Spatial distribution and environmental factors of catcher contamination in the dry-hot valley of Upper Red River

Catena 135, 59-69 DOI: 10.1016/j.catena.2015.07.006

Citation Report

#	Article	IF	CITATIONS
1	Spatial distribution of rodent pests in desert forest based on UAV remote sensing. , 2016, , .		1
2	Quantifying soil erosion effects on soil productivity in the dry-hot valley, southwestern China. Environmental Earth Sciences, 2016, 75, 1.	2.7	41
3	Two-dimensional empirical mode decomposition of heavy metal spatial variation in agricultural soils, Southeast China. Environmental Science and Pollution Research, 2017, 24, 8302-8314.	5.3	21
4	Geochemical Assessment of Trace Element Pollution in Surface Sediments from the Georges River, Southern Sydney, Australia. Archives of Environmental Contamination and Toxicology, 2017, 72, 247-259.	4.1	37
5	Modeling and mapping of cadmium in soils based on qualitative and quantitative auxiliary variables in a cadmium contaminated area. Science of the Total Environment, 2017, 580, 430-439.	8.0	43
6	Solvent extraction separate of zinc and cadmium from magnesium and calcium in sulfuric acid medium by mixing extractants. Journal of Central South University, 2017, 24, 2253-2259.	3.0	2
7	Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions. Science of the Total Environment, 2017, 578, 577-585.	8.0	143
8	Risk Assessment of Metals in Urban Soils from a Typical Industrial City, Suzhou, Eastern China. International Journal of Environmental Research and Public Health, 2017, 14, 1025.	2.6	43
9	Quantitative Analysis of the Factors Influencing Soil Heavy Metal Lateral Migration in Rainfalls Based on Geographical Detector Software: A Case Study in Huanjiang County, China. Sustainability, 2017, 9, 1227.	3.2	25
10	Relationship between vegetation types, soil and topography in southern forests of Iran. Journal of Forestry Research, 2018, 29, 1635-1644.	3.6	8
11	Study of applying naturally occurring mineral sorbents of Poland (dolomite halloysite, chalcedonite) for aided phytostabilization of soil polluted with heavy metals. Catena, 2018, 163, 123-129.	5.0	54
12	Spatial distribution and sources of heavy metals in natural pasture soil around copper-molybdenum mine in Northeast China. Ecotoxicology and Environmental Safety, 2018, 154, 329-336.	6.0	47
13	Chemical speciation and bioavailability concentration of arsenic and heavy metals in sediment and soil cores in estuarine ecosystem, Vietnam. Microchemical Journal, 2018, 139, 268-277.	4.5	32
14	Heavy metal accumulation and health risk assessment in soil-wheat system under different nitrogen levels. Science of the Total Environment, 2018, 622-623, 1499-1508.	8.0	57
15	Spatial Characteristics, Health Risk Assessment and Sustainable Management of Heavy Metals and Metalloids in Soils from Central China. Sustainability, 2018, 10, 91.	3.2	41
16	Spatial distribution and risk assessment of heavy metals inside and outside a typical lead-zinc mine in southeastern China. Environmental Science and Pollution Research, 2019, 26, 26265-26275.	5.3	15
17	Distribution and sources of trace element pollutants in the sediments of the industrialised Port Kembla Harbour, New South Wales, Australia. Environmental Earth Sciences, 2019, 78, 1.	2.7	17
18	Honeybees (Apis mellifera L.) as a Potential Bioindicator for Detection of Toxic and Essential Elements in the Environment (Case Study: Markazi Province, Iran). Archives of Environmental Contamination and Toxicology, 2019, 77, 344-358.	4.1	49

TATION REDC

CITATION REPORT

#	Article	IF	CITATIONS
19	Impacts of tillage practices on ephemeral gully erosion in a dry-hot valley region in southwestern China. Soil and Tillage Research, 2019, 187, 72-84.	5.6	28
20	The accumulation and redistribution of heavy metals in the water-level fluctuation zone of the Nuozhadu Reservoir, Upper Mekong. Catena, 2019, 172, 335-344.	5.0	26
21	Land use controls soil bacterial diversity in the dry-hot valley region, Southern China. Archives of Agronomy and Soil Science, 2020, 66, 694-705.	2.6	7
22	Vertical variation and temporal trends of extreme precipitation indices in a complex topographical watershed in the Hengduan Mountain Region, China. International Journal of Climatology, 2020, 40, 3250-3267.	3.5	14
23	Identification of the sources and influencing factors of potentially toxic elements accumulation in the soil from a typical karst region in Guangxi, Southwest China. Environmental Pollution, 2020, 256, 113505.	7.5	50
24	Spatial and Temporal Heterogeneity Analysis of Water Conservation in Beijingâ€Tianjinâ€Hebei Urban Agglomeration Based on the Geodetector and Spatial Elastic Coefficient Trajectory Models. GeoHealth, 2020, 4, e2020GH000248.	4.0	29
25	Effect of terrain gradient on cadmium accumulation in soils. Geoderma, 2020, 375, 114501.	5.1	10
26	Quantifying the Effect of Xiluodu Reservoir on the Temperature of the Surrounding Mountains. GeoHealth, 2020, 4, e2019GH000242.	4.0	2
27	Identifying the influencing factors controlling the spatial variation of heavy metals in suburban soil using spatial regression models. Science of the Total Environment, 2020, 717, 137212.	8.0	57
28	Influence of slope aspect on the macro- and micronutrients in Artemisia sacrorum on the Loess Plateau in China. Environmental Science and Pollution Research, 2020, 27, 20160-20172.	5.3	2
29	Trend analysis of global usage of digital soil mapping models in the prediction of potentially toxic elements in soil/sediments: a bibliometric review. Environmental Geochemistry and Health, 2021, 43, 1715-1739.	3.4	20
30	Spatial distribution, source identification, and risk assessment of heavy metals in the soils from a mining region: a case study of Bayan Obo in northwestern China. Human and Ecological Risk Assessment (HERA), 2021, 27, 1276-1295.	3.4	20
31	Sources of sediments during rainfall in the dry-hot valley region of China on a small watershed scale. Journal of Soils and Water Conservation, 2021, 76, 14-24.	1.6	2
32	Long-term effects of phytoextraction by a poplar clone on the concentration, fractionation, and transportation of heavy metals in mine tailings. Environmental Science and Pollution Research, 2021, 28, 47528-47539.	5.3	12
33	Impact analysis of small hydropower construction on river connectivity on the upper reaches of the great rivers in the Tibetan Plateau. Global Ecology and Conservation, 2021, 26, e01496.	2.1	6
34	Interactive effects of land use and soil erosion on soil organic carbon in the dry-hot valley region of southern China. Catena, 2021, 201, 105187.	5.0	19
35	Comparative Study on Temperature Response of Hydropower Development in the Dryâ€Hot Valley. GeoHealth, 2021, 5, e2021GH000438.	4.0	0
36	Surface soil metal elements variability affected by environmental and soil properties. PLoS ONE, 2021, 16, e0254928.	2.5	3

#	Article	IF	Citations
37	Soil nutrient variability mediates the effects of erosion on soil microbial communities: results from a modified topsoil removal method in an agricultural field in Yunnan plateau, China. Environmental Science and Pollution Research, 2022, 29, 3659-3671.	5.3	12
38	Dominant environmental factors influencing soil metal concentrations of Poyang Lake wetland, China: Soil property, topography, plant species and wetland type. Catena, 2021, 207, 105601.	5.0	21
39	Sustainable C and N Management Under Metal-Contaminated Soils. , 2020, , 293-336.		7
40	Establishing an ecological security pattern for urban agglomeration, taking ecosystem services and human interference factors into consideration. PeerJ, 2019, 7, e7306.	2.0	44
41	Analyzing the interpretative ability of landscape pattern to explain thermal environmental effects in the Beijing-Tianjin-Hebei urban agglomeration. PeerJ, 2019, 7, e7874.	2.0	3
42	Risk assessment and source apportionment of trace elements in multiple compartments in the lower reach of the Jinsha River, China. Scientific Reports, 2021, 11, 20041.	3.3	3
43	Influence of land use and topography on distribution and bioaccumulation of potentially toxic metals in soil and plant leaves: A case study from Sekhukhuneland, South Africa. Science of the Total Environment, 2022, 806, 150659.	8.0	12
44	Predicting heavy metal contents by applying machine learning approaches and environmental covariates in west of Iran. Journal of Geochemical Exploration, 2022, 233, 106921.	3.2	45
45	Identify Priority Control Pollutants and Areas of Groundwater in an Old Metropolitan Industrial Area—A Case Study of Putuo, Shanghai, China. Water (Switzerland), 2022, 14, 459.	2.7	4
46	Highâ€resolution mapping of soil pollution by Cu and Ni at a polar industrial barren area using proximal and remote sensing. Land Degradation and Development, 2022, 33, 1731-1744.	3.9	7
47	Effect of altitude and climatic parameters on shrub-meadow community composition and diversity in the dry valley region of the eastern Hengduan Mountains, China. Journal of Mountain Science, 2022, 19, 1139-1155.	2.0	7
48	Anthropogenic metal loads in nearshore sediment along the coast of China mainland interacting with provincial socioeconomics in the period 1980–2020. Science of the Total Environment, 2022, 839, 156286.	8.0	11
49	Landscape Pattern Vulnerability of the Eastern Hengduan Mountains, China and Response to Elevation and Artificial Disturbance. Land, 2022, 11, 1110.	2.9	4
50	A comprehensive study of potentially toxic element contamination and source quantitative assessment by positive matrix factorization model: risk from the fine road dust of Chehe mining area, China. Environmental Science and Pollution Research, 2023, 30, 1189-1200.	5.3	4
51	Combination of enrichment factor and positive matrix factorization in the estimation of potentially toxic element source distribution in agricultural soil. Environmental Geochemistry and Health, 2023, 45, 2359-2385.	3.4	3
52	Using a Sensitivity Analysis and Spatial Clustering to Determine Vulnerability to Potentially Toxic Elements in a Semiarid City in Northwest Mexico. Sustainability, 2022, 14, 10461.	3.2	4
53	Spatial Distribution Characteristics and Source Appointment of Heavy Metals in Soil in the Areas Affected by Non-Ferrous Metal Slag Field in the Dry-Hot Valley. Applied Sciences (Switzerland), 2022, 12, 9475.	2.5	3
54	Cadmium isotope fractionation during transport processes within agricultural soil profiles in a mining area: Implications for source tracing. Environmental Pollution, 2022, 314, 120327.	7.5	3

CITATION REPORT

#	Article	IF	Citations
55	Contamination and Health Risk Assessment of Heavy Metals in Soil and Ditch Sediments in Long-Term Mine Wastes Area. Toxics, 2022, 10, 607.	3.7	8
56	Heavy Metals Enrichment Associated with Water-Level Fluctuations in the Riparian Soils of the Xiaowan Reservoir, Lancang River. International Journal of Environmental Research and Public Health, 2022, 19, 12902.	2.6	1
58	Migration, accumulation, and risk assessment of potentially toxic elements in soil-plant (shrub and) Tj ETQq0 0 0 Pollution Research, 2023, 30, 46092-46106.	rgBT /Ove 5.3	rlock 10 Tf 5 5
59	Reduced cadmium toxicity in rapeseed via alteration of root properties and accelerated plant growth by a nitrogen-fixing bacterium. Journal of Hazardous Materials, 2023, 449, 131040.	12.4	7
60	Accurate Prediction of Soil Heavy Metal Pollution Using an Improved Machine Learning Method: A Case Study in the Pearl River Delta, China. Environmental Science & Technology, 2023, 57, 17751-17761.	10.0	5
61	Alp-valley and elevation effects on the reference evapotranspiration and the dominant climate controls in Red River Basin, China: Insights from geographical differentiation. Journal of Hydrology, 2023, 620, 129397.	5.4	17
63	Digital exploration of selected heavy metals using Random Forest and a set of environmental covariates at the watershed scale. Journal of Hazardous Materials, 2023, 455, 131609.	12.4	8
64	Feasibility Study of PLS and Bagging-PLS Regressions in Predicting Some Soil Heavy Metals by VIS to NIR and SWIR Bands: Case Study of Hormuz Island Soils. Eurasian Soil Science, 0, , .	1.6	0
65	Variation in Soil Properties and Nutrient Stocks Under Different Forest Tree Species with Altitude, Aspect and Soil Depths. Bartın Orman Fakültesi Dergisi, 2023, 25, .	0.3	0
66	Climate and soil properties regulate the vertical heterogeneity of minor and trace elements in the alpine topsoil of the Hengduan Mountains. Science of the Total Environment, 2023, 899, 165653.	8.0	1
68	Unveiling the spatial differentiation drivers of major soil element behavior along traffic network accessibility. Environmental Pollution, 2024, 342, 123045.	7.5	0
69	Accumulation and Health Risks of Heavy Metals in the Surface Soil of Cultivated Land. Water, Air, and Soil Pollution, 2024, 235, .	2.4	0
70	Source apportionment and risk assessment of soil heavy metals in the Huangshui River Basin using a hybrid model. Ecological Indicators, 2024, 160, 111906.	6.3	0

CITATION REPORT