
35	Colonization and diversification of aquatic insects on three Macaronesian archipelagos using 59 nuclear loci derived from a draft genome. Molecular Phylogenetics and Evolution, 2017, 107, 27-38.	1.2	32
36	Hybrids and horizontal transfer: introgression allows adaptive allele discovery. Journal of Experimental Botany, 2017, 68, 5453-5470.	2.4	24

#	Article	IF	CITATIONS
37	Copy Number Variation and Expression Analysis Reveals a Nonorthologous Pinta Gene Family Member Involved in Butterfly Vision. Genome Biology and Evolution, 2017, 9, 3398-3412.	1.1	3
38	Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms. BMC Evolutionary Biology, 2017, 17, 226.	3.2	27
39	Subtle variation in size and shape of the whole forewing and the red band among coâ€mimics revealed by geometric morphometric analysis in <i>Heliconius</i> butterflies. Ecology and Evolution, 2018, 8, 3280-3295.	0.8	11
40	Patterns of Z chromosome divergence among <i>Heliconius</i> species highlight the importance of historical demography. Molecular Ecology, 2018, 27, 3852-3872.	2.0	69
41	A Comprehensive and Dated Phylogenomic Analysis of Butterflies. Current Biology, 2018, 28, 770-778.e5.	1.8	249
42	Facultative pupal mating in <i>Heliconius erato</i> : Implications for mate choice, female preference, and speciation. Ecology and Evolution, 2018, 8, 1882-1889.	0.8	17
43	Explaining global insect species richness: lessons from a decade of macroevolutionary entomology. Entomologia Experimentalis Et Applicata, 2018, 166, 225-250.	0.7	16
44	Environment-dependent attack rates of cryptic and aposematic butterflies. Environmental Epigenetics, 2018, 64, 663-669.	0.9	18
45	Species trees, temporal divergence and historical biogeography of coastal rove beetles (Coleoptera:) Tj ETQq0 0 the early Pliocene along the Pacific coasts. Cladistics, 2018, 34, 313-332.	0 rgBT /O 1.5	verlock 10 Tf 18
46	Lineage Diversity and Size Disparity in Musteloidea: Testing Patterns of Adaptive Radiation Using Molecular and Fossil-Based Methods. Systematic Biology, 2018, 67, 127-144.	2.7	75
47	Missing data, clade support and "reticulation― the molecular systematics of <i>Heliconius</i> and related genera (Lepidoptera: Nymphalidae) reâ€examined. Cladistics, 2018, 34, 151-166.	1.5	11
48	The arms race between heliconiine butterflies and <i>Passiflora</i> plants – new insights on an ancient subject. Biological Reviews, 2018, 93, 555-573.	4.7	44
49	Alternative facts: a reconsideration of putatively natural interspecificÂhybrid specimens in the genus Heliconius (Lepidoptera: Nymphalidae). Zootaxa, 2018, 4499, 1.	0.2	2
50	Wing scale ultrastructure underlying convergent and divergent iridescent colours in mimetic <i>Heliconius</i> butterflies. Journal of the Royal Society Interface, 2018, 15, 20170948.	1.5	35
51	Supergene Evolution Triggered by the Introgression of a Chromosomal Inversion. Current Biology, 2018, 28, 1839-1845.e3.	1.8	130
52	Phylogenetics of moth-like butterflies (Papilionoidea: Hedylidae) based on a new 13-locus target capture probe set. Molecular Phylogenetics and Evolution, 2018, 127, 600-605.	1.2	33
53	Evolution of Sex-Biased Gene Expression and Dosage Compensation in the Eye and Brain of Heliconius Butterflies. Molecular Biology and Evolution, 2018, 35, 2120-2134.	3.5	31
54	Cryptic speciation associated with geographic and ecological divergence in two Amazonian Heliconius butterflies. Zoological Journal of the Linnean Society, 2019, 186, 233-249.	1.0	15

#	Article	IF	CITATIONS
56	Unravelling the genes forming the wing pattern supergene in the polymorphic butterfly Heliconius numata. EvoDevo, 2019, 10, 16.	1.3	23
57	Deep learning on butterfly phenotypes tests evolution's oldest mathematical model. Science Advances, 2019, 5, eaaw4967.	4.7	39
58	Conservation and flexibility in the gene regulatory landscape of heliconiine butterfly wings. EvoDevo, 2019, 10, 15.	1.3	22
59	Simultaneous TE Analysis of 19 Heliconiine Butterflies Yields Novel Insights into Rapid TE-Based Genome Diversification and Multiple SINE Births and Deaths. Genome Biology and Evolution, 2019, 11, 2162-2177.	1.1	23
60	Phylogenomic Analyses Clarify True Species within the Butterfly Genus Speyeria despite Evidence of a Recent Adaptive Radiation. Insects, 2019, 10, 209.	1.0	3
61	Genomic architecture and introgression shape a butterfly radiation. Science, 2019, 366, 594-599.	6.0	365
62	Reefâ€building coralline algae from the Southwest Atlantic: filling gaps with the recognition of Harveylithon (Corallinaceae, Rhodophyta) on the Brazilian coast. Journal of Phycology, 2019, 55, 1370-1385.	1.0	8
63	Altitude and lifeâ€history shape the evolution of <i>Heliconius</i> wings. Evolution; International Journal of Organic Evolution, 2019, 73, 2436-2450.	1.1	27
64	Butterfly Mimicry Polymorphisms Highlight Phylogenetic Limits of Gene Reuse in the Evolution of Diverse Adaptations. Molecular Biology and Evolution, 2019, 36, 2842-2853.	3.5	30
65	Comparative Transcriptomics Provides Insights into Reticulate and Adaptive Evolution of a Butterfly Radiation. Genome Biology and Evolution, 2019, 11, 2963-2975.	1.1	7
66	Priors and Posteriors in Bayesian Timing of Divergence Analyses: The Age of Butterflies Revisited. Systematic Biology, 2019, 68, 797-813.	2.7	101
67	OSF-Builder: A New Tool for Constructing and Representing Evolutionary Histories Involving Introgression. Systematic Biology, 2019, 68, 717-729.	2.7	2
68	Diversity in warning coloration: selective paradox or the norm?. Biological Reviews, 2019, 94, 388-414.	4.7	105
69	Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution. Science Advances, 2019, 5, eaau3648.	4.7	66
70	Sequestration and biosynthesis of cyanogenic glucosides in passion vine butterflies and consequences for the diversification of their host plants. Ecology and Evolution, 2019, 9, 5079-5093.	0.8	27
71	Sequence capture across large phylogenetic scales by using pooled PCRâ€generated baits: A case study of Lepidoptera. Molecular Ecology Resources, 2019, 19, 1037-1051.	2.2	18
72	Recombination rate variation shapes barriers to introgression across butterfly genomes. PLoS Biology, 2019, 17, e2006288.	2.6	253
73	Drift and Directional Selection Are the Evolutionary Forces Driving Gene Expression Divergence in Eye and Brain Tissue of <i>Heliconius</i> Butterflies. Genetics, 2019, 213, 581-594.	1.2	29

#	Article	IF	CITATIONS
74	Parallel evolution of ancient, pleiotropic enhancers underlies butterfly wing pattern mimicry. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24174-24183.	3.3	102
75	Interplay between Developmental Flexibility and Determinism in the Evolution of Mimetic Heliconius Wing Patterns. Current Biology, 2019, 29, 3996-4009.e4.	1.8	55
76	Species delimitation methods reveal cryptic diversity in the <i>Hypnea cornuta</i> complex (Cystocloniaceae, Rhodophyta). European Journal of Phycology, 2019, 54, 135-153.	0.9	28
77	Sexually dimorphic gene expression and transcriptome evolution provide mixed evidence for a fastâ€Z effect in <i>Heliconius</i> . Journal of Evolutionary Biology, 2019, 32, 194-204.	0.8	31
78	Controlling oxygen vacancies and enhanced visible light photocatalysis of CeO2/ZnO nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 392, 112156.	2.0	90
79	A major locus controls a biologically active pheromone component in <i>Heliconius melpomene</i> . Evolution; International Journal of Organic Evolution, 2020, 74, 349-364.	1.1	19
80	Phylogeographic evidence that the distribution of cryptic euryhaline species in the Gambusia punctata species group in Cuba was shaped by the archipelago geological history. Molecular Phylogenetics and Evolution, 2020, 144, 106712.	1.2	5
81	<i>Heliconius</i> Butterflies Host Characteristic and Phylogenetically Structured Adult-Stage Microbiomes. Applied and Environmental Microbiology, 2020, 86, .	1.4	19
82	Speciation through chromosomal fusion and fission in Lepidoptera. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190539.	1.8	76
83	Deep Convergence, Shared Ancestry, and Evolutionary Novelty in the Genetic Architecture of <i>Heliconius</i> Mimicry. Genetics, 2020, 216, 765-780.	1.2	13
84	Perfect mimicry between <i>Heliconius</i> butterflies is constrained by genetics and development. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201267.	1.2	20
85	From Patterning Genes to Process: Unraveling the Gene Regulatory Networks That Pattern Heliconius Wings. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	22
86	Microclimate buffering and thermal tolerance across elevations in a tropical butterfly. Journal of Experimental Biology, 2020, 223, .	0.8	41
87	Chemical signals act as the main reproductive barrier between sister and mimetic <i>Heliconius</i> butterflies. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200587.	1.2	33
88	Contrasting genomic and phenotypic outcomes of hybridization between pairs of mimetic butterfly taxa across a suture zone. Molecular Ecology, 2020, 29, 1328-1343.	2.0	9
89	Low Spontaneous Mutation Rate and Pleistocene Radiation of Pea Aphids. Molecular Biology and Evolution, 2020, 37, 2045-2051.	3.5	17
90	Phylogenomics of the genus Tursiops and closely related Delphininae reveals extensive reticulation among lineages and provides inference about eco-evolutionary drivers. Molecular Phylogenetics and Evolution, 2020, 146, 106756.	1.2	40
91	The roles of hybridization and habitat fragmentation in the evolution of Brazil's enigmatic longwing butterflies, Heliconius nattereri and H. hermathena. BMC Biology, 2020, 18, 84.	1.7	14

#	Article	IF	CITATIONS
92	Selective sweeps on novel and introgressed variation shape mimicry loci in a butterfly adaptive radiation. PLoS Biology, 2020, 18, e3000597.	2.6	60
93	Variation of chemical compounds in wild Heliconiini reveals ecological factors involved in the evolution of chemical defenses in mimetic butterflies. Ecology and Evolution, 2020, 10, 2677-2694.	0.8	21
94	Implementing Large Genomic Single Nucleotide Polymorphism Data Sets in Phylogenetic Network Reconstructions: A Case Study of Particularly Rapid Radiations of Cichlid Fish. Systematic Biology, 2020, 69, 848-862.	2.7	37
95	Species specificity and intraspecific variation in the chemical profiles of <i>Heliconius</i> butterflies across a large geographic range. Ecology and Evolution, 2020, 10, 3895-3918.	0.8	31
96	Hybridization and transgressive exploration of colour pattern and wing morphology in <i>Heliconius</i> butterflies. Journal of Evolutionary Biology, 2020, 33, 942-956.	0.8	12
97	Phylomitogenomics provides new perspectives on the Euphasmatodea radiation (Insecta:) Tj ETQq1 1 0.784314	rgBT_/Ove	rlock 10 Tf 5
98	The Amazon river is a suture zone for a polyphyletic group of coâ€mimetic heliconiine butterflies. Ecography, 2021, 44, 177-187.	2.1	9
99	Convergence in sympatry: Evolution of blueâ€banded wing pattern in <i>Morpho</i> butterflies. Journal of Evolutionary Biology, 2021, 34, 284-295.	0.8	12
104	Museomics: Phylogenomics of the Moth Family Epicopeiidae (Lepidoptera) Using Target Enrichment. Insect Systematics and Diversity, 2021, 5, .	0.7	14
105	Habitat generalist species constrain the diversity of mimicry rings in heterogeneous habitats. Scientific Reports, 2021, 11, 5072.	1.6	10
107	Tactile stimuli induce deimatic antipredator displays in ringneck snakes. Ethology, 2021, 127, 465-474.	0.5	6
108	Synteny-Based Genome Assembly for 16 Species of <i>Heliconius</i> Butterflies, and an Assessment of Structural Variation across the Genus. Genome Biology and Evolution, 2021, 13, .	1.1	15
109	CARACTERIZACIÓN GENÉTICA DE LA POBLACIÓN DE Heliconius sara (Nymphalidae) EN LA ISLA GORGONA, COLOMBIA. Acta Biologica Colombiana, 2021, 26, 374-384.	0.1	0
110	Rampant Genome-Wide Admixture across the <i>Heliconius</i> Radiation. Genome Biology and Evolution, 2021, 13, .	1.1	31
111	Haplotype tagging reveals parallel formation of hybrid races in two butterfly species. Proceedings of the United States of America, 2021, 118, .	3.3	46
112	The <i>Dryas iulia</i> Genome Supports Multiple Gains of a W Chromosome from a B Chromosome in Butterflies. Genome Biology and Evolution, 2021, 13, .	1.1	24
113	Chromosome Fusion Affects Genetic Diversity and Evolutionary Turnover of Functional Loci but Consistently Depends on Chromosome Size. Molecular Biology and Evolution, 2021, 38, 4449-4462.	3.5	51
114	Genomics of altitudeâ€associated wing shape in two tropical butterflies. Molecular Ecology, 2021, 30, 6387-6402.	2.0	8

#	Article	IF	CITATIONS
115	Comparative transcriptome analysis at the onset of speciation in a mimetic butterfly—The Ithomiini <i>Melinaea marsaeus</i> . Journal of Evolutionary Biology, 2021, 34, 1704-1721.	0.8	2
116	Identification and Composition of Clasper Scent Gland Components of the Butterfly <i>Heliconius erato</i> and Its Relation to Mimicry. ChemBioChem, 2021, 22, 3300-3313.	1.3	10
117	Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nature Communications, 2021, 12, 5717.	5.8	33
118	A novel terpene synthase controls differences in anti-aphrodisiac pheromone production between closely related Heliconius butterflies. PLoS Biology, 2021, 19, e3001022.	2.6	29
119	Contrasting Patterns of Temporal Diversification in Neotropical Butterflies: An Overview. Fascinating Life Sciences, 2020, , 189-222.	0.5	3
120	Diversification and Evolutionary Histories of Patagonian Steppe Lizards. Natural and Social Sciences of Patagonia, 2020, , 217-254.	0.2	6
133	Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling. PLoS Biology, 2016, 14, e1002353.	2.6	136
134	Conserved microbiota among young Heliconius butterfly species. PeerJ, 2018, 6, e5502.	0.9	25
135	Integrative taxonomy clarifies species limits in the hitherto monotypic passionâ€vine butterfly genera <i>Agraulis</i> and <i>Dryas</i> (Lepidoptera, Nymphalidae, Heliconiinae). Systematic Entomology, 2022, 47, 152-178.	1.7	11
136	Environmental Drivers of Diversification and Hybridization in Neotropical Butterflies. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	6
154	Estudio del Exocorion en Tres Especies de Heliconiinae1 de México. Southwestern Entomologist, 2020, 45, .	0.1	2
155	Pollen feeding in <i>Heliconius</i> butterflies: the singular evolution of an adaptive suite. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201304.	1.2	26
157	Genetic Causes and Consequences of Sympatric Morph Divergence in Salmonidae: A Search for Mechanisms. Annual Review of Animal Biosciences, 2022, 10, 81-106.	3.6	13
158	An accurate assignment test for extremely lowâ€coverage wholeâ€genome sequence data. Molecular Ecology Resources, 2022, 22, 1330-1344.	2.2	7
160	Full-Likelihood Genomic Analysis Clarifies a Complex History of Species Divergence and Introgression: The Example of the <i>erato-sara</i> Group of <i>Heliconius</i> Butterflies. Systematic Biology, 2022, 71, 1159-1177.	2.7	16
161	Multiple Mechanisms of Photoreceptor Spectral Tuning in <i>Heliconius</i> Butterflies. Molecular Biology and Evolution, 2022, 39, .	3.5	17
163	Hybrid enrichment of adaptive variation revealed by genotype–environment associations in montane sedges. Molecular Ecology, 2022, 31, 3722-3737.	2.0	7
164	The genetic basis of structural colour variation in mimetic <i>Heliconius</i> butterflies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377	1.8	10

	CITATION REI	PORT	
#	Article	IF	CITATIONS
166	The evolution of adult pollen feeding did not alter postembryonic growth in <i>Heliconius</i> butterflies. Ecology and Evolution, 2022, 12, .	0.8	2
168	Exploitation of an ancestral pheromone biosynthetic pathway contributes to diversification in <i>Heliconius</i> butterflies. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	5
169	A peculiar new species of Dione (Agraulis) Boisduval & Le Conte (Lepidoptera, Nymphalidae,) Tj ETQq slopes of the Andes. ZooKeys, 0, 1113, 199-226.	0 0 0 rgB1 0.5	T /Overlock 1 1
171	Repeated genetic adaptation to altitude in two tropical butterflies. Nature Communications, 2022, 13, .	5.8	17
172	Validation of reference-assisted assembly using existing and novel Heliothine genomes. Genomics, 2022, 114, 110441.	1.3	1
173	Transposons and non-coding regions drive the intrafamily differences of genome size in insects. IScience, 2022, 25, 104873.	1.9	9
174	A butterfly pan-genome reveals that a large amount of structural variation underlies the evolution of chromatin accessibility. Genome Research, 2022, 32, 1862-1875.	2.4	10
175	One's trash is someone else's treasure: sequence read archives from Lepidoptera genomes provide material for genome reconstruction of their endosymbionts. BMC Microbiology, 2022, 22, .	1.3	6
176	Widespread Gene Expression Divergence in Butterfly Sensory Tissues Plays a Fundamental Role During Reproductive Isolation and Speciation. Molecular Biology and Evolution, 2022, 39, .	3.5	2
178	First chromosome scale genomes of ithomiine butterflies (Nymphalidae: Ithomiini): Comparative models for mimicry genetic studies. Molecular Ecology Resources, 2023, 23, 872-885.	2.2	1
180	Does sexual conflict contribute to the evolution of novel warning patterns?. Journal of Evolutionary Biology, 2023, 36, 563-578.	0.8	3
182	Phylogenomics reveals within species diversification but incongruence with color phenotypes in widespread orchid bees (Hymenoptera: Apidae: Euglossini). Insect Systematics and Diversity, 2023, 7, .	0.7	0
183	Geography shapes the microbial community in <i>Heliconius</i> butterflies. FEMS Microbiology Ecology, 2023, 99, .	1.3	0
185	Combining target enrichment and Sanger sequencing data to clarify the systematics of the diverse Neotropical butterfly subtribe Euptychiina (Nymphalidae, Satyrinae). Systematic Entomology, 2023, 48, 498-570.	1.7	7
198	Heliconiini butterflies as a case study in evolutionary cognitive ecology: behavioural innovation and mushroom body expansion. Behavioral Ecology and Sociobiology, 2023, 77, .	0.6	2