Levulinic acid production from renewable waste resour remedies, advancements and applications

Renewable and Sustainable Energy Reviews

51, 548-565

DOI: 10.1016/j.rser.2015.06.032

Citation Report

#	Article	IF	CITATIONS
1	Hydrothermal Conversion of Giant Reed to Furfural and Levulinic Acid: Optimization of the Process under Microwave Irradiation and Investigation of Distinctive Agronomic Parameters. Molecules, 2015, 20, 21232-21253.	1.7	51
2	Support Screening Studies on the Hydrogenation of Levulinic Acid to Î ³ -Valerolactone in Water Using Ru Catalysts. Catalysts, 2016, 6, 131.	1.6	31
3	New Frontiers in the Catalytic Synthesis of Levulinic Acid: From Sugars to Raw and Waste Biomass as Starting Feedstock. Catalysts, 2016, 6, 196.	1.6	180
4	Solid Molecular Phosphine Catalysts for Formic Acid Decomposition in the Biorefinery. Angewandte Chemie - International Edition, 2016, 55, 5597-5601.	7.2	44
5	Molekulare Phosphanâ€Feststoffkatalysatoren zur Ameisensärezersetzung in der Bioraffinerie. Angewandte Chemie, 2016, 128, 5687-5691.	1.6	12
6	Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: A comprehensive techno-economic analysis. Bioresource Technology, 2016, 215, 131-143.	4.8	61
7	The effect of pretreatment on methanesulfonic acid-catalyzed hydrolysis of bagasse to levulinic acid, formic acid, and furfural. RSC Advances, 2016, 6, 74525-74535.	1.7	31
8	Reaction mechanism of aqueous-phase conversion of γ-valerolactone (GVL) over a Ru/C catalyst. Journal of Energy Chemistry, 2016, 25, 1008-1014.	7.1	15
9	Catalytic Conversion of Carbohydrates to Levulinate Ester over Heteropolyanionâ€Based Ionic Liquids. ChemSusChem, 2016, 9, 3307-3316.	3.6	46
10	Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass. ChemSusChem, 2016, 9, 562-582.	3.6	520
11	Direct conversion of biomass components to the biofuel methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites. Applied Catalysis B: Environmental, 2017, 200, 182-191.	10.8	124
12	Evaluation of OrganoCat process as a pretreatment during bioconversion of rice straw. Industrial Crops and Products, 2017, 99, 7-18.	2.5	28
13	Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals. Renewable and Sustainable Energy Reviews, 2017, 74, 230-257.	8.2	308
14	Eco-friendly Method for Efficient Conversion of Cellulose into Levulinic Acid in Pure Water with Cellulase-Mimetic Solid Acid Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 2421-2427.	3.2	98
15	Levulinic acid production integrated into a sugarcane bagasse based biorefinery using thermal-enzymatic pretreatment. Industrial Crops and Products, 2017, 99, 172-178.	2.5	48
16	Iridiumâ€Catalyzed Reductive Amination of Levulinic Acid to Pyrrolidinones under <scp>H₂</scp> in Water. Chinese Journal of Chemistry, 2017, 35, 581-585.	2.6	33
17	Phase equilibrium measurements and thermodynamic modelling for the systems involving valeric acid, ethanol, ethyl valerate and water plus CO 2. Journal of Chemical Thermodynamics, 2017, 112, 240-248.	1.0	8
18	Role of ionâ€exchange resins as catalyst in the reactionâ€network of transformation of biomass into biofuels. Journal of Chemical Technology and Biotechnology, 2017, 92, 2775-2786.	1.6	34

	СПАНОГ	NKEPORI	
# 19	ARTICLE Levulinic Acid from Biomass: Synthesis and Applications. Biofuels and Biorefineries, 2017, , 143-169.	IF 0.5	Citations
20	Electrochemistry for the Generation of Renewable Chemicals: Oneâ€Pot Electrochemical Deoxygenation of Xylose to δâ€Valerolactone. ChemSusChem, 2017, 10, 2015-2022.	3.6	12
21	Liquid-liquid equilibrium of ternary systems comprising ethyl valerate(1), water(2), ethanol(3) and valeric acid(4). Journal of Chemical Thermodynamics, 2017, 111, 185-190.	1.0	9
22	Chemoselective Synthesis of Dithioacetals from Bioâ€aldehydes with Zeolites under Ambient and Solventâ€free Conditions. ChemCatChem, 2017, 9, 1097-1104.	1.8	16
23	A Bipyridine-Based Conjugated Microporous Polymer for the Ir-Catalyzed Dehydrogenation of Formic Acid. ACS Catalysis, 2017, 7, 8413-8419.	5.5	37
24	Assessment of alkaline peroxide-assisted wet air oxidation pretreatment for rice straw and its effect on enzymatic hydrolysis. Cellulose, 2017, 24, 4885-4898.	2.4	21
25	Continuous synthesis of ethyl levulinate over Cerium exchanged phosphotungstic acid anchored on commercially silica gel pellets catalyst. Molecular Catalysis, 2017, 439, 180-185.	1.0	33
26	Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous Brønsted acids: Temperature and solvent effects. Chemical Engineering Journal, 2017, 327, 328-335.	6.6	99
27	A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource Technology, 2017, 246, 254-270.	4.8	398
28	Levulinic acid production by two-step acid-catalyzed treatment of Quercus mongolica using dilute sulfuric acid. Bioresource Technology, 2017, 225, 183-190.	4.8	53
29	Chemicals from biomass: technological <i>versus</i> environmental feasibility. A review. Biofuels, Bioproducts and Biorefining, 2017, 11, 195-214.	1.9	126
30	Design of a wheat straw supply chain network in Lower Saxony, Germany through optimization. Computer Aided Chemical Engineering, 2017, , 871-876.	0.3	5
31	Production of furfural from palm oil empty fruit bunches: kinetic model comparation. IOP Conference Series: Earth and Environmental Science, 2017, 65, 012042.	0.2	8
32	Characterization of coffee (Coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition. Bioresource Technology, 2018, 257, 172-180.	4.8	41
33	Highly Efficient Conversion of Xylose Residues to Levulinic Acid over FeCl ₃ Catalyst in Green Salt Solutions. ACS Sustainable Chemistry and Engineering, 2018, 6, 3154-3161.	3.2	49
34	Catalytic conversion of glucose into levulinic and formic acids using aqueous BrÃ,nsted acid. Journal of Industrial and Engineering Chemistry, 2018, 63, 48-56.	2.9	31
35	Catalytic Advances in the Production and Application of Biomass-Derived 2,5-Dihydroxymethylfuran. ACS Catalysis, 2018, 8, 2959-2980.	5.5	210
36	Cyclopentadienyl–Ru(II)–Pyridylamine Complexes: Synthesis, X-ray Structure, and Application in Catalytic Transformation of Bio-Derived Furans to Levulinic Acid and Diketones in Water. Inorganic Chemistry, 2018, 57, 4777-4787.	1.9	10

#	Article	IF	CITATIONS
37	A decision support platform for a bio-based supply chain: Application to the region of Lower Saxony and Bremen (Germany) Computers and Chemical Engineering, 2018, 115, 233-242.	2.0	14
38	Valorization of Chitosan as Food Waste of Aquatic Organisms into 5â€Hydroxymethylfurfural by Sulfamic Acidâ€Catalyzed Conversion Process. Energy Technology, 2018, 6, 1747-1754.	1.8	19
39	Concentrated Levulinic Acid Production from Sugar Cane Molasses. Energy & Fuels, 2018, 32, 3526-3531.	2.5	19
40	Efficient conversion of glucosamine to levulinic acid in a sulfamic acid-catalyzed hydrothermal reaction. RSC Advances, 2018, 8, 3198-3205.	1.7	21
41	Production of levulinic acid from glucosamine using zirconium oxychloride. Journal of Industrial and Engineering Chemistry, 2018, 61, 119-123.	2.9	22
42	Transdisciplinarity and the food energy and water nexus: Ecological modernization and supply chain sustainability perspectives. Resources, Conservation and Recycling, 2018, 133, 309-319.	5.3	75
43	Thermo-chemical conversion for production of levulinic and formic acids from glucosamine. Fuel Processing Technology, 2018, 172, 115-124.	3.7	31
44	Improved levulinic acid production from agri-residue biomass in biphasic solvent system through synergistic catalytic effect of acid and products. Bioresource Technology, 2018, 251, 143-150.	4.8	41
45	Optimization of hydrothermal conversion of bamboo (Phyllostachys aureosulcata) to levulinic acid via response surface methodology. Journal of Environmental Management, 2018, 219, 95-102.	3.8	21
46	Selective conversion of chitosan to levulinic acid catalysed by acidic ionic liquid: Intriguing NH2 effect in comparison with cellulose. Carbohydrate Polymers, 2018, 195, 267-274.	5.1	41
47	Kinetics study of levulinic acid production from corncobs by tin tetrachloride as catalyst. Bioresource Technology, 2018, 260, 150-156.	4.8	30
48	A microwave-assisted process for the in-situ production of 5-hydroxymethylfurfural and furfural from lignocellulosic polysaccharides in a biphasic reaction system. Journal of Cleaner Production, 2018, 187, 1014-1024.	4.6	68
49	Conversion of Biomass and Its Derivatives to Levulinic Acid and Levulinate Esters via Ionic Liquids. Industrial & Engineering Chemistry Research, 2018, 57, 4749-4766.	1.8	69
50	Hydrothermal carbonization of unwanted biomass materials: Effect of process temperature and retention time on hydrochar and liquid fraction. Journal of the Energy Institute, 2018, 91, 786-796.	2.7	79
51	Comparative evaluation of OrganoCat and selected advanced oxidation processes as pretreatment to enhance cellulose accessibility of rice straw. Journal of Environmental Chemical Engineering, 2018, 6, 3673-3680.	3.3	8
52	Review of direct chemical and biochemical transformations of starch. Carbohydrate Polymers, 2018, 181, 460-476.	5.1	56
53	Valorization of lignocellulosic fibres of paper waste into levulinic acid using solid and aqueous BrÃ,nsted acid. Bioresource Technology, 2018, 247, 387-394.	4.8	55
54	Hydrolytic pre-treatment methods for enhanced biobutanol production from agro-industrial wastes. Bioresource Technology, 2018, 249, 673-683.	4.8	33

#	Article	IF	CITATIONS
	Making Levulinic Acid and Ethyl Levulinate Economically Viable: A Worldwide Technoeconomic and		
55	Environmental Assessment of Possible Routes. Energy Technology, 2018, 6, 613-639.	1.8	88
56	Direct conversion of lignocellulose to levulinic acid catalyzed by ionic liquid. Carbohydrate Polymers, 2018, 181, 778-784.	5.1	78
57	Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chemical Reviews, 2018, 118, 505-613.	23.0	898
58	Intensified 5â€Ethoxymethylfurfural Production from Biomass Components over Aluminumâ€Based Mixedâ€Acid Catalyst in Coâ€Solvent Medium. ChemistrySelect, 2018, 3, 13391-13399.	0.7	14
59	Prediction of Thermodynamic Properties of Levulinic Acid via Molecular Simulation Techniques. ACS Omega, 2018, 3, 18877-18884.	1.6	10
60	Preparation of Novel Aromaticâ€Aliphatic Poly(ketone ester)s through Condensation of Biomassâ€Derived Monomers. ChemCatChem, 2018, 10, 5377-5381.	1.8	7
61	Valorization of galactose into levulinic acid via acid catalysis. Korean Journal of Chemical Engineering, 2018, 35, 2232-2240.	1.2	9
62	Evaluation of Separate and Simultaneous Kinetic Parameters for Levulinic Acid and Furfural Production from Pretreated Palm Oil Empty Fruit Bunches. International Journal of Chemical Engineering, 2018, 2018, 1-12.	1.4	24
63	Catalytic Hydrogenation of Levulinic Acid into Gamma-Valerolactone Over Ni/HZSM-5 Catalysts. Catalysis Surveys From Asia, 2018, 22, 129-135.	1.0	18
64	Enhanced hydrogen selectivity from catalytic decomposition of formic acid over FeZnIr nanocatalyst at room temperature. Research on Chemical Intermediates, 2018, 44, 6787-6802.	1.3	11
65	Kinetic study on oil palm biomass conversion to levulinic acid via indium trichloride-ionic liquids. IOP Conference Series: Earth and Environmental Science, 2018, 164, 012007.	0.2	3
66	Vapor-liquid and liquid-liquid equilibrium modeling of systems involving ethanol, water, and ethyl valerate (valeric acid) using the PC-SAFT equation of state. Fluid Phase Equilibria, 2018, 474, 92-99.	1.4	4
67	Conversion of biomass components to methyl levulinate over an ultra-high performance fiber catalyst in impellers of the agitation system. Journal of Industrial and Engineering Chemistry, 2018, 65, 264-271.	2.9	13
68	Valorization of chitosan into levulinic acid by hydrothermal catalytic conversion with methanesulfonic acid. Korean Journal of Chemical Engineering, 2018, 35, 1290-1296.	1.2	20
69	Crystalline niobium phosphates with water-tolerant and adjustable Lewis acid sites for the production of lactic acid from triose sugars. Sustainable Energy and Fuels, 2018, 2, 1530-1541.	2.5	26
70	Linear and macrocyclic water soluble polyacylhydrazones and their utilisation in coatings. Progress in Organic Coatings, 2018, 121, 38-44.	1.9	4
71	Technoâ€economic assessment of carboxylic acids, furfural, and pellet production in a pine sawdust biorefinery. Biofuels, Bioproducts and Biorefining, 2018, 12, 997-1012.	1.9	30
72	Experimental and Mathematical Simulation of Noncompetitive and Competitive Adsorption Dynamic of Formic Acid–Levulinic Acid–5-Hydroxymethylfurfural from Single, Binary, and Ternary Systems in a Fixed-Bed Column of SY-01 Resin. Industrial & Engineering Chemistry Research, 2018, 57, 8518-8528.	1.8	31

ARTICLE IF CITATIONS # Microwave-assisted one-pot conversion of agro-industrial wastes into levulinic acid: An alternate 73 4.8 26 approach. Bioresource Technology, 2018, 265, 471-479. From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renewable and 74 8.2 Sustainable Energy Reviews, 2018, 94, 340-362. Conversion of Lignocellulosic Biomass Into Platform Chemicals for Biobased Polyurethane 75 0.5 51 Application. Advances in Bioenergy, 2018, 3, 161-213. The Biorefinery Approach., 2019, , 1383-1412. Catalytic Production of Levulinic Acid (LA) from Actual Biomass. Molecules, 2019, 24, 2760. 77 1.7 76 Insights into the levulinate-based ionic liquid class: synthesis, cellulose dissolution evaluation and ecotoxicity assessment. New Journal of Chemistry, 2019, 43, 13010-13019. 1.4 Production of levulinic acid from glucose in sulfolane/water mixtures. Chemical Engineering 79 2.7 25 Research and Design, 2019, 148, 291-297. Production of biofuel precursors and value-added chemicals from hydrolysates resulting from 2.9 hydrothermal processing of biomass: A review. Biomass and Bioenergy, 2019, 130, 105397. 81 Microwave-Assisted One-Step Conversion of Wood Wastes into Levulinic Acid. Catalysts, 2019, 9, 753. 8 1.6 Renewable sources: applications in personal care formulations. International Journal of Cosmetic 1.2 28 Science, 2019, 41, 517-525. Extraction of Carboxylic Acids from Aqueous Solutions by Using [BMim][NTf₂] and 83 1.0 2 Salting-out Agents. Journal of Chemical & amp; Engineering Data, 2019, 64, 4717-4723. Straightforward synthesis of calcium levulinate from biomass-derived levulinic acid and calcium carbonate in egg-shells. Materials Today: Proceedings, 2019, 17, 77-84. Catalytic Upgrading of Renewable Levulinic Acid to Levulinate Esters Using Perchloric Acid Decorated 85 0.7 43 Nanoporou's Silica Gels. ChemistrySelect, 2019, 4, 1403-1409. Catalytic hydrolysis of cellulose to levulinic acid by partly replacing sulfuric acid with Nafion® NR50 catalyst. Biomass Conversion and Biorefinery, 2019, 9, 609-616. Synthesis and Characterization of Zirconia Supported Silicotungstic Acid for Ethyl Levulinate 87 1.8 22 Production. Industrial & amp; Engineering Chemistry Research, 2019, 58, 16045-16054. Renewable routes to monomeric precursors of nylon 66 and nylon 6 from food waste. Journal of 50 Cleaner Production, 2019, 227, 624-633. 89 Valorization of paper and pulp waste: Opportunities and prospects of biorefinery., 2019, 623-656. 6 Catalytic synthesis of chloroacetates with thermoregulated ionic liquids based on vanadium-substituted polyoxometalate. RSC Advances, 2019, 9, 8404-8410.

#	Article	IF	CITATIONS
91	Levulinic acid synthesis from Indonesian sugarcane bagasse using two-step acid catalyzed treatment. AIP Conference Proceedings, 2019, , .	0.3	3
92	Synthesis of a novel category of pseudo-peptides using an Ugi three-component reaction of levulinic acid as bifunctional substrate, amines, and amino acid-based isocyanides. Beilstein Journal of Organic Chemistry, 2019, 15, 852-857.	1.3	7
93	Synergistic Effect of Different Species in Stannic Chloride Solution on the Production of Levulinic Acid from Biomass. ACS Sustainable Chemistry and Engineering, 2019, 7, 5176-5183.	3.2	40
94	Levulinate amidinium protic ionic liquids (PILs) as suitable media for the dissolution and levulination of cellulose. New Journal of Chemistry, 2019, 43, 4554-4561.	1.4	36
95	Balanced distribution of BrÃ,nsted acidic sites and Lewis acidic sites for highly selective conversion of xylose into levulinic acid/ester over Zr-beta catalysts. Green Chemistry, 2019, 21, 6634-6645.	4.6	63
96	Catalytic conversion of furfuryl alcohol to n-hexyl levulinate using modified dendritic fibrous nanosilica. Chemical Engineering Journal, 2019, 361, 450-460.	6.6	22
97	Recent advances for sustainable production of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges. Renewable and Sustainable Energy Reviews, 2019, 102, 266-284.	8.2	69
98	Valorisation of Biomass Derived Furfural and Levulinic Acid by Highly Efficient Pd@ND Catalyst. Energy Technology, 2019, 7, 269-276.	1.8	12
99	Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Industrial Crops and Products, 2019, 130, 184-197.	2.5	205
100	HReO4 as highly efficient and selective catalyst for the conversion of carbohydrates into value added chemicals. Molecular Catalysis, 2019, 465, 87-94.	1.0	30
101	Thermodynamic analysis, experimental and kinetic modeling of levulinic acid esterification with ethanol at supercritical conditions. Fuel, 2020, 260, 116376.	3.4	11
102	Sulfated Zirconia with Different Crystal Phases for the Production of Ethyl Levulinate and 5â€Hydroxymethylfurfural. Energy Technology, 2020, 8, 1900951.	1.8	15
103	Hot water-promoted catalyst-free reductive cycloamination of (bio-)keto acids with HCOONH4 toward cyclic amides. Journal of Supercritical Fluids, 2020, 157, 104698.	1.6	12
104	Pretreatment of agroindustry waste by ozonolysis for synthesis of biorefinery products. , 2020, , 303-336.		7
105	Effect of grafting solvent in the optimisation of Sba-15 acidity for levulinIc acid production. Catalysis Today, 2020, 345, 183-189.	2.2	13
106	Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons. Renewable and Sustainable Energy Reviews, 2020, 120, 109612.	8.2	97
107	Direct Production of Levulinic Acid in One Pot from Hemp Hurd by Dilute Acid in Ionic Liquids. Energy & Fuels, 2020, 34, 1764-1772.	2.5	23
108	The challenge of converting biomass polysaccharides into levulinic acid through heterogeneous catalytic processes. Biofuels, Bioproducts and Biorefining, 2020, 14, 417-445.	1.9	19

#	Article	IF	CITATIONS
109	Discovery of the RAFT/MADIX Process: Mechanistic Insights and Polymer Chemistry Implications. Macromolecules, 2020, 53, 8144-8159.	2.2	36
110	Production of Levulinic Acid from Cellulose and Cellulosic Biomass in Different Catalytic Systems. Catalysts, 2020, 10, 1006.	1.6	33
111	A comprehensive experimental study on the production of key platform chemicals from raw biomass. Fuel, 2020, 280, 118674.	3.4	8
112	Sulfated attapulgite for catalyzing the conversion of furfuryl alcohol to ethyl levulinate: Impacts of sulfonation on structural transformation and evolution of acidic sites on the catalyst. Renewable Energy, 2020, 162, 1576-1586.	4.3	16
113	Recovery of yttrium and europium from spent fluorescent lamps using pure levulinic acid and the deep eutectic solvent levulinic acid–choline chloride. RSC Advances, 2020, 10, 28879-28890.	1.7	33
114	The performance of 1,3-dipropyl-2-(2-propoxyphenyl)-4,5-diphenylimidazolium iodide based ionic liquid for biomass conversion into levulinic acid and formic acid. Bioresource Technology, 2020, 315, 123864.	4.8	33
115	Co-Oligomers of Renewable and "Inert―2-MeTHF and Propylene Oxide for Use in Bio-Based Adhesives. ACS Sustainable Chemistry and Engineering, 2020, 8, 13467-13480.	3.2	6
116	Direct Alcoholysis of Carbohydrate Precursors and Real Cellulosic Biomasses to Alkyl Levulinates: A Critical Review. Catalysts, 2020, 10, 1221.	1.6	29
117	New Intensification Strategies for the Direct Conversion of Real Biomass into Platform and Fine Chemicals: What Are the Main Improvable Key Aspects?. Catalysts, 2020, 10, 961.	1.6	16
118	Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review. Chemical Reviews, 2020, 120, 11370-11419.	23.0	185
119	Conversion of delignified stem sorghum bicolor into levulinic acid using micro and mesoporous ZSM-5 catalysts. IOP Conference Series: Materials Science and Engineering, 2020, 902, 012050.	0.3	0
120	Separation of Levulinic Acid by Reaction with Tri- <i>n</i> -butylphosphate Diluted in Nontoxic Solvents. Journal of Chemical & Engineering Data, 2020, 65, 3002-3007.	1.0	13
121	Process Design and Technoeconomic Assessment of the Extraction of Levulinic Acid from Biomass Hydrolysate Using <i>n</i> Butyl Acetate, Hexane, and 2-Methyltetrahydrofuran. Industrial & Engineering Chemistry Research, 2020, 59, 11031-11041.	1.8	11
122	A new nano-catalyst for sawdust hydrolysis. Applied Catalysis A: General, 2020, 602, 117686.	2.2	3
123	Poly(4-ketovalerolactone) from Levulinic Acid: Synthesis and Hydrolytic Degradation. Macromolecules, 2020, 53, 4952-4959.	2.2	9
124	Valorization of thermochemical conversion of lipid-extracted microalgae to levulinic acid. Bioresource Technology, 2020, 313, 123684.	4.8	23
125	Conversion of biomass to chemicals using ionic liquids. , 2020, , 1-30.		3
126	Production of C-14 Levulinate Ester from Glucose Fermentation Liquors Catalyzed by Acidic Ionic Liquids in a Solvent-Free Self-Biphasic System. ACS Omega, 2020, 5, 4828-4835.	1.6	8

#	Article	IF	CITATIONS
127	An energy-saving re-use strategy for the treatment of lignocellulosic biomass applied to the production of levulinc acid. Journal of Cleaner Production, 2020, 257, 120549.	4.6	13
128	An integrated effluent free process for the production of 5-hydroxymethyl furfural (HMF), levulinic acid (LA) and KNS-ML from aqueous seaweed extract. Carbohydrate Research, 2020, 490, 107953.	1.1	14
129	Sulfated TiO ₂ nanosheets catalyzing conversion of biomass derivatives: influences of the sulfation on distribution of BrÃ,nsted and Lewis acidic sites. Journal of Chemical Technology and Biotechnology, 2020, 95, 1337-1347.	1.6	17
130	Kinetic investigation of dilute acid hydrolysis of hardwood pulp for microcrystalline cellulose production. Carbohydrate Research, 2020, 488, 107910.	1.1	15
131	New Eco-Friendly Xanthate-Based Flotation Agents. Minerals (Basel, Switzerland), 2020, 10, 350.	0.8	6
132	Designing Biomass Rice Husk Silica as an Efficient Catalyst for the Synthesis of Biofuel Additive n-Butyl Levulinate. Bioenergy Research, 2020, 13, 746-756.	2.2	10
133	Challenges to Levulinic Acid and Humins Valuation in the Sugarcane Bagasse Biorefinery Concept. Bioenergy Research, 2020, 13, 757-774.	2.2	21
134	High surface area biochar from Sargassum tenerrimum as potential catalyst support for selective phenol hydrogenation. Environmental Research, 2020, 186, 109533.	3.7	49
135	Inexpensive and tuneable protic ionic liquids based on sulfuric acid for the biphasic synthesis of alkyl levulinates. Journal of Molecular Liquids, 2020, 308, 113166.	2.3	19
136	Valorization of Sugarcane Bagasse to a Platform Chemical (Levulinic Acid) Catalysed by 1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate ([BMMim][BF4]). Waste and Biomass Valorization, 2021, 12, 199-209.	1.8	8
137	Sustainable production of fuels and chemicals from biomass over niobium based catalysts: A review. Catalysis Today, 2021, 374, 61-76.	2.2	30
138	Valorization of textile waste hydrolysate for hydrogen gas and levulinic acid production. International Journal of Hydrogen Energy, 2021, 46, 4992-4997.	3.8	6
139	Pretreatment methods for an effective conversion of oil palm biomass into sugars and high-value chemicals. Biomass and Bioenergy, 2021, 144, 105901.	2.9	34
140	Thermochemical conversion of defatted microalgae Scenedesmus obliquus into levulinic and formic acids. Fuel, 2021, 283, 118907.	3.4	20
141	Niobium based macromolecule preparation and its potential application in biomass derived levulinic acid esterification. Inorganic Chemistry Communication, 2021, 123, 108302.	1.8	6
142	Optimization of Levulinic Acid Production from Depithed Sugarcane Bagasse in 1- Ethyl-3-methylimidazolium hydrogen sulfate [EMim][HSO4]. Waste and Biomass Valorization, 2021, 12, 3179-3191.	1.8	8
143	Levulinic Acid- and Furan-Based Multifunctional Materials: Opportunities and Challenges. , 2021, , 291-343.		0
144	Solid Acid-Catalyzed Esterification of Levulinic Acid for Production of Value-Added Chemicals. , 2021, , 345-382.		3

#	Article	IF	CITATIONS
145	Choline chloride-promoted efficient solvent-free hydrogenation of biomass-derived levulinic acid to γ-valerolactone over Ru/C. Green Chemistry, 2021, 23, 1983-1988.	4.6	18
146	Evaluation of Xylooligosaccharides Production for a Specific Degree of Polymerization by Liquid Hot Water Treatment of Tropical Hardwood. Foods, 2021, 10, 463.	1.9	13
147	Recent advances in the production and value addition of selected hydrophobic analogs of biomass-derived 5-(hydroxymethyl)furfural. Biomass Conversion and Biorefinery, 2023, 13, 2571-2593.	2.9	17
148	Novel Intensified Alternatives for Purification of Levulinic Acid Recovered from Lignocellulosic Biomass. Processes, 2021, 9, 490.	1.3	5
149	Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnology Advances, 2021, 47, 107697.	6.0	67
150	Prospecting Biochemical Pathways to Implement Microbe-Based Production of the New-to-Nature Platform Chemical Levulinic Acid. ACS Synthetic Biology, 2021, 10, 724-736.	1.9	13
151	Techno-economics of lignocellulose biorefineries at South African sugar mills using the biofine process to co-produce levulinic acid, furfural and electricity along with gamma valeractone. Biomass and Bioenergy, 2021, 146, 106008.	2.9	17
152	Nitrogen-doped graphene supported Ni as an efficient and stable catalyst for levulinic acid hydrogenation. Nanotechnology, 2021, , .	1.3	0
153	Statistical optimization of levulinic acid and formic acid production from lipid-extracted residue of Chlorella vulgaris. Journal of Environmental Chemical Engineering, 2021, 9, 105142.	3.3	21
154	Platform chemicals production from lipid-extracted Chlorella vulgaris through an eco-friendly catalyst. Korean Journal of Chemical Engineering, 2021, 38, 997-1005.	1.2	6
155	Recent Advances in the Value Addition of Biomassâ€Derived Levulinic Acid: A Review Focusing on its Chemical Reactivity Patterns. ChemCatChem, 2021, 13, 3202-3222.	1.8	41
156	Preparation of energy platform chemicals by hydrothermal conversion of citrus peel. Energy Science and Engineering, 2021, 9, 1033-1041.	1.9	4
157	Efficient direct conversion of lignocellulosic biomass into biobased platform chemicals in ionic liquid-water medium. Renewable Energy, 2021, 169, 1051-1057.	4.3	26
158	Solubility Temperature Dependence of Bio-Based Levulinic Acid, Furfural, and Hydroxymethylfurfural in Water, Nonpolar, Polar Aprotic and Protic Solvents. Processes, 2021, 9, 924.	1.3	18
159	Hydrothermal conversion of microalgae Chlorella sp. into 5-hydroxymethylfurfural and levulinic acid by metal sulfate catalyst. Biomass and Bioenergy, 2021, 148, 106053.	2.9	18
160	Conversion of Xylose to Furfural Catalyzed by Carbon-Based Solid Acid Prepared from Pectin. Energy & Fuels, 2021, 35, 9961-9969.	2.5	23
161	Conversion of levulinic acid to valuable chemicals: a review. Journal of Chemical Technology and Biotechnology, 2021, 96, 3009-3024.	1.6	29
162	Esterification of levulinic acid to ethyl levulinate: optimization of process conditions using commercial levulinic acid and extension to the use of levulinic acid derived from depithed sugarcane bagasse. Biomass Conversion and Biorefinery, 2023, 13, 3113-3122.	2.9	9

#	Article	IF	CITATIONS
163	Study of pequi peel pyrolysis: Thermal decomposition analysis and product characterization. Biomass and Bioenergy, 2021, 149, 106095.	2.9	7
164	From Waste to Value—Direct Utilization of α-Angelica Lactone as a Nonconventional Irreversible Acylating Agent in a Chromatography-Free Lipase-Catalyzed KR Approach toward <i>sec</i> -Alcohols. ACS Sustainable Chemistry and Engineering, 2021, 9, 10276-10290.	3.2	4
165	A review on biomass-derived levulinic acid for application in drug synthesis. Critical Reviews in Biotechnology, 2022, 42, 220-253.	5.1	12
166	Methanesulfonic acid-mediated conversion of microalgae Scenedesmus obliquus biomass into levulinic acid. Journal of Industrial and Engineering Chemistry, 2021, 104, 85-85.	2.9	2
167	Preparation of Alkyl Levulinates from Xylose Over Modified Bifunctional Mesoporous Zirconium Phosphate Catalysts. Catalysis Letters, 0, , 1.	1.4	1
168	Valorization of microalgae into 5-hydroxymethylfurfural by two-step conversion with ferric sulfate. Journal of Environmental Management, 2021, 293, 112919.	3.8	10
169	Sulfated ordinary clay for acid-catalyzed conversion of biomass derivatives: Impacts of abundance and types of acidic sites on catalytic performance. Journal of Solid State Chemistry, 2021, 301, 122302.	1.4	1
170	Sustainable Exploitation of Residual Cynara cardunculus L. to Levulinic Acid and n-Butyl Levulinate. Catalysts, 2021, 11, 1082.	1.6	11
171	Less severe reaction conditions to produce levulinic acid with reduced humins formation at the expense of lower biomass conversion: Is it economically feasible?. Fuel Communications, 2021, 9, 100029.	2.0	4
172	A review on solid acid catalysis for sustainable production of levulinic acid and levulinate esters from biomass derivatives. Bioresource Technology, 2021, 342, 125977.	4.8	47
173	Optimization and green metrics analysis of the liquid-phase synthesis of sec-butyl levulinate by esterification of levulinic acid with 1-butene over ion-exchange resins. Fuel Processing Technology, 2021, 220, 106893.	3.7	10
174	Synthesis of bio-based 2-thiothiophenes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200350.	1.6	0
175	Dissolution pretreatment of cellulose by using levulinic acid-based protic ionic liquids towards enhanced enzymatic hydrolysis. Carbohydrate Polymers, 2021, 269, 118271.	5.1	32
176	Direct conversion of cellulose to levulinic acid using SO3H-functionalized ionic liquids containing halogen-anions. Journal of Molecular Liquids, 2021, 339, 117278.	2.3	13
177	Production of long-chain hydrocarbon biofuels from biomass-derived platform chemicals: Catalytic approaches and challenges. , 2022, , 327-354.		2
178	Levulinic acid. , 2022, , 127-146.		0
179	2-MeTHF. , 2021, , 75-98.		2
180	Polyvinyl alcohol modification with sustainable ketones. Polymer Chemistry, 2021, 12, 4961-4973.	1.9	9

# 181	ARTICLE Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chemical Society Reviews, 2021, 50, 6042-6093.	IF 18.7	CITATIONS
182	Other Drop-In Liquid Biofuels. Green Energy and Technology, 2019, , 405-450.	0.4	2
183	Contribution to the production and use of biomass-derived solvents – a review. Acta Innovations, 2020, , 29-56.	0.4	21
184	The Biorefinery Approach. , 2018, , 1-30.		2
185	Production of Liquid Biofuels from Biomass. Green Energy and Technology, 2019, , 1-33.	0.4	1
186	Feasibility of the Conversion of Sugarcane Molasses to Levulinic Acid: Reaction Optimization and Techno-Economic Analysis. Industrial & Engineering Chemistry Research, 2021, 60, 15646-15657.	1.8	6
187	Levulinic acid: perspectives of its biobased production and most promising derivatives. , 2022, , 387-414.		5
188	Production of chemicals from marine biomass catalysed by acidic ionic liquids. Green Chemistry, 2021, 23, 9800-9814.	4.6	13
189	Glucose to Levulinic acid, a versatile building block chemical. AIP Conference Proceedings, 2020, , .	0.3	6
190	A review of thermal catalytic and electrochemical hydrogenation approaches for converting biomass-derived compounds to high-value chemicals and fuels. Fuel Processing Technology, 2022, 226, 107097.	3.7	38
191	Biofuels and bioproducts from industrial hemp. Advances in Bioenergy, 2021, 6, 301-338.	0.5	4
192	Nanocrystalline rhenium-doped TiO ₂ : an efficient catalyst in the one-pot conversion of carbohydrates into levulinic acid. The synergistic effect between BrĀ,nsted and Lewis acid sites. Catalysis Science and Technology, 2022, 12, 167-180.	2.1	4
193	Insights into cascade and sequential one-pot pathways for reductive amination of aldehydes paired with bio-derived levulinic acid to <i>N</i> -substituted pyrrolidones using molecular hydrogen. Reaction Chemistry and Engineering, 2022, 7, 1005-1013.	1.9	4
194	Biobased Protic Ionic Liquids as Sustainable Solvents for Wool Keratin/Cellulose Simultaneous Dissolution: Solution Properties and Composited Membrane Preparation. ACS Sustainable Chemistry and Engineering, 2022, 10, 2158-2168.	3.2	14
195	Production of levulinic acid and alkyl levulinates: a process insight. Green Chemistry, 2022, 24, 614-646.	4.6	84
196	Integrated bio-based processes for the production of industrially important chemicals. , 2022, , 163-187.		1
197	Subcritical Water Hydrolysis of Sweet Sorghum (Sorghum Bicolor <i>L Moench</i>) Bagasse Pretreated with lonic Liquid ([Bmin]Cl) for Enhance Bioproducts and Sugar Production. SSRN Electronic Journal, 0, , .	0.4	0
198	The production of levulinic acid and formic acid from red macroalga Kappaphycus alvarezii using methanesulfonic acid. Bioresource Technology Reports, 2022, 17, 100954.	1.5	1

#	Article	IF	CITATIONS
199	Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chemical Reviews, 2022, 122, 6322-6373.	23.0	99
200	Esters as a potential renewable fuel: A review of the combustion characteristics. Fuel Processing Technology, 2022, 229, 107185.	3.7	20
201	Potential of Canola Feedstocks for Fermentable Sugars Production by Subcritical Water Hydrolysis. SSRN Electronic Journal, 0, , .	0.4	0
203	Recent advances in the chemical valorization of cellulose and its derivatives into ester compounds. Green Chemistry, 2022, 24, 3895-3921.	4.6	15
204	Elucidating the thermal decomposition mechanism and pyrolysis characteristics of biorefinery-derived humins from sugarcane bagasse and rice husk. Bioenergy Research, 2022, 15, 2026-2044.	2.2	2
205	Propylsulfonic Acid-Functionalized Mesostructured Natural Rubber/Silica Nanocomposites as Promising Hydrophobic Solid Catalysts for Alkyl Levulinate Synthesis. Nanomaterials, 2022, 12, 604.	1.9	9
207	Kinetic Study of Levulinic Acid from Spirulina platensis Residue. Applied Biochemistry and Biotechnology, 2022, , 1.	1.4	3
208	Effect of Rhenium on the Catalytic Activity of Activated Carbon-Supported Nickel Applied in the Hydrogenation of Furfural and Levulinic Acid. Topics in Catalysis, 0, , .	1.3	3
209	Catalytic wet air oxidation of d-glucose by perovskite type oxides (Fe, Co, Mn) for the synthesis of value-added chemicals. Carbohydrate Research, 2022, 514, 108529.	1.1	8
210	Defatted rice bran pretreated with deep eutectic solvents and sequential use as feedstock for subcritical water hydrolysis. Bioresource Technology, 2022, 351, 127063.	4.8	13
211	Techno-economic evaluation of a biorefinery to produce γ-valerolactone (GVL), 2-methyltetrahydrofuran (2-MTHF) and 5-hydroxymethylfurfural (5-HMF) from spruce. Renewable Energy, 2022, 190, 396-407.	4.3	16
212	Pursuing efficient systems for glucose transformation to levulinic acid: Homogeneous vs. heterogeneous catalysts and the effect of their co-action. Fuel, 2022, 318, 123712.	3.4	10
213	Recent advances in the conversion of lignocellulosic biomass and its degraded products to levulinic acid: A synergy of BrÃ,nsted-Lowry acid and Lewis acid. Industrial Crops and Products, 2022, 181, 114778.	2.5	14
214	Levulinic Acid Production from Macroalgae: Production and Promising Potential in Industry. Sustainability, 2021, 13, 13919.	1.6	5
215	Use of heterogeneous catalysis in sustainable biofuel production. ChemistrySelect, 2022, .	0.7	1
216	SOME RECENT DEVELOPMENTS IN VALORIZATION OF CHITOSAN TO A VALUABLE PLATFORM CHEMICAL 5-HYDROXYMETHYLFURFURAL (5-HMF): A SHORT REVIEW. Catalysis in Green Chemistry and Engineering, 2022, 5, 1-18.	0.2	1
217	Pretreatment of Corn Stover by Levulinic Acid-Based Protic Ionic Liquids for Enhanced Enzymatic Hydrolysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 7134-7148.	3.2	8
218	Furfural production from biomass residues: Current technologies, challenges and future prospects. Biomass and Bioenergy, 2022, 161, 106458.	2.9	52

#	Article	IF	CITATIONS
219	Experimental and Kinetic Modeling of Galactose Valorization to Levulinic Acid. Bulletin of Chemical Reaction Engineering and Catalysis, 2022, 17, 451-465.	0.5	1
220	Electrodeposition synthesis of free-standing metal/carbon felts electrodes for electrocatalytic hydrogenation of levulinic acid. International Journal of Hydrogen Energy, 2022, 47, 22763-22774.	3.8	6
221	Bioprocessing of biowaste derived from food supply chain side-streams for extraction of value added bioproducts through biorefinery approach. Food and Chemical Toxicology, 2022, 165, 113184.	1.8	6
222	Recent advances on solid acid catalyic systems for production of 5-Hydroxymethylfurfural from biomass derivatives. Fuel Processing Technology, 2022, 234, 107338.	3.7	25
223	Vapor-Liquid Equilibrium (VLE) Curve for Furfural Purification from Oil Palm Empty Fruit Bunch Hydrolysate Solution with the UNIQUAC Model. IOP Conference Series: Earth and Environmental Science, 2022, 1034, 012048.	0.2	0
224	Kinetic Study on the Sulfuric Acid-Catalyzed Conversion of <scp>d</scp> -Galactose to Levulinic Acid in Water. Industrial & Engineering Chemistry Research, 2022, 61, 9178-9191.	1.8	2
225	Potential of canola feedstocks for fermentable sugars production by subcritical water hydrolysis. Biomass and Bioenergy, 2022, 162, 106505.	2.9	5
226	Levulinic acid: a potent green chemical in sustainable agriculture. , 2022, , 179-218.		1
227	Understanding the impact of different pretreatment methods on the conversion of Casuarina equisetifolia biomass to 5-hydroxymethylfurfural and their energy cost assessment. Industrial Crops and Products, 2022, 186, 115275.	2.5	4
228	Modular Routes to 1,3-Dithian-2-ones and 1,2-Dithiolanes. Organic Letters, 0, , .	2.4	2
229	Investigation of solvent-free esterification of levulinic acid in the presence of tin(IV) complexes. Molecular Catalysis, 2022, 528, 112499.	1.0	2
230	Valorization of lipid-extracted spent coffee grounds: The synthesis of levulinic acid by thermochemical process. Industrial Crops and Products, 2022, 187, 115410.	2.5	5
231	A Convergent Approach to 1,3-Dithiolan-2-ones and an Unexpected Synthesis of Lactones. Organic Letters, 2022, 24, 5245-5248.	2.4	2
232	Synthesis of ethyl levulinate from furfuryl alcohol using waste yeast/sulfonic acid heterogeneous catalyst system. Chemical Papers, 2022, 76, 7535-7544.	1.0	1
233	Valorization of dairy by-products: Optimized synthesis of 5-hydroxymethylfurfural and levulinic acid from lactose and whey. Journal of Environmental Chemical Engineering, 2022, 10, 108413.	3.3	2
234	Effect of levulinic acid on production of polyhydroxyalkanoates from food waste by Haloferax mediterranei. Environmental Research, 2022, 214, 114001.	3.7	11
235	Modeling of sugarcane bagasse conversion to levulinic acid using response surface methodology (RSM), artificial neural networks (ANN), and fuzzy inference system (FIS): A comparative evaluation. Fuel, 2022, 329, 125409.	3.4	10
236	Introducing mesopore and regulating Al distribution for improving catalytic performances of ZSM-5 in furfuryl alcohol to levulinic acid. Fuel, 2022, 329, 125213.	3.4	7

#	Article	IF	CITATIONS
237	Synthesis of energy rich fuel additive from biomass derived levulinic acid and furfuryl alcohol using novel tin-exchanged heteropoly acid supported on titania nanotubes as catalyst. Fuel, 2023, 331, 125700.	3.4	12
238	Micro/mesoporous LTL derived materials for catalytic transfer hydrogenation and acid reactions of bio-based levulinic acid and furanics. Frontiers in Chemistry, 0, 10, .	1.8	1
239	Advances in Biomass-Based Levulinic Acid Production. Waste and Biomass Valorization, 2023, 14, 1-22.	1.8	7
240	Aqueous conversion of monosaccharides to furans: were we wrong all along to use catalysts?. Green Chemistry, 2022, 24, 8523-8537.	4.6	1
241	The potency of HPLC-DAD and LC-MS/MS combined with ion chromatography for detection/purification of levulinic acid and bio-compounds from acid hydrolysis of OPEFB. RSC Advances, 2022, 12, 28638-28646.	1.7	0
242	A review of the methods for levulinic acid separation and extraction. Biomass Conversion and Biorefinery, 0, , .	2.9	6
243	Selective Conversion of Glucose to Levulinic Acid Catalyzed by HPAs/MOF-5 in a Hydrophilic Eutectic Solvent System. Energy & Fuels, 2022, 36, 14994-15003.	2.5	2
245	Sulphonic Acidâ€Functionalized Polymeric Ionic Liquids Catalyzed Conversion of Carbohydrates into Levulinic Acid in Oneâ€Pot Reaction. ChemCatChem, 2023, 15, .	1.8	2
246	Closing carbon and nitrogen cycles and addressing a critical global challenge: From seafood waste to sustainable chemicals. Journal of Cleaner Production, 2023, 388, 135931.	4.6	2
247	Analysis of hybrid separation schemes for levulinic acid separation by process intensification and assessment of thermophysical properties impact. Separation and Purification Technology, 2023, 310, 123166.	3.9	6
248	A Genetically Encoded Biosensor for the Detection of Levulinic Acid. Journal of Microbiology and Biotechnology, 2023, , .	0.9	0
249	State-of-the-Art Technologies for Production of Biochemicals from Lignocellulosic Biomass. , 2023, , 111-150.		0
250	Recent advances, perspectives and challenges on levulinic acid production from residual biomass. Biofuels, Bioproducts and Biorefining, 2023, 17, 1068-1084.	1.9	6
251	Some Insights into the Use of Heterogeneous Copper Catalysts in the Hydroprocessing of Levulinic Acid. Catalysts, 2023, 13, 697.	1.6	2
252	Statistical approach for optimization of levulinic acid production from orange peel as agricultural waste. Biofuels, Bioproducts and Biorefining, 0, , .	1.9	0
253	Construction of electron-deficient zirconium sites for the efficient catalytic transfer hydrogenation of levulinic acid. Fuel Processing Technology, 2023, 247, 107777.	3.7	1
262	Comprehensive review on effective conversion of lignocellulosic biomass to levulinic acid. Biomass Conversion and Biorefinery, 0, , .	2.9	1
264	Organic Residues Valorization For Value-added Chemicals Production. , 2023, , 112-146.		0

#	Article	IF	CITATIONS
268	Extraction, Isolation, Purification, and Potential Application of Xylose and Xylooligosaccharides from Lignocellulosic Biomass. Green Energy and Technology, 2024, , 229-267.	0.4	0