Effect of the cytoplasmic domain on antigenic character glycoprotein

Science 349, 191-195 DOI: 10.1126/science.aaa9804

Citation Report

#	Article	IF	CITATIONS
1	Herpesvirus gB: A Finely Tuned Fusion Machine. Viruses, 2015, 7, 6552-6569.	1.5	76
2	The modern era of HIV-1 vaccine development. Science, 2015, 349, 139-140.	6.0	36
3	Immune correlates of vaccine protection against HIV-1 acquisition. Science Translational Medicine, 2015, 7, 310rv7.	5.8	179
4	Recent update in HIV vaccine development. Clinical and Experimental Vaccine Research, 2016, 5, 6.	1.1	26
5	VLP vaccines and effects of HIV-1 Env protein modifications on their antigenic properties. Molecular Biology, 2016, 50, 353-361.	0.4	3
6	Membrane bound Indian clade C HIV-1 envelope antigen induces antibodies to diverse and conserved epitopes upon DNA prime/protein boost in rabbits. Vaccine, 2016, 34, 2444-2452.	1.7	3
7	Effects of modification of the HIV-1 Env cytoplasmic tail on immunogenicity of VLP vaccines. Virology, 2016, 489, 141-150.	1.1	17
8	Identifying possible sites for antibody neutralization escape: Implications for unique functional properties of the C-terminal tail of Human Immunodeficiency Virus Type 1 gp41. Immunology Letters, 2016, 175, 21-30.	1.1	1
9	Effect of HIV-1 envelope cytoplasmic tail on adenovirus primed virus encoded virus-like particle immunizations. Vaccine, 2016, 34, 5344-5351.	1.7	11
10	Cell-to-Cell Spread of HIV and Viral Pathogenesis. Advances in Virus Research, 2016, 95, 43-85.	0.9	26
11	CD4-Induced Antibodies Promote Association of the HIV-1 Envelope Glycoprotein with CD4-Binding Site Antibodies. Journal of Virology, 2016, 90, 7822-7832.	1.5	14
12	Approaches to the induction of HIV broadly neutralizing antibodies. Current Opinion in HIV and AIDS, 2016, 11, 569-575.	1.5	15
13	Structural basis for membrane anchoring of HIV-1 envelope spike. Science, 2016, 353, 172-175.	6.0	169
14	Enhancing dendritic cell activation and HIV vaccine effectiveness through nanoparticle vaccination. Expert Review of Vaccines, 2016, 15, 719-729.	2.0	30
15	Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer. Science, 2016, 351, 1043-1048.	6.0	402
16	Polyvalent vaccine approaches to combat <scp>HIV</scp> †diversity. Immunological Reviews, 2017, 275, 230-244.	2.8	46
17	Germlineâ€ŧargeting immunogens. Immunological Reviews, 2017, 275, 203-216.	2.8	105
18	Reduced Potency and Incomplete Neutralization of Broadly Neutralizing Antibodies against Cell-to-Cell Transmission of HIV-1 with Transmitted Founder Envs. Journal of Virology, 2017, 91, .	1.5	57

ITATION REDO

		CITATION REPORT	
#	Article	IF	CITATIONS
19	Conformational States of a Soluble, Uncleaved HIV-1 Envelope Trimer. Journal of Virology, 2017, 91, .	1.5	19
20	Particle-based delivery of the HIV envelope protein. Current Opinion in HIV and AIDS, 2017, 12, 265-271.	1.5	16
21	Antigenicity-defined conformations of an extremely neutralization-resistant HIV-1 envelope spike. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4477-4482.	3.3	18
22	Dense Array of Spikes on HIV-1 Virion Particles. Journal of Virology, 2017, 91, .	1.5	53
23	Effects of partially dismantling the CD4 binding site glycan fence of HIV-1 Envelope glycoprotein trimers on neutralizing antibody induction. Virology, 2017, 505, 193-209.	1.1	36
24	Solution Structure and Membrane Interaction of the Cytoplasmic Tail of HIV-1 gp41 Protein. Structure, 2017, 25, 1708-1718.e5.	1.6	42
25	Characterization of a stable HIV-1 B/C recombinant, soluble, and trimeric envelope glycoprotein (Env) highly resistant to CD4-induced conformational changes. Journal of Biological Chemistry, 2017, 292, 15849-15858.	1.6	12
26	Stability and Water Accessibility of the Trimeric Membrane Anchors of the HIV-1 Envelope Spikes. Journal of the American Chemical Society, 2017, 139, 18432-18435.	6.6	25
27	Evaluation of the contribution of the transmembrane region to the ectodomain conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein. Virology Journal, 2017, 14, 33.	1.4	11
28	Identification of Human Anti-HIV gp160 Monoclonal Antibodies That Make Effective Immunotoxins. Journal of Virology, 2017, 91, .	1.5	18
29	Design and In Vivo Characterization of Immunoconjugates Targeting HIV gp160. Journal of Virology, 2017, 91, .	1.5	16
30	Structure of the transmembrane domain of <scp>HIV</scp> â€l envelope glycoprotein. FEBS Journal, 2017, 284, 1171-1177.	2.2	18
31	HIV vaccine research in Canada. AIDS Research and Therapy, 2017, 14, 54.	0.7	0
32	Comparison of Uncleaved and Mature Human Immunodeficiency Virus Membrane Envelope Glycoprotein Trimers. Journal of Virology, 2018, 92, .	1.5	40
33	Structural basis for membrane anchoring and fusion regulation of the herpes simplex virus fusogen gB. Nature Structural and Molecular Biology, 2018, 25, 416-424.	3.6	76
34	Increased surface expression of HIV-1 envelope is associated with improved antibody response in vaccinia prime/protein boost immunization. Virology, 2018, 514, 106-117.	1.1	29
35	Truncating the gp41 Cytoplasmic Tail of Simian Immunodeficiency Virus Decreases Sensitivity to Neutralizing Antibodies without Increasing the Envelope Content of Virions. Journal of Virology, 2018, 92, .	1.5	8
37	Structure of the membrane proximal external region of HIV-1 envelope glycoprotein. Proceedings of the United States of America, 2018, 115, E8892-E8899.	3.3	72

#	Article	IF	Citations
38	Rational Design of DNA-Expressed Stabilized Native-Like HIV-1 Envelope Trimers. Cell Reports, 2018, 24, 3324-3338.e5.	2.9	49
39	HIV-1 Env gp41 Transmembrane Domain Dynamics Are Modulated by Lipid, Water, and Ion Interactions. Biophysical Journal, 2018, 115, 84-94.	0.2	13
40	Cell surface ectodomain integrity of a subset of functional HIV-1 envelopes is dependent on a conserved hydrophilic domain containing region in their C-terminal tail. Retrovirology, 2018, 15, 50.	0.9	15
41	Advances in Membrane Proteins. , 2018, , .		0
42	HIV-1 cell-to-cell transmission and broadly neutralizing antibodies. Retrovirology, 2018, 15, 51.	0.9	43
43	Structural Insights from HIV-Antibody Coevolution and Related Immunization Studies. AIDS Research and Human Retroviruses, 2018, 34, 760-768.	0.5	2
44	Virus-Like-Vaccines against HIV. Vaccines, 2018, 6, 10.	2.1	19
45	Molecular Mechanism of HIV-1 Entry. Trends in Microbiology, 2019, 27, 878-891.	3.5	173
46	Structural insights into coronavirus entry. Advances in Virus Research, 2019, 105, 93-116.	0.9	669
47	Identification of a Novel Universal Potential Epitope on the Cytoplasmic Tail of H7N9 Virus Hemagglutinin. Virologica Sinica, 2019, 34, 334-337.	1.2	1
48	Cytoplasmic R-peptide of murine leukemia virus envelope protein negatively regulates its interaction with the cell surface receptor. Virology, 2019, 532, 82-87.	1.1	3
49	Characterization of HIV-1 Nucleoside-Modified mRNA Vaccines in Rabbits and Rhesus Macaques. Molecular Therapy - Nucleic Acids, 2019, 15, 36-47.	2.3	79
50	Conformational Differences between Functional Human Immunodeficiency Virus Envelope Glycoprotein Trimers and Stabilized Soluble Trimers. Journal of Virology, 2019, 93, .	1.5	22
51	Harnessing Antibody-Dependent Cellular Cytotoxicity To Control HIV-1 Infection. ACS Infectious Diseases, 2019, 5, 158-176.	1.8	5
52	Structural basis of coreceptor recognition by HIV-1 envelope spike. Nature, 2019, 565, 318-323.	13.7	165
53	Cloning, expression and nanodiscs assemble of recombinant HIV-1 gp41. Microbial Pathogenesis, 2020, 138, 103824.	1.3	10
54	The lipid membrane of HIV-1 stabilizes the viral envelope glycoproteins and modulates their sensitivity to antibody neutralization. Journal of Biological Chemistry, 2020, 295, 348-362.	1.6	46
55	Distinct conformational states of SARS-CoV-2 spike protein. Science, 2020, 369, 1586-1592.	6.0	995

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
56	Conditionally Replicating Vectors Mobilize Chimeric Antigen Receptors against HIV. Molecular Therapy - Methods and Clinical Development, 2020, 19, 285-294.	1.8	8
57	Antigenicity and Immunogenicity of HIV-1 Envelope Trimers Complexed to a Small-Molecule Viral Entry Inhibitor. Journal of Virology, 2020, 94, .	1.5	5
58	Efficiently cleaved HIV-1 envelopes: can they be important for vaccine immunogen development?. , 2020, 8, 251513552095776.	1.4	4
59	SARS-CoV-2, Early Entry Events. Journal of Pathogens, 2020, 2020, 1-11.	0.9	21
60	Structural basis of transmembrane coupling of the HIV-1 envelope glycoprotein. Nature Communications, 2020, 11, 2317.	5.8	49
61	HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes. Nature Chemical Biology, 2020, 16, 529-537.	3.9	28
62	Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. Cell Host and Microbe, 2020, 28, 475-485.e5.	5.1	380
63	Cryo-EM Structure of Full-length HIV-1 Env Bound With the Fab of Antibody PG16. Journal of Molecular Biology, 2020, 432, 1158-1168.	2.0	47
64	Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science, 2021, 371, .	6.0	49
65	HIVâ€∃ Envelope Spike MPER: From a Vaccine Target to a New Druggable Pocket for Novel and Effective Fusion Inhibitors. ChemMedChem, 2021, 16, 105-107.	1.6	5
66	HIV-1 Entry and Membrane Fusion Inhibitors. Viruses, 2021, 13, 735.	1.5	34
67	NMR Model of the Entire Membrane-Interacting Region of the HIV-1 Fusion Protein and Its Perturbation of Membrane Morphology. Journal of the American Chemical Society, 2021, 143, 6609-6615.	6.6	8
68	Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science, 2021, 372, 525-530.	6.0	344
69	Enhanced target cell specificity and uptake of lipid nanoparticles using RNA aptamers and peptides. Beilstein Journal of Organic Chemistry, 2021, 17, 891-907.	1.3	15
71	Deletion of the SARS-CoV-2 Spike Cytoplasmic Tail Increases Infectivity in Pseudovirus Neutralization Assays. Journal of Virology, 2021, 95, .	1.5	80
72	HIV envelope tail truncation confers resistance to SERINC5 restriction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
73	Membrane Interference Against HIV-1 by Intrinsic Antiviral Factors: The Case of IFITMs. Cells, 2021, 10, 1171.	1.8	14
74	Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants. Science, 2021, 373, 642-648.	6.0	211

#	Article	IF	CITATIONS
76	Bispecific Anti-HIV Immunoadhesins That Bind Gp120 and Gp41 Have Broad and Potent HIV-Neutralizing Activity. Vaccines, 2021, 9, 774.	2.1	5
78	Truncation of the Cytoplasmic Tail of Equine Infectious Anemia Virus Increases Virion Production by Improving Env Cleavage and Plasma Membrane Localization. Journal of Virology, 2021, 95, e0108721.	1.5	3
79	Cytoplasmic Tail Truncation of SARS-CoV-2 Spike Protein Enhances Titer of Pseudotyped Vectors but Masks the Effect of the D614G Mutation. Journal of Virology, 2021, 95, e0096621.	1.5	17
80	HIV-1 entry: Duels between Env and host antiviral transmembrane proteins on the surface of virus particles. Current Opinion in Virology, 2021, 50, 59-68.	2.6	7
81	Structural and Functional Properties of Viral Membrane Proteins. , 2018, , 147-181.		5
82	Characterization of the membrane-bound form of the chimeric, B/C recombinant HIV-1 Env, LT5.J4b12C. Journal of General Virology, 2018, 99, 1438-1443.	1.3	5
86	Antigenic characterization of the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor incorporated into nanodiscs. PLoS ONE, 2017, 12, e0170672.	1.1	10
87	HIV transmitted/founder vaccines elicit autologous tier 2 neutralizing antibodies for the CD4 binding site. PLoS ONE, 2017, 12, e0177863.	1.1	10
88	Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. SSRN Electronic Journal, 2020, , 3606354.	0.4	16
89	Taming the AIDS Epidemic: a Commentary on Vaccine and Non-Vaccine Approaches to Combatting HIV-1. , 2016, 2, .		0
94	Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant. Science, 2021, 374, 1353-1360.	6.0	246
96	Engineered extracellular vesicles directed to the spike protein inhibit SARS-CoV-2. Molecular Therapy - Methods and Clinical Development, 2022, 24, 355-366.	1.8	19
97	Cryo-ET of Env on intact HIV virions reveals structural variation and positioning on the Gag lattice. Cell, 2022, 185, 641-653.e17.	13.5	50
98	The HIV Env Glycoprotein Conformational States on Cells and Viruses. MBio, 2022, 13, e0182521.	1.8	11
99	Structural and functional impact by SARS-CoV-2 Omicron spike mutations. Cell Reports, 2022, 39, 110729.	2.9	102
101	HIV-1 mutants expressing B cell clonogenic matrix protein p17 variants are increasing their prevalence worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	1
102	Endodomain truncation of the HIV-1 envelope protein improves the packaging efficiency of pseudoviruses. Virology, 2022, 574, 1-8.	1.1	1
103	Analysis of HIV-1 envelope cytoplasmic tail effects on viral replication. Virology, 2023, 579, 54-66.	1.1	1

CITATION REPORT

#	Article	IF	CITATIONS
105	Identification of Anti-gp41 Monoclonal Antibodies That Effectively Target Cytotoxic Immunoconjugates to Cells Infected with Human Immunodeficiency Virus, Type 1. Vaccines, 2023, 11, 829.	2.1	1