Dendritic Polyglycerol Sulfate Inhibits Microglial Active Dendritic Spine Morphology Deficits

Biomacromolecules

16, 3073-3082

DOI: 10.1021/acs.biomac.5b00999

Citation Report

#	Article	IF	CITATIONS
1	Nutritional and Nanotechnological Modulators of Microglia. Frontiers in Immunology, 2016, 7, 270.	4.8	7
2	Remodeling of lipid bodies by docosahexaenoic acid in activated microglial cells. Journal of Neuroinflammation, 2016, 13, 116.	7.2	42
3	Dendritic polyglycerol sulfate attenuates murine graft-versus-host disease. Annals of Hematology, 2016, 95, 465-472.	1.8	3
4	Targeting specific cells in the brain with nanomedicines for CNS therapies. Journal of Controlled Release, 2016, 240, 212-226.	9.9	71
5	Low generation polyamine dendrimers bearing flexible tetraethylene glycol as nanocarriers for plasmids and siRNA. Nanoscale, 2016, 8, 5106-5119.	5.6	24
6	Aliphatic Polyethers with Sulfate, Carboxylate, and Hydroxyl Side Groups—Do They Show Anticoagulant Properties?. Macromolecular Bioscience, 2017, 17, .	4.1	2
7	Dendritic polyglycerol anions for the selective targeting of native and inflamed articular cartilage. Journal of Materials Chemistry B, 2017, 5, 4754-4767.	5.8	11
8	Charged Dendrimers Revisited: Effective Charge and Surface Potential of Dendritic Polyglycerol Sulfate. Macromolecules, 2017, 50, 4759-4769.	4.8	32
9	Synthesis of polyglycerol-citric acid nanoparticles as biocompatible vectors for biomedical applications. Journal of Molecular Liquids, 2017, 242, 53-58.	4.9	11
10	Microfluidic Probe for Neural Organotypic Brain Tissue and Cell Perfusion. , 2018, , 139-154.		0
11	Counterion-Release Entropy Governs the Inhibition of Serum Proteins by Polyelectrolyte Drugs. Biomacromolecules, 2018, 19, 409-416.	5.4	39
12	Dendritic Polyglycerol Sulfates in the Prevention of Synaptic Loss and Mechanism of Action on Glia. ACS Chemical Neuroscience, 2018, 9, 260-271.	3.5	28
13	Dendritic Polyglycerol Sulfate for Therapy and Diagnostics. Polymers, 2018, 10, 595.	4.5	19
14	Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding. Journal of Chemical Physics, 2018, 149, 163324.	3.0	32
15	Charge and hydration structure of dendritic polyelectrolytes: molecular simulations of polyglycerol sulphate. Soft Matter, 2018, 14, 4300-4310.	2.7	13
16	Thermodynamics of the Binding of Lysozyme to a Dendritic Polyelectrolyte: Electrostatics Versus Hydration. ACS Omega, 2018, 3, 9086-9095.	3.5	19
17	Dendritic polyglycerols are modulators of microglia-astrocyte crosstalk. Future Neurology, 2019, 14, FNL31.	0.5	11
18	Dendrimers as Modulators of Brain Cells. Molecules, 2020, 25, 4489.	3.8	9

ATION RED

CITATION REPORT

#	Article	IF	CITATIONS
19	Competitive sorption of monovalent and divalent ions by highly charged globular macromolecules. Journal of Chemical Physics, 2020, 153, 044904.	3.0	13
20	Nanotherapeutic Modulation of Human Neural Cells and Glioblastoma in Organoids and Monocultures. Cells, 2020, 9, 2434.	4.1	10
21	Cells Undergo Major Changes in the Quantity of Cytoplasmic Organelles after Uptake of Gold Nanoparticles with Biologically Relevant Surface Coatings. ACS Nano, 2020, 14, 2248-2264.	14.6	31
22	Probing the protein corona around charged macromolecules: interpretation of isothermal titration calorimetry by binding models and computer simulations. Colloid and Polymer Science, 2020, 298, 747-759.	2.1	8
23	Wechselwirkung von Polyelektrolytâ€Architekturen mit Proteinen und Biosystemen. Angewandte Chemie, 2021, 133, 3926-3950.	2.0	8
24	Understanding the Interaction of Polyelectrolyte Architectures with Proteins and Biosystems. Angewandte Chemie - International Edition, 2021, 60, 3882-3904.	13.8	65
25	Say no to drugs: Bioactive macromolecular therapeutics without conventional drugs. Journal of Controlled Release, 2021, 330, 1191-1207.	9.9	10
26	Insights into Interactions between Interleukin-6 and Dendritic Polyglycerols. International Journal of Molecular Sciences, 2021, 22, 2415.	4.1	6
27	Gram Scale Synthesis of Dual-Responsive Dendritic Polyglycerol Sulfate as Drug Delivery System. Polymers, 2021, 13, 982.	4.5	3
28	Targeted drug delivery systems to control neuroinflammation in central nervous system disorders. Journal of Drug Delivery Science and Technology, 2021, 66, 102802.	3.0	8
29	Chapter 7. Polymeric Ionic Liquids with Micelle-like Topologies and Functions. RSC Polymer Chemistry Series, 2016, , 259-285.	0.2	2
30	Activity-dependent neuroprotective protein deficiency models synaptic and developmental phenotypes of autism-like syndrome. Journal of Clinical Investigation, 2018, 128, 4956-4969.	8.2	71
31	Nanostructured Modulators of Neuroglia. Current Pharmaceutical Design, 2019, 25, 3905-3916.	1.9	3
32	TPPU Pre-Treatment Rescues Dendritic Spine Loss and Alleviates Depressive Behaviours during the Latent Period in the Lithium Chloride-Pilocarpine-Induced Status Epilepticus Rat Model. Brain Sciences, 2021, 11, 1465.	2.3	6
33	Curing inflammatory diseases using phosphorous dendrimers. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1783.	6.1	6
34	Dysfunction of EAAT3 Aggravates LPS-Induced Post-Operative Cognitive Dysfunction. Membranes, 2022, 12, 317.	3.0	3
35	Sulfated Hyperbranched and Linear Polyglycerols Modulate HMGB1 and Morphological Plasticity in Neural Cells. ACS Chemical Neuroscience, 2023, 14, 677-688.	3.5	0
36	Dendrimers and Derivatives as Multifunctional Nanotherapeutics for Alzheimer's Disease. Pharmaceutics, 2023, 15, 1054.	4.5	6

		CITATION REPORT	TATION REPORT		
#	Article	IF	CITATIONS		
37	Shell-sheddable dendritic polyglycerol sulfates loaded with sunitinib for inhibition of tumor angiogenesis. International Journal of Pharmaceutics, 2023, 642, 123158.	5.2	2		
38	Effects of minocycline on dendrites, dendritic spines, and microglia in immature mouse brains after kainic acidâ€induced status epilepticus. CNS Neuroscience and Therapeutics, 2024, 30, .	3.9	1		