Mutations in PNKP Cause Recessive Ataxia with Oculor

American Journal of Human Genetics 96, 474-479 DOI: 10.1016/j.ajhg.2015.01.005

Citation Report

#	Article	IF	CITATIONS
1	Mutation in <i>PNKP</i> presenting initially as axonal Charcot-Marie-Tooth disease. Neurology: Genetics, 2015, 1, e30.	0.9	28
2	The Response to Oxidative DNA Damage in Neurons: Mechanisms and Disease. Neural Plasticity, 2016, 2016, 1-14.	1.0	56
3	Microcephalic primordial dwarfism in an Emirati patient with <i>PNKP</i> mutation. American Journal of Medical Genetics, Part A, 2016, 170, 2127-2132.	0.7	6
4	Overlapping roles for PARP1 and PARP2 in the recruitment of endogenous XRCC1 and PNKP into oxidized chromatin. Nucleic Acids Research, 2017, 45, gkw1246.	6.5	118
5	Expanding the ataxia with oculomotor apraxia type 4 phenotype. Neurology: Genetics, 2016, 2, e49.	0.9	37
6	DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases. Annals of Neurology, 2016, 79, 983-990.	2.8	183
7	Catastrophic cliffs: a partial suggestion for selective vulnerability in neurodegenerative diseases. Biochemical Society Transactions, 2016, 44, 659-661.	1.6	12
8	Hot topic: PNKP mutations cause ataxia with oculomotor apraxia type 4. Movement Disorders, 2016, 31, 500-500.	2.2	0
9	PNKP Mutations Identified by Whole-Exome Sequencing in a Norwegian Patient with Sporadic Ataxia and Edema. Cerebellum, 2017, 16, 272-275.	1.4	17
10	Characterization of DNA Substrate Binding to the Phosphatase Domain of the DNA Repair Enzyme Polynucleotide Kinase/Phosphatase. Biochemistry, 2017, 56, 1737-1745.	1.2	2
11	Systematic review of autosomal recessive ataxias and proposal for a classification. Cerebellum and Ataxias, 2017, 4, 3.	1.9	49
12	Ataxia with oculomotor apraxia is associated with the DNA damage repair pathway. Movement Disorders, 2017, 32, 720-720.	2.2	1
13	Coordination of DNA single strand break repair. Free Radical Biology and Medicine, 2017, 107, 228-244.	1.3	179
14	Novel <i>PNKP</i> mutation in siblings with ataxia-oculomotor apraxia type 4. Journal of Neurogenetics, 2017, 31, 23-25.	0.6	16
15	DNA repair in the trinucleotide repeat disorders. Lancet Neurology, The, 2017, 16, 88-96.	4.9	75
16	XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature, 2017, 541, 87-91.	13.7	209
17	Genome integrity and disease prevention in the nervous system. Genes and Development, 2017, 31, 1180-1194.	2.7	117
18	Comparing ataxias with oculomotor apraxia: a multimodal study of AOA1, AOA2 and AT focusing on video-oculography and alpha-fetoprotein. Scientific Reports, 2017, 7, 15284.	1.6	21

CITATION REPORT

#	Article	IF	CITATIONS
19	Neurological disorders associated with DNA strand-break processing enzymes. Mechanisms of Ageing and Development, 2017, 161, 130-140.	2.2	39
20	Polynucleotide kinase-phosphatase (PNKP) mutations and neurologic disease. Mechanisms of Ageing and Development, 2017, 161, 121-129.	2.2	48
21	The Rev1 interacting region (RIR) motif in the scaffold protein XRCC1 mediates a low-affinity interaction with polynucleotide kinase/phosphatase (PNKP) during DNA single-strand break repair. Journal of Biological Chemistry, 2017, 292, 16024-16031.	1.6	16
23	Rare compound heterozygous variants in <i>PNKP</i> identified by whole exome sequencing in a German patient with ataxiaâ€oculomotor apraxia 4 and pilocytic astrocytoma. Clinical Genetics, 2018, 94, 185-186.	1.0	13
24	Genetic assessment and folate receptor autoantibodies in infantile-onset cerebral folate deficiency (CFD) syndrome. Molecular Genetics and Metabolism, 2018, 124, 87-93.	0.5	15
25	Advances in the understanding of hereditary ataxia – implications for future patients. Expert Opinion on Orphan Drugs, 2018, 6, 203-217.	0.5	0
26	The central role of DNA damage and repair in CAG repeat diseases. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	76
27	DNA damage response. Neurology, 2018, 90, 367-376.	1.5	6
28	Clinical, Biomarker, and Molecular Delineations and Genotype-Phenotype Correlations of Ataxia With Oculomotor Apraxia Type 1. JAMA Neurology, 2018, 75, 495.	4.5	28
29	Genetic Dystoniaâ€ataxia Syndromes: Clinical Spectrum, Diagnostic Approach, and Treatment Options. Movement Disorders Clinical Practice, 2018, 5, 373-382.	0.8	21
30	Two patients with <i><scp>PNKP</scp></i> mutations presenting with microcephaly, seizure, and oculomotor apraxia. Clinical Genetics, 2018, 93, 931-933.	1.0	10
31	Ataxia with oculomotor apraxia type 2: an evolving axonal neuropathy. Practical Neurology, 2018, 18, 52-56.	0.5	5
32	<scp>DNA</scp> repair in trinucleotide repeat ataxias. FEBS Journal, 2018, 285, 3669-3682.	2.2	12
33	The genetic nomenclature of recessive cerebellar ataxias. Movement Disorders, 2018, 33, 1056-1076.	2.2	61
34	Diseases Associated with Mutation of Replication and Repair Proteins. Advances in Experimental Medicine and Biology, 2018, 1076, 215-234.	0.8	5
35	Drosophila Models for Human Diseases. Advances in Experimental Medicine and Biology, 2018, , .	0.8	13
36	Impact of DNA repair and stability defects on cortical development. Cellular and Molecular Life Sciences, 2018, 75, 3963-3976.	2.4	13
37	The polynucleotide kinase 3′-phosphatase gene (PNKP) is involved in Charcot-Marie-Tooth disease (CMT2B2) previously related to MED25. Neurogenetics, 2018, 19, 215-225.	0.7	31

	CITATION	CITATION REPORT	
#	Article	IF	Citations
38	Nonsyndromic cerebellar ataxias associated with disorders of DNA single-strand break repair. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 155, 105-115.	1.0	36
39	Autosomal-recessive cerebellar ataxias. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 147, 187-209.	1.0	25
40	XRCC1 protein; Form and function. DNA Repair, 2019, 81, 102664.	1.3	105
41	DNA Damage Repair in Huntington's Disease and Other Neurodegenerative Diseases. Neurotherapeutics, 2019, 16, 948-956.	2.1	69
42	The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. Cerebellum, 2019, 18, 1098-1125.	1.4	80
43	From Pathogenesis to Novel Therapeutics for Spinocerebellar Ataxia Type 3: Evading Potholes on the Way to Translation. Neurotherapeutics, 2019, 16, 1009-1031.	2.1	42
44	From congenital microcephaly to adult onset cerebellar ataxia: Distinct and overlapping phenotypes in patients with <i>PNKP</i> gene mutations. American Journal of Medical Genetics, Part A, 2019, 179, 2277-2283.	0.7	18
45	Chromosome instability syndromes. Nature Reviews Disease Primers, 2019, 5, 64.	18.1	123
46	Expanding the spectrum of genes responsible for hereditary motor neuropathies. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1171-1179.	0.9	30
47	Ataxia with Oculomotor Apraxia Type 4 with PNKP Common "Portuguese―and Novel Mutations in Two Belarusian Families. Journal of Pediatric Genetics, 2019, 08, 058-062.	0.3	8
48	DNA repair deficiency in neuropathogenesis: when all roads lead to mitochondria. Translational Neurodegeneration, 2019, 8, 14.	3.6	16
49	Novel PNKP mutations causing defective DNA strand break repair and PARP1 hyperactivity in MCSZ. Neurology: Genetics, 2019, 5, e320.	0.9	15
50	ADP-ribosylation signalling and human disease. Open Biology, 2019, 9, 190041.	1.5	76
51	PNKP deficiency mimicking a benign hereditary chorea: The misleading presentation of a neurodegenerative disorder. Parkinsonism and Related Disorders, 2019, 64, 342-345.	1.1	8
52	The utility of whole exome sequencing in diagnosing neurological disorders in adults from a highly consanguineous population. Journal of Neurogenetics, 2019, 33, 21-26.	0.6	10
53	Evolution and Comprehensive Analysis of DNasel Hypersensitive Sites in Regulatory Regions of Primate Brain-Related Genes. Frontiers in Genetics, 2019, 10, 152.	1.1	5
54	Autosomal Recessive Cerebellar Ataxias: Paving the Way toward Targeted Molecular Therapies. Neuron, 2019, 101, 560-583.	3.8	83
55	Multi affected pedigree with congenital microcephaly: WES revealed PNKP gene mutation. Brain and Development, 2019, 41, 182-186.	0.6	11

CITATION REPORT

#	Article	IF	CITATIONS
56	Keys to overcoming the challenge of diagnosing autosomal recessive spinocerebellar ataxia. NeurologÃa (English Edition), 2019, 34, 248-258.	0.2	3
57	Claves para afrontar el reto diagnóstico de las heredoataxias recesivas. NeurologÃa, 2019, 34, 248-258.	0.3	9
58	Protecting the Aging Genome. Trends in Cell Biology, 2020, 30, 117-132.	3.6	84
59	The Phenotypic Spectrum of PNKP-Associated Disease and the Absence of Immunodeficiency and Cancer Predisposition in a Dutch Cohort. Pediatric Neurology, 2020, 113, 26-32.	1.0	6
60	Autosomal Recessive Cerebellar Ataxias With Elevated Alphaâ€Fetoprotein: Uncommon Diseases, Common Biomarker. Movement Disorders, 2020, 35, 2139-2149.	2.2	17
61	Polyglutamine spinocerebellar ataxias: emerging therapeutic targets. Expert Opinion on Therapeutic Targets, 2020, 24, 1099-1119.	1.5	8
62	Pathological mutations in PNKP trigger defects in DNA single-strand break repair but not DNA double-strand break repair. Nucleic Acids Research, 2020, 48, 6672-6684.	6.5	37
63	A Novel Homozygous Variant in the Fork-Head-Associated Domain of Polynucleotide Kinase Phosphatase in a Patient Affected by Late-Onset Ataxia With Oculomotor Apraxia Type 4. Frontiers in Neurology, 2019, 10, 1331.	1.1	5
64	Novel MAG Variant Causes Cerebellar Ataxia with Oculomotor Apraxia: Molecular Basis and Expanded Clinical Phenotype. Journal of Clinical Medicine, 2020, 9, 1212.	1.0	3
65	A Novel c.968C > T homozygous Mutation in the Polynucleotide Kinase 3′ â^` Phosphat to the Syndrome of Microcephaly, Seizures, and Developmental Delay. Journal of Pediatric Genetics, 2021, 10, 164-172.	ase Gene F 0.3	Related O
66	Compound Heterozygous Mutations in PNKP Gene in an Iranian Child with Microcephaly, Seizures, and Developmental Delay. Fetal and Pediatric Pathology, 2021, 40, 174-180.	0.4	2
67	Clinical overview and phenomenology of movement disorders. , 2021, , 1-51.e27.		3
68	A New Phenotype of Ataxia With Oculomotor Apraxia Type 4. Cureus, 2021, 13, e13601.	0.2	0
69	Mutant Ataxin-3–Containing Aggregates (MATAGGs) in Spinocerebellar Ataxia Type 3: Dynamics of the Disorder. Molecular Neurobiology, 2021, 58, 3095-3118.	1.9	4
70	CaracterÃsticas de la epilepsia secundaria a alteraciones en el gen PNKP. NeurologÃa, 2021, 36, 713-716.	0.3	0
71	Early onset senescence and cognitive impairment in a murine model of repeated mTBI. Acta Neuropathologica Communications, 2021, 9, 82.	2.4	19
72	PNKP is required for maintaining the integrity of progenitor cell populations in adult mice. Life Science Alliance, 2021, 4, e202000790.	1.3	3
74	Characteristics of epilepsy secondary to mutations in the PNKP gene. NeurologÃa (English Edition), 2021, 36, 713-716.	0.2	0

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
76	Malformations of cerebral development and clues from the peripheral nervous system: A systematic literature review. European Journal of Paediatric Neurology, 2022, 37, 155-164.	0.7	1
77	The Intersection Between Cerebellar Ataxia and Neuropathy: a Proposed Classification and a Diagnostic Approach. Cerebellum, 2022, 21, 497-513.	1.4	4
78	Autosomal recessive adultÂonset ataxia. Journal of Neurology, 2022, 269, 504-533.	1.8	5
80	DNA damage response and repair pathway modulation by non-histone protein methylation: implications in neurodegeneration. Journal of Cell Communication and Signaling, 2020, 14, 31-45.	1.8	14
81	Processing Strand Break Termini in the DNA Single-Strand Break Repair Pathway. , 2017, , 281-321.		1
82	Mutational survivorship bias: The case of PNKP. PLoS ONE, 2020, 15, e0237682.	1.1	7
83	Linker region is required for efficient nuclear localization of polynucleotide kinase phosphatase. PLoS ONE, 2020, 15, e0239404.	1.1	9
84	ADP-ribosylation: from molecular mechanisms to human disease. Genetics and Molecular Biology, 2020, 43, e20190075.	0.6	32
86	Tyrosyl-DNA Phosphodiesterase I a critical survival factor for neuronal development and homeostasis. Journal of Neurology and Neuromedicine, 2016, 1, 25-29.	0.9	3
87	DNA damage to human genetic disorders with neurodevelopmental defects. Journal of Genetic Medicine, 2016, 13, 1-13.	0.1	11
88	Progressive Ataxia with Elevated Alpha-Fetoprotein: Diagnostic Issues and Review of the Literature. Tremor and Other Hyperkinetic Movements, 2019, 9, .	1.1	6
89	Prenatal phenotype of PNKP-related primary microcephaly associated with variants affecting both the FHA and phosphatase domain. European Journal of Human Genetics, 2022, 30, 101-110.	1.4	3
90	Complex Ocular Motility Disorders in Children. , 2016, , 393-494.		0
91	Ocular Motor Apraxia. Contemporary Clinical Neuroscience, 2019, , 451-470.	0.3	1
92	Diagnosis and Management of Ataxia-Telangiectasia in Resource-Limited Settings. Journal of International Child Neurology Association, 2020, 1, .	0.0	1
94	Complex Movement Disorders in Ataxia with Oculomotor Apraxia Type 1: Beyond the Cerebellar Syndrome. Tremor and Other Hyperkinetic Movements, 2020, 10, 39.	1.1	4
96	HLA ―matched related donor hematopoietic stem cell transplantation in a patient with polynucleotide kinase 3–phosphatase mutation developed acute myeloid leukemia. Pediatric Transplantation, 2022, , e14255.	0.5	1
97	Mutations of the DNA repair gene PNKP in a patient with microcephaly, seizures, and developmental delay (MCSZ) presenting with a high-grade brain tumor. Scientific Reports, 2022, 12, 5386.	1.6	3

#	Article	IF	CITATIONS
98	Molecular Characterization of Portuguese Patients with Hereditary Cerebellar Ataxia. Cells, 2022, 11, 981.	1.8	6
99	Clinical and Genetic Characterization of Brazilian Patients with Ataxia and Oculomotor Apraxia. Movement Disorders, 2022, , .	2.2	2
111	Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force – An Update. Movement Disorders, 2022, 37, 905-935.	2.2	49
112	DNA single-strand break repair and human genetic disease. Trends in Cell Biology, 2022, 32, 733-745.	3.6	59
113	DNA Damage and Repair in Migraine: Oxidative Stress and Beyond. Neuroscientist, 2023, 29, 277-286.	2.6	11
114	Ataxia. , 2022, , 333-394.		0
115	Polymerases and DNA Repair in Neurons: Implications in Neuronal Survival and Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	6
116	Phosphorothioated and phosphate-terminal dumbbell (PP-TD) probe-based rapid detection of polynucleotide kinase activity. Analyst, The, 2022, 147, 4986-4990.	1.7	1
118	Ataxias: Hereditary, Acquired, and Reversible Etiologies. Seminars in Neurology, 2023, 43, 048-064.	0.5	0
119	Functional analysis of a conserved site mutation in the DNA end processing enzyme PNKP leading to ataxia with oculomotor apraxia type 4 in humans. Journal of Biological Chemistry, 2023, 299, 104714.	1.6	3

CITATION REPORT