Nonclinical Models for Antituberculosis Drug Developm

Journal of Infectious Diseases 211, S83-S95 DOI: 10.1093/infdis/jiv183

Citation Report

#	Article	IF	CITATIONS
2	Systematic Analysis of Hollow Fiber Model of Tuberculosis Experiments. Clinical Infectious Diseases, 2015, 61, S10-S17.	2.9	60
3	Correlations Between the Hollow Fiber Model of Tuberculosis and Therapeutic Events in Tuberculosis Patients: Learn and Confirm. Clinical Infectious Diseases, 2015, 61, S18-S24.	2.9	61
4	Forecasting Accuracy of the Hollow Fiber Model of Tuberculosis for Clinical Therapeutic Outcomes. Clinical Infectious Diseases, 2015, 61, S25-S31.	2.9	79
5	Shortening Tuberculosis Treatment With Fluoroquinolones: Lost in Translation?. Clinical Infectious Diseases, 2015, 62, civ911.	2.9	33
7	Assessment of treatment response in tuberculosis. Expert Review of Respiratory Medicine, 2016, 10, 643-654.	1.0	67
8	Moxifloxacin's Limited Efficacy in the Hollow-Fiber Model of Mycobacterium abscessus Disease. Antimicrobial Agents and Chemotherapy, 2016, 60, 3779-3785.	1.4	25
9	A Combination Regimen Design Program Based on Pharmacodynamic Target Setting for Childhood Tuberculosis: Design Rules for the Playground. Clinical Infectious Diseases, 2016, 63, S75-S79.	2.9	13
10	Partnerships to Design Novel Regimens to Treat Childhood Tuberculosis,Sui Generis: The Road Ahead. Clinical Infectious Diseases, 2016, 63, S110-S115.	2.9	7
12	Sterilizing Activity of Pyrazinamide in Combination with First-Line Drugs in a C3HeB/FeJ Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 1091-1096.	1.4	33
13	Challenges in the clinical assessment of novel tuberculosis drugs. Advanced Drug Delivery Reviews, 2016, 102, 116-122.	6.6	25
14	Selective Inactivity of Pyrazinamide against Tuberculosis in C3HeB/FeJ Mice Is Best Explained by Neutral pH of Caseum. Antimicrobial Agents and Chemotherapy, 2016, 60, 735-743.	1.4	62
15	A novel benzothiazinethione analogue SKLB-TB1001 displays potent antimycobacterial activities in a series of murine models. Biomedicine and Pharmacotherapy, 2017, 88, 603-609.	2.5	4
16	The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respiratory Medicine,the, 2017, 5, 291-360.	5.2	459
17	Pharmacokinetic-Pharmacodynamic modelling of intracellular Mycobacterium tuberculosis growth and kill rates is predictive of clinical treatment duration. Scientific Reports, 2017, 7, 502.	1.6	30
18	Pediatric multidrug-resistant tuberculosis clinical trials: challenges and opportunities. International Journal of Infectious Diseases, 2017, 56, 194-199.	1.5	15
19	Efficient measurement and factorization of high-order drug interactions in <i>Mycobacterium tuberculosis</i> . Science Advances, 2017, 3, e1701881.	4.7	107
20	Ceftazidime-avibactam has potent sterilizing activity against highly drug-resistant tuberculosis. Science Advances, 2017, 3, e1701102.	4.7	56
21	Preclinical Efficacy Testing of New Drug Candidates. Microbiology Spectrum, 2017, 5, .	1.2	49

#	Article	IF	CITATIONS
22	Sterilizing Effect of Ertapenem-Clavulanate in a Hollow-Fiber Model of Tuberculosis and Implications on Clinical Dosing. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	23
23	The implications of model-informed drug discovery and development for tuberculosis. Drug Discovery Today, 2017, 22, 481-486.	3.2	14
24	Preclinical Efficacy Testing of New Drug Candidates. , 0, , 269-293.		3
25	Pharmacokinetics of rifapentine and rifampin in a rabbit model of tuberculosis and correlation with clinical trial data. Science Translational Medicine, 2018, 10, .	5.8	40
26	Improving treatment outcome assessment in a mouse tuberculosis model. Scientific Reports, 2018, 8, 5714.	1.6	13
27	Host-directed therapies for bacterial and viral infections. Nature Reviews Drug Discovery, 2018, 17, 35-56.	21.5	512
28	Gatifloxacin Pharmacokinetics/Pharmacodynamics–based Optimal Dosing for Pulmonary and Meningeal Multidrug-resistant Tuberculosis. Clinical Infectious Diseases, 2018, 67, S274-S283.	2.9	23
29	Multiparameter Responses to Tedizolid Monotherapy and Moxifloxacin Combination Therapy Models of Children With Intracellular Tuberculosis. Clinical Infectious Diseases, 2018, 67, S342-S348.	2.9	18
30	Artificial intelligence–derived 3-Way Concentration-dependent Antagonism of Gatifloxacin, Pyrazinamide, and Rifampicin During Treatment of Pulmonary Tuberculosis. Clinical Infectious Diseases, 2018, 67, S284-S292.	2.9	16
31	Levofloxacin Pharmacokinetics/Pharmacodynamics, Dosing, Susceptibility Breakpoints, and Artificial Intelligence in the Treatment of Multidrug-resistant Tuberculosis. Clinical Infectious Diseases, 2018, 67, S293-S302.	2.9	74
32	Pharmacokinetic/Pharmacodynamic Background and Methods and Scientific Evidence Base for Dosing of Second-line Tuberculosis Drugs. Clinical Infectious Diseases, 2018, 67, S267-S273.	2.9	26
33	Ethionamide Pharmacokinetics/Pharmacodynamics-derived Dose, the Role of MICs in Clinical Outcome, and the Resistance Arrow of Time in Multidrug-resistant Tuberculosis. Clinical Infectious Diseases, 2018, 67, S317-S326.	2.9	29
34	<scp>d</scp> -Cycloserine Pharmacokinetics/Pharmacodynamics, Susceptibility, and Dosing Implications in Multidrug-resistant Tuberculosis: A Faustian Deal. Clinical Infectious Diseases, 2018, 67, S308-S316.	2.9	45
35	Preclinical tools for the evaluation of tuberculosis treatment regimens for children. International Journal of Tuberculosis and Lung Disease, 2018, 22, 7-14.	0.6	6
36	Drug permeation and metabolism in <i>Mycobacterium tuberculosis</i> : Prioritising local exposure as essential criterion in new TB drug development. IUBMB Life, 2018, 70, 926-937.	1.5	27
37	<i>Galleria mellonella -</i> a novel infection model for the <i>Mycobacterium tuberculosis</i> complex. Virulence, 2018, 9, 1126-1137.	1.8	26
38	The current state of animal models and genomic approaches towards identifying and validating molecular determinants of <i>Mycobacterium tuberculosis</i> infection and tuberculosis disease. Pathogens and Disease, 2019, 77, .	0.8	32
39	Use of the Invertebrate Galleria mellonella as an Infection Model to Study the Mycobacterium tuberculosis Complex. Journal of Visualized Experiments, 2019, , .	0.2	7

CITATION REPORT

#	Article	IF	CITATIONS
40	Advancing the development of new tuberculosis treatment regimens: The essential role of translational and clinical pharmacology and microbiology. PLoS Medicine, 2019, 16, e1002842.	3.9	30
41	†Those who cannot remember the past are condemned to repeat it': Drug-susceptibility testing for bedaquiline and delamanid. International Journal of Infectious Diseases, 2019, 80, S32-S35.	1.5	33
42	High-Dose Rifamycins Enable Shorter Oral Treatment in a Murine Model of Mycobacterium ulcerans Disease. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	15
43	The Role of Fluoroquinolones in the Treatment of Tuberculosis in 2019. Drugs, 2019, 79, 161-171.	4.9	61
44	Duration of pretomanid/moxifloxacin/pyrazinamide therapy compared with standard therapy based on time-to-extinction mathematics. Journal of Antimicrobial Chemotherapy, 2020, 75, 392-399.	1.3	14
45	OPC-167832, a Novel Carbostyril Derivative with Potent Antituberculosis Activity as a DprE1 Inhibitor. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	60
46	Phylogenetically informative mutations in genes implicated in antibiotic resistance in Mycobacterium tuberculosis complex. Genome Medicine, 2020, 12, 27.	3.6	58
47	Model-Informed Drug Discovery and Development Strategy for the Rapid Development of Anti-Tuberculosis Drug Combinations. Applied Sciences (Switzerland), 2020, 10, 2376.	1.3	13
48	Preclinical models to optimize treatment of tuberculous meningitis – A systematic review. Tuberculosis, 2020, 122, 101924.	0.8	5
49	Evaluation of pharmacokineticâ€pharmacodynamic relationships and selection of drug combinations for tuberculosis. British Journal of Clinical Pharmacology, 2021, 87, 140-151.	1.1	12
50	Development of New Tuberculosis Drugs: Translation to Regimen Composition for Drug-Sensitive and Multidrug-Resistant Tuberculosis. Annual Review of Pharmacology and Toxicology, 2021, 61, 495-516.	4.2	30
51	Modern Drug Discovery and Development for TB: The India Narrative. , 2021, , 37-61.		1
53	Pretomanid dose selection for pulmonary tuberculosis: An application of multiâ€objective optimization to dosage regimen design. CPT: Pharmacometrics and Systems Pharmacology, 2021, 10, 211-219.	1.3	8
54	One Size Fits All? Not in In Vivo Modeling of Tuberculosis Chemotherapeutics. Frontiers in Cellular and Infection Microbiology, 2021, 11, 613149.	1.8	17
55	Modelâ€Informed Drug Development for Antiâ€Infectives: State of the Art and Future. Clinical Pharmacology and Therapeutics, 2021, 109, 867-891.	2.3	41
56	Mycobacterium tuberculosis precursor rRNA as a measure of treatment-shortening activity of drugs and regimens. Nature Communications, 2021, 12, 2899.	5.8	38
57	The Treatment of Tuberculosis. Clinical Pharmacology and Therapeutics, 2021, 110, 1455-1466.	2.3	49
58	Comparative Analysis of Pharmacodynamics in the C3HeB/FeJ Mouse Tuberculosis Model for DprE1 Inhibitors TBA-7371, PBTZ169, and OPC-167832. Antimicrobial Agents and Chemotherapy, 2021, 65, e0058321.	1.4	33

CITATION REPORT

#	Article	IF	CITATIONS
59	Systematic measurement of combination-drug landscapes to predict inÂvivo treatment outcomes for tuberculosis. Cell Systems, 2021, 12, 1046-1063.e7.	2.9	31
60	Assessment of Bactericidal Drug Activity and Treatment Outcome in a Mouse Tuberculosis Model Using a Clinical Beijing Strain. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	12
62	Prevention, Diagnosis, and Treatment of TB in the Migrating Population. , 2020, , 63-96.		0
63	Nonhuman Primate Models for Antimicrobial Drug Discovery. , 2020, , 657-684.		0
64	The zebrafish embryo as an <i>in vivo</i> model for screening nanoparticle-formulated lipophilic anti-tuberculosis compounds. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	8
65	Model-Based Meta-Analysis of Relapsing Mouse Model Studies from the Critical Path to Tuberculosis Drug Regimens Initiative Database. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0179321.	1.4	5
66	Combination of Mycobacterium tuberculosis RS Ratio and CFU Improves the Ability of Murine Efficacy Experiments to Distinguish between Drug Treatments. Antimicrobial Agents and Chemotherapy, 2022, 66, e0231021.	1.4	10
68	Pharmacometrics in tuberculosis: progress and opportunities. International Journal of Antimicrobial Agents, 2022, 60, 106620.	1.1	3
69	Advances in the design of combination therapies for the treatment of tuberculosis. Expert Opinion on Drug Discovery, 2023, 18, 83-97.	2.5	6
72	Hollow-fibre system model of tuberculosis reproducibility and performance specifications for best practice in drug and combination therapy development. Journal of Antimicrobial Chemotherapy, 2023, 78, 953-964.	1.3	5
73	Determining the Delamanid Pharmacokinetics/Pharmacodynamics Susceptibility Breakpoint Using Monte Carlo Experiments. Antimicrobial Agents and Chemotherapy, 2023, 67, .	1.4	0
75	Next-Generation Diarylquinolines Improve Sterilizing Activity of Regimens with Pretomanid and the Novel Oxazolidinone TBI-223 in a Mouse Tuberculosis Model. Antimicrobial Agents and Chemotherapy, 2023, 67, .	1.4	9

CITATION REPORT