Assessment of Microbial Fuel Cell Configurations and P

Environmental Science and Technology Letters 2, 206-214 DOI: 10.1021/acs.estlett.5b00180

Citation Report

#	Article	IF	CITATIONS
2	Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells. Bioresource Technology, 2015, 197, 318-322.	4.8	41
3	Performance evaluation of a continuous-flow bioanode microbial electrolysis cell fed with furanic and phenolic compounds. RSC Advances, 2016, 6, 65563-65571.	1.7	12
4	Immobilization of Anodophilic Biofilms for Use in Aerotolerant Bioanodes of Microbial Fuel Cells. ACS Applied Materials & Interfaces, 2016, 8, 34985-34990.	4.0	12
5	Acclimatization of microbial consortia to alkaline conditions and enhanced electricity generation. Bioresource Technology, 2016, 211, 736-742.	4.8	25
6	Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells. Bioresource Technology, 2016, 211, 542-547.	4.8	74
7	Mechanisms of Bacterial Extracellular Electron Exchange. Advances in Microbial Physiology, 2016, 68, 87-138.	1.0	140
8	Enhanced power generation using nano cobalt oxide anchored nitrogen-decorated reduced graphene oxide as a high-performance air-cathode electrocatalyst in biofuel cells. RSC Advances, 2016, 6, 52556-52563.	1.7	32
9	Enhanced performance of nitrogen-doped carbon nanotube membrane-based filtration cathode microbial fuel cell. Electrochimica Acta, 2016, 211, 199-206.	2.6	32
10	Microbial fuel cells and osmotic membrane bioreactors have mutual benefits for wastewater treatment and energy production. Water Research, 2016, 98, 183-189.	5.3	78
11	Carbon nanotube modification of microbial fuel cell electrodes. Biosensors and Bioelectronics, 2016, 85, 536-552.	5.3	116
12	Microbial Electrochemical Systems with Future Perspectives using Advanced Nanomaterials and Microfluidics. Advanced Energy Materials, 2016, 6, 1600690.	10.2	20
13	The excellent performance of nest-like oxygen-deficient Cu 1.5 Mn 1.5 O 4 applied in activated carbon air-cathode microbial fuel cell. Bioresource Technology, 2016, 222, 107-113.	4.8	18
14	Ohmic resistance affects microbial community and electrochemical kinetics in a multi-anode microbial electrochemical cell. Journal of Power Sources, 2016, 331, 315-321.	4.0	39
15	Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells. Journal of Power Sources, 2016, 332, 447-453.	4.0	22
16	Electricity generation from defective tomatoes. Bioelectrochemistry, 2016, 112, 67-76.	2.4	24
17	Highâ€Performance Carbon Aerogel Air Cathodes for Microbial Fuel Cells. ChemSusChem, 2016, 9, 2788-2795.	3.6	41
18	The effect of flow modes and electrode combinations on the performance of a multiple module microbial fuel cell installed at wastewater treatment plant. Water Research, 2016, 105, 351-360.	5.3	86
19	Continuous treatment of high strength wastewaters using air-cathode microbial fuel cells. Bioresource Technology, 2016, 221, 96-101.	4.8	89

#	Article	IF	CITATIONS
20	Immobilization of a Metal–Nitrogen–Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells. ChemSusChem, 2016, 9, 2226-2232.	3.6	109
21	Wastewater treatment by Microbial Fuel Cell (MFC) prior irrigation water reuse. Journal of Cleaner Production, 2016, 137, 144-149.	4.6	80
22	High Biofilm Conductivity Maintained Despite Anode Potential Changes in a <i>Geobacter</i> â€Enriched Biofilm. ChemSusChem, 2016, 9, 3485-3491.	3.6	31
23	Ion transport in microbial fuel cells: Key roles, theory and critical review. Applied Energy, 2016, 183, 1682-1704.	5.1	139
24	Impact of acclimation methods on microbial communities and performance of anaerobic fluidized bed membrane bioreactors. Environmental Science: Water Research and Technology, 2016, 2, 1041-1048.	1.2	6
25	Binder-free nitrogen-doped graphene catalyst air-cathodes for microbial fuel cells. Journal of Materials Chemistry A, 2016, 4, 12387-12391.	5.2	45
26	An integrated 45 L pilot microbial fuel cell system at a full-scale wastewater treatment plant. Bioresource Technology, 2016, 218, 115-122.	4.8	161
27	Engineering a membrane based air cathode for microbial fuel cells via hot pressing and using multi-catalyst layer stacking. Environmental Science: Water Research and Technology, 2016, 2, 858-863.	1.2	9
28	Enhanced electrical power generation using flame-oxidized stainless steel anode in microbial fuel cells and the anodic community structure. Biotechnology for Biofuels, 2016, 9, 62.	6.2	42
29	Diffusion layer characteristics for increasing the performance of activated carbon air cathodes in microbial fuel cells. Environmental Science: Water Research and Technology, 2016, 2, 266-273.	1.2	38
30	Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost. Environmental Science: Water Research and Technology, 2016, 2, 274-281.	1.2	200
31	Effect of buffer charge on performance of air-cathodes used in microbial fuel cells. Electrochimica Acta, 2016, 194, 441-447.	2.6	31
32	Wastewater treatment in microbial fuel cells – an overview. Journal of Cleaner Production, 2016, 122, 287-307.	4.6	422
33	Long-term operation of double chambered microbial fuel cell for bio-electro denitrification. Bioprocess and Biosystems Engineering, 2016, 39, 893-900.	1.7	23
34	Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Applied Energy, 2016, 168, 706-723.	5.1	599
35	A monolithic three-dimensional macroporous graphene anode with low cost for high performance microbial fuel cells. RSC Advances, 2016, 6, 21001-21010.	1.7	23
36	Performance of anaerobic fluidized membrane bioreactors using effluents of microbial fuel cells treating domestic wastewater. Bioresource Technology, 2016, 208, 58-63.	4.8	58
37	Three-dimensional, highly porous N-doped carbon foam as microorganism propitious, efficient anode for high performance microbial fuel cell. RSC Advances, 2016, 6, 25799-25807.	1.7	44

#	Article	IF	CITATIONS
38	Microbial fuel cells with an integrated spacer and separate anode and cathode modules. Environmental Science: Water Research and Technology, 2016, 2, 186-195.	1.2	49
39	Tools for the Microbiome: Nano and Beyond. ACS Nano, 2016, 10, 6-37.	7.3	137
40	Efficient removal of nitrobenzene and concomitant electricity production by single-chamber microbial fuel cells with activated carbon air-cathode. Bioresource Technology, 2017, 229, 111-118.	4.8	25
41	Treatment of reverse osmosis concentrate using microbial electrolysis desalination and chemical production cell. Desalination, 2017, 408, 52-59.	4.0	41
42	Three promising applications of microbial electrochemistry for the water sector. Environmental Science: Water Research and Technology, 2017, 3, 391-402.	1.2	56
43	Improving the performance of microbial fuel cells by reducing the inherent resistivity of carbon fiber brush anodes. Journal of Power Sources, 2017, 348, 193-200.	4.0	35
44	Separator electrode assembly (SEA) with 3-dimensional bioanode and removable air-cathode boosts microbial fuel cell performance. Journal of Power Sources, 2017, 356, 389-399.	4.0	53
45	Strategies for merging microbial fuel cell technologies in water desalination processes: Start-up protocol and desalination efficiency assessment. Journal of Power Sources, 2017, 356, 519-528.	4.0	50
46	Effect of electrode sub-micron surface feature size on current generation of Shewanella oneidensis in microbial fuel cells. Journal of Power Sources, 2017, 347, 270-276.	4.0	17
47	Development of Microbial Fuel Cells Needs To Go beyond "Power Density― ACS Energy Letters, 2017, 2, 700-702.	8.8	47
48	Efficient Methane Production from Beer Wastewater in a Membraneless Microbial Electrolysis Cell with a Stacked Cathode: The Effect of the Cathode/Anode Ratio on Bioenergy Recovery. Energy & Fuels, 2017, 31, 615-620.	2.5	52
49	Concurrent hydrogen production and phosphorus recovery in dual chamber microbial electrolysis cell. Bioresource Technology, 2017, 237, 193-203.	4.8	37
50	Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater. Journal of Power Sources, 2017, 356, 274-287.	4.0	144
51	The impact of new cathode materials relative to baseline performance of microbial fuel cells all with the same architecture and solution chemistry. Energy and Environmental Science, 2017, 10, 1025-1033.	15.6	105
52	Microbial fuel cells: Advances in electrode modifications for improvement of system performance. International Journal of Green Energy, 2017, 14, 712-723.	2.1	42
53	Development of a novel proton exchange membrane-free integrated MFC system with electric membrane bioreactor and air contact oxidation bed for efficient and energy-saving wastewater treatment. Bioresource Technology, 2017, 238, 472-483.	4.8	50
54	A composite cathode membrane with CoFe ₂ O ₄ –rGO/PVDF on carbon fiber cloth: synthesis and performance in a photocatalysis-assisted MFC-MBR system. Environmental Science: Nano, 2017, 4, 335-345.	2.2	33
55	Influence of the electrode size on microbial anode performance. Chemical Engineering Journal, 2017, 327, 218-227.	6.6	32

#	Article	IF	CITATIONS
56	Enhanced performance of microbial fuel cell with in situ preparing dual graphene modified bioelectrode. Bioresource Technology, 2017, 241, 735-742.	4.8	43
57	Low Temperature Domestic Wastewater Treatment in a Microbial Electrolysis Cell with 1 m ² Anodes: Towards System Scaleâ€Up. Fuel Cells, 2017, 17, 584-592.	1.5	70
58	Durability and regeneration of activated carbon air-cathodes in long-term operated microbial fuel cells. Journal of Power Sources, 2017, 360, 21-27.	4.0	52
59	Microbial stratification structure within cathodic biofilm of the microbial fuel cell using the freezing microtome method. Bioresource Technology, 2017, 241, 384-390.	4.8	32
60	Corrugated stainless-steel mesh as a simple engineerable electrode module in bio-electrochemical system: Hydrodynamics and the effects on decolorization performance. Journal of Hazardous Materials, 2017, 338, 287-295.	6.5	28
61	The Microbial Electrochemical Current Accelerates Urea Hydrolysis for Recovery of Nutrients from Source-Separated Urine. Environmental Science and Technology Letters, 2017, 4, 305-310.	3.9	50
62	Enhanced photocurrent production by the synergy of hematite nanowire-arrayed photoanode and bioengineered Shewanella oneidensis MR-1. Biosensors and Bioelectronics, 2017, 94, 227-234.	5.3	57
63	Anode air exposure during microbial fuel cell operation inoculated with marine sediment. Journal of Environmental Chemical Engineering, 2017, 5, 1821-1827.	3.3	11
64	Current density reversibly alters metabolic spatial structure of exoelectrogenic anode biofilms. Journal of Power Sources, 2017, 356, 566-571.	4.0	40
65	Microbial activity influences electrical conductivity of biofilm anode. Water Research, 2017, 127, 230-238.	5.3	61
66	Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater. Bioelectrochemistry, 2017, 118, 154-160.	2.4	30
67	Subminimal inhibitory concentration (sub-MIC) of antibiotic induces electroactive biofilm formation in bioelectrochemical systems. Water Research, 2017, 125, 280-287.	5.3	63
68	Computational and experimental analysis of organic degradation positively regulated by bioelectrochemistry in an anaerobic bioreactor system. Water Research, 2017, 125, 170-179.	5.3	64
69	Integrating cost-effective microbial fuel cells and energy-efficient capacitive deionization for advanced domestic wastewater treatment. Chemical Engineering Journal, 2017, 330, 1-10.	6.6	66
70	Self-sustaining advanced wastewater purification and simultaneous in situ nutrient recovery in a novel bioelectrochemical system. Chemical Engineering Journal, 2017, 330, 692-697.	6.6	56
71	A conductive wood membrane anode improves effluent quality of microbial fuel cells. Environmental Science: Water Research and Technology, 2017, 3, 940-946.	1.2	19
72	Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security. Environmental Science & Technology, 2017, 51, 10274-10281.	4.6	129
73	Enhanced Bioelectrocatalysis of <i>Shewanella oneidensis</i> MR-1 by a Naphthoquinone Redox Polymer. ACS Energy Letters, 2017, 2, 1947-1951.	8.8	32

#	Article	IF	CITATIONS
74	Electricity production and sludge reduction by integrating microbial fuel cells in anoxic-oxic process. Waste Management, 2017, 69, 346-352.	3.7	16
75	Improved performance of the microbial electrolysis desalination and chemical-production cell with enlarged anode and high applied voltages. Bioresource Technology, 2017, 244, 913-919.	4.8	41
76	Integration of Upscaled Microbial Fuel Cells in Real Municipal Sewage Plants. ECS Transactions, 2017, 77, 1053-1077.	0.3	7
77	Generating Electric Current by Bioartificial Photosynthesis. Advances in Biochemical Engineering/Biotechnology, 2017, 167, 361-393.	0.6	2
78	Response of anodic biofilm to hydrodynamic shear in two-chamber bioelectrochemical systems. Electrochimica Acta, 2017, 258, 1304-1310.	2.6	13
79	Electricity generation from digitally printed cyanobacteria. Nature Communications, 2017, 8, 1327.	5.8	112
80	Microbial fuel cells connected in series in a common electrolyte underperform: Understanding why and in what context such a set-up can be applied. Electrochimica Acta, 2017, 246, 879-889.	2.6	29
81	Carbon nanotube fiber mats for microbial fuel cell electrodes. Bioresource Technology, 2017, 243, 1227-1231.	4.8	63
82	Protection of Electroactive Biofilm from Extreme Acid Shock by Polydopamine Encapsulation. Environmental Science and Technology Letters, 2017, 4, 345-349.	3.9	39
83	Electric field induced salt precipitation into activated carbon air-cathode causes power decay in microbial fuel cells. Water Research, 2017, 123, 369-377.	5.3	106
84	An excellent anaerobic respiration mode for chitin degradation by Shewanella oneidensis MR-1 in microbial fuel cells. Biochemical Engineering Journal, 2017, 118, 20-24.	1.8	26
85	Bioelectrochemical approaches for removal of sulfate, hydrocarbon and salinity from produced water. Chemosphere, 2017, 166, 96-108.	4.2	67
86	In vitro metabolic engineering of bioelectricity generation by the complete oxidation of glucose. Metabolic Engineering, 2017, 39, 110-116.	3.6	69
87	Evaluation of generation of electricity from wastewater using microbial fuel cell. International Journal of Renewable Energy Technology, 2017, 8, 183.	0.2	0
88	Metal-Free Carbon-Based Materials: Promising Electrocatalysts for Oxygen Reduction Reaction in Microbial Fuel Cells. International Journal of Molecular Sciences, 2017, 18, 25.	1.8	67
89	Analysis of Anodes of Microbial Fuel Cells When Carbon Brushes Are Preheated at Different Temperatures. Catalysts, 2017, 7, 312.	1.6	12
90	Future Microbial Applications for Bioenergy Production: A Perspective. Frontiers in Microbiology, 2017, 8, 450.	1.5	60
91	Water Treatment, Industrial â~†. , 2017, , 581-581.		0

#	Article	IF	Citations
92	Emerging and Combined Electrochemical Methods. , 2017, , 131-225.		5
93	Microbial Fuel Cells. , 2017, , 245-259.		9
94	Ceramic Microbial Fuel Cells Stack: power generation in standard and supercapacitive mode. Scientific Reports, 2018, 8, 3281.	1.6	55
95	Effects of anode spacing and flow rate on energy recovery of flat-panel air-cathode microbial fuel cells using domestic wastewater. Bioresource Technology, 2018, 258, 57-63.	4.8	25
96	Iron (III) metaphosphate/iron phosphide heterojunctions embedded in partly-graphitized carbon for enhancing charge transfer and power generation in microbial fuel cells. Chemical Engineering Journal, 2018, 342, 228-237.	6.6	32
97	mcrA sequencing reveals the role of basophilic methanogens in a cathodic methanogenic community. Water Research, 2018, 136, 192-199.	5.3	77
98	Efficient In Situ Utilization of Caustic for Sequential Recovery and Separation of Sn, Fe, and Cu in Microbial Fuel Cells. ChemElectroChem, 2018, 5, 1658-1669.	1.7	13
99	Low-cost stainless-steel wool anodes modified with polyaniline and polypyrrole for high-performance microbial fuel cells. Journal of Power Sources, 2018, 379, 103-114.	4.0	97
100	Copper current collectors reduce long-term fouling of air cathodes in microbial fuel cells. Environmental Science: Water Research and Technology, 2018, 4, 513-519.	1.2	22
101	A novel filtration composite anode configuration of microbial fuel cell for efficient wastewater treatment and enhanced power generation. Journal of Cleaner Production, 2018, 178, 305-313.	4.6	20
102	Molybdenum anode: a novel electrode for enhanced power generation in microbial fuel cells, identified via extensive screening of metal electrodes. Biotechnology for Biofuels, 2018, 11, 39.	6.2	45
103	One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Research, 2018, 141, 1-8.	5.3	261
104	Hydrogen production rates with closely-spaced felt anodes and cathodes compared to brush anodes in two-chamber microbial electrolysis cells. International Journal of Hydrogen Energy, 2018, 43, 9599-9606.	3.8	34
105	Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells. Applied Energy, 2018, 219, 199-206.	5.1	37
106	Effect of mode of operation, substrate and final electron acceptor on single-chamber membraneless microbial fuel cell operating with a mixed community. Journal of Electroanalytical Chemistry, 2018, 814, 104-110.	1.9	21
107	Performance of integrated bioelectrochemical membrane reactor: Energy recovery, pollutant removal and membrane fouling alleviation. Journal of Power Sources, 2018, 384, 178-186.	4.0	18
108	Feasible use of microbial fuel cells for pollution treatment. Renewable Energy, 2018, 129, 824-829.	4.3	41
109	Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances. International Journal of Energy Research, 2018, 42, 369-394.	2.2	173

#	Article	IF	CITATIONS
110	A novel bio-electrochemical system with sand/activated carbon separator, Al anode and bio-anode integrated micro-electrolysis/electro-flocculation cost effectively treated high load wastewater with energy recovery. Bioresource Technology, 2018, 249, 24-34.	4.8	24
111	Methane-driven microbial fuel cells recover energy and mitigate dissolved methane emissions from anaerobic effluents. Environmental Science: Water Research and Technology, 2018, 4, 67-79.	1.2	38
112	Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari. Bioelectrochemistry, 2018, 119, 142-149.	2.4	37
113	High tolerance of and removal of cefazolin sodium in single-chamber microbial fuel cells operation. Bioresource Technology, 2018, 249, 76-81.	4.8	51
114	Microbial ecologyâ€based engineering of Microbial Electrochemical Technologies. Microbial Biotechnology, 2018, 11, 22-38.	2.0	27
115	Influence of glass wool as separator on bioelectricity generation in a constructed wetland-microbial fuel cell. Journal of Environmental Management, 2018, 207, 116-123.	3.8	45
116	Efficiently "pumping out―value-added resources from wastewater by bioelectrochemical systems: A review from energy perspectives. Water Research, 2018, 131, 62-73.	5.3	117
117	Energy Recovery with Microbial Fuel Cells: Bioremediation and Bioelectricity. Energy, Environment, and Sustainability, 2018, , 7-33.	0.6	13
118	3D printed porous carbon anode for enhanced power generation in microbial fuel cell. Nano Energy, 2018, 44, 174-180.	8.2	151
119	Flexible and Stretchable Biobatteries: Monolithic Integration of Membraneâ€Free Microbial Fuel Cells in a Single Textile Layer. Advanced Energy Materials, 2018, 8, 1702261.	10.2	64
120	Wastewater treatment and electricity generation from a sunlight-powered single chamber microbial fuel cell. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 432-440.	2.0	36
121	Highly efficient charge transfer in Co/Co2P Schottky junctions embedded in nitrogen-doped porous carbon for enhancing bioelectricity generation. Biosensors and Bioelectronics, 2018, 102, 101-105.	5.3	29
122	Emerging investigators series: revisiting greenhouse gas mitigation from conventional activated sludge and anaerobic-based wastewater treatment systems. Environmental Science: Water Research and Technology, 2018, 4, 1739-1758.	1.2	24
123	Applications of Emerging Bioelectrochemical Technologies in Agricultural Systems: A Current Review. Energies, 2018, 11, 2951.	1.6	19
124	High-Performance Capacitive Deionization via Manganese Oxide-Coated, Vertically Aligned Carbon Nanotubes. Environmental Science and Technology Letters, 2018, 5, 692-700.	3.9	69
125	Prospects in bioelectrochemical technologies for wastewater treatment. Water Science and Technology, 2018, 78, 1237-1248.	1.2	16
126	Biodegradation of oxytetracycline and electricity generation in microbial fuel cell with in situ dual graphene modified bioelectrode. Bioresource Technology, 2018, 270, 482-488.	4.8	65
127	Sustainable Waste-to-Energy Technologies: Bioelectrochemical Systems. , 2018, , 111-140.		4

#	Article	IF	CITATIONS
128	Miniaturized Ceramic-Based Microbial Fuel Cell for Efficient Power Generation From Urine and Stack Development. Frontiers in Energy Research, 2018, 6, 84.	1.2	53
129	Microbial fuel cell stack power to lithium battery stack: Pilot concept for scale up. Applied Energy, 2018, 230, 1633-1644.	5.1	35
130	Pyrenyl-carbon nanostructures for scalable enzyme electrocatalysis and biological fuel cells. Analyst, The, 2018, 143, 2876-2882.	1.7	6
132	Using metabolic charge production in the tricarboxylic acid cycle (QTCA) to evaluate the extracellular-electron-transfer performances of Shewanella spp Bioelectrochemistry, 2018, 124, 119-126.	2.4	5
133	Future Perspectives on Cost-Effective Microbial Fuel Cells in Rural Areas. , 2018, , 283-302.		2
134	Electrochemical reduction of hexavalent chromium on titania nanotubes with urea as an anolyte additive. Electrochimica Acta, 2018, 284, 427-435.	2.6	40
135	Impact of Ohmic Resistance on Measured Electrode Potentials and Maximum Power Production in Microbial Fuel Cells. Environmental Science & Technology, 2018, 52, 8977-8985.	4.6	73
136	Rewiring Extremophilic Electrocatalytic Processes for Production of Biofuels and Value-Added Compounds from Lignocellulosic Biomass. , 2018, , 229-245.		3
137	Optimizing the electrode surface area of sediment microbial fuel cells. RSC Advances, 2018, 8, 25319-25324.	1.7	23
138	Hydrogen consumption and methanogenic community evolution in anodophilic biofilms in single chamber microbial electrolysis cells under different startup modes. Environmental Science: Water Research and Technology, 2018, 4, 1839-1850.	1.2	10
139	Meta-proteomic analysis of protein expression distinctive to electricity-generating biofilm communities in air-cathode microbial fuel cells. Biotechnology for Biofuels, 2018, 11, 121.	6.2	11
140	Optimal operating point for energy harvesting from microbial fuel cell with finite initial energy. Journal of Power Sources, 2018, 400, 183-189.	4.0	1
141	Dual-Edged Character of Quorum Sensing Signaling Molecules in Microbial Extracellular Electron Transfer. Frontiers in Microbiology, 2018, 9, 1924.	1.5	13
142	Microbial Electrochemical Technologies for Wastewater Treatment: Principles and Evolution from Microbial Fuel Cells to Bioelectrochemical-Based Constructed Wetlands. Water (Switzerland), 2018, 10, 1128.	1.2	91
143	Influence of the initial sludge characteristics and acclimation on the long-term performance of double-compartment acetate-fed microbial fuel cells. Journal of Electroanalytical Chemistry, 2018, 825, 1-7.	1.9	6
144	Bio-electro-Fenton processes for wastewater treatment: Advances and prospects. Chemical Engineering Journal, 2018, 354, 492-506.	6.6	133
145	In situ biofilm removal from air cathodes in microbial fuel cells treating domestic wastewater. Bioresource Technology, 2018, 265, 200-206.	4.8	82
146	Performance Trends and Status of Microbial Fuel Cells. , 2018, , 7-24.		4

ARTICLE IF CITATIONS Configurations of Microbial Fuel Cells., 2018, , 25-45. 8 147 Microbial Fuel Cells as a Platform Technology for Sustainable Wastewater Treatment., 2018,, 375-398. 148 149 Coupled Systems Based on Microbial Fuel Cells., 2018, , 423-431. 0 Phosphorus Removal and Recovery From Anaerobic Digestion Residues. Advances in Bioenergy, 2018, , 77-136. Simultaneous bioâ€electricity and bioâ€hydrogen production in a continuous flow single microbial 151 1.3 7 electrochemical reactor. Environmental Progress and Sustainable Energy, 2019, 38, 297-304. Facile Synthesis of Fe/N/Sâ€Doped Carbon Tubes as Highâ€Performance Cathode and Anode for Microbial Fuel Cells. ChemCatChem, 2019, 11, 6070-6077. 1.8 Bioelectricity generation from the decolorization of reactive blue 19 by using microbial fuel cell. 153 3.8 32 Journal of Environmental Management, 2019, 248, 109310. Internet of Things temperature sensor powered by bacterial fuel cells on paper. Journal of Power 154 4.0 26 Sources, 2019, 438, 226947. Peptide-mediated binding of gold nanoparticles to E. coli for enhanced microbial fuel cell power 155 0.8 6 generation. MRS Communications, 2019, 9, 904-909. Mutual benefits of acetate and mixed tungsten and molybdenum for their efficient removal in 40â€L 5.3 28 microbial electrolysis cells. Water Research, 2019, 162, 358-368. Effects of unit distance and number on sediment microbial fuel cell stacks for practical power supply. 157 2.2 1 International Journal of Energy Research, 2019, 43, 7287. Economic optimization of stacked microbial fuel cells to maximize power generation and treatment of wastewater with minimal operating costs. International Journal of Hydrogen Energy, 2019, 44, 3.8 44 20355-20367. A novel single chamber vertical baffle flow biocathode microbial electrochemical system with 159 4.8 12 microbial separator. Bioresource Technology, 2019, 294, 122236. Performance and inorganic fouling of a submergible 255â€[−]L prototype microbial fuel cell module during continuous long-term operation with real municipal wastewater under practical conditions. Bioresource Technology, 2019, 294, 122227. 4.8 118 Harvesting Energy from Multiple Microbial Fuel Cells with a High-Conversion Efficiency Power 161 1.6 31 Management System. ACS Omega, 2019, 4, 18978-18986. Microbial Membrane-Supported Catalysts: A Paradigm Shift in Clean Energy and Greener Production. 3.2 ACS Sustainable Chemistry and Engineering, 2019, 7, 19321-19331. Community Structure Analyses of Anodic Biofilms in a Bioelectrochemical System Combined with an 163 1.6 3 Aerobic Reactor. Energies, 2019, 12, 3643. 164 Scaling up Microbial Fuel Cells for Treating Swine Wastewater. Water (Switzerland), 2019, 11, 1803. 1.2

#	Article	IF	CITATIONS
165	Functional group surface modifications for enhancing the formation and performance of exoelectrogenic biofilms on the anode of a bioelectrochemical system. Critical Reviews in Biotechnology, 2019, 39, 1015-1030.	5.1	37
166	Convenient non-invasive electrochemical techniques to monitor microbial processes: current state and perspectives. Applied Microbiology and Biotechnology, 2019, 103, 8327-8338.	1.7	12
167	On Site Evaluation of a Tubular Microbial Fuel Cell Using an Anion Exchange Membrane for Sewage Water Treatment. Frontiers in Energy Research, 2019, 7, .	1.2	20
168	A novel stainless steel fiber felt/Pd nanocatalysts electrode for efficient ORR in air-cathode microbial fuel cells. Electrochimica Acta, 2019, 324, 134862.	2.6	17
169	3D biofilm visualization and quantification on granular bioanodes with magnetic resonance imaging. Water Research, 2019, 167, 115059.	5.3	17
170	Operation strategy of cubic-meter scale microbial electrochemistry system in a municipal wastewater treatment plant. Journal of Power Sources, 2019, 441, 227124.	4.0	25
171	Two-dimensional mathematical model of an air-cathode microbial fuel cell with graphite fiber brush anode. Journal of Power Sources, 2019, 441, 227145.	4.0	32
172	Scale up of Microbial Fuel Cell Stack System for Residential Wastewater Treatment in Continuous Mode Operation. Water (Switzerland), 2019, 11, 217.	1.2	51
173	The granular capacitive moving bed reactor for the scale up of bioanodes. Journal of Chemical Technology and Biotechnology, 2019, 94, 2738-2748.	1.6	16
174	Electrochemical and microbiological characterization of single carbon granules in a multi-anode microbial fuel cell. Journal of Power Sources, 2019, 435, 126514.	4.0	25
176	Optimization and simulation of a carbon-based flow-through composite anode configuration to enhance power generation and improve effluent quality simultaneously for microbial fuel cells. Journal of Cleaner Production, 2019, 229, 542-551.	4.6	17
177	Shipboard bilge water treatment by electrocoagulation powered by microbial fuel cells. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	3.3	21
178	Active harvesting enhances energy recovery and function of electroactive microbiomes in microbial fuel cells. Applied Energy, 2019, 247, 492-502.	5.1	33
179	Can electrochemically active biofilm protect stainless steel used as electrodes in bioelectrochemical systems in a similar way as galvanic corrosion protection?. International Journal of Hydrogen Energy, 2019, 44, 30512-30523.	3.8	10
180	Enhancing the water desalination and electricity generation of a microbial desalination cell with a three-dimensional macroporous carbon nanotube-chitosan sponge anode. Science of the Total Environment, 2019, 675, 41-50.	3.9	49
181	From Microbial Fuel Cells to Biobatteries: Moving toward Onâ€Demand Micropower Generation for Smallâ€5cale Singleâ€Use Applications. Advanced Materials Technologies, 2019, 4, 1900079.	3.0	29
182	Microbial fuel cells potential of marine actinobacteria Actinoalloteichus sp. MHA15 from the Havelock island of the Andamans, India. Biotechnology Research and Innovation, 2019, 3, 144-158.	0.3	3
183	Implementation of Upscaled Microbial Fuel Cells for Optimized Net Energy Benefit in Wastewater Treatment Systems. Journal of Environmental Engineering, ASCE, 2019, 145, .	0.7	5

#	Article		CITATIONS
184	Single chamber air–cathode microbial fuel cells as biosensors for determination of biodegradable organics. Biotechnology Letters, 2019, 41, 555-563.	1.1	18
185	Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine. Electrochimica Acta, 2019, 307, 241-252.	2.6	38
186	Bioremediation of wastewater through a quorum sensing triggered MFC: A sustainable measure for waste to energy concept. Journal of Environmental Management, 2019, 237, 84-93.	3.8	45
187	Evaluation of Electrode and Solution Area-Based Resistances Enables Quantitative Comparisons of Factors Impacting Microbial Fuel Cell Performance. Environmental Science & Technology, 2019, 53, 3977-3986.	4.6	79
188	Challenges of Microbial Fuel Cell Architecture on Heavy Metal Recovery and Removal From Wastewater. Frontiers in Energy Research, 2019, 7, .	1.2	105
189	Development of microbial community within the cathodic biofilm of single-chamber air-cathode microbial fuel cell. Science of the Total Environment, 2019, 665, 641-648.	3.9	41
190	Field tests of cubic-meter scale microbial electrochemical system in a municipal wastewater treatment plant. Water Research, 2019, 155, 372-380.	5.3	83
191	Interfacial electron transfer between Geobacter sulfurreducens and gold electrodes via carboxylate-alkanethiol linkers: Effects of the linker length. Bioelectrochemistry, 2019, 126, 130-136.	2.4	7
192	Metal-air desalination battery: Concurrent energy generation and water desalination. Journal of Power Sources, 2019, 412, 197-203.	4.0	34
193	Impact of flow recirculation and anode dimensions on performance of a large scale microbial fuel cell. Journal of Power Sources, 2019, 412, 294-300.	4.0	50
194	Effects of the Structure of TiO 2 Nanotube Arrays on Its Catalytic Activity for Microbial Fuel Cell. Global Challenges, 2019, 3, 1800084.	1.8	5
195	Microbial fuel cells: An overview of current technology. Renewable and Sustainable Energy Reviews, 2019, 101, 60-81.	8.2	473
196	Promoting Shewanella Bidirectional Extracellular Electron Transfer for Bioelectrocatalysis by Electropolymerized Riboflavin Interface on Carbon Electrode. Frontiers in Microbiology, 2018, 9, 3293.	1.5	27
197	Evaluating the electrochemical and power performances of microbial fuel cells across physicalAscales: A novel numerical approach. International Journal of Hydrogen Energy, 2019, 44, 4468-4475.	3.8	10
198	Integrated Bioelectrochemical Platforms. , 2019, , 1037-1058.		2
199	Algal Biocathodes. , 2019, , 525-547.		4
200	Electrocatalyst Materials for Oxygen Reduction Reaction in Microbial Fuel Cell. , 2019, , 451-483.		16
201	Microbial Fuel Cell Configurations. , 2019, , 407-435.		9

		CITATION F	Report	
#	ARTICLE		IF	CITATIONS
202	Treatment of Various Types of Wastewaters Using Microbial Fuel Cell Systems. , 2019, ,	665-692.		11
203	Strategies for optimizing the power output of microbial fuel cells: Transitioning from fu studies to practical implementation. Applied Energy, 2019, 233-234, 15-28.	ndamental	5.1	122
204	Extremophile Biology for Microbial Electrochemistry Applications. , 2019, , 353-374.			2
205	Scale-Up and Commercialization Issues of the MFCs. , 2019, , 565-583.			19
206	Emerging Trends of Microorganism in the Production of Alternative Energy. , 2019, , 27	5-305.		11
207	Hexavalent chromium reduction through redox electrolytic cell with urea and cow urine Journal of Environmental Management, 2019, 232, 554-563.	as anolyte.	3.8	16
208	Evaluating a multi-panel air cathode through electrochemical and biotic tests. Water Re 148, 51-59.	search, 2019,	5.3	128
209	Bioelectrochemical enhancement of methane production in anaerobic digestion of food International Journal of Hydrogen Energy, 2019, 44, 2081-2090.	waste.	3.8	38
210	Enhanced open-circuit voltage and power for two types of microbial fuel cells in batch e using Saccharomyces cerevisiae as biocatalyst. Journal of Applied Electrochemistry, 201	xperiments 9, 49, 17-26.	1.5	13
211	Bidirectional extracellular electron transfers of electrode-biofilm: Mechanism and applica Bioresource Technology, 2019, 271, 439-448.	ation.	4.8	88
212	Microbial fuel cells: a sustainable solution for bioelectricity generation and wastewater t Biofuels, 2019, 10, 11-31.	reatment.	1.4	77
213	The effect of Nafion membrane fouling on the power generation of a microbial fuel cell. Journal of Hydrogen Energy, 2020, 45, 13643-13651.	International	3.8	74
214	Combination of bioelectrochemical systems and electrochemical capacitors: Principles, opportunities. Biotechnology Advances, 2020, 39, 107456.	analysis and	6.0	55
215	A journey in the complex interactions between electrochemistry and bacteriology: From electroactivity to electromodulation of bacterial biofilms. Bioelectrochemistry, 2020, 13		2.4	25
216	Microbial Fuel Cell-Membrane Bioreactor Integrated System for Wastewater Treatment Bioelectricity Production: Overview. Journal of Environmental Engineering, ASCE, 2020,		0.7	23
217	Low-cost Fe–N–C catalyst derived from Fe (III)-chitosan hydrogel to enhance power microbial fuel cells. Chemical Engineering Journal, 2020, 380, 122522.	production in	6.6	87
218	Effect of Carbon Support on the Electrocatalytic Performance of the Pt Nanoparticles To Oxidation of Formic Acid. Catalysis Letters, 2020, 150, 312-321.	oward	1.4	5
219	Using C. vulgaris assisted microbial desalination cell as a green technology in landfill lea pre-treatment: a factor-performance relation study. Journal of Water Reuse and Desalina 1-16.	chate ation, 2020, 10,	1.2	13

#	Article	IF	CITATIONS
220	Optimization of PGM-free cathodes for oxygen reduction in microbial fuel cells. Electrochimica Acta, 2020, 334, 135650.	2.6	12
221	A mechanical rechargeable small-size microbial fuel cell with long-term and stable power output. Applied Energy, 2020, 260, 114336.	5.1	11
222	Resource recovery from wastewater by bioelectrochemical systems. , 2020, , 183-200.		1
223	Highâ€Power Microbial Fuel Cells Based on a Carbon–Carbon Composite Air Cathode. Small, 2020, 16, e1905240.	5.2	15
224	Improving fermentation industry sludge treatment as well as energy production with constructed dual chamber microbial fuel cell. SN Applied Sciences, 2020, 2, 1.	1.5	14
225	The effect of anode hydrodynamics on the sensitivity of microbial fuel cell based biosensors and the biological mechanism. Bioelectrochemistry, 2020, 132, 107351.	2.4	28
226	Biofilm formation and electrochemical metabolic activity of Ochrobactrum Sp JSRB-1 and Cupriavidus Sp JSRB-2 for energy production. Environmental Technology and Innovation, 2020, 20, 101145.	3.0	7
227	The construction and performance of photocatalytic-fuel-cell with Fe-MoS2/reduced graphene oxide@carbon fiber cloth and ZnFe2O4/Ag/Ag3VO4@carbon felt as photo electrodes. Electrochimica Acta, 2020, 362, 137037.	2.6	14
228	Algae based microbial fuel cells for wastewater treatment and recovery of value-added products. Renewable and Sustainable Energy Reviews, 2020, 132, 110041.	8.2	127
229	Coupling biology to electrochemistry—future trends and needs. Journal of Solid State Electrochemistry, 2020, 24, 2125-2127.	1.2	4
230	Tuning of Surface Characteristics of Anodes for Efficient and Sustained Power Generation in Microbial Fuel Cells. ACS Applied Bio Materials, 2020, 3, 6224-6236.	2.3	11
231	Microbial electrochemical production of energy and value-added chemicals from agri-food wastewater. , 2020, , 355-372.		1
232	Impact of cathodic electron acceptor on microbial fuel cell internal resistance. Bioresource Technology, 2020, 316, 123919.	4.8	45
233	Spatiotemporal mapping of bacterial membrane potential responses to extracellular electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20171-20179.	3.3	41
234	Three-dimensional amino modification carbon nanotubes/graphene composite aerogel anode enhanced Geobacter enrichment and performance in microbial electrochemical systems. Journal of Power Sources, 2020, 473, 228555.	4.0	25
235	In Vivo Polymerization ("Hard-Wiringâ€) of Bioanodes Enables Rapid Start-Up and Order-of-Magnitude Higher Power Density in a Microbial Battery. Environmental Science & Technology, 2020, 54, 14732-14739.	4.6	7
236	Fuel Cells: Alternative Energy Sources for Stationary, Mobile and Automotive Applications. , 0, , .		1
238	Microbial fuel cells for municipal wastewater treatment: From technology fundamentals to full-scale development. Renewable and Sustainable Energy Reviews, 2020, 134, 110367.	8.2	40

#	Article	IF	CITATIONS
240	100th Anniversary of Macromolecular Science Viewpoint: Soft Materials for Microbial Bioelectronics. ACS Macro Letters, 2020, 9, 1590-1603.	2.3	14
241	Understanding the complexity of wastewater: The combined impacts of carbohydrates and sulphate on the performance of bioelectrochemical systems. Water Research, 2020, 176, 115737.	5.3	18
242	Recent Advances in Anodes for Microbial Fuel Cells: An Overview. Materials, 2020, 13, 2078.	1.3	130
243	Power density of microbial electrochemical system responds to mass transfer characters of non–ion–selective microbial separator. Bioresource Technology, 2020, 311, 123478.	4.8	17
244	Improving the power density of a <i>Geobacter</i> consortiumâ€based microbial fuel cell by incorporating a highly dispersed birnessite/C cathode. Journal of Chemical Technology and Biotechnology, 2020, 95, 3169-3178.	1.6	5
245	Air-breathing cathode self-powered supercapacitive microbial fuel cell with human urine as electrolyte. Electrochimica Acta, 2020, 353, 136530.	2.6	10
246	Bioenergy recovery from food processing wastewater—Microbial fuel cell. , 2020, , 251-274.		3
247	Characterising and control of ammonia emission in microbial fuel cells. Chemical Engineering Journal, 2020, 389, 124462.	6.6	14
248	Macroporous carbon foam with high conductivity as an efficient anode for microbial fuel cells. International Journal of Hydrogen Energy, 2020, 45, 12121-12129.	3.8	32
249	Renewable energies driven electrochemical wastewater/soil decontamination technologies: A critical review of fundamental concepts and applications. Applied Catalysis B: Environmental, 2020, 270, 118857.	10.8	196
250	Electrochemistry-stimulated environmental bioremediation: Development of applicable modular electrode and system scale-up. Environmental Science and Ecotechnology, 2020, 3, 100050.	6.7	53
251	Bioelectrochemically-assisted nitrogen removal in osmotic membrane bioreactor. Water Science and Technology, 2020, 82, 330-338.	1.2	0
252	LBM for 2D and 3D chemical reactors. Advances in Chemical Engineering, 2020, , 81-141.	0.5	0
253	Can fossil fuel energy be recovered and used without any CO2 emissions to the atmosphere?. Reviews in Environmental Science and Biotechnology, 2020, 19, 217-240.	3.9	8
254	Membrane Bioreactors for Nitrogen Removal from Wastewater: A Review. Journal of Environmental Engineering, ASCE, 2020, 146, .	0.7	26
255	Hydrophilic graphene aerogel anodes enhance the performance of microbial electrochemical systems. Bioresource Technology, 2020, 304, 122907.	4.8	39
256	Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide. Accounts of Chemical Research, 2020, 53, 311-321.	7.6	69
257	How does electron transfer occur in microbial fuel cells?. World Journal of Microbiology and Biotechnology, 2020, 36, 19.	1.7	61

#	Article	IF	CITATIONS
258	Long-term bio-power of ceramic microbial fuel cells in individual and stacked configurations. Bioelectrochemistry, 2020, 133, 107459.	2.4	41
259	Novel trickling microbial fuel cells for electricity generation from wastewater. Chemosphere, 2020, 248, 126058.	4.2	17
260	Carbon fiberâ€embedded bacterial cellulose/polyaniline nanocomposite with tailored for microbial fuel cells electrode. Journal of Applied Polymer Science, 2020, 137, 49036.	1.3	18
261	Unraveling the contributions of internal resistance components in two-chamber microbial fuel cells using the electrode potential slope analysis. Electrochimica Acta, 2020, 348, 136291.	2.6	39
262	Quantifying the factors limiting performance and rates in microbial fuel cells using the electrode potential slope analysis combined with electrical impedance spectroscopy. Electrochimica Acta, 2020, 348, 136330.	2.6	33
263	Photo/Bioâ€Electrochemical Systems for Environmental Remediation and Energy Harvesting. ChemSusChem, 2020, 13, 3391-3403.	3.6	10
264	Multiscale methodology for microbial fuel cell performance analysis. International Journal of Hydrogen Energy, 2021, 46, 20280-20290.	3.8	10
265	Functionalized conductive activated carbon-polyaniline composite anode for augmented energy recovery in microbial fuel cells. Bioresource Technology, 2021, 320, 124340.	4.8	36
266	Effect of waterproof breathable membrane based cathodes on performance and biofilm microbiomes in bioelectrochemical systems. Science of the Total Environment, 2021, 753, 142281.	3.9	5
267	Spatial distribution of biofilm conductivity in a Geobacter enriched anodic biofilm. Chemical Engineering Journal, 2021, 404, 126544.	6.6	13
268	Improved electricity generation, coulombic efficiency and microbial community structure of microbial fuel cells using sodium citrate as an effective additive. Journal of Power Sources, 2021, 482, 228947.	4.0	21
269	The anaerobic and starving treatment eliminates filamentous bulking and recovers biocathode biocatalytic activity with residual organic loading in microbial electrochemical system. Chemical Engineering Journal, 2021, 404, 127072.	6.6	24
270	A strategy for power generation from bilgewater using a photosynthetic microalgal fuel cell (MAFC). Journal of Power Sources, 2021, 484, 229222.	4.0	10
271	Microbial Electrochemical System: A Sustainable Approach for Mitigation of Toxic Dyes and Heavy Metals from Wastewater. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25, .	1.2	20
272	Upgrading fluidized bed bioelectrochemical reactors for treating brewery wastewater by using a fluid-like electrode. Chemical Engineering Journal, 2021, 406, 127103.	6.6	11
273	Scale-up and control the voltage of sediment microbial fuel cell for charging a cell phone. Biosensors and Bioelectronics, 2021, 172, 112767.	5.3	28
274	Cellulose/carbon Composites and their Applications in Water Treatment – a Review. Chemical Engineering Journal, 2021, 405, 126980.	6.6	108
275	Effect of pH on bacterial distributions within cathodic biofilm of the microbial fuel cell with maltodextrin as the substrate. Chemosphere, 2021, 265, 129088.	4.2	20

#	Article	IF	CITATIONS
276	The effect of addition of vegetable waste on microbial fuel cell performance. Journal of Physics: Conference Series, 2021, 1825, 012073.	0.3	0
277	Electricigens and microbial fuel cells for bioremediation and bioenergy production: a review. Environmental Chemistry Letters, 2021, 19, 2091-2126.	8.3	23
278	Towards Bio-Hybrid Energy Harvesting in the Real-World: Pushing the Boundaries of Technologies and Strategies Using Bio-Electrochemical and Bio-Mechanical Processes. Applied Sciences (Switzerland), 2021, 11, 2220.	1.3	10
279	Making the best use of capacitive current: Comparison between fixed and moving granular bioanodes. Journal of Power Sources, 2021, 489, 229453.	4.0	4
280	Novel pyrrhotite and alum sludge as substrates in a two-tiered constructed wetland-microbial fuel cell. Journal of Cleaner Production, 2021, 293, 126087.	4.6	28
281	Quorum sensing shaped microbial consortia and enhanced hydrogen recovery from waste activated sludge electro-fermentation on basis of free nitrous acid treatment. Science of the Total Environment, 2021, 766, 144348.	3.9	20
282	Understanding the current plummeting phenomenon in microbial fuel cells (MFCs). Journal of Water Process Engineering, 2021, 40, 101984.	2.6	8
283	Microbial fuel cells: a comprehensive review for beginners. 3 Biotech, 2021, 11, 248.	1.1	22
284	Progress and recent trends in photosynthetic assisted microbial fuel cells: A review. Biomass and Bioenergy, 2021, 148, 106028.	2.9	48
285	A Mini-Review on Applications of 3D Printing for Microbial Electrochemical Technologies. Frontiers in Energy Research, 2021, 9, .	1.2	13
286	How Comparable are Microbial Electrochemical Systems around the Globe? An Electrochemical and Microbiological Cross‣aboratory Study. ChemSusChem, 2021, 14, 2313-2330.	3.6	13
287	Novel study on microbial fuel cells via a comprehensive bibliometric and dynamic approach. Reviews on Environmental Health, 2021, .	1.1	4
288	Sustainable, Decentralized Sanitation and Reuse with Hybrid Nature-Based Systems. Water (Switzerland), 2021, 13, 1583.	1.2	22
289	State-of-the-art management technologies of dissolved methane in anaerobically-treated low-strength wastewaters: A review. Water Research, 2021, 200, 117269.	5.3	16
290	New insights in light-assisted microbial fuel cells for wastewater treatment and power generation: A win-win cooperation. Journal of Power Sources, 2021, 501, 230000.	4.0	42
291	Enhanced recalcitrant pollutant degradation using hydroxyl radicals generated using ozone and bioelectricity-driven cathodic hydrogen peroxide production: Bio-E-Peroxone process. Science of the Total Environment, 2021, 776, 144819.	3.9	6
292	Sunlight-triggered synergy of hematite and Shewanella oneidensis MR-1 in Cr(VI) removal. Geochimica Et Cosmochimica Acta, 2021, 305, 19-32.	1.6	21
293	Response surface methodology to investigate the comparison of two carbon-based air cathodes for bio-electrochemical systems. Environmental Technology (United Kingdom), 2022, 43, 4376-4390.	1.2	0

#	Article	IF	CITATIONS
294	Improving the discharge of capacitive granules in a moving bed reactor. Journal of Environmental Chemical Engineering, 2021, 9, 105556.	3.3	3
295	Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. Journal of Hazardous Materials, 2021, 416, 125912.	6.5	300
296	Sustainable bioelectricity production from Amaranthus viridis and Triticum aestivum mediated plant microbial fuel cells with efficient electrogenic bacteria selections. Process Biochemistry, 2021, 107, 27-37.	1.8	27
297	Improved Microbial Fuel Cell Performance by Engineering E. coli for Enhanced Affinity to Gold. Energies, 2021, 14, 5389.	1.6	5
298	Advances in Understanding Carbon Composite Catalysts Based on Cathode for Microbial Fuel Cells. Energy Technology, 2021, 9, 2100402.	1.8	2
299	Impedance spectroscopic study of biofilm formation on pencil lead graphite anode in microbial fuel cell. Journal of the Taiwan Institute of Chemical Engineers, 2021, 128, 114-123.	2.7	7
300	Progress in microbial fuel cell technology for wastewater treatment and energy harvesting. Chemosphere, 2021, 281, 130828.	4.2	95
301	Improved electrochemical performances by Ni-catecholate-based metal organic framework grown on NiCoAl-layered double hydroxide/multi-wall carbon nanotubes as cathode catalyst in microbial fuel cells. Bioresource Technology, 2021, 337, 125430.	4.8	35
302	A review and roadmap for developing microbial electrochemical cell-based biosensors for recalcitrant environmental contaminants, emphasis on aromatic compounds. Chemical Engineering Journal, 2021, 424, 130245.	6.6	23
303	Butyrate production and purification by combining dry fermentation of food waste with a microbial fuel cell. Journal of Environmental Management, 2021, 300, 113827.	3.8	7
304	Comparison of different chemical treatments of brush and flat carbon electrodes to improve performance of microbial fuel cells. Bioresource Technology, 2021, 342, 125932.	4.8	20
305	Impact of surface area and current generation of microbial electrolysis cell electrodes inserted into anaerobic digesters. Chemical Engineering Journal, 2021, 426, 131281.	6.6	28
306	Bioelectrochemical system as an innovative technology for treatment of produced water from oil and gas industry: A review. Chemosphere, 2021, 285, 131428.	4.2	23
307	An integrated anaerobic digestion and microbial electrolysis system for the enhancement of methane production from organic waste: Fundamentals, innovative design and scale-up deliberation. Chemosphere, 2022, 287, 131886.	4.2	11
308	Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector. Chemosphere, 2022, 287, 132285.	4.2	62
309	Fungi mediated pollutant degradation and bioelectricity generation: An overview of current status. , 2021, , 101-119.		0
310	Effect of applied voltage on membrane fouling in the amplifying anaerobic electrochemical membrane bioreactor for long-term operation. RSC Advances, 2021, 11, 31364-31372.	1.7	3
312	Abattoir Wastewater Treatment and Energy Recovery Using a Ferricyanide-Catholyte Microbial Fuel Cell. International Letters of Natural Sciences, 0, 55, 68-76.	1.0	1

#	Article	IF	CITATIONS
313	Improved structures of stainless steel current collector increase power generation of microbial fuel cells by decreasing cathodic charge transfer impedance. Environmental Engineering Research, 2018, 23, 383-389.	1.5	36
314	Improvement of microbial fuel cell performance using novel kaolin earthenware membrane coated with a polybenzimidazole layer. Energy Science and Engineering, 2021, 9, 2342-2353.	1.9	14
315	Microbial electrochemical fluidized bed reactor (ME-FBR): An energy-efficient advanced solution for treating real brewery wastewater with different initial organic loading rates Journal of Environmental Chemical Engineering, 2021, 9, 106619.	3.3	8
316	Effect of Electrode Configuration on the Substrate Degradation in Microbial Fuel Cells. Daehan Hwan'gyeong Gonghag Hoeji, 2017, 39, 489-493.	0.4	1
317	Electron Transfer of <i>Shewanella oneidensis</i> MR-1 at Clay-Modified ITO Electrode. American Journal of Analytical Chemistry, 2019, 10, 459-475.	0.3	0
318	Basic Study for Harvesting Unused Energy based on Plant-Microbial Electrochemical Technology. Journal of Environmental Science International, 2019, 28, 219-224.	0.0	0
319	INFLUÊNCIA DO ALQUILBENZENO LINEAR SULFONATO NA PERFORMANCE DA CÉLULA COMBUSTÃVEL MICROBIANA. Revista AIDIS De IngenierÃa Y Ciencias Ambientales InvestigaciÃ3n Desarrollo Y Práctica, 2019, 12, 524.	0.0	0
320	Fault Diagnosis Scheme Based on Microbial Fuel Cell Model. IEEE Access, 2020, 8, 224306-224317.	2.6	3
321	Bacterial Power: An Alternative Energy Source. , 2021, , 215-246.		2
322	Optimization of catalyst dosage and total volume for extendible stacked microbial fuel cell reactors using spacer. Journal of Power Sources, 2022, 517, 230697.	4.0	4
323	Eco-friendly Microbial Biofuel Production from Waste. , 2020, , 83-98.		8
324	Current Applications and Future Perspectives of Microbial Fuel Cell Technology. , 2020, , 299-321.		1
325	Smart and Sustainable Urine-Powered Microbial Fuel Cells Eco-Technology. Springer Transactions in Civil and Environmental Engineering, 2020, , 431-440.	0.3	1
327	Microbes: The Next-Generation Bioenergy Producers. , 2020, , 29-60.		0
328	Wastewater-powered high-value chemical synthesis in a hybrid bioelectrochemical system. IScience, 2021, 24, 103401.	1.9	7
329	Bioelectricity Generation From Single-Chamber Microbial Fuel Cells With Various Local Soil Media and Green Bean Sprouts as Nutrient. International Journal of Renewable Energy Development, 2020, 9, 423-429.	1.2	4
330	Recent Trends and Prospects of Microbial Fuel Cell Technology for Energy Positive Wastewater Treatment Plants Treating Organic Waste Resources. Daehan Hwan'gyeong Gonghag Hoeji, 2021, 43, 623-653.	0.4	26
331	Electrode Material as Anode for Improving the Electrochemical Performance of Microbial Fuel Cells. , 0, , .		3

#	Article	IF	CITATIONS
334	Applications of Microbes in Fuel Generation. Environmental and Microbial Biotechnology, 2022, , 711-736.	0.4	1
335	Enhanced Microbial Electrochemical Systems Performance by Optimizing the "Anode-Collector― Collection Mode: From Enhancement Mechanism to Construction Strategy. ACS ES&T Engineering, 2022, 2, 263-270.	3.7	9
336	Microbial fuel cell treatment energy-offset for fertilizer production from human urine. Chemosphere, 2022, 294, 133594.	4.2	13
337	Solutionâ€Deposited and Patternable Conductive Polymer Thinâ€Film Electrodes for Microbial Bioelectronics. Advanced Materials, 2022, 34, e2109442.	11.1	20
338	Enhanced energy harvesting in a bio-photovoltaic cell by integrating silver nanoparticles. Journal of the Korean Physical Society, 2022, 80, 420-426.	0.3	3
339	Microbial electrochemical technologies for wastewater treatment: insight into theory and reality. , 2022, , 179-200.		0
340	Sustainable bioelectricity generation using Cladophora sp. as a biocathode in membrane-less microbial fuel cell. Bioresource Technology, 2022, 347, 126704.	4.8	11
341	Improving oxygen reduction reaction of microbial fuel cell by titanium dioxide attaching to dual metal organic frameworks as cathode. Bioresource Technology, 2022, 349, 126851.	4.8	26
342	Pilot scale microbial fuel cells using air cathodes for producing electricity while treating wastewater. Water Research, 2022, 215, 118208.	5.3	60
343	Complete removal of heavy metals with simultaneous efficient treatment of etching terminal wastewater using scaled-up microbial electrolysis cells. Chemical Engineering Journal, 2022, 439, 135763.	6.6	22
344	Mainstreaming microfluidic microbial fuel cells: a biocompatible membrane grown <i>in situ</i> in mproves performance and versatility. Lab on A Chip, 2022, 22, 1905-1916.	3.1	10
345	Photocatalytic fuel cell for simultaneous antibiotic wastewater treatment and electricity production by anatase TiO2 nanoparticles anchored on Ni foam. Chinese Chemical Letters, 2023, 34, 107417.	4.8	16
346	A Short Overview of Biological Fuel Cells. Membranes, 2022, 12, 427.	1.4	8
350	Benthic microbial fuel cells: A sustainable approach for metal remediation and electricity generation from sapodilla waste. International Journal of Environmental Science and Technology, 2023, 20, 3927-3940.	1.8	12
351	High-rate microbial electrosynthesis using a zero-gap flow cell and vapor-fed anode design. Water Research, 2022, 219, 118597.	5.3	16
352	Modification of Bioanodes from Different Nanocomposite Materials for Wastewater Bioremediation through Microbial Fuel Cells. ACS Symposium Series, 0, , 113-140.	0.5	1
353	A techno-economic approach for eliminating dye pollutants from industrial effluent employing microalgae through microbial fuel cells: Barriers and perspectives. Environmental Research, 2022, 212, 113454.	3.7	15
354	Copper removal and elemental sulfur recovery from fracturing flowback water in a microbial fuel cell with an extra electrochemical anode. Chemosphere, 2022, 303, 135128.	4.2	10

#	Article	IF	CITATIONS
355	Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Advances, 2022, 12, 17104-17137.	1.7	45
356	Glucose and Ethanol Checked by Flow Direct Catalytic Fuel Cell (DCFC) and Energetic Considerations. Current Analytical Chemistry, 2022, 18, 899-906.	0.6	1
357	Prospects of bioelectricity in south Asian developing countriesA sustainable solution for future electricity. , 2022, , 23-56.		1
359	Cellulose/polyaniline hybrid nanocomposites: Design, fabrication, and emerging multidimensional applications. Industrial Crops and Products, 2022, 187, 115356.	2.5	59
360	Microbe-Based Sensor for Long-Term Detection of Urine Glucose. Sensors, 2022, 22, 5340.	2.1	5
361	Scale-up of the bioelectrochemical system: Strategic perspectives and normalization of performance indices. Bioresource Technology, 2022, 363, 127935.	4.8	16
362	CHAPTER 16. Conversion of CO2 into Energy-dense Chemicals and the Commercialization Using Two-dimensional Nanomaterials as Catalysts. , 2022, , 409-433.		0
363	Design and Configuration of Microbial Fuel Cells. , 2022, , 25-39.		1
364	Conventional Electrode Materials for Microbial Fuel Cells. , 2022, , 83-117.		0
365	Studies on computational fluid dynamics and flow characteristics of autoâ€dripping bioelectrochemical reactor (AutoDriBER): A rational basis for eâ€urinal design. International Journal of Energy Research, 0, , .	2.2	0
366	Functional Nanomaterialâ€Modified Anodes in Microbial Fuel Cells: Advances and Perspectives. Chemistry - A European Journal, 2023, 29, .	1.7	2
367	Impact of reactor configuration on pilot-scale microbial fuel cell performance. Water Research, 2022, 225, 119179.	5.3	26
368	Microbial fuel cell: A green eco-friendly agent for tannery wastewater treatment and simultaneous bioelectricity/power generation. Chemosphere, 2023, 312, 137072.	4.2	19
369	Abattoir Wastewater Treatment and Energy Recovery Using a Ferricyanide-Catholyte Microbial Fuel Cell. International Letters of Natural Sciences, 0, 55, 68-76.	1.0	0
370	Prospect of environmental application of bioelectrochemical sensing. , 2023, , 45-62.		0
371	Defect free rolling phase inversion activated carbon air cathodes for scale-up electrochemical applications. Chemical Engineering Journal, 2023, 454, 140411.	6.6	4
372	Perspective—Trends in the Miniaturization of Photosynthetic Power Cell towards Improved Power Density. Journal of the Electrochemical Society, 2022, 169, 126501.	1.3	2
373	Enhancing the extracellular electron transfer ability via Polydopamine@S. oneidensis MR-1 for Cr(VI) reduction. Environmental Research, 2023, 217, 114914.	3.7	6

#	Article	IF	CITATIONS
374	A New Approach for Improving Microbial Fuel Cell Performance Using Artificial Intelligence. Sustainability, 2023, 15, 1312.	1.6	6
375	Photosynthetic microbial fuel cell for bioenergy and valuable production: A review of circular bio-economy approach. Algal Research, 2023, 70, 102973.	2.4	16
376	Transitional trimetallic alloy embedded polyacrylamide hydrogel derived nitrogen-doped carbon air-cathode for bioenergy generation in microbial fuel cell. Sustainable Energy Technologies and Assessments, 2023, 55, 103001.	1.7	1
378	Mesoporous LaFeO3 perovskite as an efficient and cost-effective oxygen reduction reaction catalyst in an air cathode microbial fuel cell. International Journal of Hydrogen Energy, 2024, 52, 627-641.	3.8	2
379	Microalgal mediated bioelectricity generation and concomitant value-added products recovery from wastewater treatment in the bioelectrochemical system: Current status and future perspectives. , 2023, , 1-16.		0
380	The growth of biopolymers and natural earthen sources as membrane/separator materials for microbial fuel cells: A comprehensive review. Journal of Energy Chemistry, 2023, 80, 402-431.	7.1	7
381	Electrochemical impedance spectroscopy studies of the buffered and nonâ€buffered microbial fuel cell. Fuel Cells, 2023, 23, 214-220.	1.5	0
382	Cathode electrodes in MFCs. , 2023, , 93-125.		0
383	Hybrid membrane bioreactors for wastewater treatment. , 2023, , 239-265.		2
384	Characterising operational performance and oxygen crossover of the low-cost cylindrical cathode in microbial fuel cells. Journal of Environmental Chemical Engineering, 2023, 11, 109462.	3.3	0
385	Structure evolution of air cathodes and their application in electrochemical sensor development and wastewater treatment. Science of the Total Environment, 2023, 869, 161689.	3.9	4
386	Bioelectrochemical systems (BESs) for agro-food waste and wastewater treatment, and sustainable bioenergy-A review. Environmental Pollution, 2023, 325, 121432.	3.7	13
387	Synergistic effect of TiO2 nanostructured cathode in microbial fuel cell for bioelectricity enhancement. Chemosphere, 2023, 330, 138556.	4.2	2
388	In Situ Trametes versicolor Laccase Biocathode Performance Assessment in Dual-Chamber Microbial Fuel Cells. Bioenergy Research, 2023, 16, 2616-2624.	2.2	0
389	Long-term operation of cathode-enhanced ecological floating bed coupled with microbial electrochemical system for urban surface water remediation: From lab-scale research to engineering application. Water Research, 2023, 237, 119967.	5.3	9
391	Application of Microbial Fuel Cell for Bioremediation of Sewage Sludge. Green Energy and Technology, 2023, , 73-95.	0.4	0
393	Metabolic Engineering Approaches for Bioenergy Production. , 2023, , 305-332.		1
397	Cyano-chromic Interface: Aligning Human-Microbe Temporalities Towards Noticing and Attending to Living Artefacts. , 2023, , .		3

#	Article	IF	CITATIONS
411	Progress and prospects of algae-based microbial fuel cells. , 2024, , 33-49.		0
414	Electrochemical membrane bioreactors. , 2024, , 143-188.		Ο
420	Microbial biotechnology for bioenergy: general overviews. , 2024, , 3-21.		0
422	Investigating the effect of electrode area to volume ratio on the performance of low-cost single chamber microbial fuel cells. AIP Conference Proceedings, 2024, , .	0.3	0