Alkali–silica reaction: Current understanding of the r knowledge gaps

Cement and Concrete Research 76, 130-146 DOI: 10.1016/j.cemconres.2015.05.024

Citation Report

#	Article	IF	CITATIONS
1	Alkali–silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions. Construction and Building Materials, 2015, 99, 279-287.	7.2	100
2	Scale-Dependent ASR Expansion of Concrete and Its Prediction coupled with Silica Gel Generation and Migration. Journal of Advanced Concrete Technology, 2016, 14, 444-463.	1.8	45
3	GEOLOGICAL STUDY AND MINING PLAN IMPORTANCE FOR MITIGATING ALKALI SILICA REACTION IN AGGREGATE QUARRY OPERATION. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	2
4	Application of Image Analysis to Identify Quartz Grains in Heavy Aggregates Susceptible to ASR in Radiation Shielding Concrete. Materials, 2016, 9, 224.	2.9	11
5	Evaluation of alkali–silica reaction potential of quartz-rich rocks by alkaline etching of polished rock sections. Environmental Earth Sciences, 2016, 75, 1.	2.7	5
6	Application of ASR tests to recycled concrete aggregates: Influence of water absorption. Construction and Building Materials, 2016, 124, 714-721.	7.2	31
7	Physically based models to study the alkali–silica reaction. Proceedings of Institution of Civil Engineers: Construction Materials, 2016, 169, 136-144.	1.1	7
8	Types of alkali–aggregate reactions and the products formed. Proceedings of Institution of Civil Engineers: Construction Materials, 2016, 169, 128-135.	1.1	37
9	Influence of alternative fuels on trace element content of ordinary portland cement. Fuel, 2016, 184, 481-489.	6.4	36
10	Effect of calcium on dissolution and precipitation reactions of amorphous silica at high alkalinity. Cement and Concrete Research, 2016, 87, 1-13.	11.0	134
11	Potential alkali silica reactivity of various rock types in an aggregate granite quarry. Measurement: Journal of the International Measurement Confederation, 2016, 81, 221-231.	5.0	14
12	An extended chemical index model to predict the fly ash dosage necessary for mitigating alkali–silica reaction in concrete. Cement and Concrete Research, 2016, 82, 1-10.	11.0	19
13	Composition–rheology relationships in alkali–silica reaction gels and the impact on the gel's deleterious behavior. Cement and Concrete Research, 2016, 83, 45-56.	11.0	91
14	The role of activating solution concentration on alkali–silica reaction in alkali-activated fly ash concrete. Cement and Concrete Research, 2016, 83, 124-130.	11.0	76
15	Alkali-Aggregate Reactions in Concrete. , 2016, , 361-383.		0
16	Lithium migration in a two-chamber set-up as treatment against expansion due to alkali–silica reaction. Construction and Building Materials, 2017, 134, 324-335.	7.2	11
17	The influence of alkali–silica reaction (ASR) gel composition on its hydrophilic properties and free swelling in contact with water vapor. Cement and Concrete Research, 2017, 94, 49-58.	11.0	57
18	Application of Electron Backscatter Diffraction to evaluate the ASR risk of concrete aggregates. Cement and Concrete Research, 2017, 95, 47-55.	11.0	13

#	Article	IF	CITATIONS
19	Effect of coarse aggregate grading on the ASR expansion and damage of concrete. Cement and Concrete Research, 2017, 95, 75-83.	11.0	50
20	Mitigation of Alkali–Silica Reaction by Hydrated Alumina. Transportation Research Record, 2017, 2629, 15-23.	1.9	12
21	Quantifying the swelling properties of alkaliâ€silica reaction (ASR) gels as a function of their composition. Journal of the American Ceramic Society, 2017, 100, 3801-3818.	3.8	24
22	ASR Potential and Mitigation Measures for Wyoming Aggregates. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	2
23	Stress-relaxation of crystalline alkali-silica reaction products: Characterization by micro- and nanoindentation and simplified modeling. Construction and Building Materials, 2017, 148, 455-464.	7.2	15
24	High temperature performance of mortars containing fine glass powders. Journal of Cleaner Production, 2017, 162, 16-26.	9.3	58
25	The mechanism of limited inhibition by fly ash on expansion due to alkali–silica reaction at the pessimum proportion. Cement and Concrete Research, 2017, 92, 1-15.	11.0	44
26	Effects of Irradiation on Albite's Chemical Durability. Journal of Physical Chemistry A, 2017, 121, 7835-7845.	2.5	37
27	Predicting fly ash dosages to prevent ASR by introducing the concrete prism test (CPT) chemical index model. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2017, 9, 144-153.	1.1	2
28	Utilisation of alkali activated glass powder in binary mixtures with Portland cement, slag, fly ash and hydrated lime. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	43
29	Empirical Multiphase Dielectric Mixing Model for Cement-Based Materials Containing Alkali-Silica Reaction Gel. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 2428-2436.	4.7	12
30	Modeling Time-Dependent Behavior of Concrete Affected by Alkali Silica Reaction in Variable Environmental Conditions. Materials, 2017, 10, 471.	2.9	63
31	Effect of Alkalis on Cementitious Materials:Understanding the Relationship between Composition, Structure, and Volume Change Mechanism. Journal of Advanced Concrete Technology, 2017, 15, 165-177.	1.8	26
32	Cement Type Influence on Alkali-Silica Reaction in Concrete with Crushed Gravel Aggregate. IOP Conference Series: Materials Science and Engineering, 2017, 251, 012032.	0.6	1
33	Fundamentals of alkali-silica gel formation and swelling: Condensation under influence of dissolved salts. Cement and Concrete Research, 2018, 105, 18-30.	11.0	39
34	Neutron scattering measurement of water content and chemical composition of alkali-glass powder reacted gel. Materials Characterization, 2018, 136, 165-174.	4.4	0
35	Atomic force microscopy characterisation of alkali-silica reaction products to reveal their nanostructure and formation mechanism. Ceramics International, 2018, 44, 7310-7314.	4.8	6
36	Sustainable one-part geopolymer foams with glass fines versus sand as aggregates. Construction and Building Materials, 2018, 171, 223-231.	7.2	100

#	Article	IF	CITATIONS
37	Analytical solution on dosage of self-healing capsules in materials with two-dimensional multi-shaped crack patterns. Science and Engineering of Composite Materials, 2018, 25, 1229-1239.	1.4	10
38	Alkali-silica reaction in waterglass-activated slag mortars incorporating fly ash and metakaolin. Cement and Concrete Research, 2018, 108, 10-19.	11.0	103
39	Nano-mechanical properties of alkali-silica reaction (ASR) products in concrete measured by nano-indentation. Construction and Building Materials, 2018, 158, 75-83.	7.2	21
40	Applications of aerogel in cement-based thermal insulation materials: an overview. Magazine of Concrete Research, 2018, 70, 822-837.	2.0	21
41	A mechanistic study on mitigation of alkali-silica reaction by fine lightweight aggregates. Cement and Concrete Research, 2018, 104, 13-24.	11.0	20
42	Adsorption and Desorption Characteristics of Alkali Ions in Hydrated C3S-nano SiO2 Pastes. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 1176-1185.	1.0	1
43	Reaction of quartz glass in lithium-containing alkaline solutions with or without Ca. Royal Society Open Science, 2018, 5, 180797.	2.4	6
44	Modeling the cementitious effect of the Pozzolana on the compressive strength of concrete. Cogent Engineering, 2018, 5, 1548002.	2.2	2
45	Alkali-Silica Reactivity of High Density Aggregates for Radiation Shielding Concrete. Materials, 2018, 11, 2284.	2.9	10
46	Mitigation Effect of Waste Glass Powders on Alkali–Silica Reaction (ASR) Expansion in Cementitious Composite. International Journal of Concrete Structures and Materials, 2018, 12, .	3.2	40
47	Compressive Strength and Durability Properties of Structural Lightweight Concrete with Fine Expanded Glass and/or Clay Aggregates. Materials, 2018, 11, 2434.	2.9	35
48	Damage Mechanism Evaluation of Large-Scale Concrete Structures Affected by Alkali-Silica Reaction Using Acoustic Emission. Applied Sciences (Switzerland), 2018, 8, 2148.	2.5	24
49	Alkali-Wrapped Concrete Prism Test (AW-CPT) – New Testing Protocol Toward a Performance Test against Alkali-Silica Reaction–. Journal of Advanced Concrete Technology, 2018, 16, 441-460.	1.8	22
50	Alkali-silica reaction and microstructure of concrete subjected to combined chemical and physical exposure conditions. MATEC Web of Conferences, 2018, 163, 05009.	0.2	1
51	Doping as a Way To Protect Silicate Chains in Calcium Silicate Hydrates. ACS Sustainable Chemistry and Engineering, 2018, 6, 15015-15021.	6.7	20
52	Chemical aspects related to using recycled geopolymers as aggregates. Advances in Cement Research, 2018, 30, 361-370.	1.6	2
53	HPC simulations of alkali-silica reaction-induced damage: Influence of alkali-silica gel properties. Cement and Concrete Research, 2018, 109, 90-102.	11.0	14
54	The ASR mechanism of reactive aggregates in concrete and its mitigation by fly ash: A critical review. Construction and Building Materials, 2018, 171, 743-758.	7.2	103

#	Article	IF	CITATIONS
55	Extension of the chemical index model for estimating Alkali-Silica reaction mitigation efficiency to slags and natural pozzolans. Construction and Building Materials, 2018, 179, 587-597.	7.2	13
56	Influence of portlandite on Pyrex glass dissolution and the formation of alkaliâ€silica chemical reaction products. Journal of the American Ceramic Society, 2018, 101, 4549-4559.	3.8	7
57	The use of calcium sulfoaluminate cement to mitigate the alkali silica reaction in mortars. Construction and Building Materials, 2018, 184, 295-303.	7.2	24
58	Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders. Journal of Cleaner Production, 2018, 193, 593-603.	9.3	104
59	The influence of the anolyte solution type and concentration on lithium migration in mortar specimens. Construction and Building Materials, 2018, 186, 123-130.	7.2	1
60	Atomistic and mesoscale simulation of sodium and potassium adsorption in cement paste. Journal of Chemical Physics, 2018, 149, 074705.	3.0	16
61	Kinetic analysis and thermodynamic simulation of alkaliâ€silica reaction in cementitious materials. Journal of the American Ceramic Society, 2019, 102, 1463-1478.	3.8	13
62	Alkali-silica reaction in concrete: Mechanisms, mitigation and test methods. Construction and Building Materials, 2019, 222, 903-931.	7.2	121
63	The role of composition in the structure and water-binding in alkali-silica reaction sol and gel. Cement and Concrete Research, 2019, 124, 105814.	11.0	5
64	Use of Î ³ -Al2O3 to prevent alkali-silica reaction by altering solid and aqueous compositions of hydrated cement paste. Cement and Concrete Research, 2019, 124, 105817.	11.0	26
65	Experimental study on ASR performance of concrete with nano-particles. Journal of Asian Architecture and Building Engineering, 2019, 18, 2-8.	2.0	7
66	Mechanisms of Alkali-Silica Reaction in Alkali-Activated High-Volume Fly Ash Mortars. Journal of Advanced Concrete Technology, 2019, 17, 269-281.	1.8	9
67	Characterization of viscoelastic behavior of synthetic alkali–silica reaction gels. Cement and Concrete Composites, 2019, 104, 103359.	10.7	7
68	Co-utilization of waste glass cullet and glass powder in precast concrete products. Construction and Building Materials, 2019, 223, 210-220.	7.2	55
69	Mitigating alkali-silica reaction induced concrete degradation through cement substitution by metakaolin and bentonite. Applied Clay Science, 2019, 182, 105257.	5.2	40
70	Expansive cracking and compressive failure simulations of ASR and DEF damaged concrete using a mesoscale discrete model. Cement and Concrete Composites, 2019, 104, 103404.	10.7	30
71	Alkali silica reaction of waste glass aggregate in alkali activated fly ash and GGBFS mortars. Materials and Structures/Materiaux Et Constructions, 2019, 52, 1.	3.1	23
72	Long-term Material Properties of a Thick Concrete Wall Exposed to Ordinary Environmental Conditions in a Nuclear Reactor Building: the Contribution of Cement Hydrates and Feldspar Interaction. Journal of Advanced Concrete Technology, 2019, 17, 195-215.	1.8	11

#	Article	IF	CITATIONS
73	Distribution of ASR gel in conventional wet-mix glass mortars and mechanically produced dry-mix glass blocks. Construction and Building Materials, 2019, 229, 116916.	7.2	15
74	Mitigation of ASR expansion in concrete using ultra-fine coal bottom ash. Construction and Building Materials, 2019, 202, 814-824.	7.2	35
75	ASR expansions at the level of a single glass-cement paste interface: experimental results and proposal of a reaction-expansion mechanism. Construction and Building Materials, 2019, 218, 108-118.	7.2	10
76	Interfacial chemistry of a fly ash geopolymer and aggregates. Journal of Cleaner Production, 2019, 231, 980-989.	9.3	55
77	Evaluating Effect of GGBFS in Alkali–Silica Reaction in Geopolymer Mortar with Accelerated Mortar Bar Test. Journal of Materials in Civil Engineering, 2019, 31, 04019167.	2.9	19
78	Structural characterization of alkali-silica reaction gel: An x-ray absorption fine structure study. Cement and Concrete Research, 2019, 123, 105774.	11.0	9
79	Practical Model for Predicting Internal Relative Humidity of Concrete Exposed to Drying. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	5
80	Synthesis, characterization, and water uptake property of alkali-silica reaction products. Cement and Concrete Research, 2019, 121, 58-71.	11.0	86
81	Microgravity Effect on Microstructural Development of Tri-calcium Silicate (C3S) Paste. Frontiers in Materials, 2019, 6, .	2.4	18
82	The addition of caesium to concrete with alkali-silica reaction: Implications on product identification and recognition of the reaction sequence. Cement and Concrete Research, 2019, 120, 27-35.	11.0	35
83	Effect of sample geometry and aggregate type on expansion due to alkali-silica reaction. Construction and Building Materials, 2019, 209, 738-747.	7.2	7
84	Leaching characteristics of biomass ash-based binder in neutral and acidic media. Cement and Concrete Composites, 2019, 100, 92-98.	10.7	6
85	Glass powder and high-calcium fly ash based binders – Long term examinations. Journal of Cleaner Production, 2019, 220, 493-506.	9.3	14
86	Synergistic effect of RHA and FCW in alkali-aggregate reaction mitigation. Ambiente ConstruÃdo, 2019, 19, 7-20.	0.4	3
87	Study on the reaction process of alkaliâ€activated carbonatite by means of polarizing microscope and digital holographic microscope technology. Structural Concrete, 2019, 20, 1086-1095.	3.1	2
88	Advances in Ceramics for Environmental, Functional, Structural, and Energy Applications II, Ceramic Transactions Volume 266. Ceramic Transactions, 2019, , .	0.1	0
90	Analysis of Cement Deterioration in Outdoor High-Voltage Insulator. Materials, 2019, 12, 4201.	2.9	3
91	Effect of calcium and lithium on alkali-silica reaction kinetics and phase development. Cement and Concrete Research, 2019, 115, 220-229.	11.0	20

#	Article	IF	CITATIONS
92	Effects of nano-SiO2 and glass powder on mitigating alkali-silica reaction of cement glass mortars. Construction and Building Materials, 2019, 201, 295-302.	7.2	52
93	Improved photocatalytic nitrogen oxides removal using recycled glass-nano-TiO2 composites with NaOH pre-treatment. Journal of Cleaner Production, 2019, 209, 1095-1104.	9.3	28
94	Expansion and deterioration of concrete due to ASR: Micromechanical modeling and analysis. Cement and Concrete Research, 2019, 115, 507-518.	11.0	37
95	Comparing the alkali-silica reaction mitigation potential of admixtures by using different accelerated test methods. Construction and Building Materials, 2019, 197, 597-614.	7.2	9
96	On utilization and mechanisms of waste aluminium in mitigating alkali-silica reaction (ASR) in concrete. Journal of Cleaner Production, 2019, 212, 864-879.	9.3	36
97	Multi-phase modelling of electrochemical rehabilitation for ASR and chloride affected concrete composites. Composite Structures, 2019, 207, 176-189.	5.8	130
98	Characterization of Poultry Litter Ash in View of Its Valorization. Waste and Biomass Valorization, 2020, 11, 5333-5348.	3.4	16
99	The combined effect of potassium, sodium and calcium on the formation of alkali-silica reaction products. Cement and Concrete Research, 2020, 127, 105914.	11.0	35
100	Effect and mechanism analysis of functionalized multi-walled carbon nanotubes (MWCNTs) on C-S-H gel. Cement and Concrete Research, 2020, 128, 105955.	11.0	43
101	Formation of shlykovite and ASR-P1 in concrete under accelerated alkali-silica reaction at 60 and 80°C. Cement and Concrete Research, 2020, 137, 106213.	11.0	39
102	Recycling of waste glass in dry-mixed concrete blocks: Evaluation of alkali-silica reaction (ASR) by accelerated laboratory tests and long-term field monitoring. Construction and Building Materials, 2020, 262, 120865.	7.2	16
103	Alkali-Silica Reaction Resistance and Pore Solution Composition of Low-Calcium Fly Ash-Based Geopolymer Concrete. Infrastructures, 2020, 5, 96.	2.8	7
104	Production of lightweight geopolymer concrete. Journal of Physics: Conference Series, 2020, 1527, 012045.	0.4	1
105	Model for alkali-silica reaction expansions in concrete using zero-thickness chemo-mechanical interface elements. International Journal of Solids and Structures, 2020, 207, 145-177.	2.7	13
106	Utilization of Drinking Water Treatment Sludge as Cement Replacement to Mitigate Alkali–Silica Reaction in Cement Composites. Journal of Composites Science, 2020, 4, 171.	3.0	11
107	Mitigation of alkali-silica reaction by limestone calcined clay cement (LC3). Cement and Concrete Research, 2020, 137, 106176.	11.0	47
108	Mechanical behavior and phase change of alkali-silica reaction products under hydrostatic compression. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 674-682.	1.1	11
109	Laboratory investigations on fine aggregates used for concrete pavements due to the risk of ASR. Road Materials and Pavement Design, 2020, , 1-13.	4.0	1

#	Article	IF	CITATIONS
110	Temporal Evaluation of ASR Cracking in Concrete Specimens Using Acoustic Emission. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	17
111	Recycling Untreated Coal Bottom Ash with Added Value for Mitigating Alkali–Silica Reaction in Concrete: A Sustainable Approach. Sustainability, 2020, 12, 10631.	3.2	24
112	Modification of fly ash using acids and alkali by hydrothermal method and its application as adsorbents material for phosphate adsorption in aquatic system. IOP Conference Series: Materials Science and Engineering, 2020, 902, 012034.	0.6	2
113	Monitoring of dielectric permittivity in accelerated alkali-silica reaction concrete with microwave backscattering. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	4
114	Assessment of the ground aggregate paste (GAP) test for aggregate alkali–silica reactivity screening. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1635-1641.	3.6	1
115	Using Supplementary Cementitious Materials to Mitigate Alkali-Silica Reaction in Concrete with Recycled-Concrete Aggregate. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	17
116	Relation between mechanical properties of concrete and alkali-silica reaction (ASR); a review. Construction and Building Materials, 2020, 258, 119567.	7.2	63
117	Recycling dredged harbor sediment to construction materials by sintering with steel slag and waste glass: Characteristics, alkali-silica reactivity and metals stability. Journal of Environmental Management, 2020, 270, 110869.	7.8	35
118	Properties and durability of concrete containing fluidized bed combustion (FBC) fly ash. Construction and Building Materials, 2020, 258, 119663.	7.2	36
119	Chemo-Mechanical Model for the Expansion of Concrete Due to Alkali Silica Reaction. Applied Sciences (Switzerland), 2020, 10, 3807.	2.5	5
120	ASR potential of nickel slag fine aggregate in blast furnace slag-fly ash geopolymer and Portland cement mortars. Construction and Building Materials, 2020, 262, 119990.	7.2	24
121	Intermolecular interactions of nanocrystalline alkali-silica reaction products under sorption. Cement and Concrete Research, 2020, 136, 106155.	11.0	11
122	Influence of mineralogical and chemical compositions on alkali-silica-reaction of Tennessee limestones. Construction and Building Materials, 2020, 261, 119916.	7.2	9
123	pH Level of Pore Solution in Alkali-Activated Fly-Ash Geopolymer Concrete and Its Effect on ASR of Aggregates with Different Silicate Contents. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	18
124	Synthesis of alkali-silica reaction product structurally identical to that formed in field concrete. Materials and Design, 2020, 190, 108562.	7.0	26
125	Alkali-aggregate reaction in recycled aggregate concrete. Journal of Cleaner Production, 2020, 255, 120238.	9.3	51
126	Microstructure, crystallinity and composition of alkali-silica reaction products in concrete determined by transmission electron microscopy. Cement and Concrete Research, 2020, 130, 105988.	11.0	32
127	A review of ground waste glass as a supplementary cementitious material: A focus on alkali-silica reaction. Journal of Cleaner Production, 2020, 257, 120180.	9.3	71

#	Article	IF	CITATIONS
128	Use of sludge ash from drinking water treatment plant in hydraulic mortars. Materials Today Communications, 2020, 23, 100930.	1.9	14
129	Effect of anions on behavior of mortar exposed to alkali–silica reaction. Construction and Building Materials, 2020, 252, 119117.	7.2	4
130	Calcium nitrate: A chemical admixture to inhibit aggregate dissolution and mitigate expansion caused by alkali-silica reaction. Cement and Concrete Composites, 2020, 110, 103592.	10.7	17
131	Alkali-silica reaction (ASR) in the alkali-activated cement (AAC) system: A state-of-the-art review. Construction and Building Materials, 2020, 252, 119105.	7.2	60
132	Alkali-silica reaction in alkali-activated combined slag and fly ash concretes: The tempering effect of fly ash on expansion and cracking. Construction and Building Materials, 2020, 251, 118968.	7.2	10
133	Divergence between Performance in the Field and Laboratory Test Results for Alkali-Silica Reaction. Transportation Research Record, 2020, 2674, 120-134.	1.9	11
134	A Roadmap for Production of Cement and Concrete with Low-CO2 Emissions. Waste and Biomass Valorization, 2021, 12, 4745-4775.	3.4	21
135	Effect of Al on the formation and structure of alkali-silica reaction products. Cement and Concrete Research, 2021, 140, 106311.	11.0	23
136	Formation and stability of gismondineâ€ŧype zeolite in cementitious systems. Journal of the American Ceramic Society, 2021, 104, 1513-1525.	3.8	9
137	Accelerated test for assessing the potential risk of alkali-silica reaction in concrete using an autoclave. Construction and Building Materials, 2021, 271, 121871.	7.2	10
138	Development and properties of light-transmitting concrete (LTC) – A review. Journal of Cleaner Production, 2021, 284, 124780.	9.3	20
139	Evaluation of the ASR of waste glass fine aggregate in alkali activated concrete by concrete prism tests. Construction and Building Materials, 2021, 266, 121121.	7.2	18
140	Factors Affecting Kinetics and Gel Composition of Alkali–Silica Reaction in Alkali-Activated Slag Mortars. International Journal of Civil Engineering, 2021, 19, 453-462.	2.0	3
141	Utilization of metallurgical wastes as raw materials for manufacturing alkali-activated cements. , 2021, , 335-383.		3
142	Alkali-silica reaction (ASR) - Investigation of crystallographic parameters of natural sands by backscattered electron diffraction. Revista IBRACON De Estruturas E Materiais, 2021, 14, .	0.6	3
143	Effects of carbon nanotubes and carbon nanofibers on properties of alkali-activated concretes. , 2021, , 313-333.		0
144	Introduction to concrete and nanomaterials in concrete applications. , 2021, , 1-58.		1
145	Effect of elevated temperature on the mechanical strength of glass mortar. IOP Conference Series: Materials Science and Engineering, 2021, 1070, 012046.	0.6	0

#	Article	IF	CITATIONS
146	Implementation of Information Entropy, b-Value, and Regression Analyses for Temporal Evaluation of Acoustic Emission Data Recorded during ASR Cracking. Practice Periodical on Structural Design and Construction, 2021, 26, .	1.3	8
147	Effect of calcium hydroxide on the alkali-silica reaction of alkali-activated slag mortars activated by sodium hydroxide. Construction and Building Materials, 2021, 272, 121868.	7.2	31
148	Activation of alkali-silica reactivity under microwave action and passivation of reactive aggregate by treatment with lithium nitrate. Bulletin of Engineering Geology and the Environment, 0, , 1.	3.5	1
149	Effect of improved autogenous mortar self-healing in the alkali-aggregate reaction. Cement and Concrete Composites, 2021, 117, 103905.	10.7	18
150	Diagnosis and Assessment of Deep Pile Cap Foundation of a Tall Building Affected by Internal Expansion Reactions. Buildings, 2021, 11, 104.	3.1	4
151	Evaluation of the chemical index model for predicting supplementary cementitious material dosage to prevent the alkali-silica reaction in concrete. Construction and Building Materials, 2021, 275, 122158.	7.2	6
152	New Chemical Reactivity Index to Assess Alkali–Silica Reactivity. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	6
153	Efficacy of SCMs to mitigate ASR in systems with higher alkali contents assessed by pore solution method. Cement and Concrete Research, 2021, 142, 106353.	11.0	31
154	Influence of the distribution of expansive sites in aggregates on microscopic damage caused by alkali-silica reaction: Insights into the mechanical origin of expansion. Cement and Concrete Research, 2021, 142, 106355.	11.0	24
155	Alkali-silica reaction in calcium aluminate cement mortars induced by deicing salts solutions. Road Materials and Pavement Design, 2022, 23, 1707-1730.	4.0	3
156	Performance of glass-blended cement produced by intergrinding and separate grinding methods. Cement and Concrete Composites, 2021, 118, 103937.	10.7	9
157	ASR mitigation using binary and ternary blends with waste glass powder. Construction and Building Materials, 2021, 280, 122425.	7.2	27
158	Exploring the Effects of the Substitution of Freshly Mined Sands with Recycled Crushed Glass on the Properties of Concrete. Applied Sciences (Switzerland), 2021, 11, 3318.	2.5	8
159	Çörtlerin betonun alkali silika reaksiyonu üzerindeki etkisi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 0, , .	0.0	Ο
160	3D Microstructure Simulation of Reactive Aggregate in Concrete from 2D Images as the Basis for ASR Simulation. Materials, 2021, 14, 2908.	2.9	7
161	Role of Alkalis in Natural Pozzolans on Alkali-Silica Reaction. ACI Materials Journal, 2021, 118, .	0.2	2
162	Washed waste incineration bottom ash as a raw ingredient in cement production: Implications for lab-scale clinker behavior. Resources, Conservation and Recycling, 2021, 169, 105513.	10.8	22
163	Influence of Limestone Mineral Addition in Cements on the Efficacy of SCMs in Mitigating Alkali-Silica Reaction Assessed by Accelerated Mortar Bar Test. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	4

#	Article	IF	CITATIONS
164	Rheology and alkali-silica reaction of alkali-activated slag mortars modified by fly ash microsphere: a comparative analysis to OPC mortars. Materials Research Express, 2021, 8, 065501.	1.6	5
165	New insights into the role of fly ash in mitigating alkali-silica reaction (ASR) in concrete. Cement and Concrete Research, 2021, 144, 106440.	11.0	24
166	Novel admixtures for mitigation of alkali-silica reaction in concrete. Cement and Concrete Composites, 2021, 120, 104028.	10.7	17
167	Repair of Alkali-Silica Reaction-Induced Cracks Using Bacteria: Crack Recovery and Other Properties. ACI Materials Journal, 2021, 118, .	0.2	0
168	Engineering practices on surface damage inspection and performance evaluation of concrete bridges in China. Structural Concrete, 2022, 23, 16-31.	3.1	6
169	Carbonation of calcium-magnesium pyroxenes: Physical-chemical controls and effects of reaction-driven fracturing. Geochimica Et Cosmochimica Acta, 2021, 304, 258-280.	3.9	14
170	Investigation of concrete by means of micro-XRF. Microscopy and Microanalysis, 2021, 27, 3182-3185.	0.4	0
171	Sorption and electrokinetic properties of ASR product and C-S-H: A comparative modelling study. Cement and Concrete Research, 2021, 146, 106491.	11.0	12
172	Long-term thermal performance of oil well cement modified by silica flour with different particle sizes in HTHP environment. Construction and Building Materials, 2021, 296, 123701.	7.2	21
173	Evaluation of ASR in concrete using acoustic emission and deep learning. Nuclear Engineering and Design, 2021, 380, 111328.	1.7	16
174	Diagnosis and Assessment of Deep Pile Cap Foundation of a Tall Building Affected by Internal Expansion Reactions—Case Study. Building Pathology and Rehabilitation, 2022, , 103-124.	0.2	0
175	Use of scratch tracking method to study the dissolution of alpine aggregates subject to alkali silica reaction. Cement and Concrete Composites, 2021, 124, 104260.	10.7	6
177	Development of alkali-silica reaction model considering the effect of aggregate size. Cement and Concrete Composites, 2021, 122, 104149.	10.7	7
178	Considerations on the effect of temperature, cation type and molarity on silica degradation and implications to ASR assessment. Construction and Building Materials, 2021, 299, 123848.	7.2	3
179	Some critical observations about the degradation of glass: The formation of lamellae explained. Journal of Non-Crystalline Solids, 2021, 569, 120984.	3.1	9
180	Electrochemical impedance spectroscopy and ultrasound for monitoring expansive reactions and their interactions on cement composites. Construction and Building Materials, 2021, 305, 124726.	7.2	10
181	Formulating Portland cement–reactive alumina blend through thermodynamic modeling to prevent the alkali–silica reaction. Journal of the American Ceramic Society, 2022, 105, 1533-1547.	3.8	5
182	Using graphene oxide to improve physical property and control ASR expansion of cement mortar. Construction and Building Materials, 2021, 307, 125006.	7.2	13

#	Article	IF	CITATIONS
183	Early damage detection of fatigue failure for RC deck slabs under wheel load moving test using image analysis with artificial intelligence. Engineering Structures, 2021, 246, 113050.	5.3	13
184	Computational modeling of temperature and relative humidity effects on concrete expansion due to alkali–silica reaction. Cement and Concrete Composites, 2021, 124, 104237.	10.7	27
185	Towards a scientific-based assessment of long-term durability and performance of cementitious materials for radioactive waste conditioning and disposal. Journal of Nuclear Materials, 2021, 557, 153201.	2.7	8
186	Alkali-silica reaction (ASR) in concrete structures: Mechanisms, effects and evaluation test methods adopted in the United States. Case Studies in Construction Materials, 2021, 15, e00563.	1.7	18
187	Alkali-silica reaction products and cracks: X-ray micro-tomography-based analysis of their spatial-temporal evolution at a mesoscale. Cement and Concrete Research, 2021, 150, 106593.	11.0	12
188	Long-term durability properties of geopolymer concrete: An in-depth review. Case Studies in Construction Materials, 2021, 15, e00661.	1.7	34
189	Computational modeling of expansion and deterioration due to alkali–silica reaction: Effects of size range, size distribution, and content of reactive aggregate. International Journal of Solids and Structures, 2022, 234-235, 111220.	2.7	6
190	Effects of carbon nanotubes and carbon nanofibers on concrete properties. , 2021, , 171-245.		0
191	The Response of Synthetic Alkali-Silica Reaction Products to Carbonation. RILEM Bookseries, 2021, , 119-130.	0.4	0
192	Palm Oil Fuel Ash-Based Eco-Efficient Concrete: A Critical Review of the Short-Term Properties. Materials, 2021, 14, 332.	2.9	41
193	A mesoscale discrete model for mechanical performance of concrete damaged by coupled ASR and DEF. Engineering Fracture Mechanics, 2020, 232, 107055.	4.3	19
194	Specific ion effects control the thermoelastic behavior of nanolayered materials: the case of crystalline alkali-silica reaction products. Physical Chemistry Chemical Physics, 2020, 22, 27800-27810.	2.8	5
195	Multiaxial Expansion-Stress Relationship for Alkali Silica Reaction-Affected Concrete. ACI Materials Journal, 2017, 114, .	0.2	10
196	A Modified Chemical Index to Predict Fly Ash Dosage for Mitigating Alkali-Silica Reaction. Advances in Civil Engineering Materials, 2019, 8, 20190191.	0.6	4
198	Restraint Effect of Reinforcing Bar on ASR Expansion and Deterioration Characteristic of the Bond Behavior. Journal of Advanced Concrete Technology, 2020, 18, 192-210.	1.8	18
199	Kinetics and Mechanisms of Acidâ€pH Weathering of Pyroxenes. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009711.	2.5	7
200	THE INFLUENCE OF CALCIUM CHLORIDE IN EARLY HYDRATION REACTION OF ALITE. Cement Science and Concrete Technology, 2017, 71, 2-9.	0.1	0
201	Accelerated Mortar Bar Test Precision with Recycled Concrete Aggregate. ACI Materials Journal, 2018, 115, .	0.2	0

#	Article	IF	CITATIONS
202	Avaliação da reatividade potencial de rochas utilizadas como agregados na construção civil no estado do Rio Grande do Sul. Revista Materia, 2018, 23, .	0.2	1
203	ALKALI-SILICA REACTIVITY OF PORTLAND-COMPOSITE CEMENTS AND GRAVEL AGGREGATES. Ceramics - Silikaty, 2018, , 76-85.	0.3	1
204	Optimising High Lime Fly Ash Content By Means of Silica Fume İncorporation To Control Alkali-Silica Reaction And Drying Shrinkage of Mortars. Journal of Polytechnic, 0, , .	0.7	1
205	Field Assessment of ASR-Affected Structures. RILEM State-of-the-Art Reports, 2021, , 41-93.	0.7	0
206	Combining reliable performance testing and binder properties to determine preventive measures for alkali-silica reaction. Cement and Concrete Research, 2022, 151, 106641.	11.0	12
207	A 3D reactive transport model for simulation of the chemical reaction process of ASR at microscale. Cement and Concrete Research, 2022, 151, 106640.	11.0	6
208	Using electrical resistivity to determine the efficiency of supplementary cementitious materials to prevent alkali-silica reaction in concrete. Cement and Concrete Composites, 2022, 125, 104282.	10.7	20
209	A comparative investigation on the effects of nanocellulose from bacteria and plant-based sources for cementitious composites. Cement and Concrete Composites, 2022, 125, 104316.	10.7	17
210	Effect of different ions on dissolution rates of silica and feldspars at high pH. Cement and Concrete Research, 2022, 152, 106644.	11.0	27
211	Microscopic analysis of the alkali-silica reactivity of various origin fine aggregate. MATEC Web of Conferences, 2020, 322, 01025.	0.2	0
212	Alkali-Silica Reaction for Concrete Confined with Carbon Fiber-Reinforced Polymer Sheet. ACI Structural Journal, 2020, 117, .	0.2	0
213	Non-Equilibrium Thermodynamic Modeling Framework for Ordinary Portland Cement/Supplementary Cementitious Material Systems. ACI Materials Journal, 2020, 117, .	0.2	2
214	Utilization of lithium nitrate to mitigate alkali–silica reaction of architectural glass mortar: Characteristics and mechanisms. Construction and Building Materials, 2022, 315, 125433.	7.2	11
215	Alkali silica reaction: A view from the nanoscale. Cement and Concrete Research, 2022, 152, 106652.	11.0	13
216	Influence of Alkalis on Natural Carbonation of Limestone Calcined Clay Cement Pastes. Sustainability, 2021, 13, 12833.	3.2	5
217	Limitations on the Use of Recycled Asphalt Pavement in Structural Concrete. Applied Sciences (Switzerland), 2021, 11, 10901.	2.5	7
218	Palm Oil Fuel Ash-Based Eco-Friendly Concrete Composite: A Critical Review of the Long-Term Properties. Materials, 2021, 14, 7074.	2.9	21
219	Deterioration of concrete mechanical properties and fracture of steel bars caused by alkali-silica reaction: A review. Structures, 2022, 35, 893-902.	3.6	15

#	Article	IF	CITATIONS
220	Utilization of alternative aggregates for roller compacted concrete pavements – A state-of-the-art review. Construction and Building Materials, 2022, 317, 125838.	7.2	35
221	Alkali-silica reaction of sanitary ware ceramic wastes utilized as aggregate in ordinary and high-performance mortars. Construction and Building Materials, 2022, 319, 126076.	7.2	4
222	Deterioration of concrete under the coupling effects of freeze–thaw cycles and other actions: A review. Construction and Building Materials, 2022, 319, 126045.	7.2	91
223	Mechanisms of Alkali-Silica Reaction Mitigation in AMBT Conditions: Comparative Study of Traditional Supplementary Cementitious Materials. Journal of Materials in Civil Engineering, 2022, 34, .	2.9	5
224	Role of Aluminum and Lithium in Mitigating Alkali-Silica Reaction—A Review. Frontiers in Materials, 2022, 8, .	2.4	3
225	Recycled glass as a concrete component. , 2022, , 187-209.		1
226	Effects of CO2 curing treatment on alkali-silica reaction of mortars containing glass aggregate. Construction and Building Materials, 2022, 323, 126637.	7.2	8
227	The combined effect of alkalis and aluminum in pore solution on alkali-silica reaction. Cement and Concrete Research, 2022, 154, 106723.	11.0	15
228	Correlating the amorphous phase structure of vitrified bauxite residue (red mud) to the initial reactivity in binder systems. Cement and Concrete Composites, 2022, 127, 104410.	10.7	12
229	The Effect of Volcanic ash Pozzolan and Metakaolin on Electrochemical Corrosion Resistance of 2304 Duplex Stainless Steel Reinforcing in Concrete Subjected to Marine Environment. International Journal of Electrochemical Science, 0, , ArticleID:220348.	1.3	1
230	Mitigation of alkali-silica reaction by microbially induced CaCO3 protective layer on aggregates. Construction and Building Materials, 2022, 328, 127065.	7.2	8
231	Mitigation effect of lithium nitrate on the alkali-silica reaction in alkali-activated slag mortars. Cement and Concrete Composites, 2022, 130, 104532.	10.7	2
232	Aerogel and expanded perlite incorporated lightweight cementitious composites containing crushed glass: Evaluation of the drying shrinkage and alkali-silica expansion. Science Progress, 2022, 105, 003685042210911.	1.9	0
233	A ternary blended binder incorporating alum sludge to efficiently resist alkali-silica reaction of recycled glass aggregates. Journal of Cleaner Production, 2022, 349, 131415.	9.3	17
234	Surfactant-Assisted Purification of an Impure Kaolinite Clay to Improve Its Pozzolanic Reactivity in Concrete. Journal of Materials in Civil Engineering, 2022, 34, .	2.9	3
235	Mechanism understanding of alkali-silica reaction in alkali-activated materials system. Cement and Concrete Research, 2022, 156, 106768.	11.0	27
236	Reusing waste glass powder to improve the strength stability of cement at HTHP. Journal of Petroleum Science and Engineering, 2022, 213, 110394.	4.2	7
237	Developing a heterogeneous ensemble learning framework to evaluate Alkali-silica reaction damage in concrete using acoustic emission signals. Mechanical Systems and Signal Processing, 2022, 172, 108981.	8.0	23

CITATI	0.11	DEDO	D.T.
	()N	$\mathbf{K} \in \mathbf{P}(\mathbf{A})$	1 N
		ILLI U	IX I

#	Article	IF	CITATIONS
238	THE EFFECT OF A POZZOLANIC BY-PRODUCT CONTAINING GLASS POWDER AND METAKAOLIN ON THE PROPERTIES AND AAR RESISTANCE OF MORTAR INCORPORATRING CRUSHED GLASS. Ceramics - Silikaty, 2021, , 0-0.	0.3	0
239	Use of Off-ASTM Class F Fly Ash and Waste Limestone Powder in Mortar Mixtures Containing Waste Glass Sand. Sustainability, 2022, 14, 75.	3.2	7
240	Utilization of liquid crystal display (LCD) glass waste in concrete: A review. Cement and Concrete Composites, 2022, 130, 104542.	10.7	13
242	Monitoring accelerated alkali-silica reaction in concrete prisms with petrography and electrical conductivity measurements. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	Ο
243	A Multiscale and Multimethod Approach to Assess and Mitigate Concrete Damage Due to Alkali–Silica Reaction. Advanced Engineering Materials, 2022, 24, .	3.5	4
244	Evaluation and beneficiation of high sulfur and high alkali fly ashes for use as supplementary cementitious materials in concrete. Construction and Building Materials, 2022, 339, 127672.	7.2	10
245	Insights in the chemical fundamentals of ASR and the role of calcium in the early stage based on a 3D reactive transport model. Cement and Concrete Research, 2022, 157, 106778.	11.0	6
246	A review of failures of railway monoblock prestressed concrete sleepers. Engineering Failure Analysis, 2022, 137, 106389.	4.0	3
247	Assessment of blended coal source fly ashes and blended fly ashes. Construction and Building Materials, 2022, 342, 127918.	7.2	12
248	Condition Assessment of Asr-Affected Reinforced Concrete Columns after Nearly 20 Years in Service. SSRN Electronic Journal, 0, , .	0.4	Ο
249	Mesoscale Modeling Study on Mechanical Deterioration of Alkali–Aggregate Reaction-Affected Concrete. Materials, 2022, 15, 3861.	2.9	3
250	Development of a Screening Tool for Rapid Fly Ash Evaluation for Mitigating Alkali Silica Reaction in Concrete. Transportation Research Record, 2022, 2676, 583-595.	1.9	2
252	Physical Characteristics of Cement Mortar Prepared Using Waste Glass and Graphene Oxide. Journal of the Korean Institute of Resources Recycling, 2019, 28, 54-63.	0.4	0
253	Assessment of Alkali–Silica Reaction Potential in Aggregates from Iran and Australia Using Thin-Section Petrography and Expansion Testing. Materials, 2022, 15, 4289.	2.9	2
254	Efficiency of natural pozzolan and natural perlite in controlling the alkali-silica reaction of cementitious materials. Case Studies in Construction Materials, 2022, 17, e01246.	1.7	6
255	The efficiency of recycled glass powder in mitigating the alkali-silica reaction induced by recycled glass aggregate in cementitious mortars. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	3.1	8
256	Bond behavior of polymer- and mineral-impregnated carbon fiber yarns towards concrete matrices at elevated temperature levels. Cement and Concrete Composites, 2022, 133, 104685.	10.7	12
257	New insights into the use of glass cullet in cement composites - Long term examinations. Cement and Concrete Composites, 2022, 133, 104673.	10.7	6

#	Article	IF	CITATIONS
258	Mitigating alkali-silica reaction through metakaolin-based internal conditioning: New insights into property evolution and mitigation mechanism. Cement and Concrete Research, 2022, 159, 106888.	11.0	10
259	Condition assessment of ASR-affected reinforced concrete columns after nearly 20 years in service. Construction and Building Materials, 2022, 347, 128570.	7.2	2
260	Data-Driven Prediction of Quartz Dissolution Rates at Near-Neutral and Alkaline Environments. Frontiers in Materials, 0, 9, .	2.4	1
261	Corrosion evaluation of steel bars in steam-cured concrete under chloride attack and ASR. Magazine of Concrete Research, 0, , 1-34.	2.0	0
262	The ASR mechanism in concrete and the influence of lithium in mitigating it: A critical review. Materials Today: Proceedings, 2022, , .	1.8	1
263	The effect of paste composition, aggregate mineralogy and temperature on the pore solution composition and the extent of ASR expansion. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	3.1	8
264	A chemo-mechanical model for biogenic sulphide corrosion of concrete. Cement and Concrete Research, 2022, 160, 106809.	11.0	6
265	Estimation of non-traditional supplementary cementitious materials potential to prevent alkali-silica reaction using pozzolanic reactivity and bulk resistivity. Cement and Concrete Composites, 2022, 133, 104723.	10.7	6
266	Mimicking the cementation mechanism of ancient Roman seawater concrete using calcined clays. Applied Clay Science, 2022, 230, 106696.	5.2	13
267	Study on the internal crack network of the ASR-affected concrete by the tomography-based numerical model. Cement and Concrete Research, 2022, 162, 106974.	11.0	2
268	Microscopic assessment of ASR-affected columns after 20 years in service. MATEC Web of Conferences, 2022, 364, 03011.	0.2	0
269	Evaluating the Use of Alkali-Silica Reaction Mitigation as a Metric for Assessing Pozzolanicity. Advances in Civil Engineering Materials, 2022, 11, 539-554.	0.6	0
270	Brief Literature Review. Building Pathology and Rehabilitation, 2023, , 7-16.	0.2	0
271	Conclusions and Future Recommendations. Building Pathology and Rehabilitation, 2023, , 85-88.	0.2	0
272	Observation and Mitigation of Lamellar Silica Particles Formed in Pharmaceutical Products Packaged in Glass Vials. Journal of Pharmaceutical Sciences, 2022, 111, 3275-3286.	3.3	1
273	The influence of alkali to aluminum ratio in pore solution on alkali-silica reaction and its correlation to aluminate phases. Construction and Building Materials, 2022, 356, 129255.	7.2	3
274	Quantitative analysis of the evolution of ASR products and crack networks in the context of the concrete mesostructure. Cement and Concrete Research, 2022, 162, 106992.	11.0	10
275	Quantifying Deterioration due to Alkali-Silica Reaction in Restrained Portland Cement Concrete Pavement. ACI Materials Journal, 2022, 119,	0.2	0

#	Article	IF	CITATIONS
276	Synergetic Influence of Microcrystalline Quartz and Alkali Content in Aggregate on Deterioration of Concrete Railroad Ties Used for 15ÂYears in High-Speed Railways. International Journal of Concrete Structures and Materials, 2022, 16, .	3.2	1
277	Degradation of Concrete Structures in Nuclear Power Plants: A Review of the Major Causes and Possible Preventive Measures. Energies, 2022, 15, 8011.	3.1	7
278	Estimating Na+ and K+ concentrations of the pore solution based on ex-situ leaching tests and thermodynamic modeling. RILEM Technical Letters, 0, 7, 88-97.	0.0	6
279	Effect of brick powder on the pore solution and microstructure of Portland cement. Journal of Building Engineering, 2023, 63, 105497.	3.4	2
280	Comparison of SCM reactivity to performance in cement-based mixtures. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	3.1	3
281	Comparative study of the efficacy of fly ash and reactive aggregate powders in mitigating alkali-silica reaction. Journal of Building Engineering, 2023, 63, 105571.	3.4	3
282	Effect of the crystalline state of SiO2 on the compressive strength of cement paste at HTHP. Construction and Building Materials, 2023, 362, 129787.	7.2	7
283	The viscoelastic behavior of synthetic alkali-silica gels at ambient temperature. Cement and Concrete Research, 2023, 165, 107069.	11.0	4
284	Combined Influence of Lithium Nitrate and Metakaolin on the Reaction of Aggregate with Alkalis. Materials, 2023, 16, 382.	2.9	1
285	Effects of Climate Change on Rendered Façades: Expected Degradation in a Progressively Warmer and Drier Climate—A Review Based on the Literature. Buildings, 2023, 13, 352.	3.1	1
286	Investigating the Use of Off-Specification Ashes to Prevent Alkali-Silica Reaction. RILEM Bookseries, 2023, , 262-268.	0.4	0
287	Investigating the Suitability of Waste Class as a Supplementary Binder and Aggregate for Cement and Concrete. Sustainability, 2023, 15, 3796.	3.2	2
288	ASR potential of alkali-activated soda-lime glass powder in the absence of calcium sources. Cement and Concrete Composites, 2023, 139, 105027.	10.7	3
289	Experimental and numerical study of long-term alkali-silica reaction (ASR) expansion in mortar with recycled glass. Cement and Concrete Composites, 2023, 139, 105043.	10.7	3
290	Durability of concrete coupled with life cycle assessment: Review and perspective. Cement and Concrete Composites, 2023, 139, 105041.	10.7	23
291	Mitigation of alkali silica reactions in concrete using multi-crystalline intermixed waterproofing materials. Cement, 2023, 12, 100065.	2.7	0
292	Investigating the compressive strength and microstructural analysis of mortar containing synthesized graphene and natural pozzolan in the face of alkali-silica reactions. Journal of Building Engineering, 2023, 68, 106126.	3.4	3
293	Analytical and experimental studies on alkali-silica reaction mechanism: Aggregate cracking and chemical composition change of gel. Cement and Concrete Composites, 2023, 139, 105003.	10.7	2

#	Article	IF	CITATIONS
294	Overall assessment of CFRP-wrapped concrete affected by alkali-silica reaction. Cement and Concrete Research, 2023, 169, 107165.	11.0	2
295	Non-linear Analysis of Bottle-Shaped Isolated Struts Concrete Deteriorated by Alkali Silica Reactions. Building Pathology and Rehabilitation, 2023, , 77-102.	0.2	0
296	Mitigation of Alkali- Silica reactions in concrete pavements using supplementary cementitious materials. Materials Today: Proceedings, 2023, 86, 59-66.	1.8	2
297	Alkali–Silica Reactivity Potential of Reactive and Non-Reactive Aggregates under Various Exposure Conditions for Sustainable Construction. Sustainability, 2023, 15, 4927.	3.2	1
298	Effect of Reduced Fineness of Fly Ash Used on the Alkali–Silica Reaction (ASR) of Concrete. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2023, 47, 2203-2217.	1.9	4
299	A visual condition assessment of a reinforced concrete railway bridge subject to alkali silica reaction (ASR) deterioration in Johannesburg. MRS Advances, 2023, 8, 570-576.	0.9	1
300	Prediction of alkali-silica reaction expansion of concrete using artificial neural networks. Cement and Concrete Composites, 2023, 140, 105073.	10.7	5
301	Influence of Calcination Temperature and Amount of Low-Grade Clay Replacement on Mitigation of the Alkali–Silica Reaction. Materials, 2023, 16, 3210.	2.9	1
302	A review on FRP bars and supplementary cementitious materials for the next generation of sustainable and durable construction materials. Construction and Building Materials, 2023, 383, 131403.	7.2	7
303	Alkali-Silica Reaction and Its Effects on the Splitting Tensile Strength and Direct Compressive Strength of Mortar Bars. Journal of Testing and Evaluation, 2023, 51, 2715-2729.	0.7	0
304	Durability of sustainable marine sediment concrete. Developments in the Built Environment, 2023, 13, 100118.	4.0	4
305	The Impact of Distinct Superplasticizers on the Degradation of Concrete Affected by Alkali-Silica Reaction (ASR). Materials, 2023, 16, 3374.	2.9	1
306	An overview of mechanical, permeability, and thermal properties of silica fume concrete using bibliographic survey and building information modelling. Construction and Building Materials, 2023, 385, 131489.	7.2	3
307	Deterioration and defect in concrete bridge structures: Alkali-Silica Reaction (ASR). AIP Conference Proceedings, 2023, , .	0.4	0
308	Confinement and alkali-silica reaction in concrete: Review and numerical investigation. International Journal of Solids and Structures, 2023, 277-278, 112341.	2.7	3
309	Development of a Framework to Provide Concrete with a Low Carbon Footprint and Enhanced Resistance Against ASR-Induced Development. RILEM Bookseries, 2023, , 784-795.	0.4	0
310	Betonda ince uçucu kül kullanımı ile ASR genleşmesinin azaltılması. DÜMF Mühendislik Dergisi,	0 <u>Q</u> .2	0
311	Performance Evaluation of Novel Alkali-Silica Reaction Inhibiting Chemical Admixtures in Cementitious Systems. Journal of Materials in Civil Engineering, 2023, 35, .	2.9	0

#	Article	IF	CITATIONS
312	The correlation between Al incorporation and alkali fixation by calcium aluminosilicate hydrate: Observations from hydrated C3S blended with and without metakaolin. Cement and Concrete Research, 2023, 172, 107249.	11.0	4
313	Properties of Alkali-Activated Slag Cement Activated by Weakly Alkaline Activator. Materials, 2023, 16, 3871.	2.9	1
314	Suppression of Alkali- Silica Reactions in Concrete by Partially Replacing Cement with Cassava Peel Ash. , 2023, , .		0
315	Preventing ASR-induced deteriorations with hydrophobic aggregates- a feasibility study. Construction and Building Materials, 2023, 394, 132277.	7.2	0
317	Alkali–silica reaction expansion prediction in concrete using hybrid metaheuristic optimized machine learning algorithms. Asian Journal of Civil Engineering, 2024, 25, 1091-1113.	1.6	9
318	Novel application of Chilean natural pozzolan for sustainable strain-hardening cementitious composite. Resources, Conservation and Recycling, 2023, 197, 107098.	10.8	0
319	Evaluating the efficiency of SCMs to avoid or mitigate ASR-induced expansion and deterioration through a multi-level assessment. Cement and Concrete Research, 2023, 173, 107262.	11.0	3
320	Composition of Alkali–Silica Reaction Products in Laboratory and Field Concrete. Lecture Notes in Civil Engineering, 2023, , 27-36.	0.4	0
321	Role of Aggregate Reactivity, Binder Composition, and Curing Temperature on the Delayed Ettringite Formation and Associated Durability Loss in Concrete. Lecture Notes in Civil Engineering, 2023, , 83-91.	0.4	0
322	Characterization of the Nano- and Microscale Deterioration Mechanism of the Alkali–Silica Reaction in Concrete Using Neutron and X-ray Scattering Techniques: A Review. Lecture Notes in Civil Engineering, 2023, , 469-477.	0.4	0
323	Effect of Blending Alum Sludge and Ground Granulated Blast-Furnace Slag as Cement Replacement to Mitigate Alkali-Silica Reaction. Lecture Notes in Civil Engineering, 2023, , 93-102.	0.4	0
325	ASR induced by chloride- and formate-based deicers in concrete with non-reactive aggregates. Construction and Building Materials, 2023, 400, 132811.	7.2	1
326	Glass and a carbonâ€free United States: What is glass's role in the upcoming green revolution?. Journal of the American Ceramic Society, 0, , .	3.8	0
327	The prediction of alkali-silica reaction based on the alkali-Al ratio of pore solution using thermodynamic modeling. Construction and Building Materials, 2023, 401, 132929.	7.2	0
328	A Review of Numerical Models for the Performance Assessment of Concrete Structures Affected by Alkali-Silica Reaction. Journal of Advanced Concrete Technology, 2023, 21, 655-679.	1.8	0
329	Study of the mechanism of inhibiting alkali-aggregate reaction and self-healing in concrete materials. Engineering Failure Analysis, 2023, 152, 107524.	4.0	0
330	Petrographic Evaluation of Aggregate from Igneous Rocks: Alkali–Silica Reaction Potential. Minerals (Basel, Switzerland), 2023, 13, 1004.	2.0	0
331	Synthesis and applications of novel Schiff base derivatives as corrosion inhibitors and additives for improvement of reinforced concrete. Scientific Reports, 2023, 13, .	3.3	1

#	Article	IF	CITATIONS
332	Distribution and dynamics of water in the blended pastes unraveled by thermoporometry and dielectric properties. Cement and Concrete Research, 2023, 174, 107333.	11.0	0
333	Effect of type and quantity of inherent alkali cations on alkali-silica reaction. Cement and Concrete Research, 2023, 173, 107293.	11.0	3
334	Failure criteria and microstructure evolution mechanism of the alkali–silica reaction of concrete. Reviews on Advanced Materials Science, 2023, 62, .	3.3	1
335	Phase evolution and mechanical-hydroscopic properties of alkali-silica reaction gels modified by magnesium nitrate. Cement and Concrete Composites, 2023, 144, 105283.	10.7	0
336	Efficacy of functionalized sodium-montmorillonite in mitigating alkali-silica reaction. Applied Clay Science, 2023, 245, 107139.	5.2	0
337	Alkali-silica reaction of high-magnesium nickel slag fine aggregate in alkali-activated ground granulated blast-furnace slag mortar. Construction and Building Materials, 2023, 406, 133374.	7.2	0
338	Alkali-Silica Reaction Evaluation of Coarse Aggregates from Massachusetts Using Accelerated Tests. ACI Materials Journal, 2023, , .	0.2	0
339	Synthesis of calcium silicate hydrate nanoparticles and their effect on cement hydration and compressive strength. Construction and Building Materials, 2023, 407, 133559.	7.2	0
341	Chemical and Creep Models Applied to Concrete Damaged by Alkali–Silica Reactions. Buildings, 2023, 13, 2575.	3.1	0
342	Global insights into micro-macro mechanisms and environmental implications of limestone calcined clay cement (LC3) for sustainable construction applications. Science of the Total Environment, 2024, 907, 167794.	8.0	7
343	Risk assessment of reactive local sand use in aggregate mixtures for structural concrete. Construction and Building Materials, 2023, 408, 133826.	7.2	0
344	Puzolinik malzemelerin (dip külü ve zeolit) tane boyutunun harcın alkali-silika reaksiyonuna ve basınç dayanımına etkisi. Journal of the Faculty of Engineering and Architecture of Gazi University, 0, , .	0.8	0
345	Alkali silica reaction in concrete - Revealing the expansion mechanism by surface force measurements. Cement and Concrete Research, 2024, 176, 107392.	11.0	0
346	Development of Engineered Cementitious Composites/Strain-hardening Cementitious Composites (ECC/SHCC) with waste granite fine powders. Construction and Building Materials, 2023, 409, 133883.	7.2	2
347	The effect of hardening activators on the physical and mechanical properties of slag-alkaline binding materials. Voprosy Khimii I Khimicheskoi Tekhnologii, 2023, , 155-162.	0.4	0
348	The effect of varying cement replacement level on alkali metal distribution in cement pastes. Cement and Concrete Composites, 2024, 146, 105344.	10.7	1
350	Entwicklung eines chemischen Schnelltestverfahrens mit Gesteinsmehl zur Detektion alkalireaktiver GesteinskĶrnung. Ce/Papers, 2023, 6, 1143-1150.	0.3	0
352	Alkali–Silica Reactions: Literature Review on the Influence of Moisture and Temperature and the Knowledge Gap. Materials, 2024, 17, 10.	2.9	0

#	Article	IF	CITATIONS
353	Mechanical and thermal behaviour of concrete with waste rubber and glass powder as fine aggregate and cement substitutes. Magazine of Concrete Research, 2024, 76, 438-454.	2.0	0
354	Eco-Innovative UHPC—Enhancing Sustainability, Workability, and Ductility with Recycled Glass Cullet Powder and Plastic Bottle Hybrid Fibers. Materials, 2024, 17, 393.	2.9	0
356	Influence of engineered self-healing systems on ASR damage development in concrete. Cement and Concrete Composites, 2024, 147, 105440.	10.7	0
357	The Impact of Plasticizers on the Nature of the Alkali-Silicate Corrosion in Cement Composites. Buildings, 2024, 14, 172.	3.1	0
358	Efficient inhibition of ASR by microbially induced calcium carbonate precipitation on aggregates at a low degree of saturation. Journal of Building Engineering, 2024, 84, 108516.	3.4	0
359	Recycling of Aluminosilicate-Based Solid Wastes through Alkali-Activation: Preparation, Characterization, and Challenges. Buildings, 2024, 14, 226.	3.1	1
360	Effect of alkali-silica reaction on the flexural behavior of beams with tensile lap splices. Engineering Structures, 2024, 303, 117532.	5.3	0
361	Studying the effectiveness of sewage sludge ash and its combination with natural pozzolans in controlling alkali–silica reaction. Structural Concrete, 0, , .	3.1	0
362	Durability of Waste Glass Fine Aggregates in Cement Composites. RILEM Bookseries, 2024, , 795-803.	0.4	0
363	Performance of a polymeric coating material applied to a concrete structure affected by internal expansive chemical reactions. Procedia Structural Integrity, 2024, 54, 271-278.	0.8	0
364	Determination of ASR in Concrete Using Characterization Methods. Buildings, 2024, 14, 657.	3.1	0
365	Toward waste glass upcycling: Preparation and characterization of high-volume waste glass geopolymer composites. Sustainable Materials and Technologies, 2024, 40, e00890.	3.3	0
366	Mitigation mechanisms of alkali silica reaction through the incorporation of colloidal nanoSiO2 in accelerated mortar bar testing. Construction and Building Materials, 2024, 422, 135834.	7.2	0
367	The effect of the freeze-thaw cycle and alkali-silica reaction on self-compacting recycled concrete. European Journal of Environmental and Civil Engineering, 0, , 1-27.	2.1	0
368	Crack-filling effect of gel on time-dependent mechanical behavior of concrete damaged by alkali–silica reaction. Materials and Structures/Materiaux Et Constructions, 2024, 57, .	3.1	0
369	Life-cycle performance enhancement of deteriorating buildings under recurrent seismic hazards. Soil Dynamics and Earthquake Engineering, 2024, 180, 108600.	3.8	0