Using High-Resolution Satellite Aerosol Optical Depth 7 Geographical Distribution in Mexico City

Environmental Science & amp; Technology 49, 8576-8584

DOI: 10.1021/acs.est.5b00859

Citation Report

#	Article	IF	CITATIONS
1	National-Scale Estimates of Ground-Level PM2.5 Concentration in China Using Geographically Weighted Regression Based on 3 km Resolution MODIS AOD. Remote Sensing, 2016, 8, 184.	4.0	124
2	A Review on Predicting Ground PM2.5 Concentration Using Satellite Aerosol Optical Depth. Atmosphere, 2016, 7, 129.	2.3	138
3	Satellite remote sensing in epidemiological studies. Current Opinion in Pediatrics, 2016, 28, 228-234.	2.0	58
4	A description of methods for deriving air pollution land use regression model predictor variables from remote sensing data in Ulaanbaatar, Mongolia. Canadian Geographer / Geographie Canadien, 2016, 60, 333-345.	1.5	4
5	Prenatal and postnatal stress and wheeze in Mexican children. Annals of Allergy, Asthma and Immunology, 2016, 116, 306-312.e1.	1.0	55
6	Improving the Accuracy of Daily PM _{2.5} Distributions Derived from the Fusion of Ground-Level Measurements with Aerosol Optical Depth Observations, a Case Study in North China. Environmental Science & Technology, 2016, 50, 4752-4759.	10.0	118
7	Seasonal monitoring and estimation of regional aerosol distribution over Po valley, northern Italy, using a high-resolution MAIAC product. Atmospheric Environment, 2016, 141, 106-121.	4.1	30
8	Satellite-based ground PM2.5 estimation using timely structure adaptive modeling. Remote Sensing of Environment, 2016, 186, 152-163.	11.0	164
9	Estimate the high-resolution distribution of ground-level particulate matter based on space observations and a physical-based model. , 2016, , .		0
10	Estimation of daily PM10 concentrations in Italy (2006–2012) using finely resolved satellite data, land use variables and meteorology. Environment International, 2017, 99, 234-244.	10.0	100
11	Asymmetric correlations in the ozone concentration dynamics of the Mexico City Metropolitan Area. Physica A: Statistical Mechanics and Its Applications, 2017, 471, 377-386.	2.6	4
12	Air pollution and <i>in utero</i> programming of poor fetal growth. Epigenomics, 2017, 9, 213-216.	2.1	18
13	New Discoveries to Old Problems: A Virtual Issue on Air Pollution in Rapidly Industrializing Countries. Environmental Science & Technology, 2017, 51, 11497-11501.	10.0	7
14	Prenatal exposure to PM 2.5 and birth weight: A pooled analysis from three North American longitudinal pregnancy cohort studies. Environment International, 2017, 107, 173-180.	10.0	36
15	Prenatal particulate matter exposure and wheeze in Mexican children. Annals of Allergy, Asthma and Immunology, 2017, 119, 232-237.e1.	1.0	41
16	Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China. Remote Sensing of Environment, 2017, 199, 437-446.	11.0	239
17	An example of aerosol pattern variability over bright surface using high resolution MODIS MAIAC: The eastern and western areas of the Dead Sea and environs. Atmospheric Environment, 2017, 165, 359-369.	4.1	23
18	Identifying sensitive windows for prenatal particulate air pollution exposure and mitochondrial DNA content in cord blood. Environment International, 2017, 98, 198-203.	10.0	56

#	Article	IF	CITATIONS
19	Impact of Land Use on PM2.5 Pollution in a Representative City of Middle China. International Journal of Environmental Research and Public Health, 2017, 14, 462.	2.6	53
20	The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition. International Journal of Environmental Research and Public Health, 2017, 14, 1244.	2.6	15
21	Predicting daily PM2.5 concentrations in Texas using high-resolution satellite aerosol optical depth. Science of the Total Environment, 2018, 631-632, 904-911.	8.0	36
22	Effects of exposure estimation errors on estimated exposure-response relations for PM2.5. Environmental Research, 2018, 164, 636-646.	7.5	17
23	Investigation of air quality over the largest city in central China using high resolution satellite derived aerosol optical depth data. Atmospheric Pollution Research, 2018, 9, 584-593.	3.8	13
24	A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Science of the Total Environment, 2018, 636, 52-60.	8.0	406
25	Predicting Daily Urban Fine Particulate Matter Concentrations Using a Random Forest Model. Environmental Science & Technology, 2018, 52, 4173-4179.	10.0	137
26	Prenatal manganese exposure and intrinsic functional connectivity of emotional brain areas in children. NeuroToxicology, 2018, 64, 85-93.	3.0	42
27	Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information. Environmental Pollution, 2018, 233, 1086-1094.	7.5	159
28	Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland. Environmental Pollution, 2018, 233, 1147-1154.	7.5	92
29	Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015. Environmental Pollution, 2018, 237, 1000-1010.	7.5	59
30	Study of the monthly correlation between AOD obtained from MODIS images and particulate matter for a coastal city. , 2018, , .		0
31	Using Open Street Map Data in Environmental Exposure Assessment Studies: Eastern Massachusetts, Bern Region, and South Israel as a Case Study. International Journal of Environmental Research and Public Health, 2018, 15, 2443.	2.6	6
32	MODIS Collection 6 MAIAC algorithm. Atmospheric Measurement Techniques, 2018, 11, 5741-5765.	3.1	505
33	Assessment of Satellite Aerosol Optical Depth to Estimate Particulate Matter Distribution in Valencia City. , 2018, , .		1
34	Molecular Biomarkers. , 2018, , 683-708.		0
35	The sensitivity of satellite-based PM2.5 estimates to its inputs: Implications to model development in data-poor regions. Environment International, 2018, 121, 550-560.	10.0	26
36	Estimating PM1 concentrations from MODIS over Yangtze River Delta of China during 2014–2017. Atmospheric Environment, 2018, 195, 149-158.	4.1	36

#	Article	IF	CITATIONS
37	Using MAIAC AOD to verify the PM2.5 spatial patterns of a land use regression model. Environmental Pollution, 2018, 243, 501-509.	7.5	49
38	Estimation of PM2.5 concentrations at a high spatiotemporal resolution using constrained mixed-effect bagging models with MAIAC aerosol optical depth. Remote Sensing of Environment, 2018, 217, 573-586.	11.0	32
39	Land use regression models to assess air pollution exposure in Mexico City using finer spatial and temporal input parameters. Science of the Total Environment, 2018, 639, 40-48.	8.0	74
40	Estimation of ultrahigh resolution PM2.5 concentrations in urban areas using 160â€⁻m Gaofen-1 AOD retrievals. Remote Sensing of Environment, 2018, 216, 91-104.	11.0	77
41	Short period PM2.5 prediction based on multivariate linear regression model. PLoS ONE, 2018, 13, e0201011.	2.5	59
42	Correcting Measurement Error in Satellite Aerosol Optical Depth with Machine Learning for Modeling PM2.5 in the Northeastern USA. Remote Sensing, 2018, 10, 803.	4.0	58
43	Satelliteâ€Based Daily PM _{2.5} Estimates During Fire Seasons in Colorado. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8159-8171.	3.3	36
44	Cardiovascular and Cerebrovascular Mortality Associated With Acute Exposure to PM _{2.5} in Mexico City. Stroke, 2018, 49, 1734-1736.	2.0	23
45	Air pollution characteristics in China during 2015–2016: Spatiotemporal variations and key meteorological factors. Science of the Total Environment, 2019, 648, 902-915.	8.0	188
46	Machine learning models accurately predict ozone exposure during wildfire events. Environmental Pollution, 2019, 254, 112792.	7.5	64
47	Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sensing of Environment, 2019, 231, 111221.	11.0	340
48	Comparison of multiple PM _{2.5} exposure products for estimating health benefits of emission controls over New York State, USA. Environmental Research Letters, 2019, 14, 084023.	5.2	30
49	An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. Environment International, 2019, 130, 104909.	10.0	370
50	Estimating daily PM2.5 concentrations in New York City at the neighborhood-scale: Implications for integrating non-regulatory measurements. Science of the Total Environment, 2019, 697, 134094.	8.0	31
51	Prenatal particulate air pollution exposure and sleep disruption in preschoolers: Windows of susceptibility. Environment International, 2019, 124, 329-335.	10.0	45
52	Assessing exposure to outdoor air pollution for epidemiological studies: Model-based and personal sampling strategies. Journal of Allergy and Clinical Immunology, 2019, 143, 2002-2006.	2.9	37
53	Estimation of PMx Concentrations from Landsat 8 OLI Images Based on a Multilayer Perceptron Neural Network. Remote Sensing, 2019, 11, 646.	4.0	19
54	Association between prenatal particulate air pollution exposure and telomere length in cord blood: Effect modification by fetal sex. Environmental Research, 2019, 172, 495-501.	7.5	51

#	Article	IF	CITATIONS
55	Networks at the nexus of systems biology and the exposome. Current Opinion in Toxicology, 2019, 16, 25-31.	5.0	13
56	Tracking ambient PM2.5 build-up in Delhi national capital region during the dry season over 15 years using a high-resolution (1â€ ⁻ km) satellite aerosol dataset. Atmospheric Environment, 2019, 204, 142-150.	4.1	78
57	High-resolution daily AOD estimated to full coverage using the random forest model approach in the Beijing-Tianjin-Hebei region. Atmospheric Environment, 2019, 203, 70-78.	4.1	51
58	Comparison and evaluation of MODIS Multi-angle Implementation of Atmospheric Correction (MAIAC) aerosol product over South Asia. Remote Sensing of Environment, 2019, 224, 12-28.	11.0	140
59	Cooperative Calibration Scheme for Mobile Wireless Sensor Network. , 2019, , .		1
60	Association of Prenatal and Perinatal Exposures to Particulate Matter With Changes in Hemoglobin A _{1c} Levels in Children Aged 4 to 6 Years. JAMA Network Open, 2019, 2, e1917643.	5.9	18
61	Estimating Daily PM _{2.5} and PM ₁₀ over Italy Using an Ensemble Model. Environmental Science & Technology, 2020, 54, 120-128.	10.0	70
62	Assessing PM2.5 concentrations in Tehran, Iran, from space using MAIAC, deep blue, and dark target AOD and machine learning algorithms. Atmospheric Pollution Research, 2019, 10, 889-903.	3.8	46
63	Mapping daily PM2.5 at 500â€ [–] m resolution over Beijing with improved hazy day performance. Science of the Total Environment, 2019, 659, 410-418.	8.0	16
64	Impacts of snow and cloud covers on satellite-derived PM2.5 levels. Remote Sensing of Environment, 2019, 221, 665-674.	11.0	78
65	Unraveling the Exposome. , 2019, , .		9
66	Spatio-temporal modeling of PM _{2.5} concentrations with missing data problem: a case study in Beijing, China. International Journal of Geographical Information Science, 2020, 34, 423-447.	4.8	12
67	Contribution of low-cost sensor measurements to the prediction of PM2.5 levels: A case study in Imperial County, California, USA. Environmental Research, 2020, 180, 108810.	7.5	44
68	Satellite-based estimation of hourly PM2.5 levels during heavy winter pollution episodes in the Yangtze River Delta, China. Chemosphere, 2020, 239, 124678.	8.2	28
69	Satellite remote sensing of aerosol optical depth: advances, challenges, and perspectives. Critical Reviews in Environmental Science and Technology, 2020, 50, 1640-1725.	12.8	68
70	The high-resolution estimation of sulfur dioxide (SO2) concentration, health effect and monetary costs in Beijing. Chemosphere, 2020, 241, 125031.	8.2	33
71	Identifying critical windows of prenatal particulate matter (PM2.5) exposure and early childhood blood pressure. Environmental Research, 2020, 182, 109073.	7.5	36
72	Spatiotemporal imputation of MAIAC AOD using deep learning with downscaling. Remote Sensing of Environment, 2020, 237, 111584.	11.0	71

#	Article	IF	CITATIONS
73	Children's acute respiratory symptoms associated with PM2.5 estimates in two sequential representative surveys from the Mexico City Metropolitan Area. Environmental Research, 2020, 180, 108868.	7.5	27
74	Particulate air pollution exposure during pregnancy and postpartum depression symptoms in women in Mexico City. Environment International, 2020, 134, 105325.	10.0	36
75	Review: Strategies for using satellite-based products in modeling PM2.5 and short-term pollution episodes. Environment International, 2020, 144, 106057.	10.0	40
76	Advancing methodologies for applying machine learning and evaluating spatiotemporal models of fine particulate matter (PM2.5) using satellite data over large regions. Atmospheric Environment, 2020, 239, 117649.	4.1	53
77	Ensemble-based deep learning for estimating PM2.5 over California with multisource big data including wildfire smoke. Environment International, 2020, 145, 106143.	10.0	48
78	Building capacity for air pollution epidemiology in India. Environmental Epidemiology, 2020, 4, e117.	3.0	8
79	Prenatal PM2.5 exposure and behavioral development in children from Mexico City. NeuroToxicology, 2020, 81, 109-115.	3.0	35
80	Short-Term PM2.5 Concentration Prediction by Combining GNSS and Meteorological Factors. IEEE Access, 2020, 8, 115202-115216.	4.2	25
81	Association of ambient PM2·5 exposure with maternal bone strength in pregnant women from Mexico City: a longitudinal cohort study. Lancet Planetary Health, The, 2020, 4, e530-e537.	11.4	12
82	Coupling mobile phone data with machine learning: How misclassification errors in ambient PM2.5 exposure estimates are produced?. Science of the Total Environment, 2020, 745, 141034.	8.0	15
83	Estimating ground-level PM2.5 levels in Taiwan using data from air quality monitoring stations and high coverage of microsensors. Environmental Pollution, 2020, 264, 114810.	7.5	29
84	Estimation of High-Resolution PM _{2.5} over the Indo-Gangetic Plain by Fusion of Satellite Data, Meteorology, and Land Use Variables. Environmental Science & Technology, 2020, 54, 7891-7900.	10.0	77
85	Changing risk factors that contribute to premature mortality from ambient air pollution between 2000 and 2015. Environmental Research Letters, 2020, 15, 074010.	5.2	33
86	A framework for setting up a country-wide network of regional surface PM2.5 sampling sites utilising a satellite-derived proxy – The COALESCE project, India. Atmospheric Environment, 2020, 234, 117544.	4.1	20
87	Ten-year global particulate mass concentration derived from space-borne CALIPSO lidar observations. Science of the Total Environment, 2020, 721, 137699.	8.0	26
88	Novel Approaches to Air Pollution Exposure and Clinical Outcomes Assessment in Environmental Health Studies. Atmosphere, 2020, 11, 122.	2.3	7
89	Moving beyond Fine Particle Mass: High-Spatial Resolution Exposure to Source-Resolved Atmospheric Particle Number and Chemical Mixing State. Environmental Health Perspectives, 2020, 128, 17009.	6.0	16
90	Ensemble averaging based assessment of spatiotemporal variations in ambient PM2.5 concentrations over Delhi, India, during 2010–2016. Atmospheric Environment, 2020, 224, 117309.	4.1	25

#	Article	IF	CITATIONS
91	Fine particulate matter exposure and lipid levels among children in Mexico city. Environmental Epidemiology, 2020, 4, e088.	3.0	14
92	Living Environment Quality Determinants, Including PM2.5 and PM10 Dust Pollution in the Context of Spatial Issues—The Case of Radzionków. Buildings, 2020, 10, 58.	3.1	13
93	The long-term trend of PM2.5-related mortality in China: The effects of source data selection. Chemosphere, 2021, 263, 127894.	8.2	25
94	Prenatal and early life exposure to particulate matter, environmental tobacco smoke and respiratory symptoms in Mexican children. Environmental Research, 2021, 192, 110365.	7.5	15
95	Evaluation of gap-filling approaches in satellite-based daily PM2.5 prediction models. Atmospheric Environment, 2021, 244, 117921.	4.1	71
96	A Review on Estimation of Particulate Matter from Satellite-Based Aerosol Optical Depth: Data, Methods, and Challenges. Asia-Pacific Journal of Atmospheric Sciences, 2021, 57, 679-699.	2.3	22
97	Hourly PM _{2.5} Concentration Monitoring With Spatiotemporal Continuity by the Fusion of Satellite and Station Observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 8019-8032.	4.9	6
98	Impact of weather and emission changes on NO2 concentrations in China during 2014–2019. Environmental Pollution, 2021, 269, 116163.	7.5	39
99	A Novel Methodology to Study Particulate Material/Aerosol Pollution via Real-Time Hyperspectral Acousto-Optic Intelligent Spectrometry. Advances in Civil and Industrial Engineering Book Series, 2021, , 32-37.	0.2	1
100	Retrospective assessment of pregnancy exposure to particulate matter from desert dust on a Caribbean island: could satellite-based aerosol optical thickness be used as an alternative to ground PM10 concentration?. Environmental Science and Pollution Research, 2021, 28, 17675-17683.	5.3	0
101	Exposure to PM2.5 and Obesity Prevalence in the Greater Mexico City Area. International Journal of Environmental Research and Public Health, 2021, 18, 2301.	2.6	21
102	Long-term PM2.5 exposure before diagnosis is associated with worse outcome in breast cancer. Breast Cancer Research and Treatment, 2021, 188, 525-533.	2.5	8
103	Prenatal PM2.5 exposure and neurodevelopment at 2 years of age in a birth cohort from Mexico city. International Journal of Hygiene and Environmental Health, 2021, 233, 113695.	4.3	17
104	Estimating Ground-Level Hourly PM2.5 Concentrations Over North China Plain with Deep Neural Networks. Journal of the Indian Society of Remote Sensing, 2021, 49, 1839-1852.	2.4	5
105	Estimation of excess mortality due to long-term exposure to PM2.5 in continental United States using a high-spatiotemporal resolution model. Environmental Research, 2021, 196, 110904.	7.5	14
106	Spatial Modeling of Daily PM _{2.5} , NO ₂ , and CO Concentrations Measured by a Low-Cost Sensor Network: Comparison of Linear, Machine Learning, and Hybrid Land Use Models. Environmental Science & Marchine Science & 2021, 55, 8631-8641.	10.0	37
107	Implications of Nonstationary Effect on Geographically Weighted Total Least Squares Regression for PM2.5 Estimation. International Journal of Environmental Research and Public Health, 2021, 18, 7115.	2.6	1
108	Temporal variability in the impacts of particulate matter on crop yields on the North China Plain. Science of the Total Environment, 2021, 776, 145135.	8.0	10

#	Article	IF	CITATIONS
109	PM2.5 concentration estimation with 1-km resolution at high coverage over urban agglomerations in China using the BPNN-KED approach and potential application. Atmospheric Research, 2021, 258, 105628.	4.1	4
110	Variability, predictability, and uncertainty in global aerosols inferred from gap-filled satellite observations and an econometric modeling approach. Remote Sensing of Environment, 2021, 261, 112501.	11.0	15
111	Evaluation of MODIS Aerosol Optical Depth and Surface Data Using an Ensemble Modeling Approach to Assess PM2.5 Temporal and Spatial Distributions. Remote Sensing, 2021, 13, 3102.	4.0	5
112	A National-Scale 1-km Resolution PM2.5 Estimation Model over Japan Using MAIAC AOD and a Two-Stage Random Forest Model. Remote Sensing, 2021, 13, 3657.	4.0	15
113	High resolution aerosol optical depth retrieval over urban areas from Landsat-8 OLI images. Atmospheric Environment, 2021, 261, 118591.	4.1	14
114	Impact of environmental attributes on the uncertainty in MAIAC/MODIS AOD retrievals: A comparative analysis. Atmospheric Environment, 2021, 262, 118659.	4.1	24
115	Prenatal PM2.5 exposure in the second and third trimesters predicts neurocognitive performance at age 9–10 years: A cohort study of Mexico City children. Environmental Research, 2021, 202, 111651.	7.5	24
116	Gaussian Markov random fields improve ensemble predictions of daily 1Âkm PM2.5 and PM10 across France. Atmospheric Environment, 2021, 264, 118693.	4.1	11
117	Critical windows of perinatal particulate matter (PM2.5) exposure and preadolescent kidney function. Environmental Research, 2022, 204, 112062.	7.5	5
120	Using the Gaofen-4 geostationary satellite to retrieve aerosols with high spatiotemporal resolution. Journal of Applied Remote Sensing, 2018, 12, 1. Estimating elemental constituents of personal PM <mml:math< td=""><td>1.3</td><td>6</td></mml:math<>	1.3	6
121	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1113" altimg="si60.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2.<mml:mn>5</mml:mn></mml:mn></mml:mrow>A modeling approach of older individuals of the China BAPE study. Environmental Technology and</mml:mrow </mml:msub>	> <td>ath>:</td>	ath>:
122	Innovation, 2021, 24, 102027. Remote Sensing for Sustainable Environmental Systems. Taylor & Francis Series in Remote Sensing Applications, 2016, , 191-209.	0.0	0
123	From the Outside In: Integrating External Exposures into the Exposome Concept. , 2019, , 255-276.		1
124	Climate effects of aerosols in Bucharest metropolitan area. , 2018, , .		0
126	Validating and Comparing Highly Resolved Commercial "Off the Shelf―PM Monitoring Sensors with Satellite Based Hybrid Models, for Improved Environmental Exposure Assessment. Sensors, 2021, 21, 63.	3.8	3
127	Advancing Exposure Assessment of PM2.5 Using Satellite Remote Sensing: A Review. Asian Journal of Atmospheric Environment, 2020, 14, 319-334.	1.1	5
128	Association between satellite-based estimates of long-term PM2.5 exposure and cardiovascular disease: evidence from the Indonesian Family Life Survey. Environmental Science and Pollution Research, 2022, 29, 21156-21165.	5.3	6
129	Prenatal metal mixture concentrations and reward motivation in children. NeuroToxicology, 2022, 88, 124-133.	3.0	7

#	Article	IF	CITATIONS
130	PM2.5 exposure as a risk factor for type 2 diabetes mellitus in the Mexico City metropolitan area. BMC Public Health, 2021, 21, 2087.	2.9	14
131	Estimating long-term PM10-2.5 concentrations in six US cities using satellite-based aerosol optical depth data. Atmospheric Environment, 2022, 272, 118945.	4.1	5
133	Retrieval of Black Carbon Absorption Aerosol Optical Depth from AERONET Observations over the World during 2000–2018. Remote Sensing, 2022, 14, 1510.	4.0	4
134	Environmentally Toxic Solid Nanoparticles in Noradrenergic and Dopaminergic Nuclei and Cerebellum of Metropolitan Mexico City Children and Young Adults with Neural Quadruple Misfolded Protein Pathologies and High Exposures to Nano Particulate Matter. Toxics, 2022, 10, 164.	3.7	14
135	High Spatiotemporal Resolution PM2.5 Concentration Estimation with Machine Learning Algorithm: A Case Study for Wildfire in California. Remote Sensing, 2022, 14, 1635.	4.0	3
136	A machine learning-based framework for high resolution mapping of PM2.5 in Tehran, Iran, using MAIAC AOD data. Advances in Space Research, 2022, 69, 3333-3349.	2.6	20
137	Validity of self-reported air pollution annoyance to assess long-term exposure to air pollutants in Belgium. Environmental Research, 2022, 210, 113014.	7.5	1
138	A Multiscale Land Use Regression Approach for Estimating Intraurban Spatial Variability of PM2.5 Concentration by Integrating Multisource Datasets. International Journal of Environmental Research and Public Health, 2022, 19, 321.	2.6	4
139	Intermediate- and long-term associations between air pollution and ambient temperature and glycated hemoglobin levels in women of child bearing age. Environment International, 2022, 165, 107298.	10.0	4
140	An integrated approach of Belief Rule Base and Convolutional Neural Network to monitor air quality in Shanghai. Expert Systems With Applications, 2022, 206, 117905.	7.6	11
141	Persistently high incidence rates of childhood acute leukemias from 2010 to 2017 in Mexico City: A population study from the MIGICCL. Frontiers in Public Health, 0, 10, .	2.7	3
142	Prediction of daily mean and one-hour maximum PM2.5 concentrations and applications in Central Mexico using satellite-based machine-learning models. Journal of Exposure Science and Environmental Epidemiology, 2022, 32, 917-925.	3.9	9
143	Longitudinal assessment of maternal depression and early childhood asthma and wheeze: Effect modification by child sex. Pediatric Pulmonology, 2023, 58, 98-106.	2.0	3
144	Investigating the interactive and heterogeneous effects of green and blue space on urban PM2.5 concentration, a case study of Wuhan. Journal of Cleaner Production, 2022, 378, 134389.	9.3	5
145	Estimating PM2.5 Concentrations Using the Machine Learning RF-XGBoost Model in Guanzhong Urban Agglomeration, China. Remote Sensing, 2022, 14, 5239.	4.0	7
146	Study on spatiotemporal characteristics and influencing factors of pedestrian-level PM2.5 concentrations in outdoor open spaces of Harbin in winter, using a generalized additive model (GAM). Urban Climate, 2022, 46, 101313.	5.7	7
147	A daily and complete PM2.5 dataset derived from space observations for Vietnam from 2012 to 2020. Science of the Total Environment, 2023, 857, 159537.	8.0	5
149	Associations between early-life exposure to PM2.5 and reductions in childhood lung function in two North American longitudinal pregnancy cohort studies. Environmental Epidemiology, 2023, 7, e234.	3.0	0

#	Article	IF	CITATIONS
151	Dinámica fractal de las partÃculas PM2,5 en la Ciudad de México. , 2023, 28, 4-22.		0
152	Evaluating TROPOMI and MODIS performance to capture the dynamic of air pollution in São Paulo state: A case study during the COVID-19 outbreak. Remote Sensing of Environment, 2023, 289, 113514.	11.0	10
153	Mapping nighttime PM2.5 concentrations in Nanjing, China based on NPP/VIIRS nighttime light data. Atmospheric Environment, 2023, 303, 119767.	4.1	3
154	THE SPATIAL-TEMPORAL DIFFERENTIATION IN AIR POLLUTION AND INDUSTRY STRUCTURE— EVIDENCE FROM THE METROPOLITAN AREA OF BEIJING–TIANJIN–HEBEI URBAN IN CHINA. Singapore Economic Review, 0, , 1-25.	1.7	2
155	Study on the Trend of Air Quality Changes in Wenzhou. Advances in Environmental Protection, 2023, 13, 322-332.	0.1	0
156	Satellite-based prediction of surface dust mass concentration in southeastern Iran using an intelligent approach. Stochastic Environmental Research and Risk Assessment, 2023, 37, 3731-3745.	4.0	2
157	Research Progress, Challenges and Prospects of PM2.5 Concentration Estimation using Satellite Data. Environmental Reviews, 0, , .	4.5	0
158	Variation of Aerosol Optical Properties over Cluj-Napoca, Romania, Based on 10 Years of AERONET Data and MODIS MAIAC AOD Product. Remote Sensing, 2023, 15, 3072.	4.0	0
159	Integrating low-cost sensor monitoring, satellite mapping, and geospatial artificial intelligence for intra-urban air pollution predictions. Environmental Pollution, 2023, 331, 121832.	7.5	14
160	POPGIS $\hat{a} \in \hat{A}$ An Application Service for Air Pollution Management and Analysis in Vietnam. , 2023, , .		0
161	Aerosol optical depth climatology from the high-resolution MAIAC product over Europe: differences between major European cities and their surrounding environments. Atmospheric Chemistry and Physics, 2023, 23, 12455-12475.	4.9	0
162	Using Spatiotemporal Prediction Models to Quantify PM _{2.5} Exposure due to Daily Movement. Environmental Science Atmospheres, 0, , .	2.4	0
163	Recent ambient temperature and fine particulate matter (PM2.5) exposure is associated with urinary kidney injury biomarkers in children. Science of the Total Environment, 2023, , 168119.	8.0	0
164	A comprehensive review of the development of land use regression approaches for modeling spatiotemporal variations of ambient air pollution: A perspective from 2011 to 2023. Environment International, 2024, 183, 108430.	10.0	1
165	Multi-timescale variation characteristics of PM2.5 in different regions of China during 2014–2022. Science of the Total Environment, 2024, 920, 171008.	8.0	0