Cognitive Radio Techniques Under Practical Imperfecti

IEEE Communications Surveys and Tutorials 17, 1858-1884 DOI: 10.1109/comst.2015.2452414

Citation Report

#	Article	IF	CITATIONS
1	Improving robustness of cyclostationary detectors to cyclic frequency mismatch using Slepian basis. , 2015, , .		7
2	A Novel Wireless Power Transfer-Based Weighed Clustering Cooperative Spectrum Sensing Method for Cognitive Sensor Networks. Sensors, 2015, 15, 27760-27782.	2.1	5
3	Spectral Efficiency Analysis of Filter Bank Multi arrier (FBMC)―Based 5G Networks with Estimated Channel State Information (CSI). , 0, , .		2
4	Analyzing Chaos Systems and Fine Spectrum Sensing Using Detrended Fluctuation Analysis Algorithm. Mathematical Problems in Engineering, 2016, 2016, 1-18.	0.6	6
5	An Adjustable Access Control Scheme in Cognitive Radio Networks with Multiple Secondary Users. , 2016, , .		0
6	Performance Analysis of Interweave Cognitive Radio Systems with Imperfect Channel Knowledge over Nakagami Fading Channels. , 2016, , .		1
7	Threshold of the symmetry property of cyclic autocorrelation function detector. , 2016, , .		0
8	Two-phase concurrent sensing and transmission scheme for full duplex cognitive radio. , 2016, , .		7
9	Implementation of Compressive Sensing with Real-Time Signals over TV White Space Spectrum in Cognitive Radio. , 2016, , .		2
10	Square-Law Selector and Square-Law Combiner for Cognitive Radio Systems: An Experimental Study. , 2016, , .		6
11	Sum throughput maximization for downlink MIMO-OFDMA based cognitive radio networks in spectrum overlay model. , 2016, , .		5
12	Resource allocation in FBMC-based two-cell cognitive radio systems with estimated CSI. , 2016, , .		0
13	BER analysis of physical-layer coding in cognitive radio cross network. , 2016, , .		0
14	On the Performance Analysis of Underlay Cognitive Radio Systems: A Deployment Perspective. IEEE Transactions on Cognitive Communications and Networking, 2016, 2, 273-287.	4.9	9
15	On-board the satellite interference detection with imperfect signal cancellation. , 2016, , .		10
16	Threshold Optimization in Energy Detection Scheme for Maximizing the Spectrum Utilization. Procedia Computer Science, 2016, 93, 191-198.	1.2	7
17	Ranging error estimation in indoor environment at 10 GHz. , 2016, , .		0
18	Universal Intelligent Small Cell (UnISCell) for next generation cellular networks. Digital Communications and Networks, 2016, 2, 167-174.	2.7	8

#	Article	IF	Citations
19	Performance analysis of hybrid cognitive radio systems with imperfect channel knowledge. , 2016, , .		7
20	Physical layer aspects of wireless IoT. , 2016, , .		19
21	A robust application detector for intelligent wireless collaboration. , 2016, , .		1
22	Effect of Primary User Traffic on Largest Eigenvalue Based Spectrum Sensing Technique. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2016, , 67-78.	0.2	9
23	Optimal threshold of energy detector under noise variance uncertainty for coarse spectrum sensing. , 2016, , .		3
24	Licensed Spectrum Sharing Schemes for Mobile Operators: A Survey and Outlook. IEEE Communications Surveys and Tutorials, 2016, 18, 2591-2623.	24.8	177
25	White space: Definitional perspectives and their role in exploiting spectrum opportunities. Telecommunications Policy, 2016, 40, 319-331.	2.6	109
26	Application of Compressive Sensing in Cognitive Radio Communications: A Survey. IEEE Communications Surveys and Tutorials, 2016, 18, 1838-1860.	24.8	183
27	Sensing-Throughput Tradeoff for Interweave Cognitive Radio System: A Deployment-Centric Viewpoint. IEEE Transactions on Wireless Communications, 2016, 15, 3690-3702.	6.1	41
28	Near-Optimum Nonparametric Combination Scheme for Cyclostationarity-Based Spectrum-Sensing Method. Circuits, Systems, and Signal Processing, 2017, 36, 867-878.	1.2	1
29	Cooperative Spectrum Sharing in OFDM Two-Way Relay Systems With Bidirectional Transmissions. IEEE Communications Letters, 2017, 21, 1349-1352.	2.5	14
30	Cognitive Capacity Harvesting Networks: Architectural Evolution Toward Future Cognitive Radio Networks. IEEE Communications Surveys and Tutorials, 2017, 19, 1902-1923.	24.8	53
31	Cooperative composite sequential detection and its application in spectrum sensing. IET Communications, 2017, 11, 1036-1044.	1.5	1
32	Energy Detection Under Interference Power Uncertainty. IEEE Communications Letters, 2017, 21, 1887-1890.	2.5	5
33	Weak interference detection with signal cancellation in satellite communications. , 2017, , .		6
34	Full-Duplex Communication in Cognitive Radio Networks: A Survey. IEEE Communications Surveys and Tutorials, 2017, 19, 2158-2191.	24.8	159
35	Simultaneous Sensing and Transmission for Cognitive Radios With Imperfect Signal Cancellation. IEEE Transactions on Wireless Communications, 2017, 16, 5599-5615.	6.1	19
36	Spectral and Energy Efficiency in Cognitive Radio Systems with Unslotted Primary Users and Sensing Uncertainty. IEEE Transactions on Communications, 2017, , 1-1.	4.9	10

#	Article	IF	CITATIONS
37	Wireless big data: transforming heterogeneous networks to smart networks. Journal of Communications and Information Networks, 2017, 2, 19-32.	3.5	43
38	On Spectrum Sensing of OFDM Signals at Low SNR: New Detectors and Asymptotic Performance. IEEE Transactions on Signal Processing, 2017, 65, 3218-3233.	3.2	17
40	Energy Detection With Random Arrival and Departure of Primary Signals: New Detector and Performance Analysis. IEEE Transactions on Vehicular Technology, 2017, 66, 10092-10101.	3.9	10
41	Energy efficient 3D positioning of micro unmanned aerial vehicles for underlay cognitive radio systems. , 2017, , .		13
42	Multi-antenna based one-bit spatio-temporal wideband sensing for cognitive radio networks. , 2017, , .		1
43	Energy — Efficiency techniques in cooperative spectrum sensing: A survey. , 2017, , .		12
44	A spectrum sharing protocol based on physical-layer network coding. , 2017, , .		0
45	Resource Allocation for Underlay Cognitive Radio Networks: A Survey. IEEE Communications Surveys and Tutorials, 2017, 19, 1249-1276.	24.8	190
46	Advances on Spectrum Sensing for Cognitive Radio Networks: Theory and Applications. IEEE Communications Surveys and Tutorials, 2017, 19, 1277-1304.	24.8	439
47	Advanced Frame Structures for Hybrid Spectrum Access Strategy in Cognitive Radio Communication Systems. IEEE Communications Letters, 2017, 21, 410-413.	2.5	35
48	An End-to-End Multi-Standard OFDM Transceiver Architecture Using FPGA Partial Reconfiguration. IEEE Access, 2017, 5, 21002-21015.	2.6	32
49	Cooperative spectrum sensing for cognitive radio using ME detection in presence of correlated noise. , 2017, , .		0
50	Database-Assisted Spectrum Sharing in Satellite Communications: A Survey. IEEE Access, 2017, 5, 25322-25341.	2.6	52
51	Location-Aware and Superimposed-Pilot Based Channel Estimation of Sparse HAP Radio Communication Channels. , 2017, , .		3
52	Cooperative spectrum sharing protocol using spatial modulation. IET Communications, 2017, 11, 1759-1767.	1.5	5
53	Opportunistic Capacity-Based Resource Allocation for Chunk-Based Multi-Carrier Cognitive Radio Sensor Networks. Sensors, 2017, 17, 175.	2.1	4
54	Analysis of signal processing based spectrum sensing practices in cognitive radio: A review. , 2017, , .		1
55	Cooperative sensing delay minimization in cloud-assisted DSA networks. , 2017, , .		2

#	Article	IF	CITATIONS
56	Cooperative Spectrum Sensing: A Blind and Soft Fusion Detector. IEEE Transactions on Wireless Communications, 2018, 17, 2726-2737.	6.1	41
57	Sparse Bayesian Compressed Spectrum Sensing Under Gaussian Mixture Noise. IEEE Transactions on Vehicular Technology, 2018, 67, 6087-6097.	3.9	13
58	Joint sensing time and power allocation in cognitive networks with amplify-and-forward cooperation. Annales Des Telecommunications/Annals of Telecommunications, 2018, 73, 391-399.	1.6	0
59	Joint optimization of sensing duration and detection threshold for maximizing the spectrum utilization. , 2018, 74, 94-101.		11
60	Adaptive Sensing Schedule for Dynamic Spectrum Sharing in Time-Varying Channel. IEEE Transactions on Vehicular Technology, 2018, 67, 5520-5524.	3.9	11
61	Performance analysis of high-traffic cognitive radio communication system using hybrid spectrum access, prediction and monitoring techniques. Wireless Networks, 2018, 24, 2005-2015.	2.0	32
62	Power optimization and subcarrier allocation for downlink MIMO-OFDMA based cognitive radio networks. Wireless Networks, 2018, 24, 2221-2235.	2.0	5
63	Dynamic Spectrum Sharing in 5G Wireless Networks With Full-Duplex Technology: Recent Advances and Research Challenges. IEEE Communications Surveys and Tutorials, 2018, 20, 674-707.	24.8	174
64	Simultaneous Wireless Information and Power Transfer (SWIPT): Recent Advances and Future Challenges. IEEE Communications Surveys and Tutorials, 2018, 20, 264-302.	24.8	585
65	Deep Reinforcement Learning-Based Power Control in Full-Duplex Cognitive Radio Networks. , 2018, , .		8
65 66	Deep Reinforcement Learning-Based Power Control in Full-Duplex Cognitive Radio Networks. , 2018, , . Throughput Optimization Based on Simultaneously Decoding and Accessing in Cognitive NOMA System. , 2018, , .		8
65 66 67	Deep Reinforcement Learning-Based Power Control in Full-Duplex Cognitive Radio Networks., 2018,, . Throughput Optimization Based on Simultaneously Decoding and Accessing in Cognitive NOMA System., 2018,, . A Signal Detection Method Using Goodness of Fit Test in Laplacian Noise., 2018,, .		8 0 1
65 66 67 68	Deep Reinforcement Learning-Based Power Control in Full-Duplex Cognitive Radio Networks., 2018,,, Throughput Optimization Based on Simultaneously Decoding and Accessing in Cognitive NOMA System., 2018,,, A Signal Detection Method Using Goodness of Fit Test in Laplacian Noise., 2018,,, Interference Alignment in Multi-Hop Cognitive Radio Networks under Interference Leakage. Applied Sciences (Switzerland), 2018, 8, 2486.	1.3	8 0 1 3
 65 66 67 68 69 	Deep Reinforcement Learning-Based Power Control in Full-Duplex Cognitive Radio Networks., 2018,,. Throughput Optimization Based on Simultaneously Decoding and Accessing in Cognitive NOMA System., 2018,,. A Signal Detection Method Using Goodness of Fit Test in Laplacian Noise., 2018,,. Interference Alignment in Multi-Hop Cognitive Radio Networks under Interference Leakage. Applied Sciences (Switzerland), 2018, 8, 2486. Interference Alignment in Multi-Input Multi-Output Cognitive Radio-Based Network., 0,,.	1.3	8 0 1 3 1
 65 66 67 68 69 70 	Deep Reinforcement Learning-Based Power Control in Full-Duplex Cognitive Radio Networks., 2018,,. Throughput Optimization Based on Simultaneously Decoding and Accessing in Cognitive NOMA System., 2018,,. A Signal Detection Method Using Coodness of Fit Test in Laplacian Noise., 2018,,. Interference Alignment in Multi-Hop Cognitive Radio Networks under Interference Leakage. Applied Sciences (Switzerland), 2018, 8, 2486. Interference Alignment in Multi-Input Multi-Output Cognitive Radio-Based Network., 0,,. Blind Discrete-Time Cyclostationary Spectrum Sensing with Multiple Primary Users in Presence of Spatially and Temporally Correlated Noise., 2018,,.	1.3	8 0 1 3 1 1
 65 66 67 68 69 70 71 	Deep Reinforcement Learning-Based Power Control in Full-Duplex Cognitive Radio Networks., 2018, , . Throughput Optimization Based on Simultaneously Decoding and Accessing in Cognitive NOMA System., 2018, , . A Signal Detection Method Using Goodness of Fit Test in Laplacian Noise., 2018, , . Interference Alignment in Multi-Hop Cognitive Radio Networks under Interference Leakage. Applied Sciences (Switzerland), 2018, 8, 2486. Interference Alignment in Multi-Input Multi-Output Cognitive Radio-Based Network., 0, . Blind Discrete-Time Cyclostationary Spectrum Sensing with Multiple Primary Users in Presence of Spatially and Temporally Correlated Noise., 2018, A Simple \$F\$ace"Test Based Multi-Antenna Spectrum Sensing Technique., 2018,	1.3	8 0 1 3 1 1 1
 65 66 67 68 69 70 71 72 	Deep Reinforcement Learning-Based Power Control in Full-Duplex Cognitive Radio Networks., 2018,,. Throughput Optimization Based on Simultaneously Decoding and Accessing in Cognitive NOMA System., 2018,,. A Signal Detection Method Using Goodness of Fit Test in Laplacian Noise., 2018,,. Interference Alignment in Multi-Hop Cognitive Radio Networks under Interference Leakage. Applied Sciences (Switzerland), 2018, 8, 2486. Interference Alignment in Multi-Input Multi-Output Cognitive Radio-Based Network., 0,,. Blind Discrete-Time Cyclostationary Spectrum Sensing with Multiple Primary Users in Presence of Spatially and Temporally Correlated Noise., 2018,,. A Simple \$F\$–Test Based Multi-Antenna Spectrum Sensing Technique., 2018,,. A Two-Stage Detector for Cognitive Radio Networks with Correlated Multiple Antennas over Dynamic Channel Environment., 2018,,.	1.3	 8 0 1 3 1 1 0 1

#	Article	IF	CITATIONS
74	A Novel Dynamic Spectrum-Sharing Method for Integrated Wireless Multimedia Sensors and Cognitive Satellite Networks. Sensors, 2018, 18, 3904.	2.1	10
75	A Simple F–Test Based Spectrum Sensing Technique for MIMO Cognitive Radio Networks. , 2018, , .		3
76	Spectrum Sensing Challenges of IoT Nodes Designed under 5G Network Standards. , 2018, , .		2
77	Complexity optimization based on the order of coalition formation in cooperative spectrum sensing in cognitive radio networks. Journal of Industrial and Production Engineering, 2018, 35, 421-431.	2.1	1
78	Underlay Cognitive Radio with Imperfect Transceiver Electronics under Nakagami-m Fading. , 2018, , .		3
79	Asynchronous Mobile-Edge Computation Offloading: Energy-Efficient Resource Management. IEEE Transactions on Wireless Communications, 2018, 17, 7590-7605.	6.1	91
80	Cooperative spectrum sensing over generalized fading channels based on energy detection. China	2.0	18
81	LMPIT-Inspired Tests for Detecting a Cyclostationary Signal in Noise With Spatio–Temporal Structure. IEEE Transactions on Wireless Communications, 2018, 17, 6321-6334.	6.1	17
82	A Novel Cognitive Satellite Network With GEO and LEO Broadband Systems in the Downlink Case. IEEE	2.6	42
	Access, 2010, 0, 25707 20000.		
83	Energy Efficient Transmission in Underlay Massive MIMO Systems with Probabilistic Guarantees. , 2018, , \cdot		1
0.4	Simple <inline-formula> <tex-math notation="LaTeX">\$F\$ </tex-math></inline-formula>	4.0	11
84	IEEE Transactions on Communications, 2018, 66, 5081-5096.	4.9	11
85	A Novel Spectrum Scheduling Scheme with Ant Colony Optimization Algorithm. Algorithms, 2018, 11, 16.	1.2	3
	RaptorO-Based Efficient Multimedia Transmission Over Cooperative Cellular Cognitive Radio		
86	Networks. IEEE Transactions on Vehicular Technology, 2018, 67, 7275-7289.	3.9	22
87	MIMO Underlay Cognitive Radio: Optimized Power Allocation, Effective Number of Transmit Antennas and Harvest-Transmit Tradeoff. IEEE Transactions on Green Communications and Networking, 2018, 2,	3.5	18
	1101-1114.		
88	A joint sensing and transmission power control policy for RF energy harvesting cognitive radio networks. International Journal of Communication Systems, 2018, 31, e3715.	1.6	2
89	Spectrum Sensing Using Multiple Large Eigenvalues and its Performance Analysis. IEEE Internet of Things Journal, 2019, 6, 776-789.	5.5	12
91	Capacity Enhancement for Energy-Harvesting Cognitive Radio Networks: A NOMA-Enabled Joint Design. , 2019		1
92	Toward Overcoming a Hidden Terminal Problem Arising in MIMO Cognitive Radio Networks: A Tensor-Based Spectrum Sensing Algorithm. IEEE Transactions on Vehicular Technology, 2019, 68, 9833-9847.	3.9	3

#	Article	IF	CITATIONS
93	Neuroâ€fuzzy based twoâ€stage spectrum allocation scheme to ensure spectrum efficiency in CRN–CSS assisted by spectrum agent. IET Circuits, Devices and Systems, 2019, 13, 637-646.	0.9	7
94	Sensing OFDM Signal: A Deep Learning Approach. IEEE Transactions on Communications, 2019, 67, 7785-7798.	4.9	34
95	Primary signal detection algorithms for spectrum sensing at low SNR over fading channels in cognitive radio. , 2019, 93, 187-207.		24
96	Analysis of Efficient Spectrum Handoff in a Multi-Class Hybrid Spectrum Access Cognitive Radio Network Using Markov Modelling. Sensors, 2019, 19, 4120.	2.1	17
97	Progression on spectrum sensing for cognitive radio networks: A survey, classification, challenges and future research issues. Journal of Network and Computer Applications, 2019, 143, 47-76.	5.8	101
98	Superimposed Training Combined Approach for a Reduced Phase of Spectrum Sensing in Cognitive Radio. Sensors, 2019, 19, 2425.	2.1	4
99	Cognitive Networks in the Presence of I/Q Imbalance and Imperfect CSI: Receiver Design and Performance Analysis. IEEE Access, 2019, 7, 49765-49777.	2.6	12
100	Joint PAPR reduction and sidelobe suppression in NC-OFDM based cognitive radio using wavelet packet and SC techniques. Physical Communication, 2019, 35, 100695.	1.2	10
101	Modeling and Performance Analysis of Cognitive Radio Systems from a Deployment Perspective. , 2019, , 87-128.		0
102	Sub-Nyquist wideband spectrum sensing techniques for cognitive radio: A review and proposed techniques. AEU - International Journal of Electronics and Communications, 2019, 104, 44-57.	1.7	27
103	Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future. IEEE Access, 2019, 7, 46317-46350.	2.6	351
104	On the performance of cognitive underlay RF/FSO communication systems with limited feedback. Optics Communications, 2019, 444, 87-92.	1.0	11
105	A Tensor-Based Spectrum Sensing Technique for MIMO Cognitive Radio Networks. , 2019, , .		0
106	Energy and spectral efficient SMCâ€MAC protocol in distributed cognitive radio networks. IET Communications, 2019, 13, 2705-2713.	1.5	4
107	Content Placement Based on Utility Function for Satellite Networks. IEEE Access, 2019, 7, 163150-163159.	2.6	5
108	Performance Analysis of Improved Energy Detector With Hardware Impairments for Accurate Spectrum Sensing. IEEE Access, 2019, 7, 13927-13938.	2.6	7
109	Compressively sensing nonadjacent block-sparse spectra via a block discrete chirp matrix. Photonic Network Communications, 2019, 37, 164-178.	1.4	2
110	Orchestration of heterogeneous wireless networks: State of the art and remaining challenges. Computer Communications, 2020, 149, 62-77.	3.1	12

#	Article	IF	CITATIONS
111	Optimal Sensing and Transmission of Energy Efficient Cognitive Radio Networks. Wireless Personal Communications, 2020, 111, 1283-1294.	1.8	4
112	Cognitive Radio Techniques for Utilizing the Primary L-Band Distance Measuring Equipment for Aeronautical Communications. IEEE Access, 2020, 8, 124812-124823.	2.6	3
113	Multi-technology Management of Heterogeneous Wireless Networks. , 2020, , .		0
114	Detection of traffic patterns in the radio spectrum for cognitive wireless network management. , 2020, , .		6
115	Resource allocation algorithm for downlink MIMOâ€OFDMA based cognitive radio networks in spectrum underlay scenario. IET Communications, 2020, 14, 1811-1820.	1.5	4
116	Double Threshold Weighted Energy Detection for Asynchronous PU Activities in the Presence of Noise Uncertainty. IEEE Access, 2020, 8, 177682-177692.	2.6	8
117	Multi•ycle spectrum sensing for OFDM signals under cyclic frequency offsets in cognitive vehicular networks. IET Communications, 2020, 14, 2259-2269.	1.5	0
118	A Blind Signal Samples Detection Algorithm for Accurate Primary User Traffic Estimation. Sensors, 2020, 20, 4136.	2.1	3
119	A Survey on Routing Protocols for Delay and Energy-Constrained Cognitive Radio Networks. IEEE Access, 2020, 8, 198779-198800.	2.6	11
120	On the secrecy rate region and outage probability of secondary wiretap multiple access channel over dissimilar Rayleigh/Nakagami fading. Physical Communication, 2020, 41, 101117.	1.2	0
121	A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions. IEEE Communications Surveys and Tutorials, 2020, 22, 796-839.	24.8	158
122	Cooperative privacy provisioning for energy harvesting based cognitive multi-relay networks. China Communications, 2020, 17, 125-137.	2.0	7
123	Improved Spectrum Sensing Schemes Using Prewhitening and Weights Under Spatially Correlated Noise. Wireless Personal Communications, 2020, 115, 153-171.	1.8	2
124	Traffic classification at the radio spectrum level using deep learning models trained with synthetic data. International Journal of Network Management, 2020, 30, e2100.	1.4	7
125	The Potential Short- and Long-Term Disruptions and Transformative Impacts of 5G and Beyond Wireless Networks: Lessons Learnt From the Development of a 5G Testbed Environment. IEEE Access, 2020, 8, 11352-11379.	2.6	47
126	Power management for spectrum sharing in cognitive radio communication system: a comprehensive survey. Journal of Electromagnetic Waves and Applications, 2020, 34, 407-461.	1.0	10
127	Decision-Driven Time-Adaptive Spectrum Sensing in Cognitive Radio Networks. IEEE Transactions on Wireless Communications, 2020, 19, 2756-2769.	6.1	19
128	Self-Sustaining Wireless Communication Networks. , 2020, , 3-32.		0

#	Article	IF	CITATIONS
129	Satellite Communications in the New Space Era: A Survey and Future Challenges. IEEE Communications Surveys and Tutorials, 2021, 23, 70-109.	24.8	447
130	Secrecy Energy Efficiency in Cognitive Radio Networks With Untrusted Secondary Users. IEEE Transactions on Green Communications and Networking, 2021, 5, 216-230.	3.5	4
131	An RFML Ecosystem: Considerations for the Application of Deep Learning to Spectrum Situational Awareness. IEEE Open Journal of the Communications Society, 2021, 2, 2243-2264.	4.4	5
132	A Survey of Energy and Spectrum Harvesting Technologies and Protocols for Next Generation Wireless Networks. IEEE Access, 2021, 9, 1737-1769.	2.6	16
133	Performance Analysis of Hard Fusion Rules in Cognitive Radio Networks Over Composite Channels. Communications in Computer and Information Science, 2021, , 585-596.	0.4	0
134	Radio Propagation in Terrestrial Broadcasting Television Systems: A Comprehensive Survey. IEEE Access, 2021, 9, 34789-34817.	2.6	7
136	Overview of Cognitive Radio Networks. Journal of Physics: Conference Series, 2021, 1831, 012013.	0.3	6
137	Review on Classical to Deep Spectrum Sensing in Cognitive Radio Networks. , 2021, , .		7
138	Maximize Spectrum Efficiency in Underlay Coexistence With Channel Uncertainty. IEEE/ACM Transactions on Networking, 2021, 29, 764-778.	2.6	1
142	Deep Neural Network-Based Robust Spectrum Sensing: Exploiting Phase Difference Distribution. , 2021, ,		4
143	An overview of deep reinforcement learning for spectrum sensing in cognitive radio networks. , 2021, 113, 103014.		22
144	Cooperative Spectrum Sensing using DQN in CRN. EAI Endorsed Transactions on Mobile Communications and Applications, 2021, 6, 170290.	0.5	2
145	Compressive narrowband interference detection and parameter estimation in direct sequence spread spectrum communication. IET Signal Processing, 0, , .	0.9	0
146	Probabilistic Spectrum Sensing Based on Feature Detection for 6G Cognitive Radio: A Survey. IEEE Access, 2021, 9, 116994-117026.	2.6	26
147	Experimental Study of an Underlay Cognitive Radio System: Model Validation and Demonstration. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2016, , 511-523.	0.2	3
148	Spectrum sensing optimization in uncalibrated massive antennas systems. Physical Communication, 2021, 49, 101484.	1.2	2
149	Modelling and Performance Analysis of Cognitive Radio Systems from a Deployment Perspective. , 2017, , 1-42.		0
150	Throughput Enhancement Using Bandwidth Wastage in MAC Protocol of the Distributed Cognitive Radio Network. , 2017, , 131-143.		0

#	Article	IF	CITATIONS
151	A Practical Privacy Preserving Protocol in Database-Driven Cognitive Radio Networks. Lecture Notes in Computer Science, 2018, , 634-648.	1.0	1
152	Energy-Saving Algorithm Based on Reducing Redundant Uploading Information in Cooperative Spectrum Sensing. Lecture Notes in Electrical Engineering, 2019, , 1096-1104.	0.3	0
153	Mobile Communications and Computing: A Broad Review with a Focus on Smart Healthcare. Intelligent Systems Reference Library, 2020, , 9-33.	1.0	2
154	Survey on Advanced Spectrum Sharing Using Cognitive Radio Technique. Advances in Intelligent Systems and Computing, 2021, , 639-647.	0.5	3
155	A General Approach for Traffic Classification in Wireless Networks Using Deep Learning. IEEE Transactions on Network and Service Management, 2022, 19, 5044-5063.	3.2	9
156	Comparative Evaluation Approach for Spectrum Sensing in Cognitive Wireless Sensor Networks (C-WSNs). Canadian Journal of Electrical and Computer Engineering, 2018, 41, 77-86.	1.5	8
157	A New Spectrum Sensing Method with Low SNR under Laplace Noise. , 2020, , .		0
158	Differential Privacy in Cognitive Radio Networks: A Comprehensive Survey. Cognitive Computation, 2022, 14, 475-510.	3.6	6
159	Secondary spectrum allocation framework via concurrent auctions for 5G and beyond networks. Wireless Networks, 2022, 28, 1489-1504.	2.0	2
160	Energy Efficiency of Ambient Backscattering-Based Cognitive Radio Networks Under Jamming Attack. , 2021, , .		0
161	Ambient Backscatter Communication-Assisted Cognitive Radios in the Presence of Jammer. , 2021, , .		0
162	Broadcasting in Cognitive Radio Networks: A Fountain Codes Approach. IEEE Transactions on Vehicular Technology, 2022, 71, 11289-11294.	3.9	13
163	A Glimpse of Physical Layer Decision Mechanisms: Facts, Challenges, and Remedies. IEEE Open Journal of the Communications Society, 2022, 3, 1280-1294.	4.4	0
165	Robust Spectrum Sensing Based on Phase Difference Distribution. IEEE Transactions on Cognitive Communications and Networking, 2023, 9, 28-42.	4.9	0
166	Revisiting Model Order Selection: A Sub-Nyquist Sampling Blind Spectrum Sensing Scheme. IEEE Transactions on Wireless Communications, 2023, 22, 3371-3383.	6.1	1
167	Spectral-Correlation Based Spectrum Sensing Under Large Delay Spread Channels. IEEE Transactions on Vehicular Technology, 2023, 72, 3663-3675.	3.9	0
168	Maximizing Stable Throughput in Age of Information-Based Cognitive Radio. , 2022, , .		0
170	Multi-Agent Deep Reinforcement Learning for Interference-Aware Channel Allocation in Non-Terrestrial Networks. IEEE Communications Letters, 2023, 27, 936-940.	2.5	1

		CITATION RE	CITATION REPORT	
#	Article		IF	CITATIONS
171	Effects of Synchronization Errors on Wavelet-based CR-OFDM Systems in Doubly Selecti Channels. Wireless Personal Communications, 2023, 129, 2037-2054.	ve Fading	1.8	0
172	Literature Study of Resource Optimization in IWNs. Wireless Networks, 2023, , 13-24.		0.3	0
174	Estimating Multi-Dimensional Sparsity Level for Spectrum Sensing. , 2023, , .			0