Baseflow dynamics: Multi-tracer surveys to assess varia montane streams under low flows

Journal of Hydrology 527, 1021-1033 DOI: 10.1016/j.jhydrol.2015.05.019

Citation Report

#	Article	IF	CITATIONS
1	Stream water age distributions controlled by storage dynamics and nonlinear hydrologic connectivity: Modeling with high-resolution isotope data. Water Resources Research, 2015, 51, 7759-7776.	1.7	134
2	Dissolved organic matter dynamics during the spring snowmelt at a boreal river valley mire complex in Northwest Russia. Hydrological Processes, 2016, 30, 1727-1741.	1.1	7
3	Spatial organization of groundwater dynamics and streamflow response from different hydropedological units in a montane catchment. Hydrological Processes, 2016, 30, 3735-3753.	1.1	42
4	Modelling storageâ€driven connectivity between landscapes and riverscapes: towards a simple framework for longâ€ŧerm ecohydrological assessment. Hydrological Processes, 2016, 30, 2482-2497.	1.1	21
5	Using high resolution tracer data to constrain water storage, flux and age estimates in a spatially distributed rainfallâ€runoff model. Hydrological Processes, 2016, 30, 4761-4778.	1.1	69
6	Linking highâ€frequency DOC dynamics to the age of connected water sources. Water Resources Research, 2016, 52, 5232-5247.	1.7	62
7	Using geophysical surveys to test tracerâ€based storage estimates in headwater catchments. Hydrological Processes, 2016, 30, 4434-4445.	1.1	33
8	Investigation of discharge-area groundwaters for recharge source characterization on different scales: the case of Jinan in northern China. Hydrogeology Journal, 2016, 24, 1723-1737.	0.9	29
9	Effect of bedrock permeability on stream base flow mean transit time scaling relationships: 2. Process study of storage and release. Water Resources Research, 2016, 52, 1375-1397.	1.7	45
10	Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterisation. Journal of Hydrology, 2017, 547, 664-677.	2.3	60
11	The influence of lithology on surface water sources. Hydrological Processes, 2017, 31, 1913-1925.	1.1	11
12	Scaling effects of riparian peatlands on stable isotopes in runoff and DOC mobilisation. Journal of Hydrology, 2017, 549, 220-235.	2.3	28
13	Temporal dynamics in dominant runoff sources and flow paths in the <scp>A</scp> ndean <scp>P</scp> áramo. Water Resources Research, 2017, 53, 5998-6017.	1.7	49
14	Groundwater isoscapes in a montane headwater catchment show dominance of wellâ€mixed storage. Hydrological Processes, 2017, 31, 3504-3519.	1.1	27
15	Using highâ€resolution isotope data and alternative calibration strategies for a tracerâ€aided runoff model in a nested catchment. Hydrological Processes, 2017, 31, 3962-3978.	1.1	17
16	Evaporation fractionation in a peatland drainage network affects stream water isotope composition. Water Resources Research, 2017, 53, 851-866.	1.7	92
17	What can we learn from multi-data calibration of a process-based ecohydrological model?. Environmental Modelling and Software, 2018, 101, 301-316.	1.9	48
18	Role of riparian wetlands and hydrological connectivity in the dynamics of stream thermal regimes. Hydrology Research, 2018, 49, 634-647.	1.1	4

#	Article	IF	CITATIONS
19	The suitability of using dissolved gases to determine groundwater discharge to high gradient streams. Journal of Hydrology, 2018, 557, 561-572.	2.3	12
20	Interacting land use and soil surface dynamics control groundwater outflow in a montane catchment of the lower Mekong basin. Agriculture, Ecosystems and Environment, 2018, 268, 90-102.	2.5	20
21	Rainfall as primary driver of discharge and solute export from rock glaciers: The Col d'Olen Rock Glacier in the NW Italian Alps. Science of the Total Environment, 2018, 639, 316-330.	3.9	29
22	Spatio-temporal diel DOC cycles in a wet, low energy, northern catchment: Highlighting and questioning the sub-daily rhythms of catchment functioning. Journal of Hydrology, 2018, 563, 962-974.	2.3	7
23	Groundwater dynamics at the hillslope–riparian interface in a year with extreme winter rainfall. Journal of Hydrology, 2018, 564, 509-528.	2.3	24
24	Catchment chemostasis revisited: Water quality responds differently to variations in weather and climate. Hydrological Processes, 2019, 33, 3056-3069.	1.1	81
25	Spatial variability in the isotopic composition of water in small catchments and its effect on hydrograph separation. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1367.	2.8	24
26	Assessing runoff generation in riparian wetlands: monitoring groundwater–surface water dynamics at the micro-catchment scale. Environmental Monitoring and Assessment, 2019, 191, 116.	1.3	12
27	Spatial Variations in the Stable Isotopic Compositions of Surface and Groundwaters across Central Sri Lanka. Japan Agricultural Research Quarterly, 2019, 53, 21-30.	0.1	2
28	Spatial variability in specific discharge and streamwater chemistry during low flows: Results from snapshot sampling campaigns in eleven Swiss catchments. Hydrological Processes, 2019, 33, 2847-2866.	1.1	17
29	Climate, Landforms, and Geology Affect Baseflow Sources in a Mountain Catchment. Water Resources Research, 2019, 55, 5238-5254.	1.7	42
30	A tracer-based method for classifying groundwater dependence in boreal headwater streams. Journal of Hydrology, 2019, 577, 123762.	2.3	10
31	How climate variations are reflected in root zone storage capacities. Physics and Chemistry of the Earth, 2019, 112, 83-90.	1.2	3
32	To what extent does hydrological connectivity control dynamics of faecal indicator organisms in streams? Initial hypothesis testing using a tracer-aided model. Journal of Hydrology, 2019, 570, 423-435.	2.3	12
33	Groundwater–glacier meltwater interaction in proglacial aquifers. Hydrology and Earth System Sciences, 2019, 23, 4527-4539.	1.9	20
34	Spatially distributed hydro-chemical data with temporally high-resolution is needed to adequately assess the hydrological functioning of headwater catchments. Science of the Total Environment, 2019, 651, 1613-1626.	3.9	33
35	Concentration versus streamflow trends of major ions and tritium in headwater streams as indicators of changing water stores. Hydrological Processes, 2020, 34, 485-505.	1.1	14
36	Concentration vs. streamflow (C-Q) relationships of major ions in south-eastern Australian rivers: Sources and fluxes of inorganic ions and nutrients. Applied Geochemistry, 2020, 120, 104680.	1.4	10

CITATION REPORT

#	Article	IF	CITATIONS
37	Lessons from the 2018 drought for management of local water supplies in upland areas: A tracerâ€based assessment. Hydrological Processes, 2020, 34, 4190-4210.	1.1	16
38	Geologic Controls on Source Water Drive Baseflow Generation and Carbon Geochemistry: Evidence of Nonstationary Baseflow Sources Across Multiple Subwatersheds. Water Resources Research, 2020, 56, e2019WR026577.	1.7	18
39	Contribution of understory evaporation in aÂtropical wet forest during the dry season. Hydrology and Earth System Sciences, 2020, 24, 2179-2206.	1.9	10
40	The use of major, trace elements and uranium isotopic ratio (234U/238U) for tracing of hydrogeochemical evolution of surface waters in the Andarax River catchment (SE Spain). Journal of Geochemical Exploration, 2020, 213, 106533.	1.5	4
41	Impact of land uses, drought, flood, wildfire, and cascading events on water quality and microbial communities: A review and analysis. Journal of Hydrology, 2021, 596, 125707.	2.3	70
42	Hillslope and groundwater contributions to streamflow in a Rocky Mountain watershed underlain by glacial till and fractured sedimentary bedrock. Hydrology and Earth System Sciences, 2021, 25, 237-255.	1.9	7
43	The Variation Characteristics and Influencing Factors of Base Flow of the Hexi Inland Rivers. Atmosphere, 2021, 12, 356.	1.0	5
44	Spatiotemporal dynamics of water sources in a mountain river basin inferred through <scp>Î²H</scp> and <scp>Î¹⁸O</scp> of water. Hydrological Processes, 2021, 35, e14063.	1.1	10
46	Can the two-parameter recursive digital filter baseflow separation method really be calibrated by the conductivity mass balance method?. Hydrology and Earth System Sciences, 2021, 25, 1747-1760.	1.9	15
47	Baseflow and transmission loss: A review. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1527.	2.8	22
49	Climate Impacts on Source Contributions and Evaporation to Flow in the Snake River Basin Using Surface Water Isoscapes (δ2 H and δ 18 O). Water Resources Research, 2021, 57, e2020WR029157.	1.7	0
50	Structural changes to forests during regeneration affect water flux partitioning, water ages and hydrological connectivity: Insights from tracer-aided ecohydrological modelling. Hydrology and Earth System Sciences, 2021, 25, 4861-4886.	1.9	12
51	Hydrological control of water quality – Modelling base cation weathering and dynamics across heterogeneous boreal catchments. Science of the Total Environment, 2021, 799, 149101.	3.9	3
52	Continuous Dissolved Oxygen Measurements and Modelling Metabolism in Peatland Streams. PLoS ONE, 2016, 11, e0161363.	1.1	10
53	Sources of Perennial Water Supporting Critical Ecosystems, San Pedro Valley, Arizona. Environmental and Engineering Geoscience, 2020, 26, 463-479.	0.3	1
54	Multicriteria analysis on rock moisture and streamflow in a rainfallâ€runoff model improves accuracy of model results. Hydrological Processes, 2022, 36, .	1.1	1
55	Identification of the contributing area to river discharge during low-flow periods. Hydrology and Earth System Sciences, 2021, 25, 6261-6281.	1.9	1
56	Assessing the role of location and scale of Nature Based Solutions for the enhancement of low flows. International Journal of River Basin Management, 2023, 21, 743-758.	1.5	6

#	Article	IF	CITATIONS
57	Determination of groundwater origins and vulnerability based on multi-tracer investigations: New contributions from passive sampling and suspect screening approach. Science of the Total Environment, 2023, 876, 162750.	3.9	1
58	Persistent chemostatic behaviour of stream solutes in a northern hardwood forest under climatic and atmospheric deposition changes. Hydrological Processes, 0, , .	1.1	0