Pancreatic Î²-Cells Limit Autoimmune Diabetes via an I Peptide Expressed under the Influence of the Gut Micro

Immunity 43, 304-317 DOI: 10.1016/j.immuni.2015.07.013

Citation Report

		_	
CIT	NTIC	NN D	DT

#	Article	IF	CITATIONS
1	Diet, Microbiota and Immune System in Type 1 Diabetes Development and Evolution. Nutrients, 2015, 7, 9171-9184.	1.7	93
2	Impact of Ethanol and Saccharin on Fecal Microbiome in Pregnant and Non-Pregnant Mice. Journal of Pregnancy and Child Health, 2015, 02, .	0.2	26
3	Gut-Pancreatic Axis AMPlified in Islets of Langerhans. Immunity, 2015, 43, 216-218.	6.6	5
4	Memory NK Cells Take Out the (Mitochondrial) Garbage. Immunity, 2015, 43, 218-220.	6.6	3
5	Beta-cell Management in Type 2 Diabetes: Beneficial Role of Nutraceuticals. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2016, 16, 89-98.	0.6	3
6	A prospective view of animal and human Fasciolosis. Parasite Immunology, 2016, 38, 558-568.	0.7	153
7	Metagenome-wide association studies: fine-mining the microbiome. Nature Reviews Microbiology, 2016, 14, 508-522.	13.6	356
8	High therapeutic efficacy of Cathelicidin-WA against postweaning diarrhea via inhibiting inflammation and enhancing epithelial barrier in the intestine. Scientific Reports, 2016, 6, 25679.	1.6	81
9	The immunology of host defence peptides: beyond antimicrobial activity. Nature Reviews Immunology, 2016, 16, 321-334.	10.6	692
10	Impact of early gut microbiota on immune and metabolic development and function. Seminars in Fetal and Neonatal Medicine, 2016, 21, 380-387.	1.1	83
11	Novel perspectives on therapeutic modulation of the gut microbiota. Therapeutic Advances in Gastroenterology, 2016, 9, 580-593.	1.4	63
12	Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends in Molecular Medicine, 2016, 22, 458-478.	3.5	630
13	Tissue Tregs. Annual Review of Immunology, 2016, 34, 609-633.	9.5	442
14	A parasite-derived 68-mer peptide ameliorates autoimmune disease in murine models of Type 1 diabetes and multiple sclerosis. Scientific Reports, 2016, 6, 37789.	1.6	34
16	Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer's disease. Scientific Reports, 2016, 6, 30028.	1.6	469
17	Gut microbiota and metabolic disease: from pathogenesis to new therapeutic strategies. Reviews in Medical Microbiology, 2016, 27, 141-152.	0.4	15
18	Accounting for reciprocal host–microbiome interactions in experimental science. Nature, 2016, 534, 191-199.	13.7	205
19	Allergies and Asthma: Do Atopic Disorders Result from Inadequate Immune Homeostasis arising from Infant Gut Dysbiosis?. Expert Review of Clinical Immunology, 2016, 12, 379-388.	1.3	39

#	Article	IF	CITATIONS
20	Host-Microbiota Interactions in the Pathogenesis of Antibiotic-Associated Diseases. Cell Reports, 2016, 14, 1049-1061.	2.9	92
21	Cathelicidins positively regulate pancreatic β ell functions. FASEB Journal, 2016, 30, 884-894.	0.2	22
22	The Influence of the Microbiome on Type 1 Diabetes. Journal of Immunology, 2017, 198, 590-595.	0.4	112
23	Specific inulinâ€ŧype fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis. Molecular Nutrition and Food Research, 2017, 61, 1601006.	1.5	121
24	Orai1-Mediated Antimicrobial Secretion from Pancreatic Acini Shapes the Gut Microbiome and Regulates Gut Innate Immunity. Cell Metabolism, 2017, 25, 635-646.	7.2	127
25	Beyond Digestion: The Pancreas Shapes Intestinal Microbiota and Immunity. Cell Metabolism, 2017, 25, 495-496.	7.2	21
26	Yogurt Containing <i>Lactobacillus gasseri</i> Mitigates Aspirin-Induced Small Bowel Injuries: A Prospective, Randomized, Double-Blind, Placebo-Controlled Trial. Digestion, 2017, 95, 49-54.	1.2	39
27	IL-2 and IL-15 dependent thymic development of Foxp3-expressing regulatory T lymphocytes. Protein and Cell, 2018, 9, 322-332.	4.8	23
28	The Pathophysiology of Dry Eye Disease. Ophthalmology, 2017, 124, S4-S13.	2.5	284
29	Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes. Nature Immunology, 2017, 18, 1321-1331.	7.0	217
30	Alarmins and immunity. Immunological Reviews, 2017, 280, 41-56.	2.8	280
31	Anti-diabetic Effects of Clostridium butyricum CGMCC0313.1 through Promoting the Growth of Gut Butyrate-producing Bacteria in Type 2 Diabetic Mice. Scientific Reports, 2017, 7, 7046.	1.6	117
32	The effect of interleukin-22 treatment on autoimmune diabetes in the NOD mouse. Diabetologia, 2017, 60, 2256-2261.	2.9	8
33	On the Role IL-4/IL-13 Heteroreceptor Plays in Regulation of Type 1 Diabetes. Journal of Immunology, 2017, 199, 894-902.	0.4	18
34	Where genes meet environment—integrating the role of gut luminal contents, immunity and pancreas in type 1 diabetes. Translational Research, 2017, 179, 183-198.	2.2	22
35	Early-Life Nutritional Factors and Mucosal Immunity in the Development of Autoimmune Diabetes. Frontiers in Immunology, 2017, 8, 1219.	2.2	29
36	Clostridium butyricum CGMCC0313.1 Protects against Autoimmune Diabetes by Modulating Intestinal Immune Homeostasis and Inducing Pancreatic Regulatory T Cells. Frontiers in Immunology, 2017, 8, 1345.	2.2	75
37	Does the Gut Microbiota Influence Immunity and Inflammation in Multiple Sclerosis Pathophysiology?. Journal of Immunology Research, 2017, 2017, 1-14.	0.9	52

#	Article	IF	CITATIONS
38	Human milk oligosaccharides protect against the development of autoimmune diabetes in NOD-mice. Scientific Reports, 2018, 8, 3829.	1.6	82
39	Low hepcidin in liver fibrosis and cirrhosis; a tale of progressive disorder and a case for a new biochemical marker. Molecular Medicine, 2018, 24, 5.	1.9	39
40	Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Digestive and Liver Disease, 2018, 50, 421-428.	0.4	377
41	Age-Dependent Changes in Regulatory T Lymphocyte Development and Function: A Mini-Review. Gerontology, 2018, 64, 28-35.	1.4	46
42	Host–microbiota interplay in mediating immune disorders. Annals of the New York Academy of Sciences, 2018, 1417, 57-70.	1.8	46
43	Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health. Microbiology Spectrum, 2017, 5, .	1.2	125
44	An Insight Into the Intestinal Web of Mucosal Immunity, Microbiota, and Diet in Inflammation. Frontiers in Immunology, 2018, 9, 2617.	2.2	70
45	GUT MICROBIOTA AND DIABETES MELLITUS - AN INTERLINKAGE. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 13.	0.3	2
46	The Effect of Co-infection of Food-Borne Pathogenic Bacteria on the Progression of Campylobacter jejuni Infection in Mice. Frontiers in Microbiology, 2018, 9, 1977.	1.5	19
47	Bacterial cellulose nanofiber-based films incorporating gelatin hydrolysate from tilapia skin: production, characterization and cytotoxicity assessment. Cellulose, 2018, 25, 6011-6029.	2.4	16
48	Modulation of the immune system by the gut microbiota in the development of type 1 diabetes. Human Vaccines and Immunotherapeutics, 2018, 14, 1-17.	1.4	11
49	Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health. , 0, , 453-483.		8
50	Gut Microbiota: FFAR Reaching Effects on Islets. Endocrinology, 2018, 159, 2495-2505.	1.4	32
51	Gut Microbiota Confers Resistance of Albino Oxford Rats to the Induction of Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2018, 9, 942.	2.2	25
52	Role of Short Chain Fatty Acid Receptors in Intestinal Physiology and Pathophysiology. , 2018, 8, 1091-1115.		141
53	The Modulatory Roles of N-glycans in T-Cell-Mediated Autoimmune Diseases. International Journal of Molecular Sciences, 2018, 19, 780.	1.8	16
54	Gut Microbiota and Type 1 Diabetes. International Journal of Molecular Sciences, 2018, 19, 995.	1.8	148
55	Gut Microbiota-Stimulated Innate Lymphoid Cells Support β-Defensin 14 Expression in Pancreatic	7.2	84

#	Article	IF	CITATIONS
56	Prospects for primary prevention of type 1 diabetes by restoring a disappearing microbe. Pediatric Diabetes, 2018, 19, 1400-1406.	1.2	39
57	Anti-inflammatory activities of Aedes aegypti cecropins and their protection against murine endotoxin shock. Parasites and Vectors, 2018, 11, 470.	1.0	17
58	Modulation of the diet and gastrointestinal microbiota normalizes systemic inflammation and β-cell chemokine expression associated with autoimmune diabetes susceptibility. PLoS ONE, 2018, 13, e0190351.	1.1	21
59	Common ground: shared risk factors for type 1 diabetes and celiac disease. Nature Immunology, 2018, 19, 685-695.	7.0	33
60	Low Methoxyl Pectin Protects against Autoimmune Diabetes and Associated Caecal Dysfunction. Molecular Nutrition and Food Research, 2019, 63, e1900307.	1.5	19
61	Modulation of Gut Microbiota by Low Methoxyl Pectin Attenuates Type 1 Diabetes in Non-obese Diabetic Mice. Frontiers in Immunology, 2019, 10, 1733.	2.2	47
62	Cepharanthine Hydrochloride Improves Cisplatin Chemotherapy and Enhances Immunity by Regulating Intestinal Microbes in Mice. Frontiers in Cellular and Infection Microbiology, 2019, 9, 225.	1.8	30
63	Butyrate ameliorates caeruleinâ€induced acute pancreatitis and associated intestinal injury by tissueâ€specific mechanisms. British Journal of Pharmacology, 2019, 176, 4446-4461.	2.7	87
64	Microbiome, Autoimmune Diseases and HIV Infection: Friends or Foes?. Nutrients, 2019, 11, 2629.	1.7	5
65	Pancreas–Microbiota Cross Talk in Health and Disease. Annual Review of Nutrition, 2019, 39, 249-266.	4.3	28
66	Microbiome dysbiosis and alcoholic liver disease. Liver Research, 2019, 3, 218-226.	0.5	28
67	Conceptual Development of Immunotherapeutic Approaches to Gastrointestinal Cancer. International Journal of Molecular Sciences, 2019, 20, 4624.	1.8	5
68	Characterization of host defense molecules in the human pancreas. Islets, 2019, 11, 89-101.	0.9	13
69	Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15140-15149.	3.3	134
70	Profiling of Polar Metabolites in Mouse Feces Using Four Analytical Platforms to Study the Effects Of Cathelicidin-Related Antimicrobial Peptide in Alcoholic Liver Disease. Journal of Proteome Research, 2019, 18, 2875-2884.	1.8	19
71	<i>Clostridium butyricum</i> Strains Suppress Experimental Acute Pancreatitis by Maintaining Intestinal Homeostasis. Molecular Nutrition and Food Research, 2019, 63, e1801419.	1.5	36
72	Microbe-metabolite-host axis, two-way action in the pathogenesis and treatment of human autoimmunity. Autoimmunity Reviews, 2019, 18, 455-475.	2.5	37
73	Probiotics and Prebiotics for the Amelioration of Type 1 Diabetes: Present and Future Perspectives. Microorganisms, 2019, 7, 67.	1.6	89

#	Article	IF	CITATIONS
74	Current understanding of the role of gut dysbiosis in type 1 diabetes. Journal of Diabetes, 2019, 11, 632-644.	0.8	55
75	Antimicrobial Host Defence Peptides: Immunomodulatory Functions and Translational Prospects. Advances in Experimental Medicine and Biology, 2019, 1117, 149-171.	0.8	68
76	Antimicrobial Peptides. Advances in Experimental Medicine and Biology, 2019, , .	0.8	26
77	Cathelicidin-related antimicrobial peptide protects against myocardial ischemia/reperfusion injury. BMC Medicine, 2019, 17, 42.	2.3	56
78	Dietary SCFAs, IL-22, and GFAP: The Three Musketeers in the Gut–Neuro–Immune Network in Type 1 Diabetes. Frontiers in Immunology, 2019, 10, 2429.	2.2	18
79	Toll-like receptor 4 inhibition prevents autoimmune diabetes in NOD mice. Scientific Reports, 2019, 9, 19350.	1.6	14
80	Impact of gut microbiota on gutâ€distal autoimmunity: a focus on T cells. Immunology, 2019, 156, 305-318.	2.0	38
81	Recent Advances on Microbiota Involvement in the Pathogenesis of Autoimmunity. International Journal of Molecular Sciences, 2019, 20, 283.	1.8	52
82	SOS genes contribute to Bac8c induced apoptosis-like death in Escherichia coli. Biochimie, 2019, 157, 195-203.	1.3	16
83	A thorough analysis of diabetes research in China from 1995 to 2015: current scenario and future scope. Science China Life Sciences, 2019, 62, 46-62.	2.3	15
84	Ceramides and diabetes mellitus: an update on the potential molecular relationships. Diabetic Medicine, 2020, 37, 11-19.	1.2	41
85	Combinatory antibiotic treatment protects against experimental acute pancreatitis by suppressing gut bacterial translocation to pancreas and inhibiting NLRP3 inflammasome pathway. Innate Immunity, 2020, 26, 48-61.	1.1	20
86	Inducible expression of defensins and cathelicidins by nutrients and associated regulatory mechanisms. Peptides, 2020, 123, 170177.	1.2	21
87	Immunological Tolerance—T Cells. , 2020, , 65-90.		1
88	Human antimicrobial peptides in autoimmunity. Autoimmunity, 2020, 53, 137-147.	1.2	18
89	Gut microbiota and immunology of the gastrointestinal tract. , 2020, , 63-78.		3
90	Low serum amylase, lipase, and trypsin as biomarkers of metabolic disorders: A systematic review and meta-analysis. Diabetes Research and Clinical Practice, 2020, 159, 107974.	1.1	28
91	Microbiota in pancreatic health and disease: the next frontier in microbiome research. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 53-64.	8.2	175

	СІТАТ	ion Report	
#	Article	IF	CITATIONS
92	The Dual Role of Antimicrobial Peptides in Autoimmunity. Frontiers in Immunology, 2020, 11, 2077.	2.2	47
93	Gut microbiota in pancreatic diseases: possible new therapeutic strategies. Acta Pharmacologica Sinica, 2021, 42, 1027-1039.	2.8	22
94	The antidiabetic effect and potential mechanisms of natural polysaccharides based on the regulation of gut microbiota. Journal of Functional Foods, 2020, 75, 104222.	1.6	32
95	The anti-microbial peptide LL-37/CRAMP levels are associated with acute heart failure and can attenuate cardiac dysfunction in multiple preclinical models of heart failure. Theranostics, 2020, 10, 6167-6181.	4.6	20
96	Newborn BCG vaccination complemented by boosting correlates better with reduced juvenile diabetes in females, than vaccination alone. Vaccine, 2020, 38, 6427-6434.	1.7	10
97	Cathelicidinâ€related antimicrobial peptide alleviates alcoholic liver disease through inhibiting inflammasome activation. Journal of Pathology, 2020, 252, 371-383.	2.1	17
98	Epigenetic Effects of Gut Metabolites: Exploring the Path of Dietary Prevention of Type 1 Diabetes. Frontiers in Nutrition, 2020, 7, 563605.	1.6	13
99	Short-Chain Fatty Acids Promote Intracellular Bactericidal Activity in Head Kidney Macrophages From Turbot (Scophthalmus maximus L.) via Hypoxia Inducible Factor-11±. Frontiers in Immunology, 2020, 11, 615536.	2.2	23
100	Can the FUT2 Non-secretor Phenotype Associated With Gut Microbiota Increase the Children Susceptibility for Type 1 Diabetes? A Mini Review. Frontiers in Nutrition, 2020, 7, 606171.	1.6	15
101	Pancreatic Diseases and Microbiota: A Literature Review and Future Perspectives. Journal of Clinical Medicine, 2020, 9, 3535.	1.0	10
102	Connecting the Dots Between Inflammatory Bowel Disease and Metabolic Syndrome: A Focus on Gut-Derived Metabolites. Nutrients, 2020, 12, 1434.	1.7	39
103	Host Directed Therapy Against Infection by Boosting Innate Immunity. Frontiers in Immunology, 2020, 11, 1209.	2.2	37
104	The Role and Potential Application of Antimicrobial Peptides in Autoimmune Diseases. Frontiers in Immunology, 2020, 11, 859.	2.2	17
105	Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View. Biomedicines, 2020, 8, 154.	1.4	49
106	Cathelicidins Modulate TLR-Activation and Inflammation. Frontiers in Immunology, 2020, 11, 1137.	2.2	92
107	ROS-associated immune response and metabolism: a mechanistic approach with implication of various diseases. Archives of Toxicology, 2020, 94, 2293-2317.	1.9	30
108	Dietary SCFAs Immunotherapy: Reshaping the Gut Microbiota in Diabetes. Advances in Experimental Medicine and Biology, 2020, 1307, 499-519.	0.8	12
109	Cathelicidin-Related Antimicrobial Peptide Regulates CD73 Expression in Mouse Th17 Cells via p38. Cells, 2020, 9, 1561.	1.8	4

#	Article	IF	CITATIONS
110	Controversial Roles of Gut Microbiota-Derived Short-Chain Fatty Acids (SCFAs) on Pancreatic β-Cell Growth and Insulin Secretion. International Journal of Molecular Sciences, 2020, 21, 910.	1.8	42
111	Butyrate Ameliorates Antibiotic-Driven Type 1 Diabetes in the Female Offspring of Nonobese Diabetic Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 3112-3120.	2.4	13
112	Free fatty acid receptor 3 differentially contributes to β-cell compensation under high-fat diet and streptozotocin stress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R691-R700.	0.9	13
113	Das humane Wirtsabwehrpeptid Cathelicidin LLâ€37 ist ein nanomolarer Inhibitor der amyloiden Selbstassoziation von Inselamyloidâ€Polypeptid (IAPP). Angewandte Chemie, 2020, 132, 12937-12941.	1.6	2
114	Cathelicidinâ€related antimicrobial peptide protects against ischaemia reperfusionâ€induced acute kidney injury in mice. British Journal of Pharmacology, 2020, 177, 2726-2742.	2.7	30
115	The crucial role of early-life gut microbiota in the development of type 1 diabetes. Acta Diabetologica, 2021, 58, 249-265.	1.2	15
116	Genistein ameliorates inflammation and insulin resistance through mediation of gut microbiota composition in type 2 diabetic mice. European Journal of Nutrition, 2021, 60, 2155-2168.	1.8	38
117	Bidirectional and dynamic interaction between the microbiota and therapeutic resistance in pancreatic cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188484.	3.3	11
118	Gut Microbiota and Type 1 Diabetes Mellitus: The Effect of Mediterranean Diet. Frontiers in Nutrition, 2020, 7, 612773.	1.6	25
119	Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nature Reviews Endocrinology, 2021, 17, 150-161.	4.3	256
120	Early-life fingolimod treatment improves intestinal homeostasis and pancreatic immune tolerance in non-obese diabetic mice. Acta Pharmacologica Sinica, 2021, 42, 1620-1629.	2.8	8
121	The roles of vitamin D and cathelicidin in type 1 diabetes susceptibility. Endocrine Connections, 2021, 10, R1-R12.	0.8	8
122	Liver-specific T regulatory type-1 cells program local neutrophils to suppress hepatic autoimmunity via CRAMP. Cell Reports, 2021, 34, 108919.	2.9	12
123	Cathelicidin antimicrobial peptides suppress EV71 infection via regulating antiviral response and inhibiting viral binding. Antiviral Research, 2021, 187, 105021.	1.9	21
124	Hypericum perforatum L. Regulates Glutathione Redox Stress and Normalizes Ggt1/Anpep Signaling to Alleviate OVX-Induced Kidney Dysfunction. Frontiers in Pharmacology, 2021, 12, 628651.	1.6	3
125	Probiotic Aspergillus oryzae produces anti-tumor mediator and exerts anti-tumor effects in pancreatic cancer through the p38 MAPK signaling pathway. Scientific Reports, 2021, 11, 11070.	1.6	11
127	FFAR from the Gut Microbiome Crowd: SCFA Receptors in T1D Pathology. Metabolites, 2021, 11, 302.	1.3	9
128	Peptidome Analysis of Pancreatic Tissue Derived from T1DM Mice: Insights into the Pathogenesis and Clinical Treatments of T1DM, BioMed Research International, 2021, 2021, 114	0.9	0

#	Article	IF	CITATIONS
129	Modulation of Intestinal ILC3 for the Treatment of Type 1 Diabetes. Frontiers in Immunology, 2021, 12, 653560.	2.2	7
130	The biological underpinnings of therapeutic resistance in pancreatic cancer. Genes and Development, 2021, 35, 940-962.	2.7	51
131	Gut microbiota RAMP axis shapes intestinal barrier function and immune responses in dietary glutenâ€induced enteropathy. EMBO Molecular Medicine, 2021, 13, e14059.	3.3	10
132	Alignment-Free Antimicrobial Peptide Predictors: Improving Performance by a Thorough Analysis of the Largest Available Data Set. Journal of Chemical Information and Modeling, 2021, 61, 3141-3157.	2.5	27
133	Harvesting of Antimicrobial Peptides from Insect (Hermetia illucens) and Its Applications in the Food Packaging. Applied Sciences (Switzerland), 2021, 11, 6991.	1.3	14
134	The parasite-derived peptide FhHDM-1 activates the PI3K/Akt pathway to prevent cytokine-induced apoptosis of β-cells. Journal of Molecular Medicine, 2021, 99, 1605-1621.	1.7	7
135	The Gut Microbiome and Sex Hormone-Related Diseases. Frontiers in Microbiology, 2021, 12, 711137.	1.5	58
136	Mechanisms of Post-Pancreatitis Diabetes Mellitus and Cystic Fibrosis-Related Diabetes: A Review of Preclinical Studies. Frontiers in Endocrinology, 2021, 12, 715043.	1.5	7
137	Relevance of organ(s)-on-a-chip systems to the investigation of food-gut microbiota-host interactions. Critical Reviews in Microbiology, 2022, 48, 463-488.	2.7	20
138	Transient antibiotic-induced changes in the neonatal swine intestinal microbiota impact islet expression profiles reducing subsequent function. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R303-R316.	0.9	1
140	Host gut microbiome and potential therapeutics in Gulf War Illness: A short review. Life Sciences, 2021, 280, 119717.	2.0	3
141	Recombinant CRAMP-producing Lactococcus lactis attenuates dextran sulfate sodium-induced colitis by colonic colonization and inhibiting p38/NF-ήB signaling. Food and Nutrition Research, 2021, 65, .	1.2	8
142	Gut Microbiota-Modulated Metabolomic Profiling Shapes the Etiology and Pathogenesis of Autoimmune Diseases. Microorganisms, 2021, 9, 1930.	1.6	9
143	Cathelicidin-WA ameliorates diabetic cardiomyopathy by inhibiting the NLRP3 inflammasome. Cell Cycle, 2021, 20, 2278-2290.	1.3	9
144	Microbiota-derived lactate promotes hematopoiesis and erythropoiesis by inducing stem cell factor production from leptin receptor+ niche cells. Experimental and Molecular Medicine, 2021, 53, 1319-1331.	3.2	21
145	Antimicrobial peptides: mechanism of action, activity and clinical potential. Military Medical Research, 2021, 8, 48.	1.9	226
146	The Human Hostâ€Defense Peptide Cathelicidin LLâ€37 is a Nanomolar Inhibitor of Amyloid Selfâ€Assembly of Islet Amyloid Polypeptide (IAPP). Angewandte Chemie - International Edition, 2020, 59, 12837-12841.	7.2	34
147	Gut microbiota and metabolites in the pathogenesis of endocrine disease. Biochemical Society Transactions, 2020, 48, 915-931.	1.6	31

#	Article	IF	CITATIONS
148	Innate immune receptors in type 1 diabetes: the relationship to cell death-associated inflammation. Biochemical Society Transactions, 2020, 48, 1213-1225.	1.6	3
150	The supply chain of human pancreatic \hat{l}^2 cell lines. Journal of Clinical Investigation, 2019, 129, 3511-3520.	3.9	35
151	A synthetic cationic antimicrobial peptide inhibits inflammatory response and the NLRP3 inflammasome by neutralizing LPS and ATP. PLoS ONE, 2017, 12, e0182057.	1.1	31
152	ER-depletion lowering the 'hypothalamus-uterus-kidney' axis functions by perturbing the renal ERβ/Ptgds signalling pathway. Aging, 2019, 11, 9500-9529.	1.4	3
153	Evidence that the Human Innate Immune Peptide LL-37 may be a Binding Partner of Amyloid-β and Inhibitor of Fibril Assembly. Journal of Alzheimer's Disease, 2017, 59, 1213-1226.	1.2	44
154	Advances in the Correlation between Intestinal Microbiota and Breast Cancer Development. Journal of Cancer Therapy, 2020, 11, 758-771.	0.1	5
155	Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach. ELife, 2019, 8, .	2.8	173
156	Antifungal Activity of ToAP2D Peptide Against Sporothrix globosa. Frontiers in Bioengineering and Biotechnology, 2021, 9, 761518.	2.0	5
157	Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Frontiers in Immunology, 2021, 12, 747143.	2.2	3
158	Crosstalk Between Gut Microbiota, Innate Lymphoid Cells and Endocrine Cells in the Pancreas Regulates Autoimmune Diabetes. SSRN Electronic Journal, 0, , .	0.4	0
159	GUT MICROBIOTA AND DIABETES MELLITUS - AN INTERLINKAGE. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 13.	0.3	1
161	Microbiome and Cellular Players in Type 1 Diabetes: From Pathogenesis to Protection. , 2020, , 161-227.		0
163	Striking a Balance with Help from our Little Friends - How the Gut Microbiota Contributes to Immune Homeostasis. Yale Journal of Biology and Medicine, 2016, 89, 389-395.	0.2	24
164	Probiotics and prebiotics in the suppression of autoimmune diseases. , 2022, , 161-186.		4
165	Deficiency of Cathelicidin Attenuates High-Fat Diet Plus Alcohol-Induced Liver Injury through FGF21/Adiponectin Regulation. Cells, 2021, 10, 3333.	1.8	5
166	Microbiota Alterations and Their Association with Oncogenomic Changes in Pancreatic Cancer Patients. International Journal of Molecular Sciences, 2021, 22, 12978.	1.8	17
167	Low serum pancreatic amylase levels as a novel latent risk factor for colorectal adenoma in nonalcohol drinkers. Journal of Gastroenterology and Hepatology (Australia), 2021, , .	1.4	3
168	Therapeutic Potential of Antimicrobial Peptides for Wound Healing. International Journal of Peptide Research and Therapeutics, 2022, 28, 1.	0.9	9

		CITATION RE	EPORT	
#	Article		IF	Citations
169	Interorgan crosstalk in pancreatic islet function and pathology. FEBS Letters, 2022, 59	6, 607-619.	1.3	10
170	Endogenous cathelicidin is required for protection against ZIKV-caused testis damage virons. Antiviral Research, 2022, 198, 105248.	via inactivating	1.9	8
171	Microbiote, immunit $ ilde{A}$ © et diab $ ilde{A}$ "te de type 1. Medecine Des Maladies Metaboliques, 2	2022, 16, 134-140.	0.1	1
172	Intestinal Cathelicidin Antimicrobial Peptide Shapes a Protective Neonatal Gut Microbi Pancreatic Autoimmunity. Gastroenterology, 2022, 162, 1288-1302.e16.	ota Against	0.6	32
173	A non-bactericidal cathelicidin provides prophylactic efficacy against bacterial infectior phagocyte influx. ELife, 2022, 11, .	ו by driving	2.8	10
174	Immunomodulatory and Allergenic Properties of Antimicrobial Peptides. International J Molecular Sciences, 2022, 23, 2499.	ournal of	1.8	43
175	Gut Dysbiosis in Pancreatic Diseases: A Causative Factor and a Novel Therapeutic Targ Nutrition, 2022, 9, 814269.	et. Frontiers in	1.6	14
176	Gut Microbiota and Immune Responses. Science Insights, 2022, 40, 443-449.		0.1	Ο
177	A Narrative Review of the Gut Microbiota and Its Association with Diseases. Science In 435-441.	sights, 2022, 40,	0.1	0
178	Macrophage immunometabolism in inflammatory bowel diseases: From pathogenesis 238, 108176.	to therapy. , 2022,		41
179	Therapeutic Role of Antimicrobial Peptides in Diabetes Mellitus. Biologics, 2022, 2, 92-	106.	2.3	6
180	Innate Lymphoid Cells: Emerging Players in Pancreatic Disease. International Journal of Sciences, 2022, 23, 3748.	Molecular	1.8	3
181	The Role of Gut Microbiota and Genetic Susceptibility in the Pathogenesis of Pancreati Liver, 2021, , .	tis. Gut and	1.4	6
182	The Impact of Intestinal Microorganisms and Their Metabolites on Type 1 Diabetes Me Metabolic Syndrome and Obesity: Targets and Therapy, 2022, Volume 15, 1123-1139.	llitus. Diabetes,	1.1	5
183	The Protective Effects of Inulin-Type Fructans Against High-Fat/Sucrose Diet-Induced G Diabetes Mice in Association With Gut Microbiota Regulation. Frontiers in Microbiolog 832151.	estational ;y, 2022, 13,	1.5	14
198	Cathelicidin-related antimicrobial peptide protects against enteric pathogen-accelerate diabetes in mice. Theranostics, 2022, 12, 3438-3455.	ed type 1	4.6	8
199	The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nature Re Immunology, 2023, 23, 9-23.	views	10.6	99
200	Upregulating Human Cathelicidin Antimicrobial Peptide LL-37 Expression May Prevent Inflammatory Responses and Reduce Microthrombosis. Frontiers in Immunology, 2022	Severe COVID-19 2, 13, .	2.2	15

#	Article	IF	CITATIONS
201	The effect of gum Arabic supplementation on cathelicidin expression in monocyte derived macrophages in mice. BMC Complementary Medicine and Therapies, 2022, 22, .	1.2	2
202	Cathelicidinâ€related antimicrobial peptide promotes neuroinflammation through astrocyte–microglia communication in experimental autoimmune encephalomyelitis. Glia, 2022, 70, 1902-1926.	2.5	8
203	Gut Microbiota, Leaky Gut, and Autoimmune Diseases. Frontiers in Immunology, 0, 13, .	2.2	43
205	The Role of Intestinal Mucosal Barrier in Autoimmune Disease: A Potential Target. Frontiers in Immunology, 0, 13, .	2.2	36
206	A gut microbial peptide and molecular mimicry in the pathogenesis of type 1 diabetes. Proceedings of the United States of America, 2022, 119, .	3.3	35
207	Environmental Triggering of Type 1 Diabetes Autoimmunity. Frontiers in Endocrinology, 0, 13, .	1.5	10
208	The β-Cell in Type 1 Diabetes Pathogenesis: A Victim of Circumstances or an Instigator of Tragic Events?. Diabetes, 2022, 71, 1603-1610.	0.3	7
209	Host-microbiota interactions shaping T-cell response and tolerance in type 1 diabetes. Frontiers in Immunology, 0, 13, .	2.2	4
210	Alterations of the Intestinal Mucus Layer Correlate with Dysbiosis and Immune Dysregulation in Human Type 1 Diabetes SSRN Electronic Journal, 0, , .	0.4	0
211	Local and systemic effects of microbiomeâ€derived metabolites. EMBO Reports, 2022, 23, .	2.0	15
212	Opportunities and challenges of polyphenols and polysaccharides for type 1 diabetes intervention. Critical Reviews in Food Science and Nutrition, 0, , 1-13.	5.4	2
213	Role of gut microbiota in the pathogenesis and treatment of diabetes mullites: Advanced review. Frontiers in Microbiology, 0, 13, .	1.5	14
214	CPR109a Regulates Phenotypic and Functional Alterations in Macrophages and the Progression of Type 1 Diabetes. Molecular Nutrition and Food Research, 2022, 66, .	1.5	4
215	Microbial regulation of offspring diseases mediated by maternal-associated microbial metabolites. Frontiers in Microbiology, 0, 13, .	1.5	2
216	Bioactive compounds in diabetes care and prevention. , 2023, , 387-438.		0
217	Gut microbiome in type 1 diabetes: the immunological perspective. Expert Review of Clinical Immunology, 2023, 19, 93-109.	1.3	4
218	Changes in the Intestinal Microbiota in Patients with Chronic Pancreatitis: Systematizing Literature Data. Russian Journal of Gastroenterology Hepatology Coloproctology, 2022, 32, 17-26.	0.2	1
219	Preventing Respiratory Viral Diseases with Antimicrobial Peptide Master Regulators in the Lung Airway Habitat. Clinics and Practice, 2023, 13, 125-147.	0.6	4

#	Article	IF	CITATIONS
220	Advances in Lactobacillus Restoration for β-Lactam Antibiotic-Induced Dysbiosis: A System Review in Intestinal Microbiota and Immune Homeostasis. Microorganisms, 2023, 11, 179.	1.6	4
221	Exploring the immunomodulatory effects and mechanisms of Xinjiang fermented camel milk-derived bioactive peptides based on network pharmacology and molecular docking. Frontiers in Pharmacology, 0, 13, .	1.6	3
222	New insights into MAIT cells in autoimmune diseases. Biomedicine and Pharmacotherapy, 2023, 159, 114250.	2.5	3
223	Alterations of the intestinal mucus layer correlate with dysbiosis and immune dysregulation in human Type 1 Diabetes. EBioMedicine, 2023, 91, 104567.	2.7	6
224	Microbiota-derived short-chain fatty acids and modulation of host-derived peptides formation: Focused on host defense peptides. Biomedicine and Pharmacotherapy, 2023, 162, 114586.	2.5	9
226	Cathelicidins Target HSP60 To Restrict CVB3 Transmission via Disrupting the Exosome and Reducing Cardiomyocyte Apoptosis. Journal of Virology, 2023, 97, .	1.5	3
227	Pathobionts from chemically disrupted gut microbiota induce insulin-dependent diabetes in mice. Microbiome, 2023, 11, .	4.9	5
228	Nutrition in Acute Pancreatitis: From the Old Paradigm to the New Evidence. Nutrients, 2023, 15, 1939.	1.7	2
237	Editorial: Gut physiology—microbes and inflammatory diseases. Frontiers in Physiology, 0, 14, .	1.3	0