Direct optical nanoscopy with axially localized detectio

Nature Photonics 9, 587-593 DOI: 10.1038/nphoton.2015.132

Citation Report

#	Article	IF	CITATIONS
4	Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm. Scientific Reports, 2016, 6, 32863.	3.3	13
5	Topography of Cells Revealed by Variable-Angle Total Internal Reflection Fluorescence Microscopy. Biophysical Journal, 2016, 111, 1316-1327.	0.5	52
6	Advances in three-dimensional super-resolution nanoscopy. Microscopy Research and Technique, 2016, 79, 893-898.	2.2	8
7	Cascaded plasmon-plasmon coupling mediated energy transfer across stratified metal-dielectric nanostructures. Scientific Reports, 2016, 6, 34086.	3.3	3
8	Measuring membrane association and protein diffusion within membranes with supercritical angle fluorescence microscopy. Biomedical Optics Express, 2016, 7, 1561.	2.9	13
9	Nanoscale characterization of vesicle adhesion by normalized total internal reflection fluorescence microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1244-1253.	2.6	12
10	Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking. Chemical Reviews, 2017, 117, 7244-7275.	47.7	381
11	Chip-based wide field-of-view nanoscopy. Nature Photonics, 2017, 11, 322-328.	31.4	128
12	Podosome Force Generation Machinery: A Local Balance between Protrusion at the Core and Traction at the Ring. ACS Nano, 2017, 11, 4028-4040.	14.6	72
13	Toward an Axial Nanoscale Ruler for Fluorescence Microscopy. ACS Nano, 2017, 11, 11762-11767.	14.6	6
14	Photometry unlocks 3D information from 2D localization microscopy data. Nature Methods, 2017, 14, 41-44.	19.0	66
15	Supercritical angle Raman microscopy: a surface-sensitive nanoscale technique without field enhancement. Light: Science and Applications, 2017, 6, e17066-e17066.	16.6	6
16	Nanometer-Scale Resolution Achieved with Nonradiative Excitation. ACS Photonics, 2018, 5, 2217-2224.	6.6	1
17	3D super-localization of intracellular organelle contacts at live single cell by dual-wavelength synchronized fluorescence-free imaging. Analytical and Bioanalytical Chemistry, 2018, 410, 1551-1560.	3.7	9
18	Self-interference 3D super-resolution microscopy for deep tissue investigations. Nature Methods, 2018, 15, 449-454.	19.0	86
19	Supercritical Angle Fluorescence Characterization Using Spatially Resolved Fourier Plane Spectroscopy. Analytical Chemistry, 2018, 90, 4263-4267.	6.5	5
20	Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy. Nature Communications, 2018, 9, 4818.	12.8	46
21	Ultrasensitive Refractometry <i>via</i> Supercritical Angle Fluorescence. ACS Nano, 2018, 12, 11892-11898.	14.6	16

#	Article	IF	CITATIONS
22	<scp>TUBB</scp> 1 mutations cause thyroid dysgenesis associated with abnormal platelet physiology. EMBO Molecular Medicine, 2018, 10, .	6.9	47
23	Decoding the Information Contained in Fluorophore Radiation Patterns. ACS Nano, 2018, 12, 11725-11730.	14.6	9
24	Lamellipod Reconstruction by Three-Dimensional Reflection Interference Contrast Nanoscopy (3D-RICN). Nano Letters, 2018, 18, 6544-6550.	9.1	14
25	Breaking the Axial Diffraction Limit: A Guide to Axial Superâ€Resolution Fluorescence Microscopy. Laser and Photonics Reviews, 2018, 12, 1700333.	8.7	33
26	Aberration-accounting calibration for 3D single-molecule localization microscopy. Optics Letters, 2018, 43, 174.	3.3	34
27	Super-Resolution Depth Measurements: Variable Angle TIRF, Super-Critical Angle Fluorescence, MIET. , 2018, , 175-184.		1
28	A large area high resolution imaging detector for fast atom diffraction. Nuclear Instruments & Methods in Physics Research B, 2018, 427, 95-99.	1.4	8
29	Impact of Bacterial Membrane Fatty Acid Composition on the Failure of Daptomycin To Kill Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	54
30	Live-cell fluorescence imaging with extreme background suppression by plasmonic nanocoatings. Optics Express, 2018, 26, 21301.	3.4	8
31	Retrieving the Size of Deep-Subwavelength Objects via Tunable Optical Spin-Orbit Coupling. Physical Review Letters, 2018, 120, 253901.	7.8	5
32	Calibrating Evanescent-Wave Penetration Depths for Biological TIRF Microscopy. Biophysical Journal, 2019, 117, 795-809.	0.5	44
33	Graphene-based metal-induced energy transfer for sub-nanometre optical localization. Nature Photonics, 2019, 13, 860-865.	31.4	66
34	Combining 3D single molecule localization strategies for reproducible bioimaging. Nature Communications, 2019, 10, 1980.	12.8	35
35	Carbon dots, a powerful non-toxic support for bioimaging by fluorescence nanoscopy and eradication of bacteria by photothermia. Nanoscale Advances, 2019, 1, 2571-2579.	4.6	25
36	Self-Interference (SELFI) Microscopy for Live Super-Resolution Imaging and Single Particle Tracking in 3D. Frontiers in Physics, 2019, 7, .	2.1	12
37	Optical Spectroscopy of Surfaces, Interfaces, and Thin Films: A Status Report. Analytical Chemistry, 2019, 91, 4235-4265.	6.5	12
38	Probing the mechanical landscape – new insights into podosome architecture and mechanics. Journal of Cell Science, 2019, 132, .	2.0	66
39	Graphene boost. Nature Photonics, 2019, 13, 825-826.	31.4	2

#	Article	IF	CITATIONS
40	Chiral emission of electric dipoles coupled to optical hyperbolic materials. Physical Review B, 2019, 100, .	3.2	7
41	Supercritical angle fluorescence for enhanced axial sectioning in STED microscopy. Methods, 2020, 174, 20-26.	3.8	7
42	Quantitative Data Analysis in Single-Molecule Localization Microscopy. Trends in Cell Biology, 2020, 30, 837-851.	7.9	47
43	Fluorescence molecular localization in submicronic depth through waveguide mode coupled emission. Optics Communications, 2020, 475, 126290.	2.1	2
44	A Review of Super-Resolution Single-Molecule Localization Microscopy Cluster Analysis and Quantification Methods. Patterns, 2020, 1, 100038.	5.9	165
45	The RNase J-Based RNA Degradosome Is Compartmentalized in the Gastric Pathogen Helicobacter pylori. MBio, 2020, 11, .	4.1	11
46	Supercritical Angle Fluorescence Microscopy andÂSpectroscopy. Biophysical Journal, 2020, 118, 2339-2348.	0.5	11
47	A criterion of the vertical spacing between fluorescent molecules in a waveguide structure. Results in Physics, 2020, 17, 103030.	4.1	0
48	In-Parallel Polar Monitoring of Chemiluminescence Emission Anisotropy at the Solid–Liquid Interface by an Optical Fiber Radial Array. Chemosensors, 2020, 8, 18.	3.6	4
49	Metamaterial-Assisted Photobleaching Microscopy with Nanometer Scale Axial Resolution. Nano Letters, 2020, 20, 6038-6044.	9.1	9
50	Large field-of-view nanometer-sectioning microscopy by using metal-induced energy transfer and biexponential lifetime analysis. Communications Biology, 2021, 4, 91.	4.4	11
51	Nanometric axial localization of single fluorescent molecules with modulated excitation. Nature Photonics, 2021, 15, 297-304.	31.4	70
52	Three-dimensional single molecule localization close to the coverslip: a comparison of methods exploiting supercritical angle fluorescence. Biomedical Optics Express, 2021, 12, 802.	2.9	4
53	Three-dimensional total-internal reflection fluorescence nanoscopy with nanometric axial resolution by photometric localization of single molecules. Nature Communications, 2021, 12, 517.	12.8	12
54	Direct supercritical angle localization microscopy for nanometer 3D superresolution. Nature Communications, 2021, 12, 1180.	12.8	22
55	Imaging of Cell Morphology Changes via Metamaterial-Assisted Photobleaching Microscopy. Nano Letters, 2021, 21, 1716-1721.	9.1	14
56	Molecular-scale axial localization by repetitive optical selective exposure. Nature Methods, 2021, 18, 369-373.	19.0	40
57	Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions. Nature Communications, 2021, 12, 3104.	12.8	37

#	Article	IF	CITATIONS
58	Fast widefield scan provides tunable and uniform illumination optimizing super-resolution microscopy on large fields. Nature Communications, 2021, 12, 3077.	12.8	33
59	Solving the boundary artifact for the enhanced deconvolution algorithm SUPPOSe applied to fluorescence microscopy. Computer Optics, 2021, 45, .	2.2	3
60	Learning Optimal Wavefront Shaping for Multi-Channel Imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 2179-2192.	13.9	27
62	Optometry for a short-sighted microscope. Biophysical Journal, 2021, 120, 4301-4304.	0.5	0
63	Advanced quantification for single-cell adhesion by variable-angle TIRF nanoscopy. Biophysical Reports, 2021, 1, 100021.	1.2	5
69	Defocused imaging exploits supercritical-angle fluorescence emission for precise axial single molecule localization microscopy. Biomedical Optics Express, 2020, 11, 775.	2.9	11
70	Fundamental precision bounds for three-dimensional optical localization microscopy using self-interference digital holography. Biomedical Optics Express, 2021, 12, 20.	2.9	9
71	Multicolor localization microscopy and point-spread-function engineering by deep learning. Optics Express, 2019, 27, 6158.	3.4	87
72	Addressing systematic errors in axial distance measurements in single-emitter localization microscopy. Optics Express, 2020, 28, 18616.	3.4	18
73	Incidence angle calibration for prismless total internal reflection fluorescence microscopy. Optics Letters, 2019, 44, 1710.	3.3	8
74	Probing near-field light–matter interactions with single-molecule lifetime imaging. Optica, 2019, 6, 135.	9.3	16
75	Near-field spectrum retrieving through non-degenerate coupling emission. Nanophotonics, 2020, 9, 235-243.	6.0	6
76	Single cell adhesion strength assessed with variable-angle total internal reflection fluorescence microscopy. AIMS Biophysics, 2017, 4, 438-450.	0.6	4
77	Multicolor localization microscopy and point-spread-function engineering by deep learning. Optics Express, 2019, 27, 6147.	3.4	14
80	Three-Dimensional Single Molecule Localization Microscopy Reveals the Topography of the Immunological Synapse at Isotropic Precision below 15 nm. Nano Letters, 2021, 21, 9247-9255.	9.1	13
81	Single-Protein Tracking to Study Protein Interactions During Integrin-Based Migration. Methods in Molecular Biology, 2021, 2217, 85-113.	0.9	1
82	Fluorescence nanoscopy at the sub-10Ânm scale. Biophysical Reviews, 2021, 13, 1101-1112.	3.2	13
83	Direct-laser writing for subnanometer focusing and single-molecule imaging. Nature Communications, 2022, 13, 647.	12.8	15

#	Article	IF	CITATIONS
84	Super-Resolution Microscopy for Structural Cell Biology. Annual Review of Biophysics, 2022, 51, 301-326.	10.0	71
85	Understanding immune signaling using advanced imaging techniques. Biochemical Society Transactions, 2022, 50, 853-866.	3.4	4
86	Resonant dielectric multilayer with controlled absorption for enhanced total internal reflection fluorescence microscopy. Optics Express, 2022, 30, 15365.	3.4	2
87	Dipole-spread-function engineering for simultaneously measuring the 3D orientations and 3D positions of fluorescent molecules. Optica, 2022, 9, 505.	9.3	20
89	Super-resolution imaging: when biophysics meets nanophotonics. Nanophotonics, 2022, 11, 169-202.	6.0	6
92	Nanoscale architecture and coordination of actin cores within the sealing zone of human osteoclasts. ELife, 0, 11, .	6.0	3
93	Axial accuracy in localization microscopy with 3D point spread function engineering. Optics Express, 2022, 30, 28290.	3.4	5
94	Isotropic three-dimensional dual-color super-resolution microscopy with metal-induced energy transfer. Science Advances, 2022, 8, .	10.3	16
97	Plasmonics for advance single-molecule fluorescence spectroscopy and imaging in biology. Frontiers in Photonics, 0, 3, .	2.4	1
99	Localization Microscopy. , 2023, , 335-391.		0
100	Novel imaging methods and force probes for molecular mechanobiology of cytoskeleton and adhesion. Trends in Cell Biology, 2023, 33, 204-220.	7.9	5
100	Novel imaging methods and force probes for molecular mechanobiology of cytoskeleton and adhesion. Trends in Cell Biology, 2023, 33, 204-220. Monitoring non-specific adsorption at solid–liquid interfaces by supercritical angle fluorescence microscopy. Review of Scientific Instruments, 2022, 93, 113707.	7.9 1.3	5
100 104 105	Novel imaging methods and force probes for molecular mechanobiology of cytoskeleton and adhesion. Trends in Cell Biology, 2023, 33, 204-220. Monitoring non-specific adsorption at solid–liquid interfaces by supercritical angle fluorescence microscopy. Review of Scientific Instruments, 2022, 93, 113707. Optimization of resonant dielectric multilayer for enhanced fluorescence imaging. Optical Materials: X, 2023, 17, 100223.	7.9 1.3 0.8	5 1 1
100 104 105 106	Novel imaging methods and force probes for molecular mechanobiology of cytoskeleton and adhesion. Trends in Cell Biology, 2023, 33, 204-220. Monitoring non-specific adsorption at solid–liquid interfaces by supercritical angle fluorescence microscopy. Review of Scientific Instruments, 2022, 93, 113707. Optimization of resonant dielectric multilayer for enhanced fluorescence imaging. Optical Materials: X, 2023, 17, 100223. Quantifying F-actin patches in single melanoma cells using total-internal reflection fluorescence microscopy. Scientific Reports, 2022, 12, .	7.9 1.3 0.8 3.3	5 1 1 2
100 104 105 106	Novel imaging methods and force probes for molecular mechanobiology of cytoskeleton and adhesion. Trends in Cell Biology, 2023, 33, 204-220. Monitoring non-specific adsorption at solid–liquid interfaces by supercritical angle fluorescence microscopy. Review of Scientific Instruments, 2022, 93, 113707. Optimization of resonant dielectric multilayer for enhanced fluorescence imaging. Optical Materials: X, 2023, 17, 100223. Quantifying F-actin patches in single melanoma cells using total-internal reflection fluorescence microscopy. Scientific Reports, 2022, 12, . Three-dimensional tracking using a single-spot rotating point spread function created by a multiring spiral phase plate. Journal of Biomedical Optics, 2022, 27, .	7.9 1.3 0.8 3.3 2.6	5 1 1 2 1
100 104 105 106 107	Novel imaging methods and force probes for molecular mechanobiology of cytoskeleton and adhesion. Trends in Cell Biology, 2023, 33, 204-220. Monitoring non-specific adsorption at solidà€"liquid interfaces by supercritical angle fluorescence microscopy. Review of Scientific Instruments, 2022, 93, 113707. Optimization of resonant dielectric multilayer for enhanced fluorescence imaging. Optical Materials: X, 2023, 17, 100223. Quantifying F-actin patches in single melanoma cells using total-internal reflection fluorescence microscopy. Scientific Reports, 2022, 12, . Three-dimensional tracking using a single-spot rotating point spread function created by a multiring spiral phase plate. Journal of Biomedical Optics, 2022, 27, . Retrieving the subwavelength cross-section of dielectric nanowires with asymmetric excitation of Bloch surface waves. Physical Chemistry Chemical Physics, 2023, 25, 7711-7718.	 7.9 1.3 0.8 3.3 2.6 2.8 	5 1 1 2 1
 100 104 105 106 107 109 110 	Novel imaging methods and force probes for molecular mechanobiology of cytoskeleton and adhesion. Trends in Cell Biology, 2023, 33, 204-220. Monitoring non-specific adsorption at solidâ€"liquid interfaces by supercritical angle fluorescence microscopy. Review of Scientific Instruments, 2022, 93, 113707. Optimization of resonant dielectric multilayer for enhanced fluorescence imaging. Optical Materials: X, 2023, 17, 100223. Quantifying F-actin patches in single melanoma cells using total-internal reflection fluorescence microscopy. Scientific Reports, 2022, 12, . Three-dimensional tracking using a single-spot rotating point spread function created by a multiring spiral phase plate. Journal of Biomedical Optics, 2022, 27, . Retrieving the subwavelength cross-section of dielectric nanowires with asymmetric excitation of Bioch surface waves. Physical Chemistry Chemical Physics, 2023, 25, 7711-7718. Characterization of Nanometric Thin Films with Farâ€Field Light. Advanced Optical Materials, 0, , .	 7.9 1.3 0.8 3.3 2.6 2.8 7.3 	5 1 1 2 1 0

#	Article	IF	CITATIONS
112	Quantitative fluorescence emission anisotropy microscopy for implementing homo–fluorescence resonance energy transfer measurements in living cells. Molecular Biology of the Cell, 2023, 34, .	2.1	0
113	Combining deep learning approaches and point spread function engineering for simultaneous 3D position and 3D orientation measurements of fluorescent single molecules. Optics Communications, 2023, 542, 129589.	2.1	2
114	Fibroblasts generate topographical cues that steer cancer cell migration. Science Advances, 2023, 9, .	10.3	4
115	Assessing crosstalk in simultaneous multicolor single-molecule localization microscopy. Cell Reports Methods, 2023, 3, 100571.	2.9	1
116	Event-based vision sensor for fast and dense single-molecule localization microscopy. Nature Photonics, 2023, 17, 1105-1113.	31.4	1
118	Bayesian posterior density estimation reveals degeneracy in three-dimensional multiple emitter localization. Scientific Reports, 2023, 13, .	3.3	1
119	Flexible implementation of modulated localisation microscopy based on DMD. Journal of Microscopy, 0, , .	1.8	0