Current trends of rubber plantation expansion may three

Global Environmental Change 34, 48-58 DOI: 10.1016/j.gloenvcha.2015.06.002

Citation Report

#	Article	IF	CITATIONS
1	Complex relationships among gender and forest food harvesting: insights from the Bribri Indigenous Territory, Costa Rica. International Forestry Review, 2016, 18, 247-260.	0.3	3
2	Male Parent Identification of Triploid Rubber Trees (Hevea brasiliensis) and the Mechanism of 2n Gametes Formation. Forests, 2016, 7, 301.	0.9	8
3	Remotely Sensed Data Informs Red List Evaluations and Conservation Priorities in Southeast Asia. PLoS ONE, 2016, 11, e0160566.	1.1	21
4	Land-use change impact on time-averaged carbon balances: Rubber expansion and reforestation in a biosphere reserve, South-West China. Forest Ecology and Management, 2016, 372, 149-163.	1.4	42
5	Sustainable livelihoods in the global land rush? Archetypes of livelihood vulnerability and sustainability potentials. Global Environmental Change, 2016, 41, 153-171.	3.6	144
6	Carbon balance of rubber (Hevea brasiliensis) plantations: A review of uncertainties at plot, landscape and production level. Agriculture, Ecosystems and Environment, 2016, 221, 8-19.	2.5	67
7	When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio, 2016, 45, 538-550.	2.8	341
8	Land use changes to cash crop plantations: crop types, multilevel determinants and policy implications. Land Use Policy, 2016, 50, 379-389.	2.5	122
9	Review of allometric equations for major land covers in SE Asia: Uncertainty and implications for above- and below-ground carbon estimates. Forest Ecology and Management, 2016, 360, 323-340.	1.4	77
10	The impacts of shifting cultivation on secondary forests dynamics in tropics: A synthesis of the key findings and spatio temporal distribution of research. Environmental Science and Policy, 2016, 55, 167-177.	2.4	88
11	Policy-driven rubber plantation and its driving factors: a case of smallholders in northeast Thailand. International Journal of Sustainable Development and World Ecology, 2017, 24, 15-26.	3.2	8
12	Mitigation of unwanted direct and indirect landâ€use change – an integrated approach illustrated for palm oil, pulpwood, rubber and rice production in North and East Kalimantan, Indonesia. GCB Bioenergy, 2017, 9, 429-444.	2.5	20
13	Rubber intercropping: a viable concept for the 21st century?. Agroforestry Systems, 2017, 91, 577-596.	0.9	57
14	Impending extinction crisis of the world's primates: Why primates matter. Science Advances, 2017, 3, e1600946.	4.7	912
15	Scaling green rubber cultivation in Southwest China—An integrative analysis of stakeholder perspectives. Science of the Total Environment, 2017, 580, 1475-1482.	3.9	20
16	Understanding the drivers of <scp>S</scp> outheast <scp>A</scp> sian biodiversity loss. Ecosphere, 2017, 8, e01624.	1.0	335
17	Farm types and farmer motivations to adapt: Implications for design of sustainable agricultural interventions in the rubber plantations of South West China. Agricultural Systems, 2017, 154, 1-12.	3.2	29
18	Seasonal differences in soil respiration and methane uptake in rubber plantation and rainforest. Agriculture, Ecosystems and Environment, 2017, 240, 314-328.	2.5	29

ARTICLE IF CITATIONS Making a green rubber stamp: emerging dynamics of natural rubber eco-certification. International 19 2.9 17 Journal of Biodiversity Science, Ecosystem Services & Management, 2017, 13, 100-115. Economic benefit and ecological cost of enlarging tea cultivation in subtropical China: 2.5 Characterizing the trade-off for policy implications. Land Use Policy, 2017, 66, 183-195. Taraxacum kok-saghyz (TK): compositional analysis of a feedstock for natural rubber and other 21 2.560 bioproducts. Industrial Crops and Products, 2017, 107, 624-640. Beyond hectares: four principles to guide reforestation in the context of tropical forest and 101 landscape restoration. Restoration Ecology, 2017, 25, 491-496. Forestland-cover changes in China's tropical area: Historical patterns, implications, and policy 23 0.6 4 optionsâ€"a case study from Xishuangbanna. Journal of Sustainable Forestry, 2017, 36, 18-31. Rubber specialization vs crop diversification: the roles of perceived risks. China Agricultural Economic Review, 2017, 9, 188-210. 1.8 Biodiversity and ecosystem servicesa[~]A case study for the assessment of multiple species and 25 2.6 25 functional diversity levels in a cultural landscape. Écological Indicators, 2017, 75, 111-117. Rubber tree allometry, biomass partitioning and carbon stocks in mountainous landscapes of 1.4 sub-tropical China. Forest Ecology and Management, 2017, 404, 84-99. Soil respiration in sloping rubber plantations and tropical natural forests in Xishuangbanna, China. 27 2.5 24 Agriculture, Ecosystems and Environment, 2017, 249, 237-246. Measuring leaf area index in rubber plantations â[°] a challenge. Ecological Indicators, 2017, 82, 357-366. Estimation of the nitrogen concentration of rubber tree using fractional calculus augmented NIR 29 32 2.5 spectra. Industrial Crops and Products, 2017, 108, 831-839. Historical anthropogenic footprints in the distribution of threatened plants in China. Biological Conservation, 2017, 210, 3-8. Diversity and ecology of soil fungal communities in rubber plantations. Fungal Biology Reviews, 2017, $\mathbf{31}$ 1.9 18 31, 1-11. Functional Diversity of Soil Microbial Communities in Different-age Rubber Plantations — A Case 0.4 Study of Hainan Province, China. Journal of Rubber Research (Kuala Lumpur, Malaysia), 2017, 20, 168-181. Variation of Soil Bacterial Communities in a Chronosequence of Rubber Tree (Hevea brasiliensis) 33 1.7 68 Plantations. Frontiers in Plant Science, 2017, 8, 849. The Impact of Para Rubber Expansion on Streamflow and Other Water Balance Components of the Nam 108 Loei River Basin, Thailand. Water (Switzerland), 2017, 9, 1. Assessing Ecosystem Services in Rubber Dominated Landscapes in South-East Asiaâ€"A Challenge for 35 0.9 13 Biophysical Modeling and Transdisciplinary Valuation. Forests, 2017, 8, 505. Optimization of the Use of His6-OPH-Based Enzymatic Biocatalysts for the Destruction of Chlorpyrifos 1.2 in Soil. International Journal of Environmental Research and Public Health, 2017, 14, 1438.

#	Article	IF	CITATIONS
37	Sustainability and Competitiveness of Thailand's Natural Rubber Industry in Times of Global Economic Flux. Asian Social Science, 2017, 14, 169.	0.1	5
38	A Mixed Application of Geographically Weighted Regression and Unsupervised Classification for Analyzing Latex Yield Variability in Yunnan, China. Forests, 2017, 8, 162.	0.9	2
39	Protecting tropical forests from the rapid expansion of rubber using carbon payments. Nature Communications, 2018, 9, 911.	5.8	65
40	Conceptualization, modeling and environmental impact assessment of a natural rubber techno-ecological system with nutrient, water and energy integration. Journal of Cleaner Production, 2018, 185, 707-722.	4.6	4
41	Greening rubber? Political ecologies of plantation sustainability in Laos and Myanmar. Geoforum, 2018, 92, 96-105.	1.4	25
42	Spatial and seasonal variation in soil respiration along a slope in a rubber plantation and a natural forest in Xishuangbanna, Southwest China. Journal of Mountain Science, 2018, 15, 695-707.	0.8	14
43	Characterization of the rubber tree metallothionein family reveals a role in mitigating the effects of reactive oxygen species associated with physiological stress. Tree Physiology, 2018, 38, 911-924.	1.4	15
44	Impact of land use changes on the storage of soil organic carbon in active and recalcitrant pools in a humid tropical region of India. Science of the Total Environment, 2018, 624, 908-917.	3.9	80
45	Exploring trade-offs between development and conservation outcomes in Northern Cambodia. Land Use Policy, 2018, 71, 431-444.	2.5	34
46	Estimating biomass stocks and potential loss of biomass carbon through clear-felling of rubber plantations. Biomass and Bioenergy, 2018, 115, 88-96.	2.9	29
47	Ecosystem carbon sequestration through restoration of degraded lands in Northeast India. Land Degradation and Development, 2018, 29, 15-25.	1.8	63
48	Analyses of Land Cover Change Trajectories Leading to Tropical Forest Loss: Illustrated for the West Kutai and Mahakam Ulu Districts, East Kalimantan, Indonesia. Land, 2018, 7, 108.	1.2	13
49	Balancing cash and food: The impacts of agrarian change on rural land use and wellbeing in Northern Laos. PLoS ONE, 2018, 13, e0209166.	1.1	10
50	Land-Use Spatio-Temporal Change and Its Driving Factors in an Artificial Forest Area in Southwest China. Sustainability, 2018, 10, 4066.	1.6	32
51	Dramatic cropland expansion in Myanmar following political reforms threatens biodiversity. Scientific Reports, 2018, 8, 16558.	1.6	19
52	Introduction of a leguminous shrub to a rubber plantation changed the soil carbon and nitrogen fractions and ameliorated soil environments. Scientific Reports, 2018, 8, 17324.	1.6	25
53	Effect of a rubber plantation on termite diversity in Melawi, West Kalimantan, Indonesia. Agriculture and Natural Resources, 2018, 52, 439-444.	0.4	7
54	Spatial Pattern and Competitive Relationships of Moso Bamboo in a Native Subtropical Rainforest Community. Forests, 2018, 9, 774.	0.9	25

\sim			<u> </u>	
	ΙΤΔΤ	10N	Repo	ID
<u> </u>	$\Pi \Lambda \Pi$		ILL U	

#	Article	IF	CITATIONS
55	Renewable Rubber and Jet Fuel from Biomass: Evaluation of Greenhouse Gas Emissions and Land Use Trade-offs in Energy and Material Markets. ACS Sustainable Chemistry and Engineering, 2018, 6, 14414-14422.	3.2	19
56	Honey Bees in Modernized South East Asia: Adaptation or Extinction?. Asia in Transition, 2018, , 169-186.	0.2	1
58	Evidence on land deals' impacts on local livelihoods. Current Opinion in Environmental Sustainability, 2018, 32, 90-95.	3.1	10
59	Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nature Geoscience, 2018, 11, 556-562.	5.4	168
60	Simultaneous quantification of rubber, inulin, and resins in Taraxacum kok-saghyz (TK) roots by sequential solvent extraction. Industrial Crops and Products, 2018, 122, 647-656.	2.5	22
61	Natural forests maintain a greater soil microbial diversity than that in rubber plantations in Southwest China. Agriculture, Ecosystems and Environment, 2018, 265, 190-197.	2.5	33
62	Neolinocarpon phayaoense sp. nov. (Linocarpaceae) from Thailand. Phytotaxa, 2018, 362, 77.	0.1	5
63	Genome-Wide Identification and Characterization of MADS-box Family Genes Related to Floral Organ Development and Stress Resistance in Hevea brasiliensis MüII. Arg Forests, 2018, 9, 304.	0.9	9
64	Climate change impact assessment on the potential rubber cultivating area in the Greater Mekong Subregion. Environmental Research Letters, 2018, 13, 084002.	2.2	17
65	The Role of Remote Sensing for Understanding Large-Scale Rubber Concession Expansion in Southern Laos. Land, 2018, 7, 55.	1.2	9
66	Combined Landsat and L-Band SAR Data Improves Land Cover Classification and Change Detection in Dynamic Tropical Landscapes. Remote Sensing, 2018, 10, 306.	1.8	90
67	Identifying Establishment Year and Pre-Conversion Land Cover of Rubber Plantations on Hainan Island, China Using Landsat Data during 1987–2015. Remote Sensing, 2018, 10, 1240.	1.8	25
68	Characterization of photosynthesis and transpiration in two rubber tree clones exposed to thermal stress. Revista Brasileira De Botanica, 2018, 41, 785-794.	0.5	4
69	The transition from arable lands to rubber tree plantations in northern Thailand impacts weed assemblages and soil physical properties. Soil Use and Management, 2018, 34, 404-417.	2.6	7
70	Land use/land cover change and its impacts on protected areas in Mengla County, Xishuangbanna, Southwest China. Environmental Monitoring and Assessment, 2018, 190, 509.	1.3	14
71	Carbon costs and benefits of Indonesian rainforest conversion to plantations. Nature Communications, 2018, 9, 2388.	5.8	115
72	How much will cash forest encroachment in rainforests cost? A case from valuation to payment for ecosystem services in China. Ecosystem Services, 2019, 38, 100949.	2.3	24
73	Crop booms at the forest frontier: Triggers, reinforcing dynamics, and the diffusion of knowledge and norms. Global Environmental Change, 2019, 57, 101929.	3.6	18

#	Article	IF	CITATIONS
74	Rational Rubber Extraction and Simultaneous Determination of Rubber Content and Molecular Weight Distribution in Taraxacum kok-saghyz Rodin by Size-Exclusion Chromatography. Chromatographia, 2019, 82, 1459-1466.	0.7	13
75	Converting forests into rubber plantations weakened the soil CH ₄ sink in tropical uplands. Land Degradation and Development, 2019, 30, 2311-2322.	1.8	12
76	Impacts of Land-Use Change on Habitat Quality during 1985–2015 in the Taihu Lake Basin. Sustainability, 2019, 11, 3513.	1.6	65
77	Farms or Forests? Understanding and Mapping Shifting Cultivation Using the Case Study of West Garo Hills, India. Land, 2019, 8, 133.	1.2	13
78	Research on point-pressing based double-sided CNC incremental forming. Journal of Mechanical Science and Technology, 2019, 33, 4389-4400.	0.7	3
79	A hybrid VMD–BiGRU model for rubber futures time series forecasting. Applied Soft Computing Journal, 2019, 84, 105739.	4.1	75
80	A SD-MaxEnt-CA model for simulating the landscape dynamic of natural ecosystem by considering socio-economic and natural impacts. Ecological Modelling, 2019, 410, 108783.	1.2	26
81	Agricultural land-uses consistently exacerbate infectious disease risks in Southeast Asia. Nature Communications, 2019, 10, 4299.	5.8	65
82	Nutrient management of immature rubber plantations. A review. Agronomy for Sustainable Development, 2019, 39, 1.	2.2	34
83	After the rubber boom: good news and bad news for biodiversity in Xishuangbanna, Yunnan, China. Regional Environmental Change, 2019, 19, 1713-1724.	1.4	43
84	Land Use and Land Cover Scenarios for Optimum Water Yield and Sediment Retention Ecosystem Services in Klong U-Tapao Watershed, Songkhla, Thailand. Sustainability, 2019, 11, 2895.	1.6	23
85	Within-family genomic selection in rubber tree (Hevea brasiliensis) increases genetic gain for rubber production. Industrial Crops and Products, 2019, 138, 111464.	2.5	53
86	Tropical forest structure and understorey determine subsurface flow through biopores formed by plant roots. Catena, 2019, 181, 104061.	2.2	24
87	Stand ageâ€related effects on soil respiration in rubber plantations (<i>Hevea brasiliensis</i>) in southwest China. European Journal of Soil Science, 2019, 70, 1221-1233.	1.8	10
88	A Review of SWAT Studies in Southeast Asia: Applications, Challenges and Future Directions. Water (Switzerland), 2019, 11, 914.	1.2	78
89	A Rubber-Tapping Robot Forest Navigation and Information Collection System Based on 2D LiDAR and a Gyroscope. Sensors, 2019, 19, 2136.	2.1	40
90	Smallholder Telecoupling and Climate Governance in Jambi Province, Indonesia. Social Sciences, 2019, 8, 115.	0.7	7
91	China and the changing economic geography of coffee value chains. Singapore Journal of Tropical Geography, 2019, 40, 429-451.	0.6	14

#	Article	IF	CITATIONS
92	Climbing the mountain fast but smart: Modelling rubber tree growth and latex yield under climate change. Forest Ecology and Management, 2019, 439, 55-69.	1.4	14
93	Development of novel processes for the aqueous extraction of natural rubber from <i>Taraxacum kokâ€saghyz</i> (TK). Journal of Chemical Technology and Biotechnology, 2019, 94, 2452-2464.	1.6	17
94	Expanding Rubber Plantations in Southern China: Evidence for Hydrological Impacts. Water (Switzerland), 2019, 11, 651.	1.2	12
95	What Awaits Myanmar's Uplands Farmers? Lessons Learned from Mainland Southeast Asia. Land, 2019, 8, 29.	1.2	14
96	Transcriptome analysis of rubber biosynthesis in guayule (Parthenium argentatum gray). BMC Plant Biology, 2019, 19, 71.	1.6	12
97	Do natural rubber price bubbles occur?. Agricultural Economics (Czech Republic), 2019, 65, 67-73.	0.4	7
98	Mega-Plantations in Southeast Asia. Environment and Society: Advances in Research, 2019, 10, 63-82.	0.4	30
99	The effects of introducing Flemingia macrophylla to rubber plantations on soil water content and exchangeable cations. Catena, 2019, 172, 480-487.	2.2	12
100	Rubber Boom, Land Use Change and the Implications for Carbon Balances in Xishuangbanna, Southwest China. Ecological Economics, 2019, 156, 57-67.	2.9	20
101	Responses of rubber leaf phenology to climatic variations in Southwest China. International Journal of Biometeorology, 2019, 63, 607-616.	1.3	31
102	Ecological civilization in the mountains: how walnuts boomed and busted in southwest China. Journal of Peasant Studies, 2020, 47, 1052-1076.	3.0	17
103	Rubber agroforestry in Thailand provides some biodiversity benefits without reducing yields. Journal of Applied Ecology, 2020, 57, 17-30.	1.9	39
104	Ecosystem services in a changing environment. Science of the Total Environment, 2020, 702, 135008.	3.9	56
105	Problems for the plantations: Challenges for largeâ€scale land concessions in Laos and Cambodia. Journal of Agrarian Change, 2020, 20, 387-407.	0.8	34
106	Mapping biodiversity conservation priorities for protected areas: A case study in Xishuangbanna Tropical Area, China. Biological Conservation, 2020, 249, 108741.	1.9	41
107	Reconciling Rubber Expansion with Biodiversity Conservation. Current Biology, 2020, 30, 3825-3832.e4.	1.8	13
108	Land use changes in the coastal zone of China's Hebei Province and the corresponding impacts on habitat quality. Land Use Policy, 2020, 99, 104957.	2.5	79
109	Soil Health Impacts of Rubber Farming: The Implication of Conversion of Degraded Natural Forests into Monoculture Plantations. Agriculture (Switzerland), 2020, 10, 357.	1.4	5

#	Article	IF	CITATIONS
110	Predicting the habitat distribution of rubber plantations with topography, soil, land use, and climatic factors. Environmental Monitoring and Assessment, 2020, 192, 598.	1.3	9
111	Land use optimization by integrating GLP and CLUE-S model to control land degradation risk in mountainous area of Southwest China. IOP Conference Series: Earth and Environmental Science, 2020, 612, 012079.	0.2	0
112	Design of Automated Rubber Tapping Mechanism. IOP Conference Series: Materials Science and Engineering, 2020, 917, 012016.	0.3	5
113	Comparison of forest aboveâ€ground biomass from dynamic global vegetation models with spatially explicit remotely sensed observationâ€based estimates. Global Change Biology, 2020, 26, 3997-4012.	4.2	25
114	Climate change resilience and adaption of ethnic minority communities in the upland area in Thừa Thiên-HuᲿ province, Vietnam. Njas - Wageningen Journal of Life Sciences, 2020, 92, 1-10.	7.9	17
115	Organic management improves soil phosphorus availability and microbial properties in a tea plantation after land conversion from longan (Dimocarpus longan). Applied Soil Ecology, 2020, 154, 103642.	2.1	15
116	Tropical rainforest conversion into rubber plantations results in changes in soil fungal composition, but underling mechanisms of community assembly remain unchanged. Geoderma, 2020, 375, 114505.	2.3	21
117	Hydrological consequences of natural rubber plantations in Southeast Asia. Land Degradation and Development, 2020, 31, 2060-2073.	1.8	21
118	The conversion of subtropical forest to tea plantation changes the fungal community and the contribution of fungi to N2O production. Environmental Pollution, 2020, 265, 115106.	3.7	22
119	Rural Household Livelihood and Tree Plantation Dependence in the Central Mountainous Region of Hainan Island, China: Implications for Poverty Alleviation. Forests, 2020, 11, 248.	0.9	16
120	Navigating between Tea and Rubber in Xishuangbanna, China: When New Crops Fail and Old Ones Work. Land, 2020, 9, 22.	1.2	4
121	Deconstructing sustainable rubber production: contesting narratives in rural Sumatra. Journal of Land Use Science, 2020, 15, 306-326.	1.0	16
122	A condom's footprint - life cycle assessment of a natural rubber condom. International Journal of Life Cycle Assessment, 2020, 25, 964-979.	2.2	4
123	Power relations in community resilience and politics of shifting cultivation in Laos. Forest Policy and Economics, 2020, 115, 102159.	1.5	14
124	The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sensing, 2020, 12, 1103.	1.8	124
125	Cracking of squalene into isoprene as chemical utilization of algae oil. Green Chemistry, 2020, 22, 3083-3087.	4.6	6
126	Drivers of deforestation and degradation for 28 tropical conservation landscapes. Ambio, 2021, 50, 215-228.	2.8	52
127	Towards nexus-based governance: defining interactions between economic activities and Sustainable Development Goals (SDGs). International Journal of Sustainable Development and World Ecology, 2021, 28, 210-226.	3.2	84

ARTICLE IF CITATIONS # Decreased inorganic N supply capacity and turnover in calcareous soil under degraded rubber 128 2.3 25 plantation in the tropical karst region. Geoderma, 2021, 381, 114754. The potential for biochar application in rubber plantations in Xishuangbanna, Southwest China: a pot 129 6.2 trial. Biochar, 2021, 3, 65-76. Ecological environment quality assessment of Xishuangbanna rubber plantations expansion 130 (1995–2018) based on multi-temporal Landsat imagery and RSEI. Geocarto International, 2022, 37, 1.7 15 3441-3468. Forest conversion alters the structure and functional processes of tropical forest soil microbial 1.8 communities. Land Degradation and Development, 2021, 32, 613-627. Monitoring Spatial and Temporal Patterns of Rubber Plantation Dynamics Using Time-Series Landsat Images and Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and 132 2.3 7 Remote Sensing, 2021, 14, 9450-9461. Agency shifts in agricultural land governance and their implications for land degradation neutrality. Global Environmental Change, 2021, 66, 102221. 3.6 How Environmental Awareness and Knowledge Affect Urban Residents' Willingness to Participate in 134 Rubber Plantation Ecological Restoration Programs: Evidence from Hainan, China. Sustainability, 2021, 1.6 4 13, 1852. Latest 30-m map of mature rubber plantations in Mainland Southeast Asia and Yunnan province of China: Spatial patterns and geographical characteristics. Progress in Physical Geography, 2021, 45, 1.4 736-756. Tropical forest conversion and its impact on indigenous communities Mapping forest loss and 136 2.5 8 shrinking gathering grounds in the Western Ghats, India. Land Use Policy, 2021, 102, 105133. Spatiotemporal assessment of land use/land cover change and associated carbon emissions and uptake 4.6 in the Mekong River Basin. Remote Sensing of Environment, 2021, 256, 112336. Remotely sensed tree canopy cover-based indicators for monitoring global sustainability and 138 17 2.2 environmental initiatives. Environmental Research Letters, 2021, 16, 044047. Fruit trees and herbaceous plants increase functional and phylogenetic diversity of birds in smallholder rubber plantations. Biological Conservation, 2021, 257, 109140. Testing the Contribution of Multi-Source Remote Sensing Features for Random Forest Classification 140 2.1 16 of the Greater Amanzule Tropical Peatland. Sensors, 2021, 21, 3399. Rising labour costs and the future of rubber intercropping in China. International Journal of 141 1.3 Agricultural Sustainability, 2022, 20, 124-139. The role of rubber farming in household dietary diversity in the upper Mekong region, Southwest 142 2.0 2 China. Food and Energy Security, 2021, 10, e285. Wind damage and yield recovery in rubber (Hevea brasiliensis) plantation. IOP Conference Series: Earth 143 and Environmental Science, 2021, 759, 012046. Biomass models for estimating carbon storage in Areca palm plantations. Environmental and 144 1.7 8 Sustainability Indicators, 2021, 10, 100115. Assessing the contribution of mobility in the European Union to rubber expansion. Ambio, 2022, 51, 145 2.8 770-783.

#	Article	IF	CITATIONS
146	Upward expansion and acceleration of forest clearance in the mountains of Southeast Asia. Nature Sustainability, 2021, 4, 892-899.	11.5	56
147	A causal sustainable natural rubber development framework using a hierarchical structure with linguistic preferences in Thailand. Journal of Cleaner Production, 2021, 305, 127095.	4.6	5
148	When the whole is less than the sum of all parts – Tracking global-level impacts of national sustainability initiatives. Global Environmental Change, 2021, 69, 102306.	3.6	16
149	Deep Learning Mobile App Based Microscopic Leaf Imaging Disease Classification with Azure Cloud Computing Service. , 2021, , .		Ο
150	Integrating Phenological and Geographical Information with Artificial Intelligence Algorithm to Map Rubber Plantations in Xishuangbanna. Remote Sensing, 2021, 13, 2793.	1.8	15
151	Drivers of difference in CO2 and CH4 emissions between rubber plantation and tropical rainforest soils. Agricultural and Forest Meteorology, 2021, 304-305, 108391.	1.9	1
152	Challenges of the establishment of rubber-based agroforestry systems: Decreases in the diversity and abundance of ground arthropods. Journal of Environmental Management, 2021, 292, 112747.	3.8	5
153	Stakeholder perceptions about the drivers, impacts and barriers of certification in the Ghanaian cocoa and oil palm sectors. Sustainability Science, 2021, 16, 2101-2122.	2.5	8
154	The overlap of suitable tea plant habitat with Asian elephant (Elephus maximus) distribution in southwestern China and its potential impact on species conservation and local economy. Environmental Science and Pollution Research, 2022, 29, 5960-5970.	2.7	13
155	Impact of Land Use Changes on Habitat Quality in Altay Region. Journal of Resources and Ecology, 2021, 12, .	0.2	5
156	Design, development, and field evaluation of a rubber tapping robot. Journal of Field Robotics, 2022, 39, 28-54.	3.2	14
157	Effects of rubber plantations on soil physicochemical properties on Hainan Island, China. Journal of Environmental Quality, 2021, 50, 1351-1363.	1.0	3
158	Bio-Based Polyisoprene Can Mitigate Climate Change and Deforestation in Expanding Rubber Production. Fermentation, 2021, 7, 204.	1.4	6
159	Design, development and evaluation of latex harvesting robot based on flexible Toggle. Robotics and Autonomous Systems, 2022, 147, 103906.	3.0	9
160	Can intercropping with native trees enhance structural stability in young rubber (Hevea brasiliensis) agroforestry system?. European Journal of Agronomy, 2021, 130, 126353.	1.9	14
161	Evolution of habitat quality and association with land-use changes in mountainous areas: A case study of the Taihang Mountains in Hebei Province, China. Ecological Indicators, 2021, 129, 107967.	2.6	75
162	Falling price induced diversification strategies and rural inequality: Evidence of smallholder rubber farmers. World Development, 2021, 146, 105604.	2.6	13
163	A global review of rubber plantations: Impacts on ecosystem functions, mitigations, future directions, and policies for sustainable cultivation. Science of the Total Environment, 2021, 796, 148948.	3.9	31

#	Article	IF	CITATIONS
164	Litter and microclimate controls on soil heterotrophic respiration after converting seasonal rainforests to rubber plantations in tropical China. Agricultural and Forest Meteorology, 2021, 310, 108623.	1.9	3
165	Global border watch: From land use change to joint action. International Journal of Applied Earth Observation and Geoinformation, 2021, 103, 102494.	1.4	11
166	The competitive mechanism between post-abandonment Chinese fir plantations and rehabilitated natural secondary forest species under an in situ conservation policy. Forest Ecology and Management, 2021, 502, 119725.	1.4	7
167	Application of Optical Remote Sensing in Rubber Plantations: A Systematic Review. Remote Sensing, 2021, 13, 429.	1.8	24
168	Croplands conversion to cash crops in dry regions: Consequences of nitrogen losses and decreasing nitrogen use efficiency for the food chain system. Land Degradation and Development, 2021, 32, 1103-1113.	1.8	10
169	Recent Experiences from the Natural Rubber Industry and Its Movement Towards Sustainability. Natural Resource Management in Transition, 2019, , 499-520.	0.1	7
170	The role of decision support systems in smallholder rubber production: Applications, limitations and future directions. Computers and Electronics in Agriculture, 2020, 173, 105442.	3.7	9
171	Identification of indicators: Monitoring the impacts of rubber plantations on soil quality in Xishuangbanna, Southwest China. Ecological Indicators, 2020, 116, 106491.	2.6	14
172	Relationship between gross primary production and canopy colour indices from digital camera images in a rubber (Hevea brasiliensis) plantation, Southwest China. Forest Ecology and Management, 2019, 437, 222-231.	1.4	8
173	The water-land-food nexus of natural rubber production. Journal of Cleaner Production, 2018, 172, 1739-1747.	4.6	40
174	Quantifying variations in ecosystem services in altitude-associated vegetation types in a tropical region of China. Science of the Total Environment, 2020, 726, 138565.	3.9	56
175	Pushing the Limits: The Pattern and Dynamics of Rubber Monoculture Expansion in Xishuangbanna, SW China. PLoS ONE, 2016, 11, e0150062.	1.1	62
176	Effect of Land Use Changes on Carbon Stock Dynamics in Major Land Use Sectors of Mizoram, Northeast India. Journal of Environmental Protection, 2018, 09, 1262-1285.	0.3	17
177	Expanding global commodities trade and consumption place the world's primates at risk of extinction. PeerJ, 0, 7, e7068.	0.9	32
178	Environmental Constraints and Adaptation to Global Changes. , 2017, , 131-161.		0
179	Genesis and Development. , 2017, , 11-20.		2
180	Financial analysis of dipterocarp log production and rubber production in the forest and land rehabilitation program of Sekolaq Muliaq, West Kutai District, Indonesia. Biodiversitas, 2018, 19, 707-716.	0.2	2
181	An assessment of UN-REDD in Lam Dong Province, Vietnam. , 2018, , 82-97.		0

#	Article	IF	CITATIONS
182	Potential Loss of Biomass Carbon. , 2019, , 43-60.		0
183	First Report of the Sexual Morph of Pseudofusicoccum adansoniae Pavlic, T.I.Burgess & M.J.Wingf. on Para Rubber. Cryptogamie, Mycologie, 2020, 41, 133.	0.2	2
184	Effects of forest conversion to rubber plantation and of replanting rubber trees on soil organic carbon pools in a tropical moist climate zone. Agriculture, Ecosystems and Environment, 2022, 323, 107699.	2.5	4
185	Speciation and pH- and particle size-dependent solubility of phosphorus in tropical sandy soils. Geoderma, 2022, 408, 115590.	2.3	15
186	Causes of land-use change and biodiversity loss in Monsoon Asia. , 2022, , 367-376.		0
187	Spatiotemporal Variation and Influence Factors of Habitat Quality in Loess Hilly and Gully Area of Yellow River Basin: A Case Study of Liulin County, China. Land, 2022, 11, 127.	1.2	22
188	The legacy effects of rubber defoliation period on the refoliation phenology, leaf disease, and latex yield. Plant Diversity, 2023, 45, 98-103.	1.8	5
189	Does rubber expansion hinder the migration of rural labor? Evidence from southwest China?. Review of Development Economics, 0, , .	1.0	0
190	How do You Want to restore?–Assessing the Public Preferences and Social Benefits of Ecological Restoration for Natural Rubber Plantation in China. Frontiers in Environmental Science, 2022, 10, .	1.5	8
191	Principal Drivers and Conservation Solutions to the Impending Primate Extinction Crisis: Introduction to the Special Issue. International Journal of Primatology, 2022, 43, 1-14.	0.9	14
192	How 75 years of rubber monocropping affects soil fauna and nematodes as the bioindicators for soil biodiversity quality index. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2022, 72, 612-622.	0.3	4
193	Quantifying oil palm expansion in Southeast Asia from 2000 to 2015: A data fusion approach. Journal of Land Use Science, 2022, 17, 26-46.	1.0	4
194	Impact of Land-Use Changes on Soil Properties and Carbon Pools in India: A Meta-analysis. Frontiers in Environmental Science, 2022, 9, .	1.5	16
196	The Coffee Compromise: Is Agricultural Expansion into Tree Plantations a Sustainable Option?. Sustainability, 2022, 14, 3019.	1.6	3
197	Main drivers of plant diversity patterns of rubber plantations in the Greater Mekong Subregion. Biogeosciences, 2022, 19, 1995-2005.	1.3	6
198	Alkaline pretreatment of Taraxacum kok-saghyz (TK) roots for the extraction of natural rubber (NR). Biochemical Engineering Journal, 2022, 181, 108376.	1.8	2
199	A study on nitrogen concentration detection model of rubber leaf based on spatial-spectral information with NIR hyperspectral data. Infrared Physics and Technology, 2022, 122, 104094.	1.3	5
200	Agroforestry orchards support greater avian biodiversity than monoculture oil palm and rubber tree plantations. Forest Ecology and Management, 2022, 513, 120177.	1.4	16

#	Article	IF	CITATIONS
201	Community Intervention System: COVID-19 Control in Inner Mongolia Autonomous Region, China. International Journal of Environmental Research and Public Health, 2021, 18, 12857.	1.2	3
202	Carbon and Water Cycling in Two Rubber Plantations and a Natural Forest in Mainland Southeast Asia. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	5
203	Spatiotemporal analysis of deforestation patterns and drivers reveals emergent threats to tropical forest landscapes. Environmental Research Letters, 2022, 17, 054046.	2.2	11
204	Driving factors for soil fungal and bacterial community assembly in topical forest of China. Applied Soil Ecology, 2022, 177, 104520.	2.1	10
205	Spatial phylogenetic patterns and conservation of threatened woody species in a transition zone of southwest China. Biodiversity and Conservation, 2022, 31, 2205-2225.	1.2	3
206	Conversion of rainforest to rubber plantations impacts rhizosphere soil mycobiome and alters soil biological activity. Land Degradation and Development, 0, , .	1.8	0
207	The local ecological knowledge of butterfly diversity is derived from utilitarian purposes in Southwest China's biodiversity hotspot. Biodiversity and Conservation, 0, , .	1.2	1
208	Analysis of Land Use and Land Cover Changes through the Lens of SDGs in Semarang, Indonesia. Sustainability, 2022, 14, 7592.	1.6	8
209	Implementing intercropping maintains soil water balance while enhancing multiple ecosystem services. Catena, 2022, 217, 106426.	2.2	4
210	Multi-Decadal Mapping and Climate Modelling Indicates Eastward Rubber Plantation Expansion in India. Sustainability, 2022, 14, 7923.	1.6	1
211	Effect of intercrops complexity on water uptake patterns in rubber plantations: Evidence from stable isotopes (C-H-O) analysis. Agriculture, Ecosystems and Environment, 2022, 338, 108086.	2.5	5
213	Identification of multi-temporal urban growth patterns with a modified urban growth index: Case study of three fast growing cities in the Greater Mekong Subregion (GMS). Ecological Indicators, 2022, 142, 109206.	2.6	5
214	Population boom in the borderlands globally. Journal of Cleaner Production, 2022, 371, 133685.	4.6	6
215	Using a participatory system dynamics modelling approach to inform the management of Malaysian rubber production. Agricultural Systems, 2022, 202, 103491.	3.2	0
216	Energy Efficiency Optimization in Polyisoprene Footwear Production. Sustainability, 2022, 14, 10799.	1.6	1
217	Effect of Agricultural Social Services on Green Production of Natural Rubber: Evidence from Hainan, China. Sustainability, 2022, 14, 14138.	1.6	3
218	A divide-and-conquer approach for genomic prediction in rubber tree using machine learning. Scientific Reports, 2022, 12, .	1.6	2
219	Supply of basic necessities to vulnerable populations during the COVID-19 pandemic: Empirical evidence from Shanghai, China. Frontiers in Public Health, 0, 10, .	1.3	3

#	Article	IF	CITATIONS
221	Coupled impacts of climate and land use changes on regional ecosystem services. Journal of Environmental Management, 2023, 326, 116753.	3.8	22
222	Chasing the unbiased willingness to pay: Using an integrated contingent valuation survey in estimating the non-market value of rubber plantation ecological restoration programs in China. Frontiers in Ecology and Evolution, 0, 10, .	1.1	0
223	The conversion of rubber to oil palm and other landcover types in Southeast Asia. Applied Geography, 2023, 150, 102838.	1.7	3
224	4R of rubber waste management: current and outlook. Journal of Material Cycles and Waste Management, 2023, 25, 37-51.	1.6	6
225	Conservation versus development: Uncovering divergent viewpoints of conservationists on National Parks system by Q methodology in China. Global Ecology and Conservation, 2022, 40, e02343.	1.0	0
226	Limited role of shifting cultivation in soil carbon and nutrients recovery in regenerating tropical secondary forests. Frontiers in Environmental Science, 0, 10, .	1.5	3
228	Agricultural commercialization in borderlands: Capturing the transformation of a tropical forest frontier through participatory mapping. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	1
229	Responses of rubber tree seedlings (<i>Hevea brasiliensis</i>) to phosphorus deficient soils. Soil Science and Plant Nutrition, 2023, 69, 78-87.	0.8	4
230	Evolution of Habitat Quality and Its Response to Topographic Gradient Effect in a Karst Plateau: A Case Study of the Key Biodiversity Conservation Project Area of Wuling Mountains. International Journal of Environmental Research and Public Health, 2023, 20, 331.	1.2	4
231	Rubber expansion and age-class mapping in the state of Tripura (India) 1990–2021 using multi-year and multi-sensor data. Environmental Monitoring and Assessment, 2023, 195, .	1.3	2
232	Determinants of Smallholder Farmers' Income-Generating Activities in Rubber Monoculture Dominated Region Based on Sustainable Livelihood Framework. Land, 2023, 12, 281.	1.2	1
233	Impact of rubber-based land use changes on soil properties and carbon pools: A meta-analysis. Catena, 2023, 227, 107121.	2.2	2
234	Acclimatization of Tropical Palm Species Associated with Leaf Morpho-Physiological Traits to the Understorey Environment of Hevea Rubber Farms. Pertanika Journal of Science and Technology, 2022, 46, 107-128.	0.1	0
235	Identification of Rubber Plantations in Southwestern China Based on Multi-Source Remote Sensing Data and Phenology Windows. Remote Sensing, 2023, 15, 1228.	1.8	3
236	Linking random forest and auxiliary factors for extracting the major economic forests in the mountainous areas of southwestern Yunnan Province, China. Ecological Indicators, 2023, 148, 110025.	2.6	1
237	Modeling to Correct the Effect of Soil Moisture for Predicting Soil Total Nitrogen by Near-Infrared Spectroscopy. Electronics (Switzerland), 2023, 12, 1271.	1.8	0
238	Agroforestry orchards support greater butterfly diversity than monoculture plantations in the tropics. Oecologia, 2023, 201, 863-875.	0.9	0
240	Soil quality variation and its driving factors within tropical forests on Hainan Island, China. Land Degradation and Development, 0, , .	1.8	0

#	Article	IF	CITATIONS
241	Molecular Genetic Research and Genetic Engineering of Taraxacum kok-saghyz L.E. Rodin. Plants, 2023, 12, 1621.	1.6	5
242	Rubber leaf fall phenomenon linked to increased temperature. Agriculture, Ecosystems and Environment, 2023, 352, 108531.	2.5	2
261	The Role of Industrial Sector in Pollution Control in the Context of Sustainable Development Goals. , 0, , .		0
268	Result and analysis of automated rubber tapping mechanism. AIP Conference Proceedings, 2023, , .	0.3	0
277	Diversity, adoption and performances of inter-row management practices in immature rubber plantations. A review. Agronomy for Sustainable Development, 2024, 44, .	2.2	0