Immunopathology of multiple sclerosis

Nature Reviews Immunology 15, 545-558 DOI: 10.1038/nri3871

Citation Report

#	Article	IF	CITATIONS
1	Opportunities for Translation from the Bench: Therapeutic Intervention of the JAK/STAT Pathway in Neuroinflammatory Diseases. Critical Reviews in Immunology, 2015, 35, 505-527.	1.0	21
2	Neurology—the next 10 years. Nature Reviews Neurology, 2015, 11, 658-664.	4.9	7
3	Novel Insights into the Role of Defensins in Virus-Induced Autoimmunity in the Central Nervous System. Journal of Neuroinfectious Diseases, 2016, 7, .	0.2	0
4	Injectable disease modifying agents in multiple sclerosis: pattern of medication use and clinical effectiveness. Neurology International, 2016, 8, 6513.	1.3	3
5	Interferon Gamma: Influence on Neural Stem Cell Function in Neurodegenerative and Neuroinflammatory Disease. Clinical Medicine Insights Pathology, 2016, 9s1, CPath.S40497.	0.6	23
6	The Gut Microbiota in Immune-Mediated Inflammatory Diseases. Frontiers in Microbiology, 2016, 7, 1081.	1.5	315
7	Current Evidence for a Role of the Kynurenine Pathway of Tryptophan Metabolism in Multiple Sclerosis. Frontiers in Immunology, 2016, 7, 246.	2.2	118
8	Fas–Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis. Frontiers in Immunology, 2016, 7, 382.	2.2	110
9	Tertiary Lymphoid Organs in Central Nervous System Autoimmunity. Frontiers in Immunology, 2016, 7, 451.	2.2	76
10	The Gas6/TAM System and Multiple Sclerosis. International Journal of Molecular Sciences, 2016, 17, 1807.	1.8	42
11	Vitamin D and Autism Spectrum Disorder: A Literature Review. Nutrients, 2016, 8, 236.	1.7	80
12	A Review of Multiple Sclerosis as an Infectious Syndrome. Journal of Neurology & Neurophysiology, 2016, 07, .	0.1	2
13	<i>Atf6α</i> deficiency suppresses microglial activation and ameliorates pathology of experimental autoimmune encephalomyelitis. Journal of Neurochemistry, 2016, 139, 1124-1137.	2.1	33
14	CD27 natural killer cell subsets play different roles during the pre-onset stage of experimental autoimmune encephalomyelitis. Innate Immunity, 2016, 22, 395-404.	1.1	14
15	Artesunate Ameliorates Experimental Autoimmune Encephalomyelitis by Inhibiting Leukocyte Migration to the Central Nervous System. CNS Neuroscience and Therapeutics, 2016, 22, 707-714.	1.9	26
16	OMIPâ€033: A comprehensive single step staining protocol for human T―and Bâ€cell subsets. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 629-632.	1.1	10
17	Balancing the immune response in the brain: IL-10 and its regulation. Journal of Neuroinflammation, 2016, 13, 297.	3.1	296
18	Co-stimulatory and Co-inhibitory Pathways in Autoimmunity. Immunity, 2016, 44, 1034-1051.	6.6	232

	CITATION RE	PORT	
#	Article	IF	CITATIONS
19	Estrogens, Neuroinflammation, and Neurodegeneration. Endocrine Reviews, 2016, 37, 372-402.	8.9	254
20	Some recent advances in multiple sclerosis. Journal of Neurology, 2016, 263, 1880-1886.	1.8	2
21	Inhibition of the JAK/STAT Pathway Protects Against α-Synuclein-Induced Neuroinflammation and Dopaminergic Neurodegeneration. Journal of Neuroscience, 2016, 36, 5144-5159.	1.7	204
22	Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2973-82.	3.3	157
23	Neurological Disease as a Failure of Brain–Immune Crosstalk: The Multiple Faces of Neuroinflammation. Trends in Immunology, 2016, 37, 668-679.	2.9	190
24	2′-5′ oligoadenylate synthetase-like 1 (OASL1) deficiency suppresses central nervous system damage in a murine MOG-induced multiple sclerosis model. Neuroscience Letters, 2016, 628, 78-84.	1.0	6
25	Pregnancy and multiple sclerosis: from molecular mechanisms to clinical application. Seminars in Immunopathology, 2016, 38, 709-718.	2.8	34
26	RNAâ€Seq data analysis identifies the comprehensive profile of <i>inÂvivo</i> interferonâ€Î²â€stimulated genes in multiple sclerosis. Clinical and Experimental Neuroimmunology, 2016, 7, 39-51.	0.5	7
27	Elucidation of Exosome Migration Across the Blood–Brain Barrier Model In Vitro. Cellular and Molecular Bioengineering, 2016, 9, 509-529.	1.0	368
28	Antiâ€inflammatory effects of melatonin in multiple sclerosis. BioEssays, 2016, 38, 1016-1026.	1.2	36
29	Angiogenic factors are associated with multiple sclerosis. Journal of Neuroimmunology, 2016, 301, 88-93.	1.1	17
30	Toll-like receptor-mediated immune responses in intestinal macrophages; implications for mucosal immunity and autoimmune diseases. Clinical Immunology, 2016, 173, 81-86.	1.4	18
31	Dynamic Response Genes in CD4+ T Cells Reveal a Network of Interactive Proteins that Classifies Disease Activity in Multiple Sclerosis. Cell Reports, 2016, 16, 2928-2939.	2.9	38
32	Reprogramming the Local Lymph Node Microenvironment Promotes Tolerance that Is Systemic and Antigen Specific. Cell Reports, 2016, 16, 2940-2952.	2.9	127
33	Focused Ultrasound Treatment of Cervical Lymph Nodes in Rats with EAE: A Pilot Study. Ultrasound in Medicine and Biology, 2016, 42, 2957-2964.	0.7	1
34	In Vitro Effects of Sodium Benzoate on Th1/Th2 Deviation in Patients with Multiple Sclerosis. Immunological Investigations, 2016, 45, 679-691.	1.0	8
35	CTLA4 as Immunological Checkpoint in the Development of Multiple Sclerosis. Annals of Neurology, 2016, 80, 294-300.	2.8	94
36	Neuroinflammation $\hat{a} \in \mathbb{C}^{n}$ using big data to inform clinical practice. Nature Reviews Neurology, 2016, 12, 685-698.	4.9	29

#	Article	IF	CITATIONS
37	Cytokine and chemokine alterations in tissue, CSF, and plasma in early presymptomatic phase of experimental allergic encephalomyelitis (EAE), in a rat model of multiple sclerosis. Journal of Neuroinflammation, 2016, 13, 291.	3.1	52
38	EBV Infection and Multiple Sclerosis: Lessons from a Marmoset Model. Trends in Molecular Medicine, 2016, 22, 1012-1024.	3.5	37
39	NKG2D ligand expression in pediatric brain tumors. Cancer Biology and Therapy, 2016, 17, 1253-1265.	1.5	26
40	High-dimensional single-cell analysis reveals the immune signature of narcolepsy. Journal of Experimental Medicine, 2016, 213, 2621-2633.	4.2	106
41	Arc/Arg3.1 governs inflammatory dendritic cell migration from the skin and thereby controls T cell activation. Science Immunology, 2016, 1, eaaf8665.	5.6	40
42	Gut-associated lymphoid tissue, gut microbes and susceptibility to experimental autoimmune encephalomyelitis. Beneficial Microbes, 2016, 7, 363-373.	1.0	29
43	Distinct oligoclonal band antibodies in multiple sclerosis recognize ubiquitous self-proteins. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7864-7869.	3.3	145
44	Cucurbitacin E Potently Modulates the Activity of Encephalitogenic Cells. Journal of Agricultural and Food Chemistry, 2016, 64, 4900-4907.	2.4	11
45	Type I/II Interferon Balance in the Regulation of Brain Physiology and Pathology. Trends in Immunology, 2016, 37, 181-192.	2.9	104
46	CD4+HLA-G+ regulatory T cells: Molecular signature and pathophysiological relevance. Human Immunology, 2016, 77, 727-733.	1.2	26
46 47	CD4+HLA-G+ regulatory T cells: Molecular signature and pathophysiological relevance. Human Immunology, 2016, 77, 727-733. Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior. International Journal of Neuropsychopharmacology, 2016, 19, pyw020.	1.2 1.0	26 419
46 47 48	CD4+HLA-G+ regulatory T cells: Molecular signature and pathophysiological relevance. Human Immunology, 2016, 77, 727-733. Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior. International Journal of Neuropsychopharmacology, 2016, 19, pyw020. Pushing Forward: Remyelination as the New Frontier in CNS Diseases. Trends in Neurosciences, 2016, 39, 246-263.	1.2 1.0 4.2	26 419 82
46 47 48 49	CD4+HLA-G+ regulatory T cells: Molecular signature and pathophysiological relevance. Human Immunology, 2016, 77, 727-733. Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior. International Journal of Neuropsychopharmacology, 2016, 19, pyw020. Pushing Forward: Remyelination as the New Frontier in CNS Diseases. Trends in Neurosciences, 2016, 39, 246-263. CCRL2 regulates M1/M2 polarization during EAE recovery phase. Journal of Leukocyte Biology, 2016, 99, 1027-1033.	1.2 1.0 4.2 1.5	26 419 82 35
46 47 48 49 50	CD4+HLA-G+ regulatory T cells: Molecular signature and pathophysiological relevance. Human Immunology, 2016, 77, 727-733. Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior. International Journal of Neuropsychopharmacology, 2016, 19, pyw020. Pushing Forward: Remyelination as the New Frontier in CNS Diseases. Trends in Neurosciences, 2016, 39, 246-263. CCRL2 regulates M1/M2 polarization during EAE recovery phase. Journal of Leukocyte Biology, 2016, 99, 1027-1033. Widespread synaptic loss in multiple sclerosis. Brain, 2016, 139, 2-4.	1.2 1.0 4.2 1.5 3.7	26 419 82 35
46 47 48 49 50 51	CD4+HLA-G+ regulatory T cells: Molecular signature and pathophysiological relevance. Human Immunology, 2016, 77, 727-733. Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior. International Journal of Neuropsychopharmacology, 2016, 19, pyw020. Pushing Forward: Remyelination as the New Frontier in CNS Diseases. Trends in Neurosciences, 2016, 39, 246-263. CCRL2 regulates M1/M2 polarization during EAE recovery phase. Journal of Leukocyte Biology, 2016, 99, 1027-1033. Widespread synaptic loss in multiple sclerosis. Brain, 2016, 139, 2-4. Anti-B-Cell Therapies in Autoimmune Neurological Diseases: Rationale and Efficacy Trials. Neurotherapeutics, 2016, 13, 20-33.	1.2 1.0 4.2 1.5 3.7 2.1	 26 419 82 35 15 25
 46 47 48 49 50 51 52 	CD4+HLA-G+ regulatory T cells: Molecular signature and pathophysiological relevance. Human Immunology, 2016, 77, 727-733. Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior. International Journal of Neuropsychopharmacology, 2016, 19, pyw020. Pushing Forward: Remyelination as the New Frontier in CNS Diseases. Trends in Neurosciences, 2016, 39, 246-263. CCRL2 regulates M1/M2 polarization during EAE recovery phase. Journal of Leukocyte Biology, 2016, 99, 1027-1033. Widespread synaptic loss in multiple sclerosis. Brain, 2016, 139, 2-4. Anti-B-Cell Therapies in Autoimmune Neurological Diseases: Rationale and Efficacy Trials. Neurotherapeutics, 2016, 13, 20-33. New insights into the role of stromal cell-derived factor 1 (SDF-1/CXCL12) in the pathophysiology of multiple sclerosis. Journal of Neuroimmunology, 2016, 290, 70-75.	1.2 1.0 4.2 1.5 3.7 2.1	26 419 82 35 35 15 25
 46 47 48 49 50 51 52 53 	CD4+HLA-G+ regulatory T cells: Molecular signature and pathophysiological relevance. Human Immunology, 2016, 77, 727-733. Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior. International Journal of Neuropsychopharmacology, 2016, 19, pyw020. Pushing Forward: Remyelination as the New Frontier in CNS Diseases. Trends in Neurosciences, 2016, 39, 246-263. CCRL2 regulates M1/M2 polarization during EAE recovery phase. Journal of Leukocyte Biology, 2016, 99, 1027-1033. Widespread synaptic loss in multiple sclerosis. Brain, 2016, 139, 2-4. Anti-B-Cell Therapies in Autoimmune Neurological Diseases: Rationale and Efficacy Trials. Neurotherapeutics, 2016, 13, 20-33. New insights into the role of stromal cell-derived factor 1 (SDF-1/CXCL12) in the pathophysiology of multiple sclerosis. Journal of Neuroimmunology, 2016, 290, 70-75. Nogo-A Antibodies for Progressive Multiple Sclerosis. CNS Drugs, 2017, 31, 187-198.	1.2 1.0 4.2 1.5 3.7 2.1 1.1 2.7	26 419 82 35 35 25 25 30 31

#	Article	IF	CITATIONS
55	Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E181-E190.	3.3	86
56	The autoimmune risk gene ZMIZ1 is a vitamin D responsive marker of a molecular phenotype of multiple sclerosis. Journal of Autoimmunity, 2017, 78, 57-69.	3.0	31
57	Glatiramer acetate attenuates the activation of CD4+ T cells by modulating STAT1 and â^'3 signaling in glia. Scientific Reports, 2017, 7, 40484.	1.6	9
58	A population-based cohort study suggests an increased risk of multiple sclerosis incidence in patients with type 2 diabetes mellitus. Journal of Epidemiology, 2017, 27, 235-241.	1.1	24
59	AMIGO2 modulates T cell functions and its deficiency in mice ameliorates experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 2017, 62, 110-123.	2.0	6
60	Roles of regulatory T cells and IL-10 in virus-induced demyelination. Journal of Neuroimmunology, 2017, 308, 6-11.	1.1	17
61	The role of peripheral immune cells in the CNS in steady state and disease. Nature Neuroscience, 2017, 20, 136-144.	7.1	468
62	Invariant natural killer T cells and mucosal-associated invariant T cells in multiple sclerosis. Immunology Letters, 2017, 183, 1-7.	1.1	36
63	Breaking down the gut microbiome composition in multiple sclerosis. Multiple Sclerosis Journal, 2017, 23, 628-636.	1.4	38
64	Progress and prospects for the use and the understanding of the mode of action of autologous hematopoietic stem cell transplantation in the treatment of multiple sclerosis. Expert Review of Clinical Immunology, 2017, 13, 611-622.	1.3	14
65	The gut microbiome and microbial translocation in multiple sclerosis. Clinical Immunology, 2017, 183, 213-224.	1.4	64
66	Serum soluble Talin-1 levels are elevated in patients with multiple sclerosis, reflecting its disease activity. Journal of Neuroimmunology, 2017, 305, 131-134.	1.1	5
67	Fingolimod alters the transcriptome profile of circulating CD4+ cells in multiple sclerosis. Scientific Reports, 2017, 7, 42087.	1.6	37
68	Decreased expression of Sema3A, an immune modulator, in blood sample of multiple sclerosis patients. Gene, 2017, 610, 59-63.	1.0	25
69	Potential molecular mimicry between the human endogenous retrovirus W family envelope proteins and myelin proteins in multiple sclerosis. Immunology Letters, 2017, 183, 79-85.	1.1	31
70	Dynamical footprint of cross-reactivity in a human autoimmune T-cell receptor. Scientific Reports, 2017, 7, 42496.	1.6	20
71	What's new about oral treatments in Multiple Sclerosis? Immunogenetics still under question. Pharmacological Research, 2017, 120, 279-293.	3.1	7
72	The Nuclear Receptor Nr4a1 Acts as a Microglia Rheostat and Serves as a Therapeutic Target in Autoimmune-Driven Central Nervous System Inflammation. Journal of Immunology, <u>2017, 198, 3878-3885.</u>	0.4	34

#	Article	IF	CITATIONS
73	Biological determinants of health: Genes, microbes, and metabolism exemplars of nursing science. Nursing Outlook, 2017, 65, 506-514.	1.5	17
74	Emerging Role for Methylation in Multiple Sclerosis: Beyond DNA. Trends in Molecular Medicine, 2017, 23, 546-562.	3.5	23
75	How and why do T cells and their derived cytokines affect the injured and healthy brain?. Nature Reviews Neuroscience, 2017, 18, 375-384.	4.9	156
76	Viruses and Multiple Sclerosis: From Mechanisms and Pathways to Translational Research Opportunities. Molecular Neurobiology, 2017, 54, 3911-3923.	1.9	33
77	Genetics of Infectious and Inflammatory Diseases: Overlapping Discoveries from Association and Exome-Sequencing Studies. Annual Review of Immunology, 2017, 35, 1-30.	9.5	36
78	Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nature Reviews Neurology, 2017, 13, 391-405.	4.9	207
79	Control of immune-mediated pathology via the aryl hydrocarbon receptor. Journal of Biological Chemistry, 2017, 292, 12383-12389.	1.6	76
80	Phenotypic and functional characterization of T cells in white matter lesions of multiple sclerosis patients. Acta Neuropathologica, 2017, 134, 383-401.	3.9	121
81	The Enigmatic Role of Viruses in Multiple Sclerosis: Molecular Mimicry or Disturbed Immune Surveillance?. Trends in Immunology, 2017, 38, 498-512.	2.9	56
82	Viruses and endogenous retroviruses in multiple sclerosis: From correlation to causation. Acta Neurologica Scandinavica, 2017, 136, 606-616.	1.0	46
83	No relevant impact of ambient temperature on disability measurements in a large cohort of patients with multiple sclerosis. European Journal of Neurology, 2017, 24, 851-857.	1.7	5
84	Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology, 2017, 152, 1-12.	2.0	243
85	Amelioration of experimental autoimmune encephalomyelitis by clozapine is not associated with defective CD4 T cell responses. Journal of Neuroinflammation, 2017, 14, 68.	3.1	11
86	Introduction to Homeostatic Migration. Methods in Molecular Biology, 2017, 1591, 1-8.	0.4	0
87	A minimal unified model of disease trajectories captures hallmarks of multiple sclerosis. Mathematical Biosciences, 2017, 289, 1-8.	0.9	8
88	Intrathecal insulin-like growth factor 1 but not insulin enhances myelin repair in young and aged rats. Neuroscience Letters, 2017, 648, 41-46.	1.0	16
89	Novel aspects of defensins' involvement in virus-induced autoimmunity in the central nervous system. Medical Hypotheses, 2017, 102, 33-36.	0.8	18
90	Effect of fingolimod (FTY720) on choroidal thickness in patients with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2017, 14, 4-7.	0.9	7

#	Article	IF	CITATIONS
91	Molecular and Metabolic Imaging in Multiple Sclerosis. Neuroimaging Clinics of North America, 2017, 27, 343-356.	0.5	22
92	Engineering self-assembled materials to study and direct immune function. Advanced Drug Delivery Reviews, 2017, 114, 60-78.	6.6	52
93	Dietary Interventions and Multiple Sclerosis. Current Neurology and Neuroscience Reports, 2017, 17, 28.	2.0	37
94	Knockout of P2Y 12 aggravates experimental autoimmune encephalomyelitis in mice via increasing of IL-23 production and Th17 cell differentiation by dendritic cells. Brain, Behavior, and Immunity, 2017, 62, 245-255.	2.0	23
95	In vitro VLA-4 blockade results in an impaired NK cell-mediated immune surveillance against melanoma. Immunology Letters, 2017, 181, 109-115.	1.1	16
96	Role of Mast Cells in the Pathogenesis of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Clinical Reviews in Allergy and Immunology, 2017, 52, 436-445.	2.9	44
97	Polyplexes assembled from self-peptides and regulatory nucleic acids blunt toll-like receptor signaling to combat autoimmunity. Biomaterials, 2017, 118, 51-62.	5.7	52
98	Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nature Reviews Neurology, 2017, 13, 25-36.	4.9	730
99	Modulation of Neuroinflammation in the Central Nervous System: Role of Chemokines and Sphingolipids. Advances in Therapy, 2017, 34, 396-420.	1.3	47
100	An updated histological classification system for multiple sclerosis lesions. Acta Neuropathologica, 2017, 133, 13-24.	3.9	436
101	Dimethyl Fumarate Treatment Mediates an Anti-Inflammatory Shift in B Cell Subsets of Patients with Multiple Sclerosis. Journal of Immunology, 2017, 198, 691-698.	0.4	112
102	Design and implementation of population-based specialty care programs. American Journal of Health-System Pharmacy, 2017, 74, 1437-1445.	0.5	4
103	Obesity and Brain Function. Advances in Neurobiology, 2017, , .	1.3	3
104	The Genetics of Multiple Sclerosis: From 0 to 200 in 50 Years. Trends in Genetics, 2017, 33, 960-970.	2.9	165
105	Therapeutic application of apoptosis signal-regulating kinase 1 inhibitors. Advances in Biological Regulation, 2017, 66, 85-90.	1.4	25
106	Effect of Specific Mutations in Cd300 Complexes Formation; Potential Implication of Cd300f in Multiple Sclerosis. Scientific Reports, 2017, 7, 13544.	1.6	10
107	Impaired T-cell migration to the CNS under fingolimod and dimethyl fumarate. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e401.	3.1	24
108	Scavenger Receptor A Mediates the Clearance and Immunological Screening of MDA-Modified Antigen by M2-Type Macrophages. NeuroMolecular Medicine, 2017, 19, 463-479.	1.8	6

#	Article	IF	CITATIONS
109	Thioredoxin-1, redox factor-1 and thioredoxin-interacting protein, mRNAs are differentially expressed in Multiple Sclerosis patients exposed and non-exposed to interferon and immunosuppressive treatments. Gene, 2017, 634, 29-36.	1.0	11
110	Regulation of Inflammatory Signaling in Health and Disease. Advances in Experimental Medicine and Biology, 2017, , .	0.8	7
111	Immunomodulation in multiple sclerosis: promises and pitfalls. Current Opinion in Immunology, 2017, 49, 37-43.	2.4	33
112	ls rs763780 in IL-17F gene considered risk factor to multiple sclerosis in Egyptian patients?. Meta Gene, 2017, 14, 124-128.	0.3	3
113	Exercise in patients with multiple sclerosis. Lancet Neurology, The, 2017, 16, 848-856.	4.9	316
114	Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology?. Annals of Clinical and Translational Neurology, 2017, 4, 663-679.	1.7	238
115	miR-155 Dysregulation and Therapeutic Intervention in Multiple Sclerosis. Advances in Experimental Medicine and Biology, 2017, 1024, 111-131.	0.8	37
116	Multiple Sclerosis: Implications of Obesity in Neuroinflammation. Advances in Neurobiology, 2017, 19, 191-210.	1.3	9
117	Mitochondrial DNA Double-Strand Breaks in Oligodendrocytes Cause Demyelination, Axonal Injury, and CNS Inflammation. Journal of Neuroscience, 2017, 37, 10185-10199.	1.7	34
118	Daclizumab for the treatment of multiple sclerosis. Neurodegenerative Disease Management, 2017, 7, 279-297.	1.2	2
119	MiR-30a Positively Regulates the Inflammatory Response of Microglia in Experimental Autoimmune Encephalomyelitis. Neuroscience Bulletin, 2017, 33, 603-615.	1.5	28
120	A bidirectional association between the gut microbiota and CNS disease in a biphasic murine model of multiple sclerosis. Gut Microbes, 2017, 8, 561-573.	4.3	79
121	In silico pharmacogenetic approach: The natalizumab case study. Toxicology and Applied Pharmacology, 2017, 330, 93-99.	1.3	4
122	An antigen-specific semi-therapeutic treatment with local delivery of tolerogenic factors through a dual-sized microparticle system blocks experimental autoimmune encephalomyelitis. Biomaterials, 2017, 143, 79-92.	5.7	63
123	The epigenetic drug Trichostatin A ameliorates experimental autoimmune encephalomyelitis via T cell tolerance induction and impaired influx of T cells into the spinal cord. Neurobiology of Disease, 2017, 108, 1-12.	2.1	23
124	Is there a change of paradigm towards more effective treatment early in the course of apparent high-risk MS?. Multiple Sclerosis and Related Disorders, 2017, 17, 75-83.	0.9	31
125	Reduced rich-club connectivity is related to disability in primary progressive MS. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e375.	3.1	23
126	Epigenetic research in multiple sclerosis: progress, challenges, and opportunities. Physiological Genomics, 2017, 49, 447-461.	1.0	30

#	Article	IF	CITATIONS
127	X-Ray Phase Contrast Tomography Reveals Early Vascular Alterations and Neuronal Loss in a Multiple Sclerosis Model. Scientific Reports, 2017, 7, 5890.	1.6	64
128	Anti-encephalitogenic effects of cucumber leaf extract. Journal of Functional Foods, 2017, 37, 249-262.	1.6	6
129	JC Polyomavirus Attachment and Entry: Potential Sites for PML Therapeutics. Current Clinical Microbiology Reports, 2017, 4, 132-141.	1.8	9
130	NADPH oxidases as drug targets and biomarkers in neurodegenerative diseases: What is the evidence?. Free Radical Biology and Medicine, 2017, 112, 387-396.	1.3	88
131	Vitamin D in the prevention, prediction and treatment of neurodegenerative and neuroinflammatory diseases. EPMA Journal, 2017, 8, 313-325.	3.3	94
132	Mucosal biopsy shows immunologic changes of the colon in patients with early MS. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e362.	3.1	7
134	Pomegranate peel extract ameliorates autoimmunity in animal models of multiple sclerosis and type 1 diabetes. Journal of Functional Foods, 2017, 35, 522-530.	1.6	42
135	Human glutathione s-transferase enzyme gene variations and risk of multiple sclerosis in Iranian population cohort. Multiple Sclerosis and Related Disorders, 2017, 17, 41-46.	0.9	8
136	Endoplasmic reticulum stress and inflammation in the central nervous system. Molecular Neurodegeneration, 2017, 12, 42.	4.4	196
137	Myelin-derived and putative molecular mimic peptides share structural properties in aqueous and membrane-like environments. Multiple Sclerosis and Demyelinating Disorders, 2017, 2, .	1.1	9
138	Application and evaluation of NODDI in the cervical spinal cord of multiple sclerosis patients. NeuroImage: Clinical, 2017, 15, 333-342.	1.4	84
139	Immunotherapy for Type 1 Diabetes: Why Do Current Protocols Not Halt the Underlying Disease Process?. Cell Metabolism, 2017, 25, 233-241.	7.2	37
140	Defective expression of apoptosis-related molecules in multiple sclerosis patients is normalized early after autologous haematopoietic stem cell transplantation. Clinical and Experimental Immunology, 2017, 187, 383-398.	1.1	18
141	High-Resolution Expression Profiling of Peripheral Blood CD8+ Cells in Patients with Multiple Sclerosis Displays Fingolimod-Induced Immune Cell Redistribution. Molecular Neurobiology, 2017, 54, 5511-5525.	1.9	16
142	The influence of gut-derived CD39 regulatory T cells in CNS demyelinating disease. Translational Research, 2017, 179, 126-138.	2.2	27
143	Targeting B cells in relapsing–remitting multiple sclerosis: from pathophysiology to optimal clinical management. Therapeutic Advances in Neurological Disorders, 2017, 10, 51-66.	1.5	62
144	Inflammation at the blood-brain barrier: The role of liver X receptors. Neurobiology of Disease, 2017, 107, 57-65.	2.1	20
145	Relevance of antiphospholipid antibodies in multiple sclerosis: A systematic review and meta analysis. Seminars in Arthritis and Rheumatism, 2017, 46, 810-818.	1.6	14

#	Article	IF	CITATIONS
146	The Endocannabinoid System and Human Brain Functions. , 2017, , 115-186.		3
147	Achievements and obstacles of remyelinating therapies in multiple sclerosis. Nature Reviews Neurology, 2017, 13, 742-754.	4.9	89
148	A potential therapeutic role in multiple sclerosis for stigmast-5,22-dien-3β-ol myristate isolated from Capparis ovata. The EuroBiotech Journal, 2017, 1, 241-246.	0.5	1
149	Thrombin generation correlates with disease duration in multiple sclerosis (MS): Novel insights into the MS-associated prothrombotic state. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2017, 3, 205521731774762.	0.5	9
150	Non-human primates are essential models in the translational research of multiple sclerosis. Drug Discovery Today: Disease Models, 2017, 23, 35-42.	1.2	0
151	Online dietary advice for the symptomatic management of multiple sclerosis: a scoping review protocol. JBI Database of Systematic Reviews and Implementation Reports, 2017, 15, 230-235.	1.7	5
152	Oriental Medicine Samhwangsasim-tang Alleviates Experimental Autoimmune Encephalomyelitis by Suppressing Th1 Cell Responses and Upregulating Treg Cell Responses. Frontiers in Pharmacology, 2017, 08, 192.	1.6	10
153	GYF-21, an Epoxide 2-(2-Phenethyl)-Chromone Derivative, Suppresses Innate and Adaptive Immunity via Inhibiting STAT1/3 and NF-κB Signaling Pathways. Frontiers in Pharmacology, 2017, 8, 281.	1.6	13
154	The cerebrospinal fluid in multiple sclerosis: far beyond the bands. Einstein (Sao Paulo, Brazil), 2017, 15, 100-104.	0.3	13
155	Advances in the treatment of relapsing–remitting multiple sclerosis: the role of pegylated interferon β-1a. Degenerative Neurological and Neuromuscular Disease, 2017, Volume 7, 47-60.	0.7	6
156	Focused Ultrasound Immunotherapy for Central Nervous System Pathologies: Challenges and Opportunities. Theranostics, 2017, 7, 3608-3623.	4.6	93
157	Hormesis and Defense of Infectious Disease. International Journal of Molecular Sciences, 2017, 18, 1273.	1.8	22
158	Gut–CNS-Axis as Possibility to Modulate Inflammatory Disease Activity—Implications for Multiple Sclerosis. International Journal of Molecular Sciences, 2017, 18, 1526.	1.8	37
159	Murine Cytomegalovirus Infection Induces Susceptibility to EAE in Resistant BALB/c Mice. Frontiers in Immunology, 2017, 8, 192.	2.2	15
160	The Multiple Sclerosis (MS) Genetic Risk Factors Indicate both Acquired and Innate Immune Cell Subsets Contribute to MS Pathogenesis and Identify Novel Therapeutic Opportunities. Frontiers in Immunology, 2017, 8, 425.	2.2	71
161	Peripherally Induced Regulatory T Cells: Recruited Protectors of the Central Nervous System against Autoimmune Neuroinflammation. Frontiers in Immunology, 2017, 8, 532.	2.2	42
162	Expanding Role of T Cells in Human Autoimmune Diseases of the Central Nervous System. Frontiers in Immunology, 2017, 8, 652.	2.2	62
163	MicroRNA-181 Variants Regulate T Cell Phenotype in the Context of Autoimmune Neuroinflammation. Frontiers in Immunology, 2017, 8, 758.	2.2	60

#	Article	IF	Citations
164	Modulation of Multiple Sclerosis and Its Animal Model Experimental Autoimmune Encephalomyelitis by Food and Gut Microbiota. Frontiers in Immunology, 2017, 8, 1081.	2.2	61
165	Experimental Autoimmune Encephalomyelitis Is Successfully Controlled by Epicutaneous Administration of MOG Plus Vitamin D Analog. Frontiers in Immunology, 2017, 8, 1198.	2.2	14
166	IL-12p35 Inhibits Neuroinflammation and Ameliorates Autoimmune Encephalomyelitis. Frontiers in Immunology, 2017, 8, 1258.	2.2	28
167	Differentiation and Transmigration of CD4 T Cells in Neuroinflammation and Autoimmunity. Frontiers in Immunology, 2017, 8, 1695.	2.2	54
168	pVAXhsp65 Vaccination Primes for High IL-10 Production and Decreases Experimental Encephalomyelitis Severity. Journal of Immunology Research, 2017, 2017, 1-11.	0.9	6
169	Epigenetics and multiple sclerosis. , 2017, , 185-213.		2
170	The C-C Chemokines CCL17 and CCL22 and Their Receptor CCR4 in CNS Autoimmunity. International Journal of Molecular Sciences, 2017, 18, 2306.	1.8	104
171	4.24 Biomaterials in Vaccine and Immunotherapy â~†. , 2017, , 445-463.		0
172	Splitting the "Unsplittable― Dissecting Resident and Infiltrating Macrophages in Experimental Autoimmune Encephalomyelitis. International Journal of Molecular Sciences, 2017, 18, 2072.	1.8	23
173	Galectin-8 as an immunosuppressor in experimental autoimmune encephalomyelitis and a target of human early prognostic antibodies in multiple sclerosis. PLoS ONE, 2017, 12, e0177472.	1.1	34
174	Metabolomics reveals distinct, antibody-independent, molecular signatures of MS, AQP4-antibody and MOG-antibody disease. Acta Neuropathologica Communications, 2017, 5, 95.	2.4	35
175	The Trojan horse - neuroinflammatory impact of T cells in neurodegenerative diseases. Molecular Neurodegeneration, 2017, 12, 78.	4.4	63
176	Mortality from multiple sclerosis in British military personnel. Occupational Medicine, 2017, 67, 448-452.	0.8	3
177	Is Alcohol Harmful for Patients with Multiple Sclerosis?. Journal of Multiple Sclerosis, 2017, 04, .	0.1	1
178	Introduction to Cytokines as Tissue Regulators in Health and Disease. , 2017, , 3-30.		3
179	Subcutaneous interferon β-1a administration by electronic auto-injector is associated with high adherence in patients with relapsing remitting multiple sclerosis in a real-life study. Neurology International, 2017, 9, 6957.	1.3	6
180	Amelioration of progressive autoimmune encephalomyelitis by epigenetic regulation involves selective repression of mature neutrophils during the preclinical phase. Experimental Neurology, 2018, 304, 14-20.	2.0	12
181	Multiple Sclerosis: Mechanisms and Immunotherapy. Neuron, 2018, 97, 742-768.	3.8	610

#	Article	IF	CITATIONS
182	TSPO PET with [18F]GE-180 sensitively detects focal neuroinflammation in patients with relapsing–remitting multiple sclerosis. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 1423-1431.	3.3	53
183	Factors associated with early initiation of disease-modifying drug treatment in newly-diagnosed patients with multiple sclerosis. Current Medical Research and Opinion, 2018, 34, 1389-1395.	0.9	0
184	Neuroimmune Axes of the Blood–Brain Barriers and Blood–Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions. Pharmacological Reviews, 2018, 70, 278-314.	7.1	242
185	The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2018, 318, 1-7.	1.1	223
186	Functional network analysis reveals biological roles of IncRNAs and mRNAs in MOG35–55 specific CD4+T helper cells. Genomics, 2018, 110, 337-346.	1.3	3
187	Sulfatide isoform pattern in cerebrospinal fluid discriminates progressive <scp>MS</scp> from relapsingâ€remitting <scp>MS</scp> . Journal of Neurochemistry, 2018, 146, 322-332.	2.1	14
188	Spatiotemporal distribution of fibrinogen in marmoset and human inflammatory demyelination. Brain, 2018, 141, 1637-1649.	3.7	49
189	Increased constitutive activation of NF-κB p65 (RelA) in peripheral blood cells of patients with progressive multiple sclerosis. Journal of Neuroimmunology, 2018, 320, 111-116.	1.1	13
190	Coexistence of systemic lupus erythematosus and multiple sclerosis. A case report and literature review. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2018, 4, 205521731876833.	0.5	7
191	Progress in understanding the pathophysiology of multiple sclerosis. Revue Neurologique, 2018, 174, 358-363.	0.6	56
192	Smoking and worsening disability in multiple sclerosis: A meta-analysis. Acta Neurologica Scandinavica, 2018, 138, 62-69.	1.0	33
193	The Role for Exosomal microRNAs in Disruption of Regulatory T Cell Homeostasis in Multiple Sclerosis. Journal of Experimental Neuroscience, 2018, 12, 117906951876489.	2.3	16
194	Second regional plasmapheresis conference and workshop for Southeast Asia (SEA) on the immunomodulatory role of plasma exchange in central and peripheral nervous system disorders, Kuala Lumpur, Malaysia, 9th December 2017. Journal of Clinical Apheresis, 2018, 33, 559-568.	0.7	6
195	T helper 17.1 cells associate with multiple sclerosis disease activity: perspectives for early intervention. Brain, 2018, 141, 1334-1349.	3.7	161
196	Dysregulated T cells in multiple sclerosis. Clinical and Experimental Neuroimmunology, 2018, 9, 20-29.	0.5	23
197	A Kv1.3 channelâ€specific blocker alleviates neurological impairment through inhibiting Tâ€cell activation in experimental autoimmune encephalomyelitis. CNS Neuroscience and Therapeutics, 2018, 24, 967-977.	1.9	14
198	The role of inflammation in subventricular zone cancer. Progress in Neurobiology, 2018, 170, 37-52.	2.8	15
199	Novel disease-modifying anti-rheumatic drug iguratimod suppresses chronic experimental autoimmune encephalomyelitis by down-regulating activation of macrophages/microglia through an NF-I®B pathway. Scientific Reports, 2018, 8, 1933.	1.6	31

#	Article	IF	CITATIONS
200	Inflammation as a Possible Link Between Dyslipidemia and Alzheimer's Disease. Neuroscience, 2018, 376, 127-141.	1.1	25
201	The Use of Cannabis and Cannabinoids in Treating Symptoms of Multiple Sclerosis: a Systematic Review of Reviews. Current Neurology and Neuroscience Reports, 2018, 18, 8.	2.0	116
202	Preservation of neuronal function as measured by clinical and MRI endpoints in relapsing-remitting multiple sclerosis: how effective are current treatment strategies?. Expert Review of Neurotherapeutics, 2018, 18, 203-219.	1.4	8
203	Blood–brain barrier and its function during inflammation and autoimmunity. Journal of Leukocyte Biology, 2018, 103, 839-853.	1.5	66
204	Multiple sclerosis risk variants alter expression of co-stimulatory genes in B cells. Brain, 2018, 141, 786-796.	3.7	39
205	Mass cytometry analysis of immune cells in the brain. Nature Protocols, 2018, 13, 377-391.	5.5	47
206	Subsets of activated monocytes and markers of inflammation in incipient and progressed multiple sclerosis. Immunology and Cell Biology, 2018, 96, 160-174.	1.0	93
207	Efficacy of computer-based cognitive training in neuropsychological performance of patients with multiple sclerosis: A systematic review and meta-analysis. Multiple Sclerosis and Related Disorders, 2018, 20, 58-66.	0.9	42
208	Clinical implications of myelin regeneration in the central nervous system. Expert Review of Neurotherapeutics, 2018, 18, 111-123.	1.4	4
209	A potential impact of Helicobacter pylori -related galectin-3 in neurodegeneration. Neurochemistry International, 2018, 113, 137-151.	1.9	21
210	Treatment of multiple sclerosis relapses with high-dose methylprednisolone reduces the evolution of contrast-enhancing lesions into persistent black holes. Journal of Neurology, 2018, 265, 522-529.	1.8	5
211	The Gut Microbiome and Multiple Sclerosis. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a029017.	2.9	86
212	Transcriptome profiling of peripheral blood immune cell populations in multiple sclerosis patients before and during treatment with a sphingosineâ€1â€phosphate receptor modulator. CNS Neuroscience and Therapeutics, 2018, 24, 193-201.	1.9	32
213	<i>Ndrg2</i> deficiency ameliorates neurodegeneration in experimental autoimmune encephalomyelitis. Journal of Neurochemistry, 2018, 145, 139-153.	2.1	11
214	Circulating exosomes suppress the induction of regulatory T cells via let-7i in multiple sclerosis. Nature Communications, 2018, 9, 17.	5.8	177
215	The role of TGF-β superfamily signaling in neurological disorders. Acta Biochimica Et Biophysica Sinica, 2018, 50, 106-120.	0.9	76
216	Production of IL-17 by MAIT Cells Is Increased in Multiple Sclerosis and Is Associated with IL-7 Receptor Expression. Journal of Immunology, 2018, 200, 974-982.	0.4	58
217	HIV and spinal cord disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 152, 213-227.	1.0	14

#	Article	IF	CITATIONS
218	Biochemically altered myelin triggers autoimmune demyelination. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5528-5533.	3.3	83
219	Emerging role of semaphorin-3A in autoimmune diseases. Inflammopharmacology, 2018, 26, 655-665.	1.9	22
220	Neutrophils and redox stress in the pathogenesis of autoimmune disease. Free Radical Biology and Medicine, 2018, 125, 25-35.	1.3	115
221	Neurologic Disorders and Maxillofacial Surgery. , 2018, , 243-262.		1
222	A Belgian consensus protocol for autologous hematopoietic stem cell transplantation in multiple sclerosis. Acta Neurologica Belgica, 2018, 118, 161-168.	0.5	6
223	Human Endogenous Retroviruses in Neurological Diseases. Trends in Molecular Medicine, 2018, 24, 379-394.	3.5	212
224	MRI in multiple sclerosis: clinical and research update. Current Opinion in Neurology, 2018, 31, 249-255.	1.8	25
225	Innate lymphoid cells in autoimmunity and chronic inflammatory diseases. Seminars in Immunopathology, 2018, 40, 393-406.	2.8	27
226	Voltage Gated Potassium Channel Kv1.3 Is Upregulated on Activated Astrocytes in Experimental Autoimmune Encephalomyelitis. Neurochemical Research, 2018, 43, 1020-1034.	1.6	18
227	Concepts for Immunotherapies in Gliomas. Seminars in Neurology, 2018, 38, 062-072.	0.5	26
228	The contribution of neutrophils to CNS autoimmunity. Clinical Immunology, 2018, 189, 23-28.	1.4	80
229	Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. Clinical Immunology, 2018, 189, 4-13.	1.4	173
230	Myelin Basic Protein Citrullination, a Hallmark of Central Nervous System Demyelination, Assessed by Novel Monoclonal Antibodies in Prion Diseases. Molecular Neurobiology, 2018, 55, 3172-3184.	1.9	16
231	Bone morphogenetic proteins in multiple sclerosis: Role in neuroinflammation. Brain, Behavior, and Immunity, 2018, 68, 1-10.	2.0	24
232	Physical activity is associated with a decreased multiple sclerosis risk: The EnvIMS study. Multiple Sclerosis Journal, 2018, 24, 150-157.	1.4	47
233	Experimental Models of Autoimmune Demyelinating Diseases in Nonhuman Primates. Veterinary Pathology, 2018, 55, 27-41.	0.8	20
234	The IL-1β phenomena in neuroinflammatory diseases. Journal of Neural Transmission, 2018, 125, 781-795.	1.4	148
235	Korean Red Ginseng mitigates spinal demyelination in a model of acute multiple sclerosis by downregulating p38 mitogen-activated protein kinase and nuclear factor-I®B signaling pathways. Journal of Ginseng Research, 2018, 42, 436-446.	3.0	20

CITATION	DEDODT
CHAHON	REPORT

#	Article	IF	CITATIONS
236	Social cognition: Concepts, neural basis and its role in multiple sclerosis. Neurology and Clinical Neuroscience, 2018, 6, 3-8.	0.2	6
237	The spectrum of T cell metabolism in health and disease. Nature Reviews Immunology, 2018, 18, 19-34.	10.6	315
238	Extracellular vesicles in neurodegenerative diseases. Molecular Aspects of Medicine, 2018, 60, 52-61.	2.7	63
239	Combined therapies to treat complex diseases: The role of the gut microbiota in multiple sclerosis. Autoimmunity Reviews, 2018, 17, 165-174.	2.5	82
240	Ocrelizumab: A New Therapeutic Paradigm for Multiple Sclerosis. Biochemistry, 2018, 57, 474-476.	1.2	2
241	Effective combination of methylprednisolone and interferon β-secreting mesenchymal stem cells in a model of multiple sclerosis. Journal of Neuroimmunology, 2018, 314, 81-88.	1.1	10
242	A standardised frankincense extract reduces disease activity in relapsing-remitting multiple sclerosis (the SABA phase IIa trial). Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 330-338.	0.9	23
243	Pericytes modulate myelination in the central nervous system. Journal of Cellular Physiology, 2018, 233, 5523-5529.	2.0	33
244	The cooling compound icilin attenuates autoimmune neuroinflammation through modulation of the Tâ€cell response. FASEB Journal, 2018, 32, 1236-1249.	0.2	4
245	Gestational outcomes of patients with multiple sclerosis: A tertiary centre experience. South African Journal of Obstetrics and Gynaecology, 2018, 24, 79.	0.1	1
247	A Pilot Investigation of Natural Killer Cell Function and Phenotypes in Stable and Active Multiple Sclerosis Patients. Journal of Multiple Sclerosis, 2018, 05, .	0.1	0
248	Moral Judgment: An Overlooked Deficient Domain in Multiple Sclerosis?. Behavioral Sciences (Basel,) Tj ETQq1 1	0.784314 1.0	rgBT /Overlo
249	Regular Exercise Modifies Histopathological Outcomes of Pharmacological Treatment in Experimental Autoimmune Encephalomyelitis. Frontiers in Neurology, 2018, 9, 950.	1.1	16
250	The place of transcranial direct current stimulation in the management of multiple sclerosis-related symptoms. Neurodegenerative Disease Management, 2018, 8, 411-422.	1.2	12
251	Interplay Between the Unfolded Protein Response and Immune Function in the Development of Neurodegenerative Diseases. Frontiers in Immunology, 2018, 9, 2541.	2.2	32
252	Multiple sclerosis. Nature Reviews Disease Primers, 2018, 4, 43.	18.1	767
253	Acid sensing ion channel 2: A new potential player in the pathophysiology of multiple sclerosis. European Journal of Neuroscience, 2019, 49, 1233-1243.	1.2	17
254	Rituximab therapy for patients with Langerhans cell histiocytosis-associated neurologic dysfunction. Pediatric Hematology and Oncology, 2018, 35, 427-433.	0.3	7

#	Article	IF	CITATIONS
255	Tuftsin Combines With Remyelinating Therapy and Improves Outcomes in Models of CNS Demyelinating Disease. Frontiers in Immunology, 2018, 9, 2784.	2.2	19
256	Distinct Cytokine and Chemokine Expression in Plasma and Calpeptin-Treated PBMCs of a Relapsing-Remitting Multiple Sclerosis Patient: A Case Report. Neurochemical Research, 2018, 43, 2224-2231.	1.6	3
257	Body mass index and survival from amyotrophic lateral sclerosis. Neurology: Clinical Practice, 2018, 8, 437-444.	0.8	34
258	Increased expression of mir-301a in PBMCs of patients with relapsing-remitting multiple sclerosis is associated with reduced NKRF and PIAS3 expression levels and disease activity. Journal of Neuroimmunology, 2018, 325, 79-86.	1.1	9
259	Association of nodâ€like receptor proteinâ€3 single nucleotide gene polymorphisms and expression with the susceptibility to relapsing–remitting multiple sclerosis. International Journal of Immunogenetics, 2018, 45, 329-336.	0.8	29
260	The "Gut Feeling― Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics, 2018, 15, 109-125.	2.1	117
261	Regulation of lymphocyte trafficking in central nervous system autoimmunity. Current Opinion in Immunology, 2018, 55, 38-43.	2.4	12
262	Can the Fact That Myelin Proteins Are Old and Break down Explain the Origin of Multiple Sclerosis in Some People?. Journal of Clinical Medicine, 2018, 7, 281.	1.0	8
263	GDP- <scp>l</scp> -fucose synthase is a CD4 ⁺ T cell–specific autoantigen in DRB3*02:02 patients with multiple sclerosis. Science Translational Medicine, 2018, 10, .	5.8	71
264	Functional Connectivity in Multiple Sclerosis: Recent Findings and Future Directions. Frontiers in Neurology, 2018, 9, 828.	1.1	66
265	Emerging Role of Follicular T Helper Cells in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. International Journal of Molecular Sciences, 2018, 19, 3233.	1.8	23
266	Inflammation and Depression: the Neuroimmune Connection. Current Treatment Options in Psychiatry, 2018, 5, 452-458.	0.7	9
267	Antigen-presenting cell diversity for T cell reactivation in central nervous system autoimmunity. Journal of Molecular Medicine, 2018, 96, 1279-1292.	1.7	53
268	G1m1 predominance of intrathecal virusâ€specific antibodies in multiple sclerosis. Annals of Clinical and Translational Neurology, 2018, 5, 1303-1309.	1.7	2
269	Estrogen Signaling in Bystander Foxp3neg CD4+ T Cells Suppresses Cognate Th17 Differentiation in <i>Trans</i> and Protects from Central Nervous System Autoimmunity. Journal of Immunology, 2018, 201, 3218-3228.	0.4	22
270	Dimethyl fumarate treatment in multiple sclerosis: Recent advances in clinical and immunological studies. Autoimmunity Reviews, 2018, 17, 1240-1250.	2.5	90
271	Cytokines as Mediators of Neuroinflammation in Experimental Autoimmune Encephalomyelitis. Biochemistry (Moscow), 2018, 83, 1089-1103.	0.7	9
272	Targeted Diet Modification Reduces Multiple Sclerosis–like Disease in Adult Marmoset Monkeys from an Outbred Colony. Journal of Immunology, 2018, 201, 3229-3243.	0.4	29

#	Article	IF	CITATIONS
273	CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nature Neuroscience, 2018, 21, 1380-1391.	7.1	579
274	Anti-TNFR1 targeting in humanized mice ameliorates disease in a model of multiple sclerosis. Scientific Reports, 2018, 8, 13628.	1.6	41
275	Targeting phosphocreatine metabolism in relapsing–remitting multiple sclerosis: evaluation with brain MRI, 1H and 31P MRS, and clinical and cognitive testing. Journal of Neurology, 2018, 265, 2614-2624.	1.8	3
276	Insights into the Role of Neuroinflammation in the Pathogenesis of Multiple Sclerosis. Journal of Functional Morphology and Kinesiology, 2018, 3, 13.	1.1	10
277	Traditional Chinese Medicine in Multiple Sclerosis: Theory and Practice. Current Pharmacology Reports, 2018, 4, 436-446.	1.5	4
278	Interleukin-33 deficiency exacerbated experimental autoimmune encephalomyelitis with an influence on immune cells and glia cells. Molecular Immunology, 2018, 101, 550-563.	1.0	30
279	The Gut Microbiome in Multiple Sclerosis: A Potential Therapeutic Avenue. Medical Sciences (Basel,) Tj ETQq0 0 C) rgBT /Ov	erlock 10 Tf 5
280	Probiotic Applications in Autoimmune Diseases. , 2018, , .		3
281	Memory B Cells Activate Brain-Homing, Autoreactive CD4+ T Cells in Multiple Sclerosis. Cell, 2018, 175, 85-100.e23.	13.5	350
282	Neuroimmune Alterations in Autism: A Translational Analysis Focusing on the Animal Model of Autism Induced by Prenatal Exposure to Valproic Acid. NeuroImmunoModulation, 2018, 25, 285-299.	0.9	43
283	Is the Limit-Cycle-Attractor an (almost) invariable characteristic in human walking?. Gait and Posture, 2018, 63, 242-247.	0.6	14
284	Gateway reflex: neural activation-mediated immune cell gateways in the central nervous system. International Immunology, 2018, 30, 281-289.	1.8	11
285	Determinants of Cognitive Impairment in Patients with Multiple Sclerosis with and without Atrophy. Radiology, 2018, 288, 544-551.	3.6	40
286	Dysregulated Network of miRNAs Involved in the Pathogenesis of Multiple Sclerosis. Biomedicine and Pharmacotherapy, 2018, 104, 280-290.	2.5	49
287	Early versus later treatment start in multiple sclerosis: a registerâ€based cohort study. European Journal of Neurology, 2018, 25, 1262.	1.7	60
288	Beyond the Magic Bullet: Current Progress of Therapeutic Vaccination in Multiple Sclerosis. CNS Drugs, 2018, 32, 401-410.	2.7	25
289	Expression of the DNA-Binding Factor TOX Promotes the Encephalitogenic Potential of Microbe-Induced Autoreactive CD8+ T Cells. Immunity, 2018, 48, 937-950.e8.	6.6	60
290	Nanocurcumin is a potential novel therapy for multiple sclerosis by influencing inflammatory mediators. Pharmacological Reports, 2018, 70, 1158-1167.	1.5	68

#	Article	IF	CITATIONS
291	ls Targeting the Inflammasome a Way Forward for Neuroscience Drug Discovery?. SLAS Discovery, 2018, 23, 991-1017.	1.4	17
292	P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis. EMBO Molecular Medicine, 2018, 10, .	3.3	141
293	Th17 Lymphocytes Induce Neuronal Cell Death in a Human iPSC-Based Model of Parkinson's Disease. Cell Stem Cell, 2018, 23, 123-131.e6.	5.2	206
294	Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives. Mediators of Inflammation, 2018, 2018, 1-17.	1.4	107
295	MicroRNA-150 targets PU.1 and regulates macrophage differentiation and function in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2018, 323, 167-174.	1.1	26
296	Hypothermia in Multiple Sclerosis: Beyond the Hypothalamus? A Case Report and Review of the Literature. Case Reports in Neurological Medicine, 2018, 2018, 1-16.	0.3	2
297	Therapeutic Potential of Pien Tze Huang on Experimental Autoimmune Encephalomyelitis Rat. Journal of Immunology Research, 2018, 2018, 1-10.	0.9	14
298	Is there a link between inflammation and fatigue in multiple sclerosis?. Journal of Inflammation Research, 2018, Volume 11, 253-264.	1.6	38
299	Purinergic Receptors in Neurological Diseases With Motor Symptoms: Targets for Therapy. Frontiers in Pharmacology, 2018, 9, 325.	1.6	42
300	Experimental Models of Brain Disease: MRI Studies. , 2018, , 93-120.		0
301	<i>TNFRSF1A</i> polymorphisms and their role in multiple sclerosis susceptibility and severity in the Slovak population. International Journal of Immunogenetics, 2018, 45, 257-265.	0.8	6
302	Unique and shared inflammatory profiles of human brain endothelia and pericytes. Journal of Neuroinflammation, 2018, 15, 138.	3.1	83
303	Cladribine tablets' potential role as a key example of selective immune reconstitution therapy in multiple sclerosis. Degenerative Neurological and Neuromuscular Disease, 2018, Volume 8, 35-44.	0.7	15
304	Erythrocyte microRNA sequencing reveals differential expression in relapsing-remitting multiple sclerosis. BMC Medical Genomics, 2018, 11, 48.	0.7	12
305	Immunophenotype and Transcriptome Profile of Patients With Multiple Sclerosis Treated With Fingolimod: Setting Up a Model for Prediction of Response in a 2-Year Translational Study. Frontiers in Immunology, 2018, 9, 1693.	2.2	32
306	Microglia P2X4 receptors as pharmacological targets for demyelinating diseases. EMBO Molecular Medicine, 2018, 10, .	3.3	18
307	Predicting cognitive decline in multiple sclerosis: a 5-year follow-up study. Brain, 2018, 141, 2605-2618.	3.7	113
308	NLR-Dependent Regulation of Inflammation in Multiple Sclerosis. Frontiers in Immunology, 2017, 8, 2012.	2.2	66

#	Article	IF	CITATIONS
309	Tolerogenic Nanoparticles Induce Antigen-Specific Regulatory T Cells and Provide Therapeutic Efficacy and Transferrable Tolerance against Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2018, 9, 281.	2.2	83
310	Adenosine A2A Receptor Signaling in the Immunopathogenesis of Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2018, 9, 402.	2.2	23
311	Regenerating Immunotolerance in Multiple Sclerosis with Autologous Hematopoietic Stem Cell Transplant. Frontiers in Immunology, 2018, 9, 410.	2.2	59
312	Brain-Resident Microglia and Blood-Borne Macrophages Orchestrate Central Nervous System Inflammation in Neurodegenerative Disorders and Brain Cancer. Frontiers in Immunology, 2018, 9, 697.	2.2	164
313	Association of Decreased Percentage of Vδ2+Vγ9+ γδT Cells With Disease Severity in Multiple Sclerosis. Frontiers in Immunology, 2018, 9, 748.	2.2	10
314	Selective Modulation of TNF–TNFRs Signaling: Insights for Multiple Sclerosis Treatment. Frontiers in Immunology, 2018, 9, 925.	2.2	92
315	T Follicular Helper-Like Cells Are Involved in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2018, 9, 944.	2.2	30
316	The Choroid Plexus Functions as a Niche for T-Cell Stimulation Within the Central Nervous System. Frontiers in Immunology, 2018, 9, 1066.	2.2	67
317	Relapsing–Remitting Multiple Sclerosis Is Characterized by a T Follicular Cell Pro-Inflammatory Shift, Reverted by Dimethyl Fumarate Treatment. Frontiers in Immunology, 2018, 9, 1097.	2.2	37
318	Insight Into Non-Pathogenic Th17 Cells in Autoimmune Diseases. Frontiers in Immunology, 2018, 9, 1112.	2.2	95
318 319	Insight Into Non-Pathogenic Th17 Cells in Autoimmune Diseases. Frontiers in Immunology, 2018, 9, 1112. Inflammasome Proteins As Biomarkers of Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 135.	2.2	95 82
318 319 320	Insight Into Non-Pathogenic Th17 Cells in Autoimmune Diseases. Frontiers in Immunology, 2018, 9, 1112. Inflammasome Proteins As Biomarkers of Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 135. Coagulation Factor XII Levels and Intrinsic Thrombin Generation in Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 245.	2.2 1.1 1.1	95 82 23
318319320321	Insight Into Non-Pathogenic Th17 Cells in Autoimmune Diseases. Frontiers in Immunology, 2018, 9, 1112. Inflammasome Proteins As Biomarkers of Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 135. Coagulation Factor XII Levels and Intrinsic Thrombin Generation in Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 245. Cortical Excitability and Interhemispheric Connectivity in Early Relapsing–Remitting Multiple Sclerosis Studied With TMS-EEG. Frontiers in Neuroscience, 2018, 12, 393.	2.2 1.1 1.1 1.4	95 82 23 28
 318 319 320 321 322 	Insight Into Non-Pathogenic Th17 Cells in Autoimmune Diseases. Frontiers in Immunology, 2018, 9, 1112. Inflammasome Proteins As Biomarkers of Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 135. Coagulation Factor XII Levels and Intrinsic Thrombin Generation in Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 245. Cortical Excitability and Interhemispheric Connectivity in Early Relapsing–Remitting Multiple Sclerosis Studied With TMS-EEG. Frontiers in Neuroscience, 2018, 12, 393. Microglial Lectins in Health and Neurological Diseases. Frontiers in Molecular Neuroscience, 2018, 11, 158.	2.2 1.1 1.1 1.4	 95 82 23 28 43
 318 319 320 321 322 323 	Insight Into Non-Pathogenic Th17 Cells in Autoimmune Diseases. Frontiers in Immunology, 2018, 9, 1112. Inflammasome Proteins As Biomarkers of Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 135. Coagulation Factor XII Levels and Intrinsic Thrombin Generation in Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 245. Cortical Excitability and Interhemispheric Connectivity in Early Relapsing–Remitting Multiple Sclerosis Studied With TMS-EEC. Frontiers in Neuroscience, 2018, 12, 393. Microglial Lectins in Health and Neurological Diseases. Frontiers in Molecular Neuroscience, 2018, 11, 158. Emerging Biosensing Technologies for Neuroinflammatory and Neurodegenerative Disease Diagnostics. Frontiers in Molecular Neuroscience, 2018, 11, 164.	2.2 1.1 1.1 1.4 1.4	 95 82 23 28 43 25
 318 319 320 321 322 323 324 	Insight Into Non-Pathogenic Th17 Cells in Autoimmune Diseases. Frontiers in Immunology, 2018, 9, 1112. Inflammasome Proteins As Biomarkers of Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 135. Coagulation Factor XII Levels and Intrinsic Thrombin Generation in Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 245. Cortical Excitability and Interhemispheric Connectivity in Early Relapsing–Remitting Multiple Sclerosis Studied With TMS-EEG. Frontiers in Neuroscience, 2018, 12, 393. Microglial Lectins in Health and Neurological Diseases. Frontiers in Molecular Neuroscience, 2018, 11, 158. Emerging Biosensing Technologies for Neuroinflammatory and Neurodegenerative Disease Diagnostics. Frontiers in Molecular Neuroscience, 2018, 11, 164. A Tolerogenic Artificial APC Durably Ameliorates Experimental Autoimmune Encephalomyelitis by Directly and Selectively Modulating Myelin Peptide〓Autoreactive CD4+ and CD8+ T Cells. Journal of Immunology, 2018, 201, 1194-1210.	2.2 1.1 1.1 1.4 1.4 1.4 0.4	 95 82 23 28 43 25 10
 318 319 320 321 322 323 324 325 	Insight Into Non-Pathogenic Th17 Cells in Autoimmune Diseases. Frontiers in Immunology, 2018, 9, 1112. Inflammasome Proteins As Biomarkers of Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 135. Coagulation Factor XII Levels and Intrinsic Thrombin Generation in Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 245. Cortical Excitability and Interhemispheric Connectivity in Early Relapsing–Remitting Multiple Sclerosis Studied With TMS-EEC. Frontiers in Neuroscience, 2018, 12, 393. Microglial Lectins in Health and Neurological Diseases. Frontiers in Molecular Neuroscience, 2018, 11, 158. Emerging Biosensing Technologies for Neuroinflammatory and Neurodegenerative Disease Diagnostics. Frontiers in Molecular Neuroscience, 2018, 11, 164. A Tolerogenic Artificial APC Durably Ameliorates Experimental Autoimmune Encephalomyelitis by Directly and Selectively Modulating Myelin Peptide–Autoreactive CD4+ and CD8+ T Cells. Journal of Immunology, 2018, 201, 1194-1210. ANN Classification of MS Subgroups with Diffusion Limited Aggregation. Lecture Notes in Computer Science, 2018, 1, 121-136.	2.2 1.1 1.1 1.4 1.4 1.4 1.4 0.4	 95 82 23 28 43 25 10 5

#	Article	IF	CITATIONS
327	Anti-Inflammatory Effects of Resveratrol: Mechanistic Insights. International Journal of Molecular Sciences, 2018, 19, 1812.	1.8	173
328	Increased CCL18 plasma levels are associated with neurodegenerative MRI outcomes in multiple sclerosis and Related Disorders, 2018, 25, 37-42.	0.9	11
329	An anti-inflammatory approach to the dietary management of multiple sclerosis: a condensed review. South African Journal of Clinical Nutrition, 2018, 31, 67-73.	0.3	10
330	Identification of brain antigens recognized by autoantibodies in experimental autoimmune encephalomyelitis-induced animals treated with etomoxir or interferon-β. Scientific Reports, 2018, 8, 7092.	1.6	9
331	Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model. Nature Neuroscience, 2018, 21, 1196-1208.	7.1	132
332	Acute Disseminated Encephalomyelitis. , 2018, , 295-312.		1
333	Intrathecal delivery of human ESC-derived mesenchymal stem cell spheres promotes recovery of a primate multiple sclerosis model. Cell Death Discovery, 2018, 4, 28.	2.0	29
334	Blockade of MCAM/CD146 impedes CNS infiltration of T cells over the choroid plexus. Journal of Neuroinflammation, 2018, 15, 236.	3.1	38
335	Increased expression of colonyâ€stimulating factorâ€1 in mouse spinal cord with experimental autoimmune encephalomyelitis correlates with microglial activation and neuronal loss. Glia, 2018, 66, 2108-2125.	2.5	36
336	Diagnostics of autoimmune neurodegeneration using fluorescent probing. Scientific Reports, 2018, 8, 12679.	1.6	4
337	Interplay Between Age and Neuroinflammation in Multiple Sclerosis: Effects on Motor and Cognitive Functions. Frontiers in Aging Neuroscience, 2018, 10, 238.	1.7	82
338	The relevance of ceramides and their synthesizing enzymes for multiple sclerosis. Clinical Science, 2018, 132, 1963-1976.	1.8	32
339	The Role of Diet in Multiple Sclerosis: Mechanistic Connections and Current Evidence. Current Nutrition Reports, 2018, 7, 150-160.	2.1	114
340	Presenilin1 regulates Th1 and Th17 effector responses but is not required for experimental autoimmune encephalomyelitis. PLoS ONE, 2018, 13, e0200752.	1.1	4
341	Genomeâ€wide association studies of multiple sclerosis. Clinical and Translational Immunology, 2018, 7, e1018.	1.7	58
342	Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metabolism, 2018, 27, 1222-1235.e6.	7.2	352
343	Multiple sclerosis pathogenesis: missing pieces of an old puzzle. Reviews in the Neurosciences, 2018, 30, 67-83.	1.4	16
344	Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6065-E6074.	3.3	346

# 345	ARTICLE Gut Microbiota in Brain Development and Disorders of the CNS: Therapeutic Strategies Involving Dietary Modification, Pro- and Prebiotic Intervention, and Fecal Microbiota Transplantation (FMT) Therapy. , 2018, , 517-594.	IF	Citations 0
346	Reassessing B cell contributions in multiple sclerosis. Nature Immunology, 2018, 19, 696-707.	7.0	275
347	Dimethyl fumarate therapy suppresses B cell responses and follicular helper T cells in relapsing-remitting multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 1289-1297.	1.4	18
348	Lifestyle and Environmental Factors in Multiple Sclerosis. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a028944.	2.9	103
349	Computational Intelligence Technique for Prediction of Multiple Sclerosis Based on Serum Cytokines. Frontiers in Neurology, 2019, 10, 781.	1.1	29
350	Association of Chronic Active Multiple Sclerosis Lesions With Disability In Vivo. JAMA Neurology, 2019, 76, 1474.	4.5	288
351	Mitochondrial functionality and metabolism in T cells from progressive multiple sclerosis patients. European Journal of Immunology, 2019, 49, 2204-2221.	1.6	24
352	Innate Immune Cells: Monocytes, Monocyte-Derived Macrophages and Microglia as Therapeutic Targets for Alzheimer's Disease and Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2019, 13, 355.	1.8	77
353	Genetic Markers for Personalized Therapy of Polygenic Diseases: Pharmacogenetics of Multiple Sclerosis. Molecular Biology, 2019, 53, 513-534.	0.4	1
354	The anatomy and immunology of vasculature in the central nervous system. Science Immunology, 2019, 4, .	5.6	190
355	Immunoadsorption Techniques and Its Current Role in the Intensive Care Unit. , 2019, , .		2
356	Autologous Hematopoietic Cell Transplantation in Multiple Sclerosis: Changing Paradigms in the Era of Novel Agents. Stem Cells International, 2019, 2019, 1-9.	1.2	11
357	Th1Th17 _{CM} Lymphocyte Subpopulation as a Predictive Biomarker of Disease Activity in Multiple Sclerosis Patients under Dimethyl Fumarate or Fingolimod Treatment. Mediators of Inflammation, 2019, 2019, 1-9.	1.4	7
358	TERC promotes cellular inflammatory response independent of telomerase. Nucleic Acids Research, 2019, 47, 8084-8095.	6.5	56
359	Correlation Between Smoking and Passive Smoking with Multiple Sclerosis and the Underlying Molecular Mechanisms. Medical Science Monitor, 2019, 25, 893-902.	0.5	12
360	GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis. Nature Medicine, 2019, 25, 1290-1300.	15.2	140
361	Communication of CD 8 + T cells with mononuclear phagocytes in multiple sclerosis. Annals of Clinical and Translational Neurology, 2019, 6, 1151-1164.	1.7	17
362	Immunological Aspects of Approved MS Therapeutics. Frontiers in Immunology, 2019, 10, 1564.	2.2	117

#	Article	IF	CITATIONS
363	Immunomodulatory and neuroprotective mechanisms of Huangqi glycoprotein treatment in experimental autoimmune encephalomyelitis. Folia Neuropathologica, 2019, 57, 117-128.	0.5	5
364	Plasma proteome in multiple sclerosis disease progression. Annals of Clinical and Translational Neurology, 2019, 6, 1582-1594.	1.7	21
365	Macrophage galactose-type lectin (MGL) is induced on M2 microglia and participates in the resolution phase of autoimmune neuroinflammation. Journal of Neuroinflammation, 2019, 16, 130.	3.1	23
366	Impact of fingolimod on CD4+ T cell subset and cytokine profile of relapsing remitting multiple sclerosis patients. Journal of Neuroimmunology, 2019, 337, 577065.	1.1	9
367	<p>A narrative review of psoriasis and multiple sclerosis: links and risks</p> . Psoriasis: Targets and Therapy, 2019, Volume 9, 81-90.	1.2	16
368	Association between Lipoprotein Levels and Humoral Reactivity to Mycobacterium avium subsp. paratuberculosis in Multiple Sclerosis, Type 1 Diabetes Mellitus and Rheumatoid Arthritis. Microorganisms, 2019, 7, 423.	1.6	12
369	Outcomes and Cost-Effectiveness of Autologous Hematopoietic Cell Transplant for Multiple Sclerosis. Current Treatment Options in Neurology, 2019, 21, 53.	0.7	4
370	Different epigenetic clocks reflect distinct pathophysiological features of multiple sclerosis. Epigenomics, 2019, 11, 1429-1439.	1.0	22
371	Assessment of Mitochondrial Dysfunction in Experimental Autoimmune Encephalomyelitis (EAE) Models of Multiple Sclerosis. International Journal of Molecular Sciences, 2019, 20, 4975.	1.8	14
372	Analysis of defective pathways and drug repositioning in Multiple Sclerosis via machine learning approaches. Computers in Biology and Medicine, 2019, 115, 103492.	3.9	11
373	The modulatory role of dopamine receptors in brain neuroinflammation. International Immunopharmacology, 2019, 76, 105908.	1.7	47
374	T Cell Repertoire Dynamics during Pregnancy in Multiple Sclerosis. Cell Reports, 2019, 29, 810-815.e4.	2.9	17
375	Functions and regulation of T cell-derived interleukin-10. Seminars in Immunology, 2019, 44, 101344.	2.7	110
376	Pregnancy-Related Immune Changes and Demyelinating Diseases of the Central Nervous System. Frontiers in Neurology, 2019, 10, 1070.	1.1	17
377	The Adaptive Immune System in Multiple Sclerosis: An Estrogen-Mediated Point of View. Cells, 2019, 8, 1280.	1.8	28
378	The Microbiota-Gut-Brain Axis. Physiological Reviews, 2019, 99, 1877-2013.	13.1	2,304
379	Neuroinflammation and B-Cell Phenotypes in Cervical and Lumbosacral Regions of the Spinal Cord in Experimental Autoimmune Encephalomyelitis in the Absence of Pertussis Toxin. NeuroImmunoModulation, 2019, 26, 198-207.	0.9	7
380	Gene expression profiles of TNF-like cytokine 1A (TL1A) and its receptors death receptor 3 (DR3) and decoy receptor 3 (DcR3) in multiple sclerosis. Journal of Neuroimmunology, 2019, 335, 577020.	1.1	1

#	Article	IF	CITATIONS
381	Cessation of anti-VLA-4 therapy in a focal rat model of multiple sclerosis causes an increase in neuroinflammation. EJNMMI Research, 2019, 9, 38.	1.1	4
382	Immunomodulatory Effect of Pregnancy on Leukocyte Populations in Patients With Multiple Sclerosis: A Comparison of Peripheral Blood and Decidual Placental Tissue. Frontiers in Immunology, 2019, 10, 1935.	2.2	16
383	Design of biodegradable nanoparticles to modulate phenotypes of antigen-presenting cells for antigen-specific treatment of autoimmune disease. Biomaterials, 2019, 222, 119432.	5.7	46
384	Microglia in Retinal Degeneration. Frontiers in Immunology, 2019, 10, 1975.	2.2	224
385	Transposable Elements, Inflammation, and Neurological Disease. Frontiers in Neurology, 2019, 10, 894.	1.1	98
386	Molecular mechanism for the multiple sclerosis risk variant rs17594362. Human Molecular Genetics, 2019, 28, 3600-3609.	1.4	5
387	Neurosteroids as regulators of neuroinflammation. Frontiers in Neuroendocrinology, 2019, 55, 100788.	2.5	133
388	Multiple sclerosis enters a grey area. Nature, 2019, 566, 465-466.	13.7	5
389	Long-term use of interferon-l² in multiple sclerosis increases Vl´1â^'Vl´2â^'Vl³9â^' l³l´ T cells that are associated with a better outcome. Journal of Neuroinflammation, 2019, 16, 179.	3.1	6
390	The Gut Microbiota in Multiple Sclerosis: An Overview of Clinical Trials. Cell Transplantation, 2019, 28, 1507-1527.	1.2	122
391	When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nature Reviews Neurology, 2019, 15, 704-717.	4.9	100
392	Mechanisms of activation induced by antiphospholipid antibodies in multiple sclerosis: Potential biomarkers of disease?. Journal of Immunological Methods, 2019, 474, 112663.	0.6	2
393	Immunomodulatory Effects of Exercise in Experimental Multiple Sclerosis. Frontiers in Immunology, 2019, 10, 2197.	2.2	33
394	T Cells as an Emerging Target for Chronic Pain Therapy. Frontiers in Molecular Neuroscience, 2019, 12, 216.	1.4	87
395	Pregnancy Enables Expansion of Disease-Specific Regulatory T Cells in an Animal Model of Multiple Sclerosis. Journal of Immunology, 2019, 203, 1743-1752.	0.4	9
396	Innate Immunity in the Central Nervous System: A Missing Piece of the Autoimmune Encephalitis Puzzle?. Frontiers in Immunology, 2019, 10, 2066.	2.2	53
397	Short-term sleep deprivation in mice induces B cell migration to the brain compartment. Sleep, 2020, 43, .	0.6	15
398	Unraveling susceptibility to multiple sclerosis. Science, 2019, 365, 1383-1384.	6.0	7

#	Article	IF	CITATIONS
399	Therapeutic Potential of ω-3 Polyunsaturated Fatty Acids in Human Autoimmune Diseases. Frontiers in Immunology, 2019, 10, 2241.	2.2	113
400	Increased frequency of CD4+CD25high CD127low regulatory T cells in patients with multiple sclerosis. Gene Reports, 2019, 17, 100456.	0.4	5
401	IL-21 and IL-21-producing T cells are involved in multiple sclerosis severity and progression. Immunology Letters, 2019, 216, 12-20.	1.1	23
402	NURR1 Impairment in Multiple Sclerosis. International Journal of Molecular Sciences, 2019, 20, 4858.	1.8	15
403	Peroxisome Proliferator–Activated Receptor-δActs within Peripheral Myeloid Cells to Limit Th Cell Priming during Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2019, 203, 2588-2601.	0.4	10
404	Cortical atrophy accelerates as cognitive decline worsens in multiple sclerosis. Neurology, 2019, 93, e1348-e1359.	1.5	53
405	CPT1A plays a key role in the development and treatment of multiple sclerosis and experimental autoimmune encephalomyelitis. Scientific Reports, 2019, 9, 13299.	1.6	16
406	Biochemical Differences in Cerebrospinal Fluid between Secondary Progressive and Relapsing–Remitting Multiple Sclerosis. Cells, 2019, 8, 84.	1.8	35
407	Akt-1 and Akt-2 Differentially Regulate the Development of Experimental Autoimmune Encephalomyelitis by Controlling Proliferation of Thymus-Derived Regulatory T Cells. Journal of Immunology, 2019, 202, 1441-1452.	0.4	16
408	Expression analysis of long non-coding RNAs and their target genes in multiple sclerosis patients. Neurological Sciences, 2019, 40, 801-811.	0.9	11
409	A Blazing Landscape: Neuroinflammation Shapes Brain Metastasis. Cancer Research, 2019, 79, 423-436.	0.4	60
410	Do Antiretroviral Drugs Protect From Multiple Sclerosis by Inhibiting Expression of MS-Associated Retrovirus?. Frontiers in Immunology, 2018, 9, 3092.	2.2	24
411	Comprehensive Analysis of TCR-β Repertoire in Patients with Neurological Immune-mediated Disorders. Scientific Reports, 2019, 9, 344.	1.6	38
412	Acylated and deacylated quillaja saponin-21 adjuvants have opposite roles when utilized for immunization of C57BL/6 mice model with MOG35-55 peptide. Multiple Sclerosis and Related Disorders, 2019, 29, 68-82.	0.9	12
413	Stem Cell-Derived Exosomes as Nanotherapeutics for Autoimmune and Neurodegenerative Disorders. ACS Nano, 2019, 13, 6670-6688.	7.3	341
414	Predicting Host Immune Cell Dynamics and Key Disease-Associated Genes Using Tissue Transcriptional Profiles. Processes, 2019, 7, 301.	1.3	0
415	A Microfluidic Human Model of Blood–Brain Barrier Employing Primary Human Astrocytes. Advanced Biology, 2019, 3, e1800335.	3.0	18
416	No differential gene expression for CD4+ T cells of MS patients and healthy controls. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2019, 5, 205521731985690.	0.5	9

#	Article	IF	CITATIONS
417	Potential therapeutic applications of exosomes in different autoimmune diseases. Clinical Immunology, 2019, 205, 116-124.	1.4	47
418	Therapies for multiple sclerosis targeting B cells. Croatian Medical Journal, 2019, 60, 87-98.	0.2	44
419	Down-regulation of ERMN expression in relapsing remitting multiple sclerosis. Metabolic Brain Disease, 2019, 34, 1261-1266.	1.4	11
420	A Deficit of CEACAM-1–Expressing T Lymphocytes Supports Inflammation in Primary Progressive Multiple Sclerosis. Journal of Immunology, 2019, 203, 76-83.	0.4	9
421	The epigenetics of multiple sclerosis. , 2019, , 97-118.		2
422	The Transcriptional Landscape of Microglial Genes in Aging and Neurodegenerative Disease. Frontiers in Immunology, 2019, 10, 1170.	2.2	51
423	Imaging the execution phase of neuroinflammatory disease models. Experimental Neurology, 2019, 320, 112968.	2.0	3
424	Nanomodulation of Macrophages in Multiple Sclerosis. Cells, 2019, 8, 543.	1.8	53
425	DNA methylation signatures of monozygotic twins clinically discordant for multiple sclerosis. Nature Communications, 2019, 10, 2094.	5.8	51
426	Pretreatment Cancer-Related Cognitive Impairment—Mechanisms and Outlook. Cancers, 2019, 11, 687.	1.7	56
427	Clinical trials in multiple sclerosis: potential future trial designs. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641984709.	1.5	10
428	Mitochondrial Dysfunction and Multiple Sclerosis. Biology, 2019, 8, 37.	1.3	126
429	Antigen-Drug Conjugates as a Novel Therapeutic Class for the Treatment of Antigen-Specific Autoimmune Disorders, Molecular Pharmaceutics, 2019, 16, 2452-2461	2.3	12
430	Non-receptor tyrosine kinase signaling in autoimmunity and therapeutic implications. , 2019, 201, 39-50.		15
430 431	Non-receptor tyrosine kinase signaling in autoimmunity and therapeutic implications. , 2019, 201, 39-50. Sex-specific Tau methylation patterns and synaptic transcriptional alterations are associated with neural vulnerability during chronic neuroinflammation. Journal of Autoimmunity, 2019, 101, 56-69.	3.0	15
430 431 432	Non-receptor tyrosine kinase signaling in autoimmunity and therapeutic implications. , 2019, 201, 39-50. Sex-specific Tau methylation patterns and synaptic transcriptional alterations are associated with neural vulnerability during chronic neuroinflammation. Journal of Autoimmunity, 2019, 101, 56-69. Targeting P2X4 and P2X7 receptors in multiple sclerosis. Current Opinion in Pharmacology, 2019, 47, 119-125.	3.0	15 11 28
430 431 432 433	Non-receptor tyrosine kinase signaling in autoimmunity and therapeutic implications. , 2019, 201, 39-50. Sex-specific Tau methylation patterns and synaptic transcriptional alterations are associated with neural vulnerability during chronic neuroinflammation. Journal of Autoimmunity, 2019, 101, 56-69. Targeting P2X4 and P2X7 receptors in multiple sclerosis. Current Opinion in Pharmacology, 2019, 47, 119-125. <i>Alpinia oxyphylla</i> Fruit Extract Ameliorates Experimental Autoimmune Encephalomyelitis through the Regulation of Th1/Th17 Cells. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-15.	3.0 1.7 0.5	15 11 28 10

#	Article	IF	CITATIONS
435	Combining evidence from four immune cell types identifies DNA methylation patterns that implicate functionally distinct pathways during Multiple Sclerosis progression. EBioMedicine, 2019, 43, 411-423.	2.7	45
436	Melatonin and Multiple Sclerosis: From Plausible Neuropharmacological Mechanisms of Action to Experimental and Clinical Evidence. Clinical Drug Investigation, 2019, 39, 607-624.	1.1	19
437	Interleukin-1 receptor associated kinase (IRAK)-M -mediated type 2 microglia polarization ameliorates the severity of experimental autoimmune encephalomyelitis (EAE). Journal of Autoimmunity, 2019, 102, 77-88.	3.0	37
438	Nonclassical Monocytes in Health and Disease. Annual Review of Immunology, 2019, 37, 439-456.	9.5	294
439	Gut Microbiota Regulation of T Cells During Inflammation and Autoimmunity. Annual Review of Immunology, 2019, 37, 599-624.	9.5	214
440	MicroRNAs in Neuroinflammation: Implications in Disease Pathogenesis, Biomarker Discovery and Therapeutic Applications. Non-coding RNA, 2019, 5, 35.	1.3	158
441	Lactobacillus reuteri Reduces the Severity of Experimental Autoimmune Encephalomyelitis in Mice by Modulating Gut Microbiota. Frontiers in Immunology, 2019, 10, 385.	2.2	109
442	NF-κB/mTOR/MYC Axis Drives PRMT5 Protein Induction After T Cell Activation via Transcriptional and Non-transcriptional Mechanisms. Frontiers in Immunology, 2019, 10, 524.	2.2	21
443	Comparing the Convergent and Concurrent Validity of the Dynamic Gait Index with the Berg Balance Scale in People with Multiple Sclerosis. Healthcare (Switzerland), 2019, 7, 27.	1.0	8
444	The Beneficial and Debilitating Effects of Environmental and Microbial Toxins, Drugs, Organic Solvents and Heavy Metals on the Onset and Progression of Multiple Sclerosis. Toxins, 2019, 11, 147.	1.5	15
445	Novel insights into the mechanisms underlying depression-associated experimental autoimmune encephalomyelitis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 93, 1-10.	2.5	21
446	Coenzyme Q10 supplementation reduces peripheral oxidative stress and inflammation in in in interferon-β1a-treated multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641881907.	1.5	35
447	Insight into the mechanism of action of dimethyl fumarate in multiple sclerosis. Journal of Molecular Medicine, 2019, 97, 463-472.	1.7	47
448	Virtual reality in multiple sclerosis rehabilitation: A review on cognitive and motor outcomes. Journal of Clinical Neuroscience, 2019, 65, 106-111.	0.8	136
449	T-cell repertoire profiling by next-generation sequencing reveals tissue migration dynamics of TRBV13-family clonotypes in a common experimental autoimmune encephalomyelitis mouse model. Journal of Neuroimmunology, 2019, 332, 49-56.	1.1	3
450	Phenotypic Screening-Based Identification of 3,4-Disubstituted Piperidine Derivatives as Macrophage M2 Polarization Modulators: An Opportunity for Treating Multiple Sclerosis. Journal of Medicinal Chemistry, 2019, 62, 3268-3285.	2.9	9
451	Herpes Simplex Virus Type 1 Infection of the Central Nervous System: Insights Into Proposed Interrelationships With Neurodegenerative Disorders. Frontiers in Cellular Neuroscience, 2019, 13, 46.	1.8	104
452	Gold nanoparticles and polyethylene glycol alleviate clinical symptoms and alter cytokine secretion in a mouse model of experimental autoimmune encephalomyelitis. IUBMB Life, 2019, 71, 1313-1321.	1.5	22

#	Article	IF	CITATIONS
453	Remote control of Th17 responses: The lung-CNS axis during EAE. Journal of Leukocyte Biology, 2019, 105, 827-828.	1.5	1
454	Development and Validation of the FSIQ-RMS: A New Patient-Reported Questionnaire to Assess Symptoms and Impacts of Fatigue in Relapsing Multiple Sclerosis. Value in Health, 2019, 22, 453-466.	0.1	28
455	Mechanism underlying β2-AR agonist-mediated phenotypic conversion of LPS-activated microglial cells. Journal of Neuroimmunology, 2019, 332, 37-48.	1.1	22
456	A Review and Hypothesized Model of the Mechanisms That Underpin the Relationship Between Inflammation and Cognition in the Elderly. Frontiers in Aging Neuroscience, 2019, 11, 56.	1.7	74
457	Mechanisms of neurobehavioral abnormalities in multiple sclerosis: Contributions from neural and immune components. Clinical Neurophysiology Practice, 2019, 4, 39-46.	0.6	8
458	Amino acid metabolism as drug target in autoimmune diseases. Autoimmunity Reviews, 2019, 18, 334-348.	2.5	48
459	Immunomodulatory properties of MSC-derived exosomes armed with high affinity aptamer toward mylein as a platform for reducing multiple sclerosis clinical score. Journal of Controlled Release, 2019, 299, 149-164.	4.8	93
460	A genetic variant associated with multiple sclerosis inversely affects the expression of CD58 and microRNA-548ac from the same gene. PLoS Genetics, 2019, 15, e1007961.	1.5	17
461	Cross-reactivity between myelin oligodendrocyte glycoprotein and human endogenous retrovirus W protein: nanotechnological evidence for the potential trigger of multiple sclerosis. Micron, 2019, 120, 66-73.	1.1	16
462	Cognitive function predicts work disability among multiple sclerosis patients. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2019, 5, 205521731882213.	0.5	12
463	Regional and functional heterogeneity of antigen presenting cells in the mouse brain and meninges. Glia, 2019, 67, 935-949.	2.5	21
464	Enabling precision medicine by unravelling disease pathophysiology: quantifying signal transduction pathway activity across cell and tissue types. Scientific Reports, 2019, 9, 1603.	1.6	49
465	Empirical evaluation of variant calling accuracy using ultra-deep whole-genome sequencing data. Scientific Reports, 2019, 9, 1784.	1.6	46
466	Myeloid Cells in Multiple Sclerosis. , 2019, , .		1
467	Tolerogenic dendritic cell-based treatment for multiple sclerosis (MS): a harmonised study protocol for two phase I clinical trials comparing intradermal and intranodal cell administration. BMJ Open, 2019, 9, e030309.	0.8	63
468	Meningeal Lymphatics: A Review and Future Directions From a Clinical Perspective. Neuroscience Insights, 2019, 14, 117906951988902.	0.9	23
469	Autologous Mesenchymal Stem Cell Transplantation in Multiple Sclerosis: A Meta-Analysis. Stem Cells International, 2019, 2019, 1-11.	1.2	16
470	The Intersection of Physical Function, Cognitive Performance, Aging, and Multiple Sclerosis: A Cross-sectional Comparative Study. Cognitive and Behavioral Neurology, 2019, 32, 1-10.	0.5	8

	CITATION	LEPUKI	
#	Article	IF	CITATIONS
471	Resolution of inflammation during multiple sclerosis. Seminars in Immunopathology, 2019, 41, 711-726.	2.8	60
472	OLT1177 (Dapansutrile), a Selective NLRP3 Inflammasome Inhibitor, Ameliorates Experimental Autoimmune Encephalomyelitis Pathogenesis. Frontiers in Immunology, 2019, 10, 2578.	2.2	69
473	Coupling the Paternò-Büchi (PB) Reaction With Mass Spectrometry to Study Unsaturated Fatty Acids in Mouse Model of Multiple Sclerosis. Frontiers in Chemistry, 2019, 7, 807.	1.8	12
475	Pattern Recognition Receptors in Multiple Sclerosis and Its Animal Models. Frontiers in Immunology, 2019, 10, 2644.	2.2	24
476	Co-signal Molecules in T Cell Activation. Advances in Experimental Medicine and Biology, 2019, , .	0.8	6
477	One, No One, and One Hundred Thousand: T Regulatory Cells' Multiple Identities in Neuroimmunity. Frontiers in Immunology, 2019, 10, 2947.	2.2	18
478	IL-17+ CD8+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis. Nature Communications, 2019, 10, 5722.	5.8	68
479	A computational approach based on the colored Petri net formalism for studying multiple sclerosis. BMC Bioinformatics, 2019, 20, 623.	1.2	12
480	What can characterization of cerebrospinal fluid escape populations teach us about viral reservoirs in the central nervous system?. Aids, 2019, 33, S171-S179.	1.0	15
481	Influence of combined functional resistance and endurance exercise over 12 weeks on matrix metalloproteinase-2 serum concentration in persons with relapsing-remitting multiple sclerosis – a community-based randomized controlled trial. BMC Neurology, 2019, 19, 314.	0.8	6
482	Meningeal inflammation changes the balance of TNF signalling in cortical grey matter in multiple sclerosis. Journal of Neuroinflammation, 2019, 16, 259.	3.1	79
483	Identification of novel non-myelin biomarkers in multiple sclerosis using an improved phage-display approach. PLoS ONE, 2019, 14, e0226162.	1.1	12
484	A systematic review of aerobic and resistance exercise and inflammatory markers in people with multiple sclerosis. Behavioural Pharmacology, 2019, 30, 652-659.	0.8	7
485	Safety and efficacy of immunoadsorption versus plasma exchange in steroid-refractory relapse of multiple sclerosis and clinically isolated syndrome: A randomised, parallel-group, controlled trial. EClinicalMedicine, 2019, 16, 98-106.	3.2	31
486	Cathepsin C modulates myelin oligodendrocyte glycoproteinâ€induced experimental autoimmune encephalomyelitis. Journal of Neurochemistry, 2019, 148, 413-425.	2.1	9
487	Involvement of midkine in autoimmune and autoinflammatory diseases. Modern Rheumatology, 2019, 29, 567-571.	0.9	16
488	Imaging of meningeal inflammation should become part of the routine MRI protocol – Yes. Multiple Sclerosis Journal, 2019, 25, 330-331.	1.4	4
489	A comprehensive review on the treatment approaches of multiple sclerosis: currently and in the future. Inflammation Research, 2019, 68, 25-38.	1.6	104

#	Article	IF	Citations
490	A Fungal World: Could the Gut Mycobiome Be Involved in Neurological Disease?. Frontiers in Microbiology, 2018, 9, 3249.	1.5	80
491	Exploring the relationship between Endothelin-1 and peripheral inflammation in multiple sclerosis. Journal of Neuroimmunology, 2019, 326, 45-48.	1.1	11
492	Proinflammatory CD20+ T cells in the pathogenesis of multiple sclerosis. Brain, 2019, 142, 120-132.	3.7	81
493	Microglia in Central Nervous System Inflammation and Multiple Sclerosis Pathology. Trends in Molecular Medicine, 2019, 25, 112-123.	3.5	318
494	Quantitative susceptibility mapping identifies inflammation in a subset of chronic multiple sclerosis lesions. Brain, 2019, 142, 133-145.	3.7	136
495	Ocrelizumab for the treatment of multiple sclerosis. Expert Review of Neurotherapeutics, 2019, 19, 97-108.	1.4	19
496	BP180 Autoantibodies Target Different Epitopes in Multiple Sclerosis or Alzheimer's Disease than in Bullous Pemphigoid. Journal of Investigative Dermatology, 2019, 139, 293-299.	0.3	20
497	A robust pipeline with high replication rate for detection of somatic variants in the adaptive immune system as a source of common genetic variation in autoimmune disease. Human Molecular Genetics, 2019, 28, 1369-1380.	1.4	16
498	Spatial and molecular changes of mouse brain metabolism in response to immunomodulatory treatment with teriflunomide as visualized by MALDI-MSI. Analytical and Bioanalytical Chemistry, 2019, 411, 353-365.	1.9	17
499	Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation. Cell, 2019, 176, 581-596.e18.	13.5	150
500	Regulatory T Cells and Their Derived Cytokine, Interleukin-35, Reduce Pain in Experimental Autoimmune Encephalomyelitis. Journal of Neuroscience, 2019, 39, 2326-2346.	1.7	44
501	TRPM8 channel inhibitor AMTB suppresses murine T-cell activation induced by T-cell receptor stimulation, concanavalin A, or external antigen re-stimulation. Biochemical and Biophysical Research Communications, 2019, 509, 918-924.	1.0	18
502	Can We Design a Nogo Receptor-Dependent Cellular Therapy to Target MS?. Cells, 2019, 8, 1.	1.8	170
503	Interferon β-Mediated Protective Functions of Microglia in Central Nervous System Autoimmunity. International Journal of Molecular Sciences, 2019, 20, 190.	1.8	22
504	Sex differences in autoimmune disorders of the central nervous system. Seminars in Immunopathology, 2019, 41, 177-188.	2.8	74
505	The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiological Reviews, 2019, 99, 115-160.	13.1	275
506	Low levels of alpha-synuclein in peripheral tissues are related to clinical relapse in relapsing-remitting multiple sclerosis: a pilot cross-sectional study. Journal of the Neurological Sciences, 2019, 396, 87-93.	0.3	4
507	Natural products: Potential therapeutic agents in multiple sclerosis. International Immunopharmacology, 2019, 67, 87-97.	1.7	24

		15	Circuration
#	ARTICLE	IF	CHATIONS
508	Reports, 2019, 39, .	1.1	41
509	Amyloid-like Behavior of Site-Specifically Citrullinated Myelin Oligodendrocyte Protein (MOG) Peptide Fragments inside EBV-Infected B-Cells Influences Their Cytotoxicity and Autoimmunogenicity. Biochemistry, 2019, 58, 763-775.	1.2	11
510	Sepsis: developing new alternatives to reduce neuroinflammation and attenuate brain injury. Annals of the New York Academy of Sciences, 2019, 1437, 43-56.	1.8	59
511	Purinergic receptors in multiple sclerosis pathogenesis. Brain Research Bulletin, 2019, 151, 38-45.	1.4	29
512	The Role of Neuroinflammation in Neurodegenerative Disorders. , 2019, , 241-267.		7
513	Various strategies to improve efficacy of stem cell transplantation in multiple sclerosis: Focus on mesenchymal stem cells and neuroprotection. Journal of Neuroimmunology, 2019, 328, 20-34.	1.1	23
514	Effects of cigarette smoke on immunity, neuroinflammation and multiple sclerosis. Journal of Neuroimmunology, 2019, 329, 24-34.	1.1	41
515	Synchrotron radiation microtomography of brain hemisphere and spinal cord of a mouse model of multiple sclerosis revealed a correlation between capillary dilation and clinical score. Journal of Comparative Neurology, 2019, 527, 2091-2100.	0.9	1
516	Mitochondria in neuroinflammation – Multiple sclerosis (MS), leber hereditary optic neuropathy (LHON) and LHON-MS. Neuroscience Letters, 2019, 710, 132932.	1.0	52
517	Amiloride does not protect retinal nerve fibre layer thickness in optic neuritis in a phase 2 randomised controlled trial. Multiple Sclerosis Journal, 2019, 25, 246-255.	1.4	13
518	Cognitive function is a major determinant of income among multiple sclerosis patients in Sweden acting independently from physical disability. Multiple Sclerosis Journal, 2019, 25, 104-112.	1.4	37
519	Regulatory T Cell Plasticity and Stability and Autoimmune Diseases. Clinical Reviews in Allergy and Immunology, 2020, 58, 52-70.	2.9	77
520	Long-term follow-up of multiple sclerosis studies and outcomes from early treatment of clinically isolated syndrome in the BENEFIT 11 study. Journal of Neurology, 2020, 267, 308-316.	1.8	12
521	Targeting the Dopaminergic System in Autoimmunity. Journal of Neurolmmune Pharmacology, 2020, 15, 57-73.	2.1	48
522	Postâ€mortem multiple sclerosis lesion pathology is influenced by single nucleotide polymorphisms. Brain Pathology, 2020, 30, 106-119.	2.1	22
523	Axonal damage in spinal cord is associated with gray matter atrophy in sensorimotor cortex in experimental autoimmune encephalomyelitis. Multiple Sclerosis Journal, 2020, 26, 294-303.	1.4	11
524	Small GTPase RAS in multiple sclerosis - exploring the role of RAS GTPase in the etiology of multiple sclerosis. Small GTPases, 2020, 11, 312-319.	0.7	1
525	Potential Biomarker and Therapeutic LncRNAs in Multiple Sclerosis Through Targeting Memory B Cells. NeuroMolecular Medicine, 2020, 22, 111-120.	1.8	18

#	Article	IF	CITATIONS
526	Early detection of cognitive dysfunction in patients with multiple sclerosis: Implications on outcome. Brain Impairment, 2020, 21, 208-216.	0.5	1
527	Long term multiple sclerosis drug delivery using dendritic polyglycerol flower-like microspheres. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 188-206.	1.9	2
528	Calming Down Mast Cells with Ketotifen: A Potential Strategy for Multiple Sclerosis Therapy?. Neurotherapeutics, 2020, 17, 218-234.	2.1	15
529	The Putative Association of TOB1-AS1 Long Non-coding RNA with Immune Tolerance: A Study on Multiple Sclerosis Patients. NeuroMolecular Medicine, 2020, 22, 100-110.	1.8	3
530	Immune Responses Regulated by Cannabidiol. Cannabis and Cannabinoid Research, 2020, 5, 12-31.	1.5	163
531	Neurologic Disorders of the Maxillofacial Region. Dental Clinics of North America, 2020, 64, 255-278.	0.8	1
532	The priorities of neurologists for exercise promotion in comprehensive multiple sclerosis care. Multiple Sclerosis and Related Disorders, 2020, 38, 101482.	0.9	11
533	Response to oxidative stress of peripheral blood mononuclear cells from multiple sclerosis patients and healthy controls. Cell Stress and Chaperones, 2020, 25, 81-91.	1.2	8
534	JNK and phosphorylated Bcl-2 predict multiple sclerosis clinical activity and glatiramer acetate therapeutic response. Clinical Immunology, 2020, 210, 108297.	1.4	3
535	HLA DR2b-binding peptides from human endogenous retrovirus envelope, Epstein-Barr virus and brain proteins in the context of molecular mimicry in multiple sclerosis. Immunology Letters, 2020, 217, 15-24.	1.1	16
536	Multiple Sclerosis and the Choroid Plexus: Emerging Concepts of Disease Immunopathophysiology. Pediatric Neurology, 2020, 103, 65-75.	1.0	10
537	Dimethyl fumarate therapy reduces memory T cells and the CNS migration potential in patients with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2020, 37, 101451.	0.9	18
538	T Cells and Their Subsets in Autoimmunity. , 2020, , 91-116.		1
539	Increased plasma levels of mitochondrial DNA and pro-inflammatory cytokines in patients with progressive multiple sclerosis. Journal of Neuroimmunology, 2020, 338, 577107.	1.1	18
540	¹⁸ F-FAC PET Visualizes Brain-Infiltrating Leukocytes in a Mouse Model of Multiple Sclerosis. Journal of Nuclear Medicine, 2020, 61, 757-763.	2.8	14
541	Intranasal Methylprednisolone Effectively Reduces Neuroinflammation in Mice With Experimental Autoimmune Encephalitis. Journal of Neuropathology and Experimental Neurology, 2020, 79, 226-237.	0.9	19
542	Effects of interferon and glatiramer acetate on cytokine patterns in multiple sclerosis patients. Cytokine, 2020, 126, 154911.	1.4	7
543	â€~Prototypical' proinflammatory cytokine (IL-1) in multiple sclerosis: role in pathogenesis and therapeutic targeting. Expert Opinion on Therapeutic Targets, 2020, 24, 37-46.	1.5	16

#	Article	IF	CITATIONS
544	Nuclear prelamin a recognition factor and iron dysregulation in multiple sclerosis. Metabolic Brain Disease, 2020, 35, 275-282.	1.4	6
545	The Na+/Ca2+ exchangers in demyelinating diseases. Cell Calcium, 2020, 85, 102130.	1.1	11
546	Neurofibromatosis type 2 and multiple sclerosis. Multiple Sclerosis and Related Disorders, 2020, 39, 101890.	0.9	0
547	Crotoxin down-modulates pro-inflammatory cells and alleviates pain on the MOG35-55-induced experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Brain, Behavior, and Immunity, 2020, 84, 253-268.	2.0	21
548	The efficacy of interferon-beta therapy in multiple sclerosis patients: investigation of the RORA gene as a predictive biomarker. Pharmacogenomics Journal, 2020, 20, 271-276.	0.9	7
549	The emerging role of neutrophils in neurodegeneration. Immunobiology, 2020, 225, 151865.	0.8	27
550	EBV-specific CD8 T lymphocytes and B cells during glatiramer acetate therapy in patients with MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e876.	3.1	6
551	Emerging Role of Extracellular Vesicles in the Pathophysiology of Multiple Sclerosis. International Journal of Molecular Sciences, 2020, 21, 7336.	1.8	39
552	The Pharmacogenetics of Rituximab: Potential Implications for Anti-CD20 Therapies in Multiple Sclerosis. Neurotherapeutics, 2020, 17, 1768-1784.	2.1	15
553	Modelling multiple sclerosis using induced pluripotent stem cells. Journal of Neuroimmunology, 2020, 349, 577425.	1.1	7
554	Glycosylation Alterations in Multiple Sclerosis Show Increased Proinflammatory Potential. Biomedicines, 2020, 8, 410.	1.4	26
555	Gut–Brain Axis: Role of Gut Microbiota on Neurological Disorders and How Probiotics/Prebiotics Beneficially Modulate Microbial and Immune Pathways to Improve Brain Functions. International Journal of Molecular Sciences, 2020, 21, 7551.	1.8	131
556	Dysregulation of metabolic pathways by carnitine palmitoyl-transferase 1 plays a key role in central nervous system disorders: experimental evidence based on animal models. Scientific Reports, 2020, 10, 15583.	1.6	12
557	Empirical Investigation of Ethical Challenges Related to the Use of Biological Therapies. Journal of Law, Medicine and Ethics, 2020, 48, 567-578.	0.4	4
558	Re-Examining the Role of TNF in MS Pathogenesis and Therapy. Cells, 2020, 9, 2290.	1.8	52
559	Contributions of T cells in multiple sclerosis: what do we currently know?. Journal of Neurology, 2021, 268, 4587-4593.	1.8	15
560	Mitochondrial damage-associated molecular patterns stimulate reactive oxygen species production in human microglia. Molecular and Cellular Neurosciences, 2020, 108, 103538.	1.0	15
561	The immune system on the TRAIL of Alzheimer's disease. Journal of Neuroinflammation, 2020, 17, 298.	3.1	42

#	Article	IF	CITATIONS
562	Expression of Akt1 and p-Akt1 in peripheral T cell subsets of multiple sclerosis patients. Acta Neurologica Belgica, 2020, 121, 1777-1782.	0.5	5
563	Early changes in ILâ€21, ILâ€22, CCL2, and CCL4 serum cytokines after outpatient autologous transplantation for multiple sclerosis: A proof of concept study. Clinical Transplantation, 2020, 34, e14114.	0.8	10
564	Engineered regulatory T cells expressing myelin-specific chimeric antigen receptors suppress EAE progression. Cellular Immunology, 2020, 358, 104222.	1.4	36
565	A comparative study of the effects of yoga and clinical Pilates training on walking, cognition, respiratory functions, and quality of life in persons with multiple sclerosis: A quasi-experimental study. Explore: the Journal of Science and Healing, 2021, 17, 424-429.	0.4	11
566	Chronic fatigue and depression due to multiple sclerosis: Immune-inflammatory pathways, tryptophan catabolites and the gut-brain axis as possible shared pathways. Multiple Sclerosis and Related Disorders, 2020, 46, 102533.	0.9	27
567	Recent Advances in Nanomedicines for Multiple Sclerosis Therapy. ACS Applied Bio Materials, 2020, 3, 6571-6597.	2.3	7
568	An evaluation on potential anti-inflammatory effects of β-lapachone. International Immunopharmacology, 2020, 87, 106810.	1.7	15
569	Myelin Basic Protein Phospholipid Complexation Likely Competes with Deimination in Experimental Autoimmune Encephalomyelitis Mouse Model. ACS Omega, 2020, 5, 15454-15467.	1.6	7
570	Avanços no tratamento da esclerose múltipla através do anticorpo monoclonal Ocrelizumabe. Medicina, 2020, 53, 35-41.	0.0	1
571	Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurology, The, 2020, 19, 678-688.	4.9	193
572	The Crotoxin:SBA-15 Complex Down-Regulates the Incidence and Intensity of Experimental Autoimmune Encephalomyelitis Through Peripheral and Central Actions. Frontiers in Immunology, 2020, 11, 591563.	2.2	5
573	RANK/RANKL/OPG Signaling in the Brain: A Systematic Review of the Literature. Frontiers in Neurology, 2020, 11, 590480.	1.1	21
574	Multiple Sclerosis: Shall We Target CD33?. Genes, 2020, 11, 1334.	1.0	9
575	B Cells in Multiple Sclerosis and Virus-Induced Neuroinflammation. Frontiers in Neurology, 2020, 11, 591894.	1.1	14
576	The Development of Cladribine Tablets for the Treatment of Multiple Sclerosis: A Comprehensive Review. Drugs, 2020, 80, 1901-1928.	4.9	42
577	<p>Celecoxib Exerts a Therapeutic Effect Against Demyelination by Improving the Immune and Inflammatory Microenvironments</p> . Journal of Inflammation Research, 2020, Volume 13, 1043-1055.	1.6	5
578	Cytokines and Transgenic Matrix in Autoimmune Diseases: Similarities and Differences. Biomedicines, 2020, 8, 559.	1.4	1
579	Ectopic Lymphoid Follicles in Multiple Sclerosis: Centers for Disease Control?. Frontiers in Neurology, 2020, 11, 607766.	1.1	22

#	Article	IF	Citations
580	Renal-Limited Antiglomerular Basement Membrane Disease Related To Alemtuzumab: A Case Report. Canadian Journal of Kidney Health and Disease, 2020, 7, 205435812096268.	0.6	2
581	The role of the gut microbiota and microbial metabolites in neuroinflammation. European Journal of Immunology, 2020, 50, 1863-1870.	1.6	32
582	The effects of aging and disease duration on cognition in multiple sclerosis. Brain and Cognition, 2020, 146, 105650.	0.8	10
583	Nutrition and autoimmune diseases. , 2020, , 549-568.		3
584	Tc17 biology and function: Novel concepts. European Journal of Immunology, 2020, 50, 1257-1267.	1.6	37
585	Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathologica, 2020, 140, 359-375.	3.9	69
586	Systemic inflammation moderates the association of prior concussion with hippocampal volume and episodic memory in high school and collegiate athletes. Brain, Behavior, and Immunity, 2020, 89, 380-388.	2.0	8
587	Neuronal mitochondrial calcium uniporter deficiency exacerbates axonal injury and suppresses remyelination in mice subjected to experimental autoimmune encephalomyelitis. Experimental Neurology, 2020, 333, 113430.	2.0	5
589	Reelin depletion protects against autoimmune encephalomyelitis by decreasing vascular adhesion of leukocytes. Science Translational Medicine, 2020, 12, .	5.8	14
590	Dietary fish intake and the risk of multiple sclerosis: a systematic review and meta-analysis of observational studies. Nutritional Neuroscience, 2022, 25, 681-689.	1.5	4
591	Attenuation of inflammatory response in the EAE model by PEGlated nanoliposome of pistachio oils. Journal of Neuroimmunology, 2020, 347, 577352.	1.1	11
592	Brain-homing CD4 ⁺ T cells display glucocorticoid-resistant features in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	10
593	CNS-localized myeloid cells capture living invading T cells during neuroinflammation. Journal of Experimental Medicine, 2020, 217, .	4.2	18
594	Organic Selenium Reaches the Central Nervous System and Downmodulates Local Inflammation: A Complementary Therapy for Multiple Sclerosis?. Frontiers in Immunology, 2020, 11, 571844.	2.2	13
595	Brain energy metabolism and multiple sclerosis: progress and prospects. Archives of Pharmacal Research, 2020, 43, 1017-1030.	2.7	10
596	Concentrations of plasma-borne extracellular particles differ between multiple sclerosis disease courses and compared to healthy controls. Multiple Sclerosis and Related Disorders, 2020, 45, 102446.	0.9	8
597	Pro-inflammatory activation following demyelination is required for myelin clearance and oligodendrogenesis. Journal of Experimental Medicine, 2020, 217, .	4.2	87
598	Methylprednisolone alleviates multiple sclerosis by expanding myeloidâ€derived suppressor cells via glucocorticoid receptor β and S100A8/9 upâ€regulation. Journal of Cellular and Molecular Medicine, 2020, 24, 13703-13714.	1.6	19

#	Article	IF	CITATIONS
599	Systemic Mesenchymal Stem Cell Treatment Mitigates Structural and Functional Retinal Ganglion Cell Degeneration in a Mouse Model of Multiple Sclerosis. Translational Vision Science and Technology, 2020, 9, 16.	1.1	19
600	Vascular disease and multiple sclerosis: a post-mortem study exploring their relationships. Brain, 2020, 143, 2998-3012.	3.7	33
601	Metabolic determinants of leukocyte pathogenicity in neurological diseases. Journal of Neurochemistry, 2021, 158, 36-58.	2.1	10
602	Dynamic Responses of Microglia in Animal Models of Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2020, 14, 269.	1.8	29
603	Impact of Exercise on Immunometabolism in Multiple Sclerosis. Journal of Clinical Medicine, 2020, 9, 3038.	1.0	14
604	The immune signatures of multiple sclerosis: Lessons from twin studies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24013-24015.	3.3	3
605	HLA-G Expressing Immune Cells in Immune Mediated Diseases. Frontiers in Immunology, 2020, 11, 1613.	2.2	36
606	COVID-19 and Multiple Sclerosis: Predisposition and Precautions in Treatment. SN Comprehensive Clinical Medicine, 2020, 2, 1802-1807.	0.3	37
607	Implication of Neuronal Versus Microglial P2X4 Receptors in Central Nervous System Disorders. Neuroscience Bulletin, 2020, 36, 1327-1343.	1.5	25
608	Kombucha ameliorates experimental autoimmune encephalomyelitis through activation of Treg and Th2 cells. Acta Neurologica Belgica, 2021, 121, 1685-1692.	0.5	14
609	Immune signatures of prodromal multiple sclerosis in monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21546-21556.	3.3	36
610	Single-cell mass cytometry reveals complex myeloid cell composition in active lesions of progressive multiple sclerosis. Acta Neuropathologica Communications, 2020, 8, 136.	2.4	35
611	P2X7 Receptors Amplify CNS Damage in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2020, 21, 5996.	1.8	75
612	Central nervous systemâ€infiltrated immune cells induce calcium increase in astrocytes via astroglial purinergic signaling. Journal of Neuroscience Research, 2020, 98, 2317-2332.	1.3	13
613	Computational modeling of the immune response in multiple sclerosis using epimod framework. BMC Bioinformatics, 2020, 21, 550.	1.2	9
614	CD8+ T cell gene expression analysis identifies differentially expressed genes between multiple sclerosis patients and healthy controls. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2020, 6, 205521732097851.	0.5	2
615	Association of Vitamin D Metabolism Gene Polymorphisms with Autoimmunity: Evidence in Population Genetic Studies. International Journal of Molecular Sciences, 2020, 21, 9626.	1.8	49
616	MCAM/CD146 Signaling via PLCÎ ³ 1 Leads to Activation of Î ² 1-Integrins in Memory T-Cells Resulting in Increased Brain Infiltration. Frontiers in Immunology, 2020, 11, 599936.	2.2	9

#	Article	IF	CITATIONS
617	Elevated Concentrations of Soluble Fas and FasL in Multiple Sclerosis Patients with Antinuclear Antibodies. Journal of Clinical Medicine, 2020, 9, 3845.	1.0	1
618	Disturbed Presynaptic Ca2+ Signaling in Photoreceptors in the EAE Mouse Model of Multiple Sclerosis. IScience, 2020, 23, 101830.	1.9	7
619	The STING-IFN-β-Dependent Axis Is Markedly Low in Patients with Relapsing-Remitting Multiple Sclerosis. International Journal of Molecular Sciences, 2020, 21, 9249.	1.8	11
620	Ozanimod to Treat Relapsing Forms of Multiple Sclerosis: A Comprehensive Review of Disease, Drug Efficacy and Side Effects. Neurology International, 2020, 12, 89-108.	1.3	28
621	Gas6 Inhibits Toll-Like Receptor-Mediated Inflammatory Pathways in Mouse Microglia via Axl and Mer. Frontiers in Cellular Neuroscience, 2020, 14, 576650.	1.8	22
622	[Met5]-enkephalin preserves diffusion metrics in EAE mice. Brain Research Bulletin, 2020, 165, 246-252.	1.4	5
623	Liver X Receptors: Regulators of Cholesterol Metabolism, Inflammation, Autoimmunity, and Cancer. Frontiers in Immunology, 2020, 11, 584303.	2.2	71
624	The Fabp5/calnexin complex is a prerequisite for sensitization of mice to experimental autoimmune encephalomyelitis. FASEB Journal, 2020, 34, 16662-16675.	0.2	7
625	Multiple Sklerose: Neuroinflammation und -degeneration Hand in Hand. Karger Kompass Autoimmun, 2020, 2, 147-150.	0.0	0
626	Regulatory B Cells Normalize CNS Myeloid Cell Content in a Mouse Model of Multiple Sclerosis and Promote Oligodendrogenesis and Remyelination. Journal of Neuroscience, 2020, 40, 5105-5115.	1.7	22
627	Molecular Interventions towards Multiple Sclerosis Treatment. Brain Sciences, 2020, 10, 299.	1.1	9
628	Shared Regulatory Pathways Reveal Novel Genetic Correlations Between Grip Strength and Neuromuscular Disorders. Frontiers in Genetics, 2020, 11, 393.	1.1	5
629	Experimental Models of Neuroimmunological Disorders: A Review. Frontiers in Neurology, 2020, 11, 389.	1.1	11
630	Perivascular tissue resident memory T cells as therapeutic target in multiple sclerosis. Expert Review of Neurotherapeutics, 2020, 20, 835-848.	1.4	13
631	Natural history of brain lesions in X-linked adrenoleukodystrophy. Neurology, 2020, 94, 1058-1059.	1.5	0
632	Specialized pro-resolving lipid mediators are differentially altered in peripheral blood of patients with multiple sclerosis and attenuate monocyte and blood-brain barrier dysfunction. Haematologica, 2020, 105, 2056-2070.	1.7	70
633	Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain, 2020, 143, 1714-1730.	3.7	131
634	Activin-A limits Th17 pathogenicity and autoimmune neuroinflammation via CD39 and CD73 ectonucleotidases and Hif1-I±â€"dependent pathways. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12269-12280.	3.3	21
#	Article	IF	CITATIONS
-----	--	-----	-----------
635	Inflammation-related plasma and CSF biomarkers for multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12952-12960.	3.3	102
636	B and T Cells Driving Multiple Sclerosis: Identity, Mechanisms and Potential Triggers. Frontiers in Immunology, 2020, 11, 760.	2.2	163
637	Promises and Limitations of Neural Stem Cell Therapies for Progressive Multiple Sclerosis. Trends in Molecular Medicine, 2020, 26, 898-912.	3.5	42
638	Spinal Cord Involvement in MS and Other Demyelinating Diseases. Biomedicines, 2020, 8, 130.	1.4	9
639	Central Modulation of Selective Sphingosine-1-Phosphate Receptor 1 Ameliorates Experimental Multiple Sclerosis. Cells, 2020, 9, 1290.	1.8	23
640	Plasma Exchange or Immunoadsorption in Demyelinating Diseases: A Meta-Analysis. Journal of Clinical Medicine, 2020, 9, 1597.	1.0	22
641	A GM-CSF-neuroantigen tolerogenic vaccine elicits inefficient antigen recognition events below the CD40L triggering threshold to expand CD4+ CD25+ FOXP3+ Tregs that inhibit experimental autoimmune encephalomyelitis (EAE). Journal of Neuroinflammation, 2020, 17, 180.	3.1	6
642	Oligodendrocytes that survive acute coronavirus infection induce prolonged inflammatory responses in the CNS. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15902-15910.	3.3	32
643	Cladribine modifies functional properties of microglia. Clinical and Experimental Immunology, 2020, 201, 328-340.	1.1	13
644	Recent Advances in Antigen-Specific Immunotherapies for the Treatment of Multiple Sclerosis. Brain Sciences, 2020, 10, 333.	1.1	21
645	Gene expression of semaphorin-3A, semaphorin-7A, neuropilin-1, plexin-C1, and β1 integrin in treated-multiple sclerosis patients. Neurological Research, 2020, 42, 783-788.	0.6	6
646	Promising Nanotechnology Approaches in Treatment of Autoimmune Diseases of Central Nervous System. Brain Sciences, 2020, 10, 338.	1.1	32
647	Evaluating the Effects of Dietary Interventions on Disease Progression and Symptoms of Adults with Multiple Sclerosis: An Umbrella Review. Advances in Nutrition, 2020, 11, 1603-1615.	2.9	22
648	Ongoing Research on the Role of Gintonin in the Management of Neurodegenerative Disorders. Cells, 2020, 9, 1464.	1.8	24
649	microRNAs: key modulators of disease-modifying therapies in multiple sclerosis. International Reviews of Immunology, 2020, 39, 264-279.	1.5	8
650	Clia in neurodegeneration: Drivers of disease or along for the ride?. Neurobiology of Disease, 2020, 142, 104957.	2.1	56
651	Erythrocyte microRNAs show biomarker potential and implicate multiple sclerosis susceptibility genes. Clinical and Translational Medicine, 2020, 10, 74-90.	1.7	7
652	Antibodies in sera from multiple sclerosis patients recognize Trichinella spiralis muscle larvae excretory–secretory antigens. Immunobiology, 2020, 225, 151954.	0.8	2

#	Article	IF	CITATIONS
653	The critical role of Faecalibacterium prausnitzii in human health: An overview. Microbial Pathogenesis, 2020, 149, 104344.	1.3	102
654	Lipoprotein profiling in early multiple sclerosis patients: effect of chronic inflammation?. Lipids in Health and Disease, 2020, 19, 49.	1.2	15
655	The Role of Granulocyte-Macrophage Colony-Stimulating Factor in Murine Models of Multiple Sclerosis. Cells, 2020, 9, 611.	1.8	25
656	Generation of a Model to Predict Differentiation and Migration of Lymphocyte Subsets under Homeostatic and CNS Autoinflammatory Conditions. International Journal of Molecular Sciences, 2020, 21, 2046.	1.8	5
657	LRR domain of NLRX1 protein delivery by dNP2 inhibits T cell functions and alleviates autoimmune encephalomyelitis. Theranostics, 2020, 10, 3138-3150.	4.6	19
658	RNA-Binding Protein HuR Promotes Th17 Cell Differentiation and Can Be Targeted to Reduce Autoimmune Neuroinflammation. Journal of Immunology, 2020, 204, 2076-2087.	0.4	22
659	Fecal Microbiota Transplantation in Neurological Disorders. Frontiers in Cellular and Infection Microbiology, 2020, 10, 98.	1.8	221
660	The therapeutic potential of bilobalide on experimental autoimmune encephalomyelitis (EAE) mice. Metabolic Brain Disease, 2020, 35, 793-807.	1.4	5
661	Calcitriol Prevents Neuroinflammation and Reduces Blood-Brain Barrier Disruption and Local Macrophage/Microglia Activation. Frontiers in Pharmacology, 2020, 11, 161.	1.6	36
662	Novel phloroglucinol derivative Compound 21 protects experimental autoimmune encephalomyelitis rats via inhibiting Th1/Th17 cell infiltration. Brain, Behavior, and Immunity, 2020, 87, 751-764.	2.0	7
663	The Potential of Computational Modeling to Predict Disease Course and Treatment Response in Patients with Relapsing Multiple Sclerosis. Cells, 2020, 9, 586.	1.8	23
664	Strategies for Neuroprotection in Multiple Sclerosis and the Role of Calcium. International Journal of Molecular Sciences, 2020, 21, 1663.	1.8	23
665	Host and Microbial Tryptophan Metabolic Profiling in Multiple Sclerosis. Frontiers in Immunology, 2020, 11, 157.	2.2	35
666	Molecular therapeutic strategies in neurodegenerative diseases and injury. , 2020, , 435-486.		0
667	Distinct Functional Connectivity Signatures of Impaired Social Cognition in Multiple Sclerosis. Frontiers in Neurology, 2020, 11, 507.	1.1	21
668	Dabigatran Suppresses PAR-1/SphK/S1P Activation of Astrocytes in Experimental Autoimmune Encephalomyelitis Model. Frontiers in Molecular Neuroscience, 2020, 13, 114.	1.4	7
669	Inflammation-Associated Synaptic Alterations as Shared Threads in Depression and Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2020, 14, 169.	1.8	35
670	Targeting Dendritic Cells with Antigen-Delivering Antibodies for Amelioration of Autoimmunity in Animal Models of Multiple Sclerosis and Other Autoimmune Diseases. Antibodies, 2020, 9, 23.	1.2	9

#	Article	IF	CITATIONS
671	Disorders of myelin. , 2020, , 309-335.		2
672	Simplified indices of exercise tolerance in patients with multiple sclerosis and healthy subjects: A caseâ€control study. Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 1908-1917.	1.3	2
673	Cerebrospinal Fluid Testing for Multiple Sclerosis. Clinics in Laboratory Medicine, 2020, 40, 369-377.	0.7	5
674	Neutrophil to-lymphocyte ratio as a possible predictor of prognosis in recently diagnosed multiple sclerosis patients. Journal of Neuroimmunology, 2020, 346, 577307.	1.1	9
675	Genetic Etiology Shared by Multiple Sclerosis and Ischemic Stroke. Frontiers in Genetics, 2020, 11, 646.	1.1	7
676	Relapsing-remitting multiple sclerosis: A profile of interleukine-1 gene cluster polymorphisms in Iraqi patients. Journal of Neuroimmunology, 2020, 346, 577291.	1.1	3
677	Cell-Type Targeted NF-kappaB Inhibition for the Treatment of Inflammatory Diseases. Cells, 2020, 9, 1627.	1.8	34
678	T Helper Cells: The Modulators of Inflammation in Multiple Sclerosis. Cells, 2020, 9, 482.	1.8	134
679	Association between diurnal temperature range and emergency department visits for multiple sclerosis: A time-stratified case-crossover study. Science of the Total Environment, 2020, 720, 137565.	3.9	12
680	Multiple sclerosis is a systemic venous vasculopathy: A single unifying mechanism. Medical Hypotheses, 2020, 140, 109645.	0.8	4
681	Effects of disease-modifying therapy on peripheral leukocytes in patients with multiple sclerosis. Journal of Neurology, 2021, 268, 2379-2389.	1.8	26
682	Amelioration of experimental autoimmune encephalomyelitis by Rhodiola rosea, a natural adaptogen. Biomedicine and Pharmacotherapy, 2020, 125, 109960.	2.5	9
684	TRPA1 activation mediates nociception behaviors in a mouse model of relapsing-remitting experimental autoimmune encephalomyelitis. Experimental Neurology, 2020, 328, 113241.	2.0	15
685	Complement activation in cerebrospinal fluid in clinically isolated syndrome and early stages of relapsing remitting multiple sclerosis. Journal of Neuroimmunology, 2020, 340, 577147.	1.1	6
686	A critical analysis of helminth immunotherapy in multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 1448-1458.	1.4	21
687	HPLC method development for fampridine using Analytical Quality by Design approach. Acta Pharmaceutica, 2020, 70, 465-482.	0.9	11
688	Cytomegalovirus and Epstein–Barr Virus Associations with Neurological Diseases and the Need for Vaccine Development. Vaccines, 2020, 8, 35.	2.1	13
689	Nanoimmunosensor based on atomic force spectroscopy to detect anti-myelin basic protein related to early-stage multiple sclerosis. Ultramicroscopy, 2020, 211, 112946.	0.8	3

#	Article	IF	CITATIONS
690	Potential Neuroprotective Effect of the HMGB1 Inhibitor Glycyrrhizin in Neurological Disorders. ACS Chemical Neuroscience, 2020, 11, 485-500.	1.7	49
691	T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. Acta Neuropathologica, 2020, 139, 855-874.	3.9	66
692	Immunosuppression in relapsing remitting multiple sclerosis: moving towards personalized treatment. Expert Review of Neurotherapeutics, 2020, 20, 771-782.	1.4	6
693	The progress of gut microbiome research related to brain disorders. Journal of Neuroinflammation, 2020, 17, 25.	3.1	252
694	Dynamic Balance of Microglia and Astrocytes Involved in the Remyelinating Effect of Ginkgolide B. Frontiers in Cellular Neuroscience, 2020, 13, 572.	1.8	21
695	Meningeal Immunity and Its Function in Maintenance of the Central Nervous System in Health and Disease. Annual Review of Immunology, 2020, 38, 597-620.	9.5	199
696	Genetic deletion of Autotaxin from CD11b+ cells decreases the severity of experimental autoimmune encephalomyelitis. PLoS ONE, 2020, 15, e0226050.	1.1	14
697	A Commercial Probiotic Induces Tolerogenic and Reduces Pathogenic Responses in Experimental Autoimmune Encephalomyelitis. Cells, 2020, 9, 906.	1.8	31
698	Multiple Sclerosis and Smoking. American Journal of Medicine, 2020, 133, 783-788.	0.6	28
699	Cell Type-Specific Intralocus Interactions Reveal Oligodendrocyte Mechanisms in MS. Cell, 2020, 181, 382-395.e21.	13.5	39
700	The effects of modified anti-inflammatory diet on fatigue, quality of life, and inflammatory biomarkers in relapsing-remitting multiple sclerosis patients: a randomized clinical trial. International Journal of Neuroscience, 2021, 131, 657-665.	0.8	31
701	Activated monocytes and markers of inflammation in newly diagnosed multiple sclerosis. Immunology and Cell Biology, 2020, 98, 549-562.	1.0	10
702	The role of B cells in the immunopathogenesis of multiple sclerosis. Immunology, 2020, 160, 325-335.	2.0	22
703	Overview of Brain-to-Gut Axis Exposed to Chronic CNS Bacterial Infection(s) and a Predictive Urinary Metabolic Profile of a Brain Infected by Mycobacterium tuberculosis. Frontiers in Neuroscience, 2020, 14, 296.	1.4	12
704	CD4+ T Cells in the Blood of MS Patients Respond to Predicted Epitopes From B cell Receptors Found in Spinal Fluid. Frontiers in Immunology, 2020, 11, 598.	2.2	8
705	Nano and Microparticle Emerging Strategies for Treatment of Autoimmune Diseases: Multiple Sclerosis and Type 1 Diabetes. Advanced Healthcare Materials, 2020, 9, e2000164.	3.9	30
706	Natural product piperine alleviates experimental allergic encephalomyelitis in mice by targeting dihydroorotate dehydrogenase. Biochemical Pharmacology, 2020, 177, 114000.	2.0	12
708	Gut Microbiota and Pathogenesis of Organ Injury. Advances in Experimental Medicine and Biology, 2020, , .	0.8	7

#	Article	IF	CITATIONS
709	Unraveling a new player in multiple sclerosis pathogenesis: The RNA-binding protein HuR. Multiple Sclerosis and Related Disorders, 2020, 41, 102048.	0.9	10
710	B cells and multiple sclerosis spinal cord pathology. Brain Pathology, 2020, 30, 730-731.	2.1	0
711	Dense module searching for gene networks associated with multiple sclerosis. BMC Medical Genomics, 2020, 13, 48.	0.7	13
712	Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics. Critical Reviews in Food Science and Nutrition, 2021, 61, 1130-1151.	5.4	61
713	Specialized Pro-Resolving Lipid Mediators: Emerging Therapeutic Candidates for Multiple Sclerosis. Clinical Reviews in Allergy and Immunology, 2021, 60, 147-163.	2.9	18
714	Therapeutic role of inflammasome inhibitors in neurodegenerative disorders. Brain, Behavior, and Immunity, 2021, 91, 771-783.	2.0	26
715	Rg3-enriched Korean Red Ginseng extract inhibits blood-brain barrier disruption in an animal model of multiple sclerosis by modulating expression of NADPH oxidase 2 and 4. Journal of Ginseng Research, 2021, 45, 433-441.	3.0	14
716	Elevated IL-38 Serum Levels in Newly Diagnosed Multiple Sclerosis and Systemic Sclerosis Patients. Medical Principles and Practice, 2021, 30, 146-153.	1.1	10
717	Targeting the RNA-Binding Protein HuR Alleviates Neuroinflammation in Experimental Autoimmune Encephalomyelitis: Potential Therapy for Multiple Sclerosis. Neurotherapeutics, 2021, 18, 412-429.	2.1	10
718	Neuronal and Endothelial Transglutaminase-2 Expression during Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Neuroscience, 2021, 461, 140-154.	1.1	5
719	Effectiveness of rituximab in treating immune-checkpoint-inhibitor-induced immune-related adverse events: results of a systematic review. Annals of Oncology, 2021, 32, 282-283.	0.6	9
720	Linking Cognitive Impairment to Neuroinflammation in Multiple Sclerosis using neuroimaging tools. Multiple Sclerosis and Related Disorders, 2021, 47, 102622.	0.9	5
721	Ellagic acid ameliorates neuroinflammation and demyelination in experimental autoimmune encephalomyelitis: Involvement of NLRP3 and pyroptosis. Journal of Chemical Neuroanatomy, 2021, 111, 101891.	1.0	21
722	Low serum Î'-SYNUCLEIN and oligomer Î'-SYNUCLEIN levels in multiple sclerosis patients. Journal of Neuroimmunology, 2021, 350, 577432.	1.1	4
723	Coenzyme Q10 enhances remyelination and regulate inflammation effects of cuprizone in corpus callosum of chronic model of multiple sclerosis. Journal of Molecular Histology, 2021, 52, 125-134.	1.0	17
724	Intranasal delivery of interferon-β-loaded nanoparticles induces control of neuroinflammation in a preclinical model of multiple sclerosis: A promising simple, effective, non-invasive, and low-cost therapy. Journal of Controlled Release, 2021, 331, 443-459.	4.8	32
725	TCDD attenuates EAE through induction of FasL on B cells and inhibition of IgG production. Toxicology, 2021, 448, 152646.	2.0	12
726	Immunogenicity of The Influenza Vaccine in Multiple Sclerosis Patients: A Systematic Review and Meta-Analysis. Multiple Sclerosis and Related Disorders, 2021, 48, 102698.	0.9	12

	CITATION	CITATION REPORT	
#	ARTICLE Regionally diverse astrocyte subtypes and their heterogeneous response to EAE. Glia, 2021, 69, 1140-1154.	IF 2.5	CITATIONS
728	Association of polymorphism -308G/A in tumor necrosis factor-alpha gene (<i>TNF-α</i>) and TNF-α serum levels in patients with relapsing-remitting multiple sclerosis. Neurological Research, 2021, 43, 291-298.	0.6	6
729	Pitavastatin ameliorates autoimmune neuroinflammation by regulating the Treg/Th17 cell balance through inhibition of mevalonate metabolism. International Immunopharmacology, 2021, 91, 107278.	1.7	4
730	The contribution of thymic tolerance to central nervous system autoimmunity. Seminars in Immunopathology, 2021, 43, 135-157.	2.8	10
731	Intermediate uveitis associated with MS. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	9
732	Fingolimod and tumor-infiltrating lymphocytes in checkpoint-inhibitor treated cancer patients. Cancer Immunology, Immunotherapy, 2021, 70, 563-568.	2.0	3
734	Risk factors of multiple sclerosis in Aseer region, Kingdom of Saudi Arabia <i>A case-control study</i> . Journal of King Abdulaziz University, Islamic Economics, 2021, 26, 69-76.	0.5	1
735	A novel long intergenic non-coding RNA, Nostrill, regulates iNOS gene transcription and neurotoxicity in microglia. Journal of Neuroinflammation, 2021, 18, 16.	3.1	18
737	Cognitive impairment in multiple sclerosis: lessons from cerebrospinal fluid biomarkers. Neural Regeneration Research, 2021, 16, 36.	1.6	23
738	C-Type Lectins and Their Roles in Disease and Immune Homeostasis. , 2021, , 185-214.		1
739	Dynamic glial response and crosstalk in demyelination-remyelination and neurodegeneration processes. Neural Regeneration Research, 2021, 16, 1359.	1.6	7
740	What do we know about the role of IncRNAs in multiple sclerosis?. Neural Regeneration Research, 2021, 16, 1715.	1.6	13
741	A conjoined universal helper epitope can unveil antitumor effects of a neoantigen vaccine targeting an MHC class I-restricted neoepitope. Npj Vaccines, 2021, 6, 12.	2.9	8
742	Contribution of Hsa-Mir-146A and Hsa-Mir-223 Gene Variations in Patients with Multiple Sclerosis Reveals Association of Rs2910164 and Rs1044165 with Risk of Multiple Sclerosis Susceptibility. Journal of Investigative Medicine, 2021, 69, 1015-1021.	0.7	3
743	Administration of CD4+CD25highCD127â^FoxP3+ Regulatory T Cells for Relapsing-Remitting Multiple Sclerosis: A Phase 1 Study. BioDrugs, 2021, 35, 47-60.	2.2	33
744	Perspective insights of repurposing the pleiotropic efficacy of statins in neurodegenerative disorders: An expository appraisal. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100012.	1.7	7
745	Chronic Progressive Models. Neuromethods, 2021, , 109-120.	0.2	0
747	A CD8+ NK cell transcriptomic signature associated with clinical outcome in relapsing remitting multiple sclerosis. Nature Communications, 2021, 12, 635.	5.8	33

ARTICLE IF CITATIONS The Genetics of Multiple Sclerosis., 2021, , 155-172. 748 0 The role of faecal microbiota transplantation: looking beyond <i>Clostridioides difficile </i>infection. Therapeutic Advances in Infectious Disease, 2021, 8, 204993612098152. 749 1.1 Effectiveness of Dimethyl Fumarate in Real-World Clinical Practice and Strategy to Minimize Adverse 750 0.8 3 Effects and Use of Healthcare Resources. Patient Preference and Adherence, 2021, Volume 15, 149-158. CSF-resident CD4+ T-cells display a distinct gene expression profile with relevance to immune surveillance and multiple sclerosis. Brain Communications, 2021, 3, fcab155. Preexistent chronic disorders, often directly affecting pregnancy., 2021, , 99-174. 752 0 Impact of the acquisition protocol on the sensitivity to demyelination and axonal loss of clinically feasible DWI techniques: a simulation study. Magnetic Resonance Materials in Physics, Biology, and 1.1 Medicine, 2021, 34, 523-543. Multiple Sclerosis Biomarker Discoveries by Proteomics and Metabolomics Approaches. Biomarker 754 1.0 23 Insights, 2021, 16, 117727192110133. Neurocognitive impairment and social cognition in multiple sclerosis. International Journal of 0.8 9 Neuroscience, 2022, 132, 1229-1244. Preclinical Therapy with Vitamin D3 in Experimental Encephalomyelitis: Efficacy and Comparison with 756 1.8 10 Paricalcitol. International Journal of Molecular Sciences, 2021, 22, 1914. Neuroinflammation induces synaptic scaling through IL-1²-mediated activation of the transcriptional 2.7 repressor REST/NRSF. Cell Death and Disease, 2021, 12, 180. Increased Expression of Ephrins on Immune Cells of Patients with Relapsing Remitting Multiple Sclerosis Affects Oligodendrocyte Differentiation. International Journal of Molecular Sciences, 2021, 759 4 1.8 22, 2182. The Role of Natural Killer Cells in Autoimmune Diseases. Frontiers in Immunology, 2021, 12, 622306. 760 2.2 120 The microRNA let-7b-5p Is Negatively Associated with Inflammation and Disease Severity in Multiple 762 1.8 24 Sclerosis. Cells, 2021, 10, 330. B-cells expressing NgR1 and NgR3 are localized to EAE-induced inflammatory infiltrates and are stimulated by BAFF. Scientific Reports, 2021, 11, 2890. 1.6 Asymptomatic Herpes Simplex Virus Type 1 Infection Causes an Earlier Onset and More Severe 764 2.2 8 Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2021, 12, 635257. Engine Failure in Axo-Myelinic Signaling: A Potential Key Player in the Pathogenesis of Multiple 1.8 Sclerosis. Frontiers in Cellular Neuroscience, 2021, 15, 610295. T-cell responses to hybrid insulin peptides prior to type 1 diabetes development. Proceedings of the 766 3.3 26 National Academy of Sciences of the United States of America, 2021, 118, . Neuron-specific activation of necroptosis signaling in multiple sclerosis cortical grey matter. Acta Neuropathologica, 2021, 141, 585-604.

#	Article	IF	CITATIONS
768	The Impact of SARS-CoV-2 Infection on the Development of Neurodegeneration in Multiple Sclerosis. International Journal of Molecular Sciences, 2021, 22, 1804.	1.8	24
769	Montelukast alleviates inflammation in experimental autoimmune encephalomyelitis by altering Th17 differentiation in a mouse model. Immunology, 2021, 163, 185-200.	2.0	7
770	Neutrophilâ€ŧoâ€lymphocyte ratio and CRP as biomarkers in multiple sclerosis: A systematic review. Acta Neurologica Scandinavica, 2021, 143, 577-586.	1.0	27
772	Enhancing mitochondrial activity in neurons protects against neurodegeneration in a mouse model of multiple sclerosis. ELife, 2021, 10, .	2.8	34
773	The Nerves to Conduct a Multiple Sclerosis Crime Investigation. International Journal of Molecular Sciences, 2021, 22, 2498.	1.8	1
774	Identifying CNS-colonizing T cells as potential therapeutic targets to prevent progression of multiple sclerosis. Med, 2021, 2, 296-312.e8.	2.2	43
775	Neuronal metabotropic glutamate receptor 8 protects against neurodegeneration in CNS inflammation. Journal of Experimental Medicine, 2021, 218, .	4.2	20
776	AIM2 controls microglial inflammation to prevent experimental autoimmune encephalomyelitis. Journal of Experimental Medicine, 2021, 218, .	4.2	51
777	Shear wave elastography evaluation of brachial plexus in multiple sclerosis. Acta Radiologica, 2022, 63, 520-526.	0.5	4
778	Characterization of a natural variant of human NDP52 and its functional consequences on mitophagy. Cell Death and Differentiation, 2021, 28, 2499-2516.	5.0	12
779	Cardiac autonomic function in patients with early multiple sclerosis. Clinical Autonomic Research, 2021, 31, 553-562.	1.4	5
780	Pericytes regulate vascular immune homeostasis in the CNS. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	86
781	Multiple Sclerosis-Associated hnRNPA1 Mutations Alter hnRNPA1 Dynamics and Influence Stress Granule Formation. International Journal of Molecular Sciences, 2021, 22, 2909.	1.8	13
782	A First Phenotypic and Functional Characterization of Placental Extracellular Vesicles from Women with Multiple Sclerosis. International Journal of Molecular Sciences, 2021, 22, 2875.	1.8	3
783	The levels of the serine protease HTRA1 in cerebrospinal fluid correlate with progression and disability in multiple sclerosis. Journal of Neurology, 2021, 268, 3316-3324.	1.8	6
784	Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cellular and Molecular Life Sciences, 2021, 78, 4615-4637.	2.4	85
785	B-Cell Activity Predicts Response to Glatiramer Acetate and Interferon in Relapsing-Remitting Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, e980.	3.1	6
786	Assessing the values of circulating immune complexes in multiple sclerosis patients following immunomodulator or corticosteroid treatment. Experimental and Therapeutic Medicine, 2021, 21, 542.	0.8	2

#	Article	IF	CITATIONS
787	Mice Heterozygous for the Sodium Channel Scn8a (Nav1.6) Have Reduced Inflammatory Responses During EAE and Following LPS Challenge. Frontiers in Immunology, 2021, 12, 533423.	2.2	3
788	Roles of glia-derived extracellular vesicles in central nervous system diseases: an update. Reviews in the Neurosciences, 2021, 32, 833-849.	1.4	2
789	A short-term exercise program in patients with multiple sclerosis: is body mass index important?. International Journal of Rehabilitation Research, 2021, 44, 138-143.	0.7	3
790	Exploiting Rational Assembly to Map Distinct Roles of Regulatory Cues during Autoimmune Therapy. ACS Nano, 2021, 15, 4305-4320.	7.3	13
791	Dectin-1 limits autoimmune neuroinflammation and promotes myeloid cell-astrocyte crosstalk via Card9-independent expression of Oncostatin M. Immunity, 2021, 54, 484-498.e8.	6.6	34
792	Antigen-Specific Immune Tolerance in Multiple Sclerosis—Promising Approaches and How to Bring Them to Patients. Frontiers in Immunology, 2021, 12, 640935.	2.2	20
793	ILC3, a Central Innate Immune Component of the Gut-Brain Axis in Multiple Sclerosis. Frontiers in Immunology, 2021, 12, 657622.	2.2	19
794	Disrupted Lipid Metabolism in Multiple Sclerosis: A Role for Liver X Receptors?. Frontiers in Endocrinology, 2021, 12, 639757.	1.5	27
796	Screening for Interacting Proteins with Peptide Biomarker of Blood–Brain Barrier Alteration under Inflammatory Conditions. International Journal of Molecular Sciences, 2021, 22, 4725.	1.8	5
797	Targeting the Notch Signaling Pathway in Chronic Inflammatory Diseases. Frontiers in Immunology, 2021, 12, 668207.	2.2	57
798	Citicoline: A Candidate for Adjunct Treatment of Multiple Sclerosis. Pharmaceuticals, 2021, 14, 326.	1.7	5
799	Current Immunological and Clinical Perspective on Vaccinations in Multiple Sclerosis Patients: Are They Safe after All?. International Journal of Molecular Sciences, 2021, 22, 3859.	1.8	14
800	Subgroup analysis of clinical and MRI outcomes in participants with a first clinical demyelinating event at risk of multiple sclerosis in the ORACLE-MS study. Multiple Sclerosis and Related Disorders, 2021, 49, 102695.	0.9	5
801	Status of Immunotherapy Acceptance in Chinese Patients With Multiple Sclerosis: Analysis of Multiple Sclerosis Patient Survival Report 2018. Frontiers in Neurology, 2021, 12, 651511.	1.1	9
802	Feasibility, Acceptability, and Preliminary Validity of Self-Report Dietary Assessment in Adults with Multiple Sclerosis: Comparison with Doubly Labeled Water Measured Total Energy Expenditure. Nutrients, 2021, 13, 1198.	1.7	3
804	The MAL Protein, an Integral Component of Specialized Membranes, in Normal Cells and Cancer. Cells, 2021, 10, 1065.	1.8	14
805	Microglial Nox2 Plays a Key Role in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2021, 12, 638381.	2.2	16
807	Downregulation of miR-125a-5p and miR-218-5p in Peripheral Blood Mononuclear Cells of Patients with Relapsing-Remitting Multiple Sclerosis. Immunological Investigations, 2021, , 1-13.	1.0	1

#	Article	IF	CITATIONS
808	Detection of Dysbiosis and Increased Intestinal Permeability in Brazilian Patients with Relapsing–Remitting Multiple Sclerosis. International Journal of Environmental Research and Public Health, 2021, 18, 4621.	1.2	22
809	Selected Clostridia Strains from The Human Microbiota and their Metabolite, Butyrate, Improve Experimental Autoimmune Encephalomyelitis. Neurotherapeutics, 2021, 18, 920-937.	2.1	18
810	Systemic cellular immunity and neuroinflammation during acute flare-up in multiple sclerosis and neuromyelitis optica spectrum disorder patients. Journal of Neuroimmunology, 2021, 353, 577500.	1.1	0
812	CLICK-MS and MASTER-2 Phase IVÂtrial design: cladribine tablets in suboptimally controlled relapsing multiple sclerosis. Neurodegenerative Disease Management, 2021, 11, 99-111.	1.2	4
813	The Unique Phenotype of Lipid-Laden Macrophages. International Journal of Molecular Sciences, 2021, 22, 4039.	1.8	27
814	The Ins and Outs of Central Nervous System Inflammation—Lessons Learned from Multiple Sclerosis. Annual Review of Immunology, 2021, 39, 199-226.	9.5	30
815	Gene-Based Tests of a Genome-Wide Association Study Dataset Highlight Novel Multiple Sclerosis Risk Genes. Frontiers in Neuroscience, 2021, 15, 614528.	1.4	6
816	In Vivo Induction of Regulatory T Cells Via CTLAâ€4 Signaling Peptide to Control Autoimmune Encephalomyelitis and Prevent Disease Relapse. Advanced Science, 2021, 8, 2004973.	5.6	18
817	Progesterone Dampens Immune ResponsesÂinÂIn VitroÂActivated CD4+ÂT CellsÂand Affects Genes Associated With Autoimmune DiseasesÂThat Improve During Pregnancy. Frontiers in Immunology, 2021, 12, 672168.	2.2	22
818	The Contribution of Small Vessel Disease to Neurodegeneration: Focus on Alzheimer's Disease, Parkinson's Disease and Multiple Sclerosis. International Journal of Molecular Sciences, 2021, 22, 4958.	1.8	28
819	β-endorphin and opioid growth factor as biomarkers of physical ability in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 50, 102868.	0.9	2
820	Th17 Cells in Viral Infections—Friend or Foe?. Cells, 2021, 10, 1159.	1.8	19
821	Nicotinamide adenine dinucleotide metabolism in the immune response, autoimmunity and inflammageing. British Journal of Pharmacology, 2022, 179, 1839-1856.	2.7	26
822	Sildenafil Alleviates Murine Experimental Autoimmune Encephalomyelitis by Triggering Autophagy in the Spinal Cord. Frontiers in Immunology, 2021, 12, 671511.	2.2	7
823	Increased serum glial fibrillary acidic protein associates with microstructural white matter damage in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 50, 102810.	0.9	21
824	Exercise training and cognition in multiple sclerosis: The GET Smart trial protocol. Contemporary Clinical Trials, 2021, 104, 106331.	0.8	0
825	Paving the way towards an effective treatment for multiple sclerosis: advances in cell therapy. Cellular and Molecular Immunology, 2021, 18, 1353-1374.	4.8	22
826	Coenzyme Q ₁₀ and the exclusive club of diseases that show a limited response to treatment. Expert Opinion on Orphan Drugs, 2021, 9, 151-160.	0.5	4

#	Article	IF	CITATIONS
827	Diseaseâ€modifying agents for multiple sclerosis and the risk for reporting cancer: A disproportionality analysis using the US Food and Drug Administration Adverse Event Reporting System database. British Journal of Clinical Pharmacology, 2021, 87, 4769-4779.	1.1	16
828	Monomethyl Fumarate (MMF, Bafiertam) for the Treatment of Relapsing Forms of Multiple Sclerosis (MS). Neurology International, 2021, 13, 207-223.	1.3	20
829	Altered Immune Phenotypes and HLA-DQB1 Gene Variation in Multiple Sclerosis Patients Failing Interferon Î ² Treatment. Frontiers in Immunology, 2021, 12, 628375.	2.2	0
831	Expression of CYP24A1 and other multiple sclerosis risk genes in peripheral blood indicates response to vitamin D in homeostatic and inflammatory conditions. Genes and Immunity, 2021, 22, 227-233.	2.2	3
832	The involvement of NLRP3 inflammasome in the treatment of neurodegenerative diseases. Biomedicine and Pharmacotherapy, 2021, 138, 111428.	2.5	29
833	Specific Blockade of Bone Morphogenetic Protein-2/4 Induces Oligodendrogenesis and Remyelination in Demyelinating Disorders. Neurotherapeutics, 2021, 18, 1798-1814.	2.1	5
834	The cannabinoid system and microglia in health and disease. Neuropharmacology, 2021, 190, 108555.	2.0	49
835	The role of immune semaphorins in the pathogenesis of multiple sclerosis: Potential therapeutic targets. International Immunopharmacology, 2021, 95, 107556.	1.7	15
836	Pharmacological Inhibition of STAT3 by Stattic Ameliorates Clinical Symptoms and Reduces Autoinflammation in Myeloid, Lymphoid, and Neuronal Tissue Compartments in Relapsing–Remitting Model of Experimental Autoimmune Encephalomyelitis in SJL/J Mice. Pharmaceutics, 2021, 13, 925.	2.0	25
837	Farnesol induces protection against murine CNS inflammatory demyelination and modifies gut microbiome. Clinical Immunology, 2022, 235, 108766.	1.4	13
838	Mechanistic underpinning of an inside–out concept for autoimmunity in multiple sclerosis. Annals of Clinical and Translational Neurology, 2021, 8, 1709-1719.	1.7	20
839	Connecting Neuroinflammation and Neurodegeneration in Multiple Sclerosis: Are Oligodendrocyte Precursor Cells a Nexus of Disease?. Frontiers in Cellular Neuroscience, 2021, 15, 654284.	1.8	34
840	Meningeal B Cell Clusters Correlate with Submeningeal Pathology in a Natural Model of Multiple Sclerosis. Journal of Immunology, 2021, 207, 44-54.	0.4	8
841	Heat Exposure and Multiple Sclerosis—A Regional and Temporal Analysis. International Journal of Environmental Research and Public Health, 2021, 18, 5962.	1.2	9
842	COVID-19 and the Risk of Relapse in Multiple Sclerosis Patients: A Fight with No Bystander Effect?. Multiple Sclerosis and Related Disorders, 2021, 51, 102915.	0.9	35
843	Lung cancer risk inÂpatients withÂmultiple sclerosis: aÂMendelian randomization analysis. Multiple Sclerosis and Related Disorders, 2021, 51, 102927.	0.9	8
844	USP19 Suppresses Th17-Driven Pathogenesis in Autoimmunity. Journal of Immunology, 2021, 207, 23-33.	0.4	3
845	PRMT5 Promotes Cyclin E1 and Cell Cycle Progression in CD4 Th1 Cells and Correlates With EAE Severity. Frontiers in Immunology, 2021, 12, 695947.	2.2	11

#	Article	IF	CITATIONS
846	Cross-sectional analysis of peripheral blood mononuclear cells in lymphopenic and non-lymphopenic relapsing-remitting multiple sclerosis patients treated with dimethyl fumarate Multiple Sclerosis and Related Disorders, 2021, 52, 103003.	0.9	3
847	Made to Measure: Patient-Tailored Treatment of Multiple Sclerosis Using Cell-Based Therapies. International Journal of Molecular Sciences, 2021, 22, 7536.	1.8	6
848	Bone Marrow Transfer in Relapsing-Remitting EAE Ameliorates Disease at First Remission, with No Synergistic Effect upon Co-Transplantation with Mesenchymal Stem Cells. Vaccines, 2021, 9, 736.	2.1	1
849	A focus on allogeneic mesenchymal stromal cells as a versatile therapeutic tool for treating multiple sclerosis. Stem Cell Research and Therapy, 2021, 12, 400.	2.4	9
850	Rituximab in Multiple Sclerosis: Are We Ready for Regulatory Approval?. Frontiers in Immunology, 2021, 12, 661882.	2.2	36
851	T helper cell immunity in pregnancy and influence on autoimmune disease progression. Journal of Autoimmunity, 2021, 121, 102651.	3.0	22
852	Targeted immune epitope prediction to HHLA2 and MAGEB5 protein variants as therapeutic approach to related viral diseases. BMC Immunology, 2021, 22, 49.	0.9	2
853	Constipation induced gut microbiota dysbiosis exacerbates experimental autoimmune encephalomyelitis in C57BL/6 mice. Journal of Translational Medicine, 2021, 19, 317.	1.8	26
854	Interferons and Multiple Sclerosis: Lessons from 25 Years of Clinical and Real-World Experience with Intramuscular Interferon Beta-1a (Avonex). CNS Drugs, 2021, 35, 743-767.	2.7	30
855	Isoflavone diet ameliorates experimental autoimmune encephalomyelitis through modulation of gut bacteria depleted in patients with multiple sclerosis. Science Advances, 2021, 7, .	4.7	36
856	Anti-inflammatory Therapy by Cholinergic and Purinergic Modulation in Multiple Sclerosis Associated with SARS-CoV-2 Infection. Molecular Neurobiology, 2021, 58, 5090-5111.	1.9	10
857	Natalizumab differentially affects plasmablasts and B cells in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 52, 102987.	0.9	11
859	Obesity in Pediatric-Onset Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, e1044.	3.1	4
860	IL-10-Dependent Amelioration of Chronic Inflammatory Disease by Microdose Subcutaneous Delivery of a Prototypic Immunoregulatory Small Molecule. Frontiers in Immunology, 2021, 12, 708955.	2.2	10
861	Innate immunity impacts social-cognitive functioning in people with multiple sclerosis and healthy individuals: Implications for IL-1ra and urinary immune markers. Brain, Behavior, & Immunity - Health, 2021, 14, 100254.	1.3	4
862	Differential effects of estradiol and progesterone on human T cell activation <i>in vitro</i> . European Journal of Immunology, 2021, 51, 2430-2440.	1.6	12
863	Using Quality Improvement for Refining Program Materials for Exercise Promotion in Comprehensive Multiple Sclerosis Care. Journal for Healthcare Quality: Official Publication of the National Association for Healthcare Quality, 2021, 43, 249-258.	0.3	3
864	The development and impact of cladribine on lymphoid and myeloid cells in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 52, 102962.	0.9	4

#	Article	IF	CITATIONS
865	Progress in the Application of Drugs for the Treatment of Multiple Sclerosis. Frontiers in Pharmacology, 2021, 12, 724718.	1.6	25
866	Characterization of microglial transcriptomes in the brain and spinal cord of mice in early and late experimental autoimmune encephalomyelitis using a RiboTag strategy. Scientific Reports, 2021, 11, 14319.	1.6	7
867	Prophylactic exposure to oral riluzole reduces the clinical severity and immune-related biomarkers of experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2021, 356, 577603.	1.1	6
868	N-Acylethanolamine-Hydrolyzing Acid Amidase Inhibition, but Not Fatty Acid Amide Hydrolase Inhibition, Prevents the Development of Experimental Autoimmune Encephalomyelitis in Mice. Neurotherapeutics, 2021, 18, 1815-1833.	2.1	6
869	Extracellular vesicles for the treatment of central nervous system diseases. Advanced Drug Delivery Reviews, 2021, 174, 535-552.	6.6	39
870	Socioeconomic status and access to multiple sclerosis treatment in Mexico. Multiple Sclerosis and Related Disorders, 2021, 52, 102967.	0.9	6
871	Oligodendrocytes and Microglia: Key Players in Myelin Development, Damage and Repair. Biomolecules, 2021, 11, 1058.	1.8	33
872	Complications of COVID-19 Pneumonia and Multiple Sclerosis Exacerbation. Cureus, 2021, 13, e17506.	0.2	4
873	Myelin basic protein expression in thymoma after methylprednisolone administration for multiple sclerosis. Respirology Case Reports, 2021, 9, e0834.	0.3	0
874	Tolerogenic Dendritic Cell-Based Approaches in Autoimmunity. International Journal of Molecular Sciences, 2021, 22, 8415.	1.8	30
875	Alternative Activation of Macrophages through Interleukin-13-Loaded Extra-Large-Pore Mesoporous Silica Nanoparticles Suppresses Experimental Autoimmune Encephalomyelitis. ACS Biomaterials Science and Engineering, 2021, 7, 4446-4453.	2.6	6
876	Human Fallopian Tube – Derived Mesenchymal Stem Cells Inhibit Experimental Autoimmune Encephalomyelitis by Suppressing Th1/Th17 Activation and Migration to Central Nervous System. Stem Cell Reviews and Reports, 2022, 18, 609-625.	1.7	1
877	Immunoengineering approaches for cytokine therapy. American Journal of Physiology - Cell Physiology, 2021, 321, C369-C383.	2.1	15
878	Neuroinflammation in Autoimmune Disease and Primary Brain Tumors: The Quest for Striking the Right Balance. Frontiers in Cellular Neuroscience, 2021, 15, 716947.	1.8	13
879	Anti-CD20 therapies for multiple sclerosis: current status and future perspectives. Journal of Neurology, 2022, 269, 1316-1334.	1.8	46
880	An Overview of Peptide-Based Molecules as Potential Drug Candidates for Multiple Sclerosis. Molecules, 2021, 26, 5227.	1.7	8
881	The CB ₁ Receptor Differentially Regulates IFN-γ Production <i>In Vitro</i> and in Experimental Autoimmune Encephalomyelitis. Cannabis and Cannabinoid Research, 2021, 6, 300-314.	1.5	4
882	Piperine Improves Experimental Autoimmune Encephalomyelitis (EAE) in Lewis Rats Through its Neuroprotective, Anti-inflammatory, and Antioxidant Effects. Molecular Neurobiology, 2021, 58, 5473-5493.	1.9	16

#	Article	IF	CITATIONS
883	Melanoma Cell Adhesion Molecule Expressing Helper T Cells in CNS Inflammatory Demyelinating Diseases. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	1
884	Pro-inflammatory T helper 17 directly harms oligodendrocytes in neuroinflammation. Proceedings of the United States of America, 2021, 118, .	3.3	30
885	TREM2-dependent lipid droplet biogenesis in phagocytes is required for remyelination. Journal of Experimental Medicine, 2021, 218, .	4.2	68
887	PI3-Kinase p110α Deficiency Modulates T Cell Homeostasis and Function and Attenuates Experimental Allergic Encephalitis in Mature Mice. International Journal of Molecular Sciences, 2021, 22, 8698.	1.8	0
888	MTH1 as a target to alleviate T cell driven diseases by selective suppression of activated T cells. Cell Death and Differentiation, 2021, , .	5.0	6
889	Ectopic lymphoid follicles in progressive multiple sclerosis: From patients to animal models. Immunology, 2021, 164, 450-466.	2.0	18
891	Toward Guided Mutagenesis: Gaussian Process Regression Predicts MHC Class II Antigen Mutant Binding. Journal of Chemical Information and Modeling, 2021, 61, 4857-4867.	2.5	3
892	Evaluation of Thiol Homeostasis in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Frontiers in Neurology, 2021, 12, 716195.	1.1	7
893	Exposure to Systemic Immunosuppressive Ultraviolet Radiation Alters T Cell Recirculation through Sphingosine-1-Phosphate. Journal of Immunology, 2021, 207, 2278-2287.	0.4	5
894	Candida tropicalis Systemic Infection Redirects Leukocyte Infiltration to the Kidneys Attenuating Encephalomyelitis. Journal of Fungi (Basel, Switzerland), 2021, 7, 757.	1.5	4
895	Assessment of cognitive functions in patients with multiple sclerosis. Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 2021, 57, .	0.4	5
896	Multiple Sclerosis and SARS-CoV-2: Has the Interplay Started?. Frontiers in Immunology, 2021, 12, 755333.	2.2	33
897	An integrative study of genetic variants with brain tissue expression identifies viral etiology and potential drug targets of multiple sclerosis. Molecular and Cellular Neurosciences, 2021, 115, 103656.	1.0	8
898	Possible Role of Butyrylcholinesterase in Fat Loss and Decreases in Inflammatory Levels in Patients with Multiple Sclerosis after Treatment with Epigallocatechin Gallate and Coconut Oil: A Pilot Study. Nutrients, 2021, 13, 3230.	1.7	16
899	Biological Sex As a Critical Variable in CD4 ⁺ Effector T Cell Function in Preclinical Models of Multiple Sclerosis. Antioxidants and Redox Signaling, 2022, 37, 135-149.	2.5	5
900	Metformin Therapy Attenuates Pro-inflammatory Microglia by Inhibiting NF-ήB in Cuprizone Demyelinating Mouse Model of Multiple Sclerosis. Neurotoxicity Research, 2021, 39, 1732-1746.	1.3	16
901	Biomarkers of systemic inflammation, soluble IL-2Rα and the multiple sclerosis-associated IL2RA SNP rs2104286 in healthy subjects and multiple sclerosis patients. Multiple Sclerosis and Related Disorders, 2021, 54, 103140.	0.9	5
902	Effect of Exercise on Fatigue in Multiple Sclerosis: A Network Meta-analysis Comparing Different Types of Exercise. Archives of Physical Medicine and Rehabilitation, 2022, 103, 970-987.e18.	0.5	13

#	Article	IF	CITATIONS
903	Expression and clinical significance of IL7R, NFATc2, and RNF213 in familial and sporadic multiple sclerosis. Scientific Reports, 2021, 11, 19260.	1.6	5
904	Role of the PDâ€1/PDâ€L1 Signaling in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Recent Insights and Future Directions. Molecular Neurobiology, 2021, 58, 6249-6271.	1.9	15
905	Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. , 2022, 231, 107988.		59
906	Effects of Mesenchymal Stem Cell-Derived Exosomes on Autoimmune Diseases. Frontiers in Immunology, 2021, 12, 749192.	2.2	91
907	Alterations of the gut mycobiome in patients with MS. EBioMedicine, 2021, 71, 103557.	2.7	38
908	Gut Microbiota-Modulated Metabolomic Profiling Shapes the Etiology and Pathogenesis of Autoimmune Diseases. Microorganisms, 2021, 9, 1930.	1.6	9
909	MiRâ€142â€3p regulates synaptopathyâ€driven disease progression in multiple sclerosis. Neuropathology and Applied Neurobiology, 2022, 48, .	1.8	13
910	Retinoids are not linked to risk of multiple sclerosis: A Danish nationwide cohort study. European Journal of Neurology, 2022, 29, 247-256.	1.7	0
911	The emerging roles of absent in melanoma 2 (AIM2) inflammasome in central nervous system disorders. Neurochemistry International, 2021, 149, 105122.	1.9	15
912	Acting centrally or peripherally: A renewed interest in the central nervous system penetration of disease-modifying drugs in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 56, 103264.	0.9	20
913	Exercise protects from hippocampal inflammation and neurodegeneration in experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 2021, 98, 13-27.	2.0	22
914	Therapeutic potential of the target on NLRP3 inflammasome in multiple sclerosis. , 2021, 227, 107880.		33
915	Eosinophils are dispensable for development of MOG35–55-induced experimental autoimmune encephalomyelitis in mice. Immunology Letters, 2021, 239, 72-76.	1.1	3
916	The comparative efficacy and safety of anti-CD20 monoclonal antibodies for relapsing-remitting multiple sclerosis: A network meta-analysis. IBRO Neuroscience Reports, 2021, 11, 103-111.	0.7	6
917	Diagnosis of multiple sclerosis using multifocal ERG data feature fusion. Information Fusion, 2021, 76, 157-167.	11.7	5
918	Early MRI outcomes in participants with a first clinical demyelinating event at risk of multiple sclerosis in the ORACLE-MS study. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2021, 7, 205521732199085.	0.5	3
919	The course of cervical spinal cord atrophy rate and its relationship with NEDA in relapsing remitting multiple sclerosis. Acta Neurologica Belgica, 2022, 122, 345-355.	0.5	2
920	Neuroprotective Effect of Apolipoprotein D in Cuprizone-Induced Cell Line Models: A Potential Therapeutic Approach for Multiple Sclerosis and Demyelinating Diseases. International Journal of Molecular Sciences, 2021, 22, 1260.	1.8	6

		15	0
#		IF	CITATIONS
921	Science and Technology Research, 2021, 27, 269-280.	0.3	5
922	<i>In vivo</i> detection of teriflunomide-derived fluorine signal during neuroinflammation using fluorine MR spectroscopy. Theranostics, 2021, 11, 2490-2504.	4.6	10
923	Neurological manifestations similar to multiple sclerosis in adults after Zika virus infection. , 2021, , 199-207.		1
925	Noninvasive Electrophysiology. Neuromethods, 2021, , 251-265.	0.2	0
926	Necrotizing enterocolitis induces T lymphocyte–mediated injury in the developing mammalian brain. Science Translational Medicine, 2021, 13, .	5.8	48
927	Bariatric Surgery-Associated Myelopathy. Obesity Facts, 2021, 14, 431-439.	1.6	1
928	Human gut microbiota and its association with pathogenesis and treatments of neurodegenerative diseases. Microbial Pathogenesis, 2021, 150, 104675.	1.3	15
929	A new clustering method identifies multiple sclerosisâ€specific Tâ€cell receptors. Annals of Clinical and Translational Neurology, 2021, 8, 163-176.	1.7	11
930	Revealing vascular abnormalities and measuring small vessel density in multiple sclerosis lesions using USPIO. NeuroImage: Clinical, 2021, 29, 102525.	1.4	13
931	Rituximab for the treatment of multiple sclerosis: a review. Journal of Neurology, 2022, 269, 159-183.	1.8	85
932	Translational Characterization of the Glia Role in Multiple Sclerosis. Neuromethods, 2021, , 61-76.	0.2	2
933	SIRPα on CD11c ⁺ cells induces Th17 cell differentiation and subsequent inflammation in the CNS in experimental autoimmune encephalomyelitis. European Journal of Immunology, 2020, 50, 1560-1570.	1.6	8
934	Multifaceted Involvement of Microglia in Gray Matter Pathology in Multiple Sclerosis. Stem Cells, 2021, 39, 993-1007.	1.4	15
935	DNA Methylation in Neuronal Development and Disease. RNA Technologies, 2019, , 103-140.	0.2	1
936	Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation. Lecture Notes in Computer Science, 2018, , 43-54.	1.0	3
937	Krankheitsbild Multiple Sklerose. , 2016, , 1-12.		3
938	Gut Microbiota and Neurologic Diseases and Injuries. Advances in Experimental Medicine and Biology, 2020, 1238, 73-91.	0.8	22
939	Epigenetics in Multiple Sclerosis. Advances in Experimental Medicine and Biology, 2020, 1253, 309-374.	0.8	13

\mathbf{C}	TATI	ON	Dr		DT
L	TAL		IKE	PU.	ואי

#	Article	IF	CITATIONS
940	Co-signaling Molecules in Neurological Diseases. Advances in Experimental Medicine and Biology, 2019, 1189, 233-265.	0.8	4
941	Recent advancements in role of TAM receptors on efferocytosis, viral infection, autoimmunity, and tissue repair. International Review of Cell and Molecular Biology, 2020, 357, 1-19.	1.6	8
942	Methionine Metabolism Shapes T Helper Cell Responses through Regulation of Epigenetic Reprogramming. Cell Metabolism, 2020, 31, 250-266.e9.	7.2	182
943	Therapeutic aspects of the Axl/Gas6 molecular system. Drug Discovery Today, 2020, 25, 2130-2148.	3.2	22
945	Microarray data of transcriptome shifts in blood cell subsets during S1P receptor modulator therapy. Scientific Data, 2018, 5, 180145.	2.4	12
946	Multiple Sclerosis: Epidemiology, Genetics, Symptoms, and Unmet Needs. RSC Drug Discovery Series, 2019, , 1-32.	0.2	6
947	Cell type-specific transcriptomics identifies neddylation as a novel therapeutic target in multiple sclerosis. Brain, 2021, 144, 450-461.	3.7	16
948	Gut microbiota and systemic immunity in health and disease. International Immunology, 2021, 33, 197-209.	1.8	34
951	Deficiency of Socs3 leads to brain-targeted experimental autoimmune encephalomyelitis via enhanced neutrophil activation and ROS production. JCI Insight, 2019, 4, .	2.3	35
952	Activity of NaV1.2 promotes neurodegeneration in an animal model of multiple sclerosis. JCI Insight, 2016, 1, e89810.	2.3	22
953	Monocyte NOTCH2 expression predicts IFN-β immunogenicity in multiple sclerosis patients. JCI Insight, 2018, 3, .	2.3	46
954	C-type lectin receptors Mcl and Mincle control development of multiple sclerosis–like neuroinflammation. Journal of Clinical Investigation, 2020, 130, 838-852.	3.9	27
955	Protein arginine methyltransferase 5 promotes cholesterol biosynthesis–mediated Th17 responses and autoimmunity. Journal of Clinical Investigation, 2020, 130, 1683-1698.	3.9	47
956	Myelin-specific CD8+ T cells exacerbate brain inflammation in CNS autoimmunity. Journal of Clinical Investigation, 2019, 130, 203-213.	3.9	65
957	Oligodendroglia: metabolic supporters of neurons. Journal of Clinical Investigation, 2017, 127, 3271-3280.	3.9	229
958	Gut Microbiota and Disorders of the Central Nervous System. Neuroscientist, 2020, 26, 487-502.	2.6	20
959	Molecular imaging of the urokinase plasminogen activator receptor: opportunities beyond cancer. EJNMMI Research, 2020, 10, 87.	1.1	16
960	CD28 between tolerance and autoimmunity: the side effects of animal models. F1000Research, 2018, 7, 682.	0.8	14

#	Article	IF	Citations
961	Is Geo-Environmental Exposure a Risk Factor for Multiple Sclerosis? A Population-Based Cross-Sectional Study in South-Western Sardinia. PLoS ONE, 2016, 11, e0163313.	1.1	15
962	Metabolomic profiling of CSF in multiple sclerosis and neuromyelitis optica spectrum disorder by nuclear magnetic resonance. PLoS ONE, 2017, 12, e0181758.	1.1	50
963	Protamine neutralizes chondroitin sulfate proteoglycan-mediated inhibition of oligodendrocyte differentiation. PLoS ONE, 2017, 12, e0189164.	1.1	27
964	Osteopontin (OPN) as a CSF and blood biomarker for multiple sclerosis: A systematic review and meta-analysis. PLoS ONE, 2018, 13, e0190252.	1.1	63
965	CAS6 signaling tempers Th17 development in patients with multiple sclerosis and helminth infection. PLoS Pathogens, 2020, 16, e1009176.	2.1	7
966	Immunomonitoring Lymphocyte Subpopulations in Multiple Sclerosis Patients. , 0, , 139-154.		2
968	Awareness of patients with multiple sclerosis in Saudi Arabia regarding the relationship between smoking and multiple sclerosis. Journal of King Abdulaziz University, Islamic Economics, 2019, 24, 278-283.	0.5	6
969	Ofatumumab – A Potential Subcutaneous B-cell Therapy for Relapsing Multiple Sclerosis. European Neurological Review, 2020, 15, 27.	0.5	3
970	Gene Therapy Approaches in an Autoimmune Demyelinating Disease: Multiple Sclerosis. Current Gene Therapy, 2020, 19, 376-385.	0.9	18
971	Decrease in Secondary Neck Vessels in Multiple Sclerosis: A 5-year Longitudinal Magnetic Resonance Angiography Study. Current Neurovascular Research, 2019, 16, 215-223.	0.4	6
972	Diet and Multiple Sclerosis: Scoping Review of Web-Based Recommendations. Interactive Journal of Medical Research, 2019, 8, e10050.	0.6	38
973	The effect of 12-weeks concurent training on the serum levels NGF, BDNF, and VDBP in women with multiple sclerosis. International Journal of Applied Exercise Physiology, 2018, 7, 77-86.	0.4	10
974	The Relationship between Perception of Illness and Health-related Behaviors in Patients with Multiple Sclerosis. Journal of Health and Care, 2019, 21, 145-155.	0.0	1
975	Nutritional Intervention as an Essential Part of Multiple Sclerosis Treatment?. Physiological Research, 2018, 67, 521-533.	0.4	14
976	A Gut Feeling: The Importance of the Intestinal Microbiota in Psychiatric Disorders. Frontiers in Immunology, 2020, 11, 510113.	2.2	10
977	Paraoxonase Role in Human Neurodegenerative Diseases. Antioxidants, 2021, 10, 11.	2.2	26
978	The MicroRNA <i>miR-22</i> Represses Th17 Cell Pathogenicity by Targeting PTEN-Regulated Pathways. ImmunoHorizons, 2020, 4, 308-318.	0.8	6
979	Encephalitogenic and Regulatory CD8 T Cells in Multiple Sclerosis and Its Animal Models. Journal of Immunology, 2021, 206, 3-10.	0.4	22

#	Article	IF	CITATIONS
980	Intravenous transplantation of mouse embryonic stem cells attenuates demyelination in an ICR outbred mouse model of demyelinating diseases. Neural Regeneration Research, 2016, 11, 1603.	1.6	3
981	Role of nuclear factor κB in multiple sclerosis and experimental autoimmune encephalomyelitis. Neural Regeneration Research, 2018, 13, 1507.	1.6	55
982	The neuro-glial coagulonome: the thrombin receptor and coagulation pathways as major players in neurological diseases. Neural Regeneration Research, 2019, 14, 2043.	1.6	24
983	MicroRNAs as disease progression biomarkers and therapeutic targets in experimental autoimmune encephalomyelitis model of multiple sclerosis. Neural Regeneration Research, 2020, 15, 1831.	1.6	25
984	Apelin-13: A promising biomarker for multiple sclerosis?. Annals of Indian Academy of Neurology, 2018, 21, 126.	0.2	4
985	The common marmoset (<i>Callithrix jacchus</i>): a relevant preclinical model of human (auto)immune-mediated inflammatory disease of the brain. Primate Biology, 2016, 3, 9-22.	0.6	1
986	Emerging roles of 14-3-3 $\hat{1}^3$ in the brain disorder. BMB Reports, 2020, 53, 500-511.	1.1	20
987	Case Report: Rapid Eye Movement Sleep Behavior Disorder as the First Manifestation of Multiple Sclerosis. International Journal of MS Care, 2018, 20, 180-184.	0.4	5
988	Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. ELife, 2020, 9, .	2.8	16
989	Feasibility of a smartphone app to enhance physical activity in progressive MS: a pilot randomized controlled pilot trial over three months. PeerJ, 2020, 8, e9303.	0.9	13
990	Serum IgM to Lipids Predicts the Response to Tysabri $\hat{A}^{\$}$ and IFN- \hat{I}^2 in MS. SSRN Electronic Journal, 0, , .	0.4	0
991	Microbiome Therapeutics: Emerging Concepts and Challenges. , 2021, , 217-238.		0
992	Nucleic Acids as Novel Therapeutic Modalities to Address Multiple Sclerosis Onset and Progression. Cellular and Molecular Neurobiology, 2021, , 1.	1.7	2
993	Carnosine and skeletal muscle dysfunction in a rodent multiple sclerosis model. Amino Acids, 2021, 53, 1749-1761.	1.2	8
994	Social Cognitive Theory variables as correlates of physical activity in fatigued persons with multiple sclerosis and Related Disorders, 2022, 57, 103312.	0.9	6
995	Contribution of Metabolomics to Multiple Sclerosis Diagnosis, Prognosis and Treatment. International Journal of Molecular Sciences, 2021, 22, 11112.	1.8	7
996	Early Changes in Exo- and Endocytosis in the EAE Mouse Model of Multiple Sclerosis Correlate with Decreased Synaptic Ribbon Size and Reduced Ribbon-Associated Vesicle Pools in Rod Photoreceptor Synapses. International Journal of Molecular Sciences, 2021, 22, 10789.	1.8	5
997	Linking immune-mediated damage to neurodegeneration in multiple sclerosis: could network-based MRI help?. Brain Communications, 2021, 3, fcab237.	1.5	9

#	Article	IF	CITATIONS
998	A novel fatty acid-binding protein 5 and 7 inhibitor ameliorates oligodendrocyte injury in multiple sclerosis mouse models. EBioMedicine, 2021, 72, 103582.	2.7	28
999	Deep characterization of paired chromatin and transcriptomes in four immune cell types from multiple sclerosis patients. Epigenomics, 2021, 13, 1607-1618.	1.0	4
1000	Autoimmunity Increases Susceptibility to and Mortality from Sepsis. ImmunoHorizons, 2021, 5, 844-854.	0.8	3
1001	The Immune Response in Multiple Sclerosis. Annual Review of Pathology: Mechanisms of Disease, 2022, 17, 121-139.	9.6	96
1002	Adipokines as Immune Cell Modulators in Multiple Sclerosis. International Journal of Molecular Sciences, 2021, 22, 10845.	1.8	13
1003	Cochlear implantation of a patient with multiple sclerosis: Case report and systematic review. Journal of Laryngology and Otology, 2021, , 1-18.	0.4	0
1004	Genetic, Environmental and Lifestyle Determinants of Accelerated Telomere Attrition as Contributors to Risk and Severity of Multiple Sclerosis. Biomolecules, 2021, 11, 1510.	1.8	19
1005	Multiple Sclerosis Following SARS-CoV-2 Infection: A Case Report and Literature Review. Cureus, 2021, 13, e19036.	0.2	9
1006	Impact of Vitamin D Supplementation on Multiple Sclerosis. Cureus, 2021, 13, e18487.	0.2	6
1007	Inhibition of lysophosphatidic acid receptor 1–3 deteriorates experimental autoimmune encephalomyelitis by inducing oxidative stress. Journal of Neuroinflammation, 2021, 18, 240.	3.1	10
1008	Objective biomarkers for clinical relapse in multiple sclerosis: a metabolomics approach. Brain Communications, 2021, 3, fcab240.	1.5	9
1009	The effect of sodium channels on neurological/neuronal disorders: A systematic review. International Journal of Developmental Neuroscience, 2021, 81, 669-685.	0.7	4
1010	CELLULAR IMMUNITY PARAMETERS IN PATIENTS WITH REMITTING MULTIPLE SCLEROSIS. Medical Immunology (Russia), 2021, 23, 743-748.	0.1	0
1011	The "Efficacy Approach": Infusion Therapies in the Treatment of Relapsing-Remitting Multiple Sclerosis. Immunological Disorders and Immunotherapy, 2016, 01, .	0.0	0
1012	Protective Effect of Nitric Oxide and Natural Antioxidants on Stability of Blood Vessel. Hans Journal of Food and Nutrition Science, 2016, 05, 1-11.	0.0	0
1013	Alcohol and Tobacco in Multiple Sclerosis. , 2017, , 223-227.		0
1014	Experimental Models of Brain Disease: MRI Studies. , 2017, , 1-28.		0
1017	THE FEATURES OF THE EXPRESSION OF IBA1 PROTEIN ON THE MICROGLIAL CELLS OF THE SPINAL CORD OF MICE WITH THE EXPERIMENTAL ALLERGIC ENCEPHALOMYELITIS AS A MODEL OF THE MULTIPLE SCLEROSIS. Morphological Newsletter, 2018, 26, 8-11.	0.0	0

~			_		
CI	TAT	ION	I KF	'PO	RT

#	Article	IF	CITATIONS
1018	Association between Multiple Sclerosis and FOXP3 Gene Promoter Region Mutations. Cumhuriyet Medical Journal, 0, , .	0.1	1
1019	Flammer Syndrome and Autoimmune Inflammatory Conditions of the Central Nervous System: Multifactorial Interrelations. Advances in Predictive, Preventive and Personalised Medicine, 2019, , 145-163.	0.6	1
1020	B Cell-based Therapies for Multiple Sclerosis. RSC Drug Discovery Series, 2019, , 134-169.	0.2	1
1022	Evaluation of recombinant human interferon beta 1b by liquid chromatography methods and bioassay. Brazilian Journal of Pharmaceutical Sciences, 0, 55, .	1.2	1
1023	Immune Tolerance in Autoimmune Central Nervous System Disorders. Contemporary Clinical Neuroscience, 2019, , 143-166.	0.3	2
1025	Robust Fuzzy Sliding Mode Controller Design for a Multiple Sclerosis Model. Advances in Intelligent Systems and Computing, 2020, , 1343-1350.	0.5	1
1026	Association Of Vitamin D Receptor, Interleukin7 Receptor Alpha Gene Polymorphisms With The Risk Of Multiple Sclerosis. Zagazig University Medical Journal, 2019, .	0.0	0
1028	The Effect of Aqueous Extract of Tarragon on Clinical Symptoms and T Cell Differentiation in Experimental Autoimmune Encephalomyelitis. Iranian Journal of Allergy, Asthma and Immunology, 2019, 18, 523-532.	0.3	2
1029	Neonatal hydrocephalus leads to white matter neuroinflammation and injury in the corpus callosum of Ccdc39 hydrocephalic mice. Journal of Neurosurgery: Pediatrics, 2020, 25, 476-483.	0.8	14
1031	"Better Balance†The Articulation of the Development of a Complex Falls Prevention Intervention for People with Multiple Sclerosis. International Journal of MS Care, 2020, 23, 119-127.	0.4	1
1034	Microbiota in Health and Disease—Potential Clinical Applications. Nutrients, 2021, 13, 3866.	1.7	9
1035	Desired Resources for Changing Diet Among Persons With Multiple Sclerosis: Qualitative Inquiry Informing Future Dietary Interventions. International Journal of MS Care, 2022, 24, 175-183.	0.4	5
1036	CD8+ T cells specific for cryptic apoptosis-associated epitopes exacerbate experimental autoimmune encephalomyelitis. Cell Death and Disease, 2021, 12, 1026.	2.7	6
1038	Motor disability in patients with multiple sclerosis: transcranial magnetic stimulation study. Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 2020, 56, .	0.4	4
1039	Innate lymphoid cells in autoimmune diseases. , 2022, , 143-175.		2
1040	Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinflammation in the demyelinating central nervous system. Experimental Neurology, 2022, 347, 113895.	2.0	66
1042	Gut microbiota modification as an option in multiple sclerosis management. Polish Annals of Medicine, 0, , .	0.3	1
1043	Role of fungi in neurodegenerative diseases. , 2020, , 71-79.		1

#	ARTICLE	IF	CITATIONS
1044	Neuromuscular Junction of Soleus Muscle in a Mice Expression Level of NCAM-PSA Protein in the Model. The Neuroscience Journal of Shefaye Khatam, 2020, 8, 39-46.	0.4	0
1045	Carnosine quenches the reactive carbonyl acrolein in the central nervous system and attenuates autoimmune neuroinflammation. Journal of Neuroinflammation, 2021, 18, 255.	3.1	13
1046	An insight into the role of liposomal therapeutics in the reversion of multiple sclerosis. Expert Opinion on Drug Delivery, 2021, 18, 1795-1813.	2.4	4
1047	Construction of a lncRNA–miRNA–mRNA network to determine the key regulators of the Th1/Th2 imbalance in multiple sclerosis. Epigenomics, 2021, 13, 1797-1815.	1.0	17
1048	Small molecule screening as an approach to encounter inefficient myelin repair. Current Opinion in Pharmacology, 2021, 61, 127-135.	1.7	7
1049	Corpus callosum index correlates with brain volumetry and disability in multiple sclerosis patients. Journal of King Abdulaziz University, Islamic Economics, 2020, 25, 193-199.	0.5	3
1050	Enkephalin Therapy Improves Relapsing-Remitting Multiple Sclerosis. , 0, , .		2
1051	Two Multiple Sclerosis Relapses Affecting the Left Pontine-Mesencephalic Transition and Later the Right Mid Pons, With Distinct Eye Movement Abnormalities - The Importance Of Semiology Above Medical Imaging: Case Report. EMJ Radiology, 0, , .	0.0	0
1052	Transcription cofactor GRIP1 differentially affects myeloid cell–driven neuroinflammation and response to IFN-β therapy. Journal of Experimental Medicine, 2021, 218, .	4.2	4
1053	PET Imaging in Multiple Sclerosis. , 2021, , 893-916.		2
1054	Mitochondrial Dysfunction in EAE Mice Brains and Impact of HIF1-α Induction to Compensate Energy Loss. Archives of Neuroscience, 2020, 7, .	0.1	2
1056	Microbiota-Immune System Interactions in Human Neurological Disorders. CNS and Neurological Disorders - Drug Targets, 2020, 19, 509-526.	0.8	0
1057	Effect of on the Treatment of Experimental Autoimmune Encephalomyelitis: A Pilot Study on Mice Model. Chinese Medical Journal, 2017, 130, 2296-2301.	0.9	3
1058	Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation. , 2018, 10670, 43-54.		2
1059	Fingolimod and changes in hematocrit, hemoglobin and red blood cells of patients with multiple sclerosis. American Journal of Clinical and Experimental Immunology, 2019, 8, 27-31.	0.2	0
1060	Synthesis and Biological Assessment of 2-Hydroxyiminoethanones as Anti-Inflammatory and β-Amyloid Aggregation Inhibitors. Iranian Journal of Pharmaceutical Research, 2019, 18, 1288-1298.	0.3	1
1061	Alcohol and multiple sclerosis: an immune system-based review. International Journal of Physiology, Pathophysiology and Pharmacology, 2020, 12, 58-69.	0.8	15
1062	Can tetracyclines ensure help in multiple sclerosis immunotherapy?. Journal of Clinical and Translational Research, 2021, 7, 22-33.	0.3	2

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1063	Current and Future Immunotherapies for Multiple Sclerosis. Missouri Medicine, 2021,	118, 334-339.	0.3	3
1064	Mindfulness Meditation: Impact on Attentional Control and Emotion Dysregulation. Ar Clinical Neuropsychology, 2021, 36, 1283-1290.	chives of	0.3	1
1065	The therapeutic effect of PEGlated nanoliposome of pistachio unsaturated oils and its attenuate inflammation in multiple sclerosis: A randomized, double-blind, placebo-cont trial phase I. Journal of Neuroimmunology, 2022, 362, 577768.	efficacy to trolled clinical	1.1	1
1066	In-silico design of peptides for inhibition of HLA-A*03-KLIETYFSK complex as a new drug treatment of multiples sclerosis disease. Journal of Molecular Graphics and Modelling, 108079.	g design for 2022, 111,	1.3	1
1067	MTHFD2 is a metabolic checkpoint controlling effector and regulatory TÂcell fate and Immunity, 2022, 55, 65-81.e9.	function.	6.6	74
1068	Lactate Threshold Training Program on Patients with Multiple Sclerosis: A Multidisciplin Approach. Nutrients, 2021, 13, 4284.	hary	1.7	7
1069	Signaling through the S1Pâ^'S1PR Axis in the Gut, the Immune and the Central Nervou Multiple Sclerosis: Implication for Pathogenesis and Treatment. Cells, 2021, 10, 3217.	s System in	1.8	9
1070	CPP Applications in Immune Modulation and Disease Therapy. Methods in Molecular B 347-368.	iology, 2022, 2383,	0.4	3
1071	B Cells in the CNS at Postmortem Are Associated With Worse Outcome and Cell Types Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	s in Multiple	3.1	13
1072	Timing of treatment with an endogenous opioid alters immune response and spinal co female mice with experimental autoimmune encephalomyelitis. Journal of Neuroscienc 100, 551-563.	rd pathology in e Research, 2022,	1.3	1
1073	Antigen-presenting innate lymphoid cells orchestrate neuroinflammation. Nature, 202	1, 600, 707-712.	13.7	35
1074	Immune signature of multiple sclerosis-associated depression. Brain, Behavior, and Imr 174-182.	nunity, 2022, 100,	2.0	6
1075	Colonyâ€stimulating factorâ€1 receptor inhibition attenuates microgliosis and myelin exacerbates neurodegeneration in the chronic cuprizone model. Journal of Neurochem 643-661.	loss but istry, 2022, 160,	2.1	6
1076	Neutrophil-to-lymphocyte ratio and monocyte-to-lymphocyte ratio are associated with in patients with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2022, 58,	a 2-year relapse 103514.	0.9	18
1077	wSDTNBI: a novel network-based inference method for virtual screening. Chemical Scie 1060-1079.	ence, 2022, 13,	3.7	11
1078	Reduction in Cognitive Processing Speed Surrounding Multiple Sclerosis Relapse. Anna Neurology, 2022, 91, 417-423.	ils of	2.8	8
1079	Translocator Protein Ligand PIGA1138 Reduces Disease Symptoms and Severity in Exp Autoimmune Encephalomyelitis Model of Primary Progressive Multiple Sclerosis. Molec Neurobiology, 2022, 59, 1744-1765.	erimental cular	1.9	3
1080	An optimized and validated protocol for inducing chronic experimental autoimmune encephalomyelitis in C57BL/6J mice. Journal of Neuroscience Methods, 2022, 367, 109	9443.	1.3	6

#	Article	IF	CITATIONS
1081	Multiple Sklerose: Immunbiologischer Einfluss von Sport. , 0, , .		0
1083	Correction: Transcription cofactor GRIP1 differentially affects myeloid cell–driven neuroinflammation and response to IFN-β therapy. Journal of Experimental Medicine, 2021, 218, .	4.2	2
1084	Immunosuppression in Multiple Sclerosis and Other Neurologic Disorders. Handbook of Experimental Pharmacology, 2021, , 245-265.	0.9	1
1085	Multiple Sklerose: Perspektivwechsel mit Folgen. , 0, , .		0
1086	Dynamics of interleukin-17 in patients with multiple sclerosis and two-phase model of disease patho-genesis. Perm Medical Journal, 2021, 38, 48-53.	0.0	0
1087	Clustering based Segmentation of MR Images for the Delineation and Monitoring of Multiple Sclerosis Progression. , 2021, , .		0
1088	Specificity of Adaptive Immune Responses in Central Nervous System Health, Aging and Diseases. Frontiers in Neuroscience, 2021, 15, 806260.	1.4	11
1089	Lowâ€ʿfield magnetic stimulation improved cuprizoneâ€ʿinduced depressionâ€ʿlike symptoms and demyelination in female mice. Experimental and Therapeutic Medicine, 2022, 23, 210.	0.8	4
1090	Inhalation of dimethyl fumarate-encapsulated solid lipid nanoparticles attenuate clinical signs of experimental autoimmune encephalomyelitis and pulmonary inflammatory dysfunction in mice. Clinical Science, 2022, 136, 81-101.	1.8	10
1091	Metabolomics as a promising tool for improving understanding of multiple sclerosis: A review of recent advances. Biomedical Journal, 2022, 45, 594-606.	1.4	13
1092	Neuromodulation of neurological disorders in a demyelination model: effect of a potassium channel inhibitor from <i>Androctonus</i> scorpion venom. Toxin Reviews, 2023, 42, 99-114.	1.5	0
1093	The effects of dimethyl fumarate and fingolimod on T-cell lymphocyte proliferation in patients with multiple sclerosis. Irish Journal of Medical Science, 2022, , 1.	0.8	0
1094	Fitness, physical activity, and exercise in multiple sclerosis: a systematic review on current evidence for interactions with disease activity and progression. Journal of Neurology, 2022, 269, 2922-2940.	1.8	18
1096	Impact of <i>CYBA</i> genotypes on severity and progression of multiple sclerosis. European Journal of Neurology, 2022, 29, 1457-1464.	1.7	2
1097	Astrocyte-Derived Pleiotrophin Mitigates Late-Stage Autoimmune CNS Inflammation. Frontiers in Immunology, 2021, 12, 800128.	2.2	10
1098	Systematic Review of the Socioeconomic Consequences in Patients With Multiple Sclerosis With Different Levels of Disability and Cognitive Function. Frontiers in Neurology, 2021, 12, 737211.	1.1	14
1099	Teriflunomide Preserves Neuronal Activity and Protects Mitochondria in Brain Slices Exposed to Oxidative Stress. International Journal of Molecular Sciences, 2022, 23, 1538.	1.8	10
1101	Regulatory Cells in Multiple Sclerosis: From Blood to Brain. Biomedicines, 2022, 10, 335.	1.4	25

ARTICLE IF CITATIONS Administration of Maresin-1 ameliorates the physiopathology of experimental autoimmune 1102 3.1 23 encephalomyelitis. Journal of Neuroinflammation, 2022, 19, 27. Immune Reconstitution Following Autologous Hematopoietic Stem Cell Transplantation for Multiple Sclerosis: A Review on Behalf of the EBMT Autoimmune Diseases Working Party. Frontiers in 2.2 Immunology, 2021, 12, 813957. Global DNA methylation changes in treated and untreated MS patients measured over time. Journal of 1104 2 1.1 Neuroimmunology, 2022, 364, 577808. High-density lipoprotein reduces microglia activation and protects against experimental autoimmune encephalomyelitis in mice. International Immunopharmacology, 2022, 105, 108566. 2-Chlorodeoxyadenosine (Cladribine) preferentially inhibits the biological activity of microglial cells. 1106 1.7 8 International Ímmunopharmacology, 2022, 105, 108571. Detection of Neurofilament Light Chain with Labelâ€Free Electrolyteâ€Gated Organic Fieldâ€Effect Transistors. Advanced Materials Interfaces, 2022, 9, . CNS endothelial derived extracellular vesicles are biomarkers of active disease in multiple sclerosis. 1108 2.4 17 Fluids and Barriers of the CNS, 2022, 19, 13. Interactomic inhibition of Eomes in the nucleus alleviates EAE via blocking the conversion of Th17 1.4 cells into non-classic Th1 cells. Immunological Medicine, 2022, , 1-9. Effectiveness of Anti-Cluster of Differentiation 20 as a Disease-Modifying Therapy in Multiple 1110 0.2 0 Sclerosis Across Its Different Phenotypes at the University Hospital of Caen. Cureus, 2022, 14, e22120. Astrocytes and Inflammatory T Helper Cells: A Dangerous Liaison in Multiple Sclerosis. Frontiers in 2.2 Immunology, 2022, 13, 824411. Theoretical and Therapeutic Implications of the Spasticity-Plus Syndrome Model in Multiple Sclerosis. 1112 7 1.1 Frontiers in Neurology, 2021, 12, 802918. Peripheral helper T cells in the pathogenesis of multiple sclerosis. Multiple Sclerosis Journal, 2022, 1.4 28, 1340-1350. Biological determinants impact the neurovascular toxicity of nicotine and tobacco smoke: A 1114 1.4 15 pharmacokinetic and pharmacodynamics perspective. NeuroToxicology, 2022, 89, 140-160. Therapeutic Potentials of Poly (ADPâ€Ribose) Polymerase 1 (PARP1) Inhibition in Multiple Sclerosis and 5.6 Animal Models: Concept Revisiting. Advanced Science, 2022, 9, e2102853. Targeting IFN-λ Signaling Promotes Recovery from Central Nervous System Autoimmunity. Journal of 1117 0.4 6 Immunology, 2022, 208, 1341-1351. Long-Term Effects of Alemtuzumab on CD4+ Lymphocytes in Multiple Sclerosis Patients: A 72-Month 2.2 Follow-Up. Frontiers in Immunology, 2022, 13, 818325. NF-Î[®]B Signaling and Inflammationâ€"Drug Repurposing to Treat Inflammatory Disorders?. Biology, 2022, 1120 1.319 11, 372. Relationship Between White Matter Lesions and Gray Matter Atrophy in Multiple Sclerosis. Neurology, 1.5 2022, 98, .

#	Article	IF	CITATIONS
1122	Neurodegeneration and convergent factors contributing to the deterioration of the cytoskeleton in Alzheimer's disease, cerebral ischemia and multiple sclerosis (Review). Biomedical Reports, 2022, 16, 27.	0.9	11
1123	The Application of Consensus Weighted Gene Co-expression Network Analysis to Comparative Transcriptome Meta-Datasets of Multiple Sclerosis in Gray and White Matter. Frontiers in Neurology, 2022, 13, 807349.	1.1	4
1124	Autophagy modulation in multiple sclerosis and experimental autoimmune encephalomyelitis. Clinical and Experimental Immunology, 2022, 209, 140-150.	1.1	13
1125	Molecular Mechanisms of Immunosenescene and Inflammaging: Relevance to the Immunopathogenesis and Treatment of Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 811518.	1.1	16
1126	Aging With Multiple Sclerosis: Age-Related Factors and Socioeconomic Risks. Frontiers in Neurology, 2022, 13, 818652.	1.1	5
1128	<scp>MS</scp> â€Driven Metabolic Alterations Are Recapitulated in <scp>iPSC</scp> â€Derived Astrocytes. Annals of Neurology, 2022, 91, 652-669.	2.8	5
1129	Update on Multiple Sclerosis Molecular Biomarkers to Monitor Treatment Effects. Journal of Personalized Medicine, 2022, 12, 549.	1.1	4
1130	Effects of a Fully Humanized Type II Anti-CD20 Monoclonal Antibody on Peripheral and CNS B Cells in a Transgenic Mouse Model of Multiple Sclerosis. International Journal of Molecular Sciences, 2022, 23, 3172.	1.8	4
1131	Epidemiology of familial multiple sclerosis in Iran: a national registry-based study. BMC Neurology, 2022, 22, 76.	0.8	8
1133	Cerebrospinal fluid of progressive multiple sclerosis patients reduces differentiation and immune functions of oligodendrocyte progenitor cells. Glia, 2022, 70, 1191-1209.	2.5	17
1134	Reduced Expression of PD-1 in Circulating CD4+ and CD8+ Tregs Is an Early Feature of RRMS. International Journal of Molecular Sciences, 2022, 23, 3185.	1.8	4
1135	Ponesimod in the Treatment of Relapsing Forms of Multiple Sclerosis: An Update on the Emerging Clinical Data. Degenerative Neurological and Neuromuscular Disease, 2022, Volume 12, 61-73.	0.7	8
1136	Edaravone Attenuates Disease Severity of Experimental Auto-Immune Encephalomyelitis and Increases Gene Expression of Nrf2 and HO-1. Physiological Research, 0, , 147-157.	0.4	5
1137	Antibody cross-reactivity between casein and myelin-associated glycoprotein results in central nervous system demyelination. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117034119.	3.3	9
1138	Dual role of the nasal microbiota in neurological diseases—An unignorable risk factor or a potential therapy carrier. Pharmacological Research, 2022, 179, 106189.	3.1	9
1139	An Entropy Approach to Multiple Sclerosis Identification. Journal of Personalized Medicine, 2022, 12, 398.	1.1	1
1140	Recent advancements in nanoparticle-mediated approaches for restoration of multiple sclerosis. Journal of Controlled Release, 2022, 343, 620-644.	4.8	9
1141	Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines, 2022, 10, 815.	1.4	3

#	Article	IF	CITATIONS
1142	Impact of anti-PDGFRα antibody surface functionalization on LNC uptake by oligodendrocyte progenitor cells. International Journal of Pharmaceutics, 2022, 618, 121623.	2.6	6
1143	Identification of potential key genes and immune infiltration in Multiple sclerosis. Multiple Sclerosis and Related Disorders, 2022, 60, 103748.	0.9	2
1144	Transcription Factor c-Maf Promotes Immunoregulation of Programmed Cell Death 1–Expressed CD8 ⁺ T Cells in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, e1166.	3.1	8
1145	The Role of Osteopontin in Microglia Biology: Current Concepts and Future Perspectives. Biomedicines, 2022, 10, 840.	1.4	30
1146	Intranasal delivery of a small-molecule ErbB inhibitor promotes recovery from acute and late-stage CNS inflammation. JCI Insight, 2022, 7, .	2.3	9
1147	Human serum albumin in neurodegeneration. Reviews in the Neurosciences, 2022, 33, 803-817.	1.4	12
1148	CCR1 antagonist ameliorates experimental autoimmune encephalomyelitis by inhibition of Th9/Th22-related markers in the brain and periphery. Molecular Immunology, 2022, 144, 127-137.	1.0	10
1149	Spermine alleviates experimental autoimmune encephalomyelitis via regulating T cell activation and differentiation. International Immunopharmacology, 2022, 107, 108702.	1.7	4
1150	Identification of shared molecular signatures between multiple sclerosis and Parkinson's disease using systems biology approach. Gene Reports, 2022, 27, 101604.	0.4	0
1151	Acetyl-11-keto-β-boswellic acid improves clinical symptoms through modulation of Nrf2 and NF-κB pathways in SJL/J mouse model of experimental autoimmune encephalomyelitis. International Immunopharmacology, 2022, 107, 108703.	1.7	13
1152	Distinct mechanisms underlying therapeutic potentials of CD20 in neurological and neuromuscular disease. , 2022, 238, 108180.		5
1153	MULTIPLE SCLEROSIS, MITOCHONDRIA AND DIET THERAPY: AN OVERVIEW. , 2021, , 132-135.		0
1154	Immunopathophysiologic basis of multiple sclerosis and implications for therapy-a narrative review. Pharmacy & Pharmacology International Journal, 2021, 9, 263-271.	0.1	0
1155	The Role of Molecular Imaging as a Marker of Remyelination and Repair in Multiple Sclerosis. International Journal of Molecular Sciences, 2022, 23, 474.	1.8	2
1157	Tetramerization of STAT5 promotes autoimmune-mediated neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
1158	Using Mnemonic in Management of Multiple Sclerosis. Journal of Neuroscience Nursing, 2022, 54, 48-51.	0.7	0
1159	MSLife. , 2021, 5, 1-35.		5
1161	Specific hypomethylation programs underpin B cell activation in early multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14

#	Article	IF	CITATIONS
1162	Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function. Acta Neuropathologica, 2022, 143, 179-224.	3.9	82
1163	Peripheral Biomarkers in Multiple Sclerosis Patients Treated with Interferon-Beta. , 0, , .		0
1164	T-Cell Response against Varicella Zoster Virus in Patients with Multiple Sclerosis during Relapse and Remission. International Journal of Molecular Sciences, 2022, 23, 298.	1.8	1
1166	Autoimmunity and psychosis. , 2022, , 343-365.		1
1167	Rank-Rankl-Opg Axis in Multiple Sclerosis: The Contribution of Placenta. Cells, 2022, 11, 1357.	1.8	3
1168	Systemic Infection by Non-albicans Candida Species Affects the Development of a Murine Model of Multiple Sclerosis. Journal of Fungi (Basel, Switzerland), 2022, 8, 386.	1.5	6
1169	Contact-Dependent Granzyme B-Mediated Cytotoxicity of Th17-Polarized Cells Toward Human Oligodendrocytes. Frontiers in Immunology, 2022, 13, 850616.	2.2	7
1170	The Relationship Between Smoking and Multiple Sclerosis Severity in Saudi Arabia. Cureus, 2022, 14, e24181.	0.2	0
1171	Tissue-resident memory CD8 ⁺ T cells cooperate with CD4 ⁺ T cells to drive compartmentalized immunopathology in the CNS. Science Translational Medicine, 2022, 14, eabl6058.	5.8	21
1172	Neuroprotective Potential of Dendritic Cells and Sirtuins in Multiple Sclerosis. International Journal of Molecular Sciences, 2022, 23, 4352.	1.8	15
1173	The current standing of autologous haematopoietic stem cell transplantation for the treatment of multiple sclerosis. Journal of Neurology, 2022, 269, 3937-3958.	1.8	14
1174	The role of B cells and their interactions with stromal cells in the context of inflammatory autoimmune diseases. Autoimmunity Reviews, 2022, 21, 103098.	2.5	9
1175	Covalent labeling of immune cells. Current Opinion in Chemical Biology, 2022, 68, 102144.	2.8	3
1220	Immune Cell Contributors to the Female Sex Bias in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Current Topics in Behavioral Neurosciences, 2022, , 333-373.	0.8	5
1224	Edaravone attenuates disease severity of experimental auto-immune encephalomyelitis and increases gene expression of Nrf2 and HO-1 Physiological Research, 2022, , .	0.4	0
1225	Integrated analysis of differentially expressed genes and a ceRNA network to identify hub lncRNAs and potential drugs for multiple sclerosis American Journal of Translational Research (discontinued), 2022, 14, 772-787.	0.0	0
1226	Designing and Characterization of Tregitope-Based Multi-Epitope Vaccine Against Multiple Sclerosis: An Immunoinformatic Approach. Current Drug Safety, 2023, 18, 79-92.	0.3	0
1227	The meningeal lymphatic vessels and the glymphatic system: Potential therapeutic targets in neurological disorders. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1364-1382.	2.4	17

#	Article	IF	CITATIONS
1228	CD4+c-Met+ltgl $$ ±4+ T cell subset promotes murine neuroinflammation. Journal of Neuroinflammation, 2022, 19, 103.	3.1	2
1229	Immunoglobulin G N-glycan Biomarkers for Autoimmune Diseases: Current State and a Glycoinformatics Perspective. International Journal of Molecular Sciences, 2022, 23, 5180.	1.8	10
1230	The Effect of Peripheral Immune Cell Counts on the Risk of Multiple Sclerosis: A Mendelian Randomization Study. Frontiers in Immunology, 2022, 13, .	2.2	3
1231	FastCAT Accelerates Absolute Quantification of Proteins Using Multiple Short Nonpurified Chimeric Standards. Journal of Proteome Research, 2022, 21, 1408-1417.	1.8	2
1232	The role of the BTLA-HVEM complex in the pathogenesis of autoimmune diseases. Cellular Immunology, 2022, 376, 104532.	1.4	14
1233	Assessing the structural and functional changes in vagus nerve in multiple sclerosis. Medical Hypotheses, 2022, 164, 110863.	0.8	2
1234	Treatment with anacardic acid modulates dendritic cell activation and alleviates the disease development of autoimmune neuroinflammation in mice. Biochemical and Biophysical Research Communications, 2022, 613, 34-40.	1.0	6
1236	Novel multiple sclerosis agents-associated cardiotoxicity: A real-world pharmacovigilance study. International Journal of Cardiology, 2022, 362, 153-157.	0.8	2
1237	Prognostic value of neurofilament light chain in natalizumab therapy for different phases of multiple sclerosis: A systematic review and meta-analysis. Journal of Clinical Neuroscience, 2022, 101, 198-203.	0.8	4
1238	Acupuncture Regulates the Th17/Treg Balance and Improves Cognitive Deficits in a Rat Model of Vascular Dementia. SSRN Electronic Journal, 0, , .	0.4	0
1239	NR4A1 agonist cytosporone B attenuates neuroinflammation in a mouse model of multiple sclerosis. Neural Regeneration Research, 2022, 17, 2765.	1.6	8
1240	Detecting ongoing disease activity in mildly affected multiple sclerosis patients under first-line therapies. Multiple Sclerosis and Related Disorders, 2022, 63, 103927.	0.9	10
1241	Low Memory T Cells Blood Counts and High NaÃ ⁻ ve Regulatory T Cells Percentage at Relapsing Remitting Multiple Sclerosis Diagnosis. Frontiers in Immunology, 0, 13, .	2.2	5
1242	MicroRNAs and their Implications in CD4+ T-cells, Oligodendrocytes and Dendritic Cells in Multiple Sclerosis Pathogenesis. Current Molecular Medicine, 2023, 23, 630-647.	0.6	4
1243	Obesity and the Brain. International Journal of Molecular Sciences, 2022, 23, 6145.	1.8	8
1244	Improving Glucocorticoid Sensitivity of Brain-Homing CD4+ T Helper Cells by Steroid Hormone Crosstalk. Frontiers in Immunology, 0, 13, .	2.2	4
1245	Serum neurofilament as a predictor of 10-year grey matter atrophy and clinical disability in multiple sclerosis: a longitudinal study. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 849-857.	0.9	7
1246	Cladribine Treatment for MS Preserves the Differentiative Capacity of Subsequently Generated Monocytes, Whereas Its Administration In Vitro Acutely Influences Monocyte Differentiation but Not Microglial Activation. Frontiers in Immunology, 0, 13, .	2.2	0

		CITATION REPORT		
#	Article		IF	CITATIONS
1249	Multiple sclerosis and the microbiota. Evolution, Medicine and Public Health, 2022, 10	, 277-294.	1.1	5
1250	Time to first treatment and risk of disability pension in relapsing-remitting multiple scle of Neurology, Neurosurgery and Psychiatry, 2022, 93, 858-864.	erosis. Journal	0.9	9
1251	Identification of early neurodegenerative pathways in progressive multiple sclerosis. Na Neuroscience, 2022, 25, 944-955.	ature	7.1	55
1252	CNS Antigen-Specific Neuroinflammation Attenuates Ischemic Stroke With Involvemer Myeloid Cells. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	nt of Polarized	3.1	3
1253	Contribution of Dysregulated B-Cells and IgE Antibody Responses to Multiple Sclerosis Immunology, 0, 13, .	. Frontiers in	2.2	8
1254	Laminin as a Biomarker of Blood–Brain Barrier Disruption under Neuroinflammation: Review. International Journal of Molecular Sciences, 2022, 23, 6788.	A Systematic	1.8	8
1255	Oncostatin M triggers brain inflammation by compromising blood–brain barrier inte Neuropathologica, 2022, 144, 259-281.	grity. Acta	3.9	11
1256	Cathelicidinâ€related antimicrobial peptide promotes neuroinflammation through astr communication in experimental autoimmune encephalomyelitis. Glia, 2022, 70, 1902-	ocyte–microglia 1926.	2.5	8
1257	Breaching Brain Barriers: B Cell Migration in Multiple Sclerosis. Biomolecules, 2022, 12	, 800.	1.8	7
1258	Dissection of multiple sclerosis genetics identifies B and CD4+ T cells as driver cell sub Biology, 2022, 23, .	sets. Genome	3.8	6
1259	Thinking outside the box: non-canonical targets in multiple sclerosis. Nature Reviews D 2022, 21, 578-600.	Prug Discovery,	21.5	31
1260	High mobility group box 1 (HMGB1) inhibition attenuates lipopolysaccharide-induced d dysfunction and sickness-like behavior in mice. Immunologic Research, 2022, 70, 633-	cognitive 643.	1.3	6
1261	Characterization of Neurochemical Signature Alterations in the Enteric Nervous Syster Autoimmune Encephalomyelitis. Applied Sciences (Switzerland), 2022, 12, 5974.	n in	1.3	1
1262	Circulating long noncoding RNAs as novel bio-tools: Focus on autoimmune diseases. H Immunology, 2022, 83, 618-627.	uman	1.2	5
1264	Innate Lymphoid Cells - Neglected Players in Multiple Sclerosis. Frontiers in Immunolog	;y, 0, 13, .	2.2	7
1265	Neuropharmacology of Organoselenium Compounds in Mental Disorders and Degener Current Medicinal Chemistry, 2023, 30, 2357-2395.	ative Diseases.	1.2	12
1266	The Effect of Smoking on Long-term Gray Matter Atrophy and Clinical Disability in Patie Relapsing-Remitting Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflam	ents with Imation, 2022, 9,	3.1	8
1267	Reparative inflammation in multiple sclerosis. Seminars in Immunology, 2022, 59, 101	630.	2.7	2

#	Article	IF	CITATIONS
1268	MIF in the cerebrospinal fluid is decreased during relapsing-remitting while increased in secondary progressive multiple sclerosis. Journal of the Neurological Sciences, 2022, 439, 120320.	0.3	5
1269	What Have Failed, Interrupted, and Withdrawn Antibody Therapies in Multiple Sclerosis Taught Us?. Neurotherapeutics, 2022, 19, 785-807.	2.1	10
1270	Risk Factors from Pregnancy to Adulthood in Multiple Sclerosis Outcome. International Journal of Molecular Sciences, 2022, 23, 7080.	1.8	2
1271	Gut Microbiota, Leaky Gut, and Autoimmune Diseases. Frontiers in Immunology, 0, 13, .	2.2	43
1272	Demyelination Lesions Do Not Correlate with Clinical Manifestations by Bordetella pertussis Toxin Concentrations. Life, 2022, 12, 962.	1.1	0
1273	T cells from MS Patients with High Disease Severity Are Insensitive to an Immune-Suppressive Effect of Sulfatide. Molecular Neurobiology, 0, , .	1.9	0
1274	Alteration of interleukin-10-producing Type 1 regulatory cells in autoimmune diseases. Current Opinion in Hematology, 2022, 29, 218-224.	1.2	5
1275	Quantitative proteomics reveals protein dysregulation during T cell activation in multiple sclerosis patients compared to healthy controls. Clinical Proteomics, 2022, 19, .	1.1	5
1276	The many facets of CD26/dipeptidyl peptidase 4 and its inhibitors in disorders of the CNS– a critical overview. Reviews in the Neurosciences, 2023, 34, 1-24.	1.4	3
1277	Cytokine Profile in Patients with Multiple Sclerosis Following Exercise: A Systematic Review of Randomized Clinical Trials. International Journal of Environmental Research and Public Health, 2022, 19, 8151.	1.2	3
1278	Increased Intrathecal Activity of Follicular Helper T Cells in Patients With Relapsing-Remitting Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	11
1279	Comparison of Serum Mitochondrial Open Reading Frame of the 12S rRNA-c (MOTS-c) Levels in Patients With Multiple Sclerosis and Healthy Controls. Cureus, 2022, , .	0.2	2
1280	Preventive exercise attenuates IL-2-driven mood disorders in multiple sclerosis. Neurobiology of Disease, 2022, 172, 105817.	2.1	8
1282	Interleukin-31 and soluble CD40L: new candidate serum biomarkers that predict therapeutic response in multiple sclerosis. Neurological Sciences, 0, , .	0.9	2
1283	Lymphotoxin-alpha expression in the meninges causes lymphoid tissue formation and neurodegeneration. Brain, 2022, 145, 4287-4307.	3.7	12
1284	Immunotherapy for people with clinically isolated syndrome or relapsing-remitting multiple sclerosis: treatment response by demographic, clinical, and biomarker subgroups (PROMISE)—a systematic review protocol. Systematic Reviews, 2022, 11, .	2.5	0
1285	Predictors of Health Literacy among Caregivers of Patients with Multiple Sclerosis: A Family-Centred Empowerment Approach. British Journal of Social Work, 0, , .	0.9	0
1286	Ginsenoside Rg1 promotes remyelination and functional recovery in demyelinating disease by enhancing oligodendrocyte precursor cells-mediated myelin repair. Phytomedicine, 2022, 106, 154309.	2.3	5

#	Article	IF	CITATIONS
1287	Emerging role of neuregulin-1beta1 in pathogenesis and progression of multiple sclerosis. Neural Regeneration Research, 2023, 18, 133.	1.6	0
1288	Alzheimer's Disease Risk Variant rs3865444 in the CD33 Gene: A Possible Role in Susceptibility to Multiple Sclerosis. Life, 2022, 12, 1094.	1.1	0
1290	Microglia Pyroptosis: A Candidate Target for Neurological Diseases Treatment. Frontiers in Neuroscience, 0, 16, .	1.4	9
1291	Relevance of Pathogenetic Mechanisms to Clinical Effectiveness of B-Cell-Depleting Monoclonal Antibodies in Multiple Sclerosis. Journal of Clinical Medicine, 2022, 11, 4288.	1.0	2
1292	The adenosinergic signaling in the pathogenesis and treatment of multiple sclerosis. Frontiers in Immunology, 0, 13, .	2.2	4
1293	Plasma protein profiling reveals dynamic immunomodulatory changes in multiple sclerosis patients during pregnancy. Frontiers in Immunology, 0, 13, .	2.2	4
1294	Neuroinflammation: Extinguishing a blaze of T cells. Immunological Reviews, 2022, 311, 151-176.	2.8	7
1296	Pomegranate (Punica granatum L.) Attenuates Neuroinflammation Involved in Neurodegenerative Diseases. Foods, 2022, 11, 2570.	1.9	16
1297	The antimicrobial peptide cathelicidin drives development of experimental autoimmune encephalomyelitis in mice by affecting Th17 differentiation. PLoS Biology, 2022, 20, e3001554.	2.6	3
1298	Gut-Brain Axis and Neurological Disorders-How Microbiomes Affect our Mental Health. CNS and Neurological Disorders - Drug Targets, 2023, 22, 1008-1030.	0.8	4
1299	Anti-Inflammatory Effects of GLP-1 Receptor Activation in the Brain in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2022, 23, 9583.	1.8	11
1300	Serum levels of IgM to phosphatidylcholine predict the response of multiple sclerosis patients to natalizumab or IFN-β. Scientific Reports, 2022, 12, .	1.6	2
1301	Gliosis attenuation in experimental autoimmune encephalomyelitis by a combination of dimethyl fumarate and pregabalin. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	0
1302	<scp> GABA _B </scp> receptor agonist baclofen promotes central nervous system remyelination. Glia, 0, , .	2.5	3
1304	Epidemiology and Pathophysiology of Multiple Sclerosis. CONTINUUM Lifelong Learning in Neurology, 2022, 28, 988-1005.	0.4	24
1305	Targeting deoxycytidine kinase improves symptoms in mouse models of multiple sclerosis. Immunology, 2023, 168, 152-169.	2.0	3
1306	The Role of a Gut Microbial-Derived Metabolite, Trimethylamine N-Oxide (TMAO), in Neurological Disorders. Molecular Neurobiology, 2022, 59, 6684-6700.	1.9	24
1307	Lack of association between <i>TNFA</i> and <i>TNFB</i> polymorphisms and the risk of multiple sclerosis: a meta-analysis from 37 studies. Expert Review of Clinical Immunology, 2022, 18, 1083-1090.	1.3	0

#	Article	IF	CITATIONS
1308	Juvenile Idiopathic Arthritis, Uveitis and Multiple Sclerosis: Description of Two Patients and Literature Review. Biomedicines, 2022, 10, 2041.	1.4	1
1310	Anti-inflammatory effects of siponimod on astrocytes. Neuroscience Research, 2022, 184, 38-46.	1.0	2
1311	Role of Cytokines, Chemokines and IFN-γ+ IL-17+ Double-Positive CD4+ T Cells in Patients with Multiple Sclerosis. Biomedicines, 2022, 10, 2062.	1.4	5
1312	G9a dictates neuronal vulnerability to inflammatory stress via transcriptional control of ferroptosis. Science Advances, 2022, 8, .	4.7	18
1313	CTGF/CCN2 has a possible detrimental role in the inflammation and the remyelination failure in the early stages of multiple sclerosis. Journal of Neuroimmunology, 2022, 371, 577936.	1.1	1
1314	Role of Demyelination in the Persistence of Neurological and Mental Impairments after COVID-19. International Journal of Molecular Sciences, 2022, 23, 11291.	1.8	10
1315	Vaccination of multiple sclerosis patients during the COVID-19 era: Novel insights into vaccine safety and immunogenicity. Multiple Sclerosis and Related Disorders, 2022, 67, 104172.	0.9	1
1316	IRAK-M Suppresses the Activation of Microglial NLRP3 Inflammasome and GSDMD-Mediated Pyroptosis Through Inhibiting IRAK1 Phosphorylation During Experimental Autoimmune Encephalomyelitis. SSRN Electronic Journal, 0, , .	0.4	0
1317	The Link Between Gut Microbiota and Autoimmune Diseases. , 2022, , 33-68.		0
1318	Acupuncture Treatment for Multiple Sclerosis. , 2022, , 565-591.		0
1320	Effect of Whole-Body Cryotherapy on Iron Status and Biomarkers of Neuroplasticity in Multiple Sclerosis Women. Healthcare (Switzerland), 2022, 10, 1681.	1.0	2
1991			
1021	Transcriptional abnormalities in induced pluripotent stem cell-derived oligodendrocytes of individuals with primary progressive multiple sclerosis. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	2
1321	Transcriptional abnormalities in induced pluripotent stem cell-derived oligodendrocytes of individuals with primary progressive multiple sclerosis. Frontiers in Cellular Neuroscience, 0, 16, . Humanized zebrafish as a tractable tool for inÂvivo evaluation of pro-myelinating drugs. Cell Chemical Biology, 2022, 29, 1541-1555.e7.	1.8 2.5	2
1321 1322 1323	Transcriptional abnormalities in induced pluripotent stem cell-derived oligodendrocytes of individuals with primary progressive multiple sclerosis. Frontiers in Cellular Neuroscience, 0, 16, . Humanized zebrafish as a tractable tool for inÂvivo evaluation of pro-myelinating drugs. Cell Chemical Biology, 2022, 29, 1541-1555.e7. LPS-Induced Coagulation and Neuronal Damage in a Mice Model Is Attenuated by Enoxaparin. International Journal of Molecular Sciences, 2022, 23, 10472.	1.8 2.5 1.8	2 4 2
1321 1322 1323 1324	Transcriptional abnormalities in induced pluripotent stem cell-derived oligodendrocytes of individuals with primary progressive multiple sclerosis. Frontiers in Cellular Neuroscience, 0, 16, .Humanized zebrafish as a tractable tool for inÂvivo evaluation of pro-myelinating drugs. Cell Chemical Biology, 2022, 29, 1541-1555.e7.LPS-Induced Coagulation and Neuronal Damage in a Mice Model Is Attenuated by Enoxaparin. International Journal of Molecular Sciences, 2022, 23, 10472.The Translatability of Multiple Sclerosis Animal Models for Biomarkers Discovery and Their Clinical Use. International Journal of Molecular Sciences, 2022, 23, 11532.	1.8 2.5 1.8 1.8	2 4 2 13
1321 1322 1323 1324 1325	Transcriptional abnormalities in induced pluripotent stem cell-derived oligodendrocytes of individuals with primary progressive multiple sclerosis. Frontiers in Cellular Neuroscience, 0, 16, . Humanized zebrafish as a tractable tool for inÂvivo evaluation of pro-myelinating drugs. Cell Chemical Biology, 2022, 29, 1541-1555.e7. LPS-Induced Coagulation and Neuronal Damage in a Mice Model Is Attenuated by Enoxaparin. International Journal of Molecular Sciences, 2022, 23, 10472. The Translatability of Multiple Sclerosis Animal Models for Biomarkers Discovery and Their Clinical Use. International Journal of Molecular Sciences, 2022, 23, 11532. The "6B―Strategy: Build Back a Better Blood–Brain Barrier. Immuno, 2022, 2, 506-511.	1.8 2.5 1.8 1.8 0.6	2 4 2 13 2
1321 1322 1323 1324 1325 1326	Transcriptional abnormalities in induced pluripotent stem cell-derived oligodendrocytes of individuals with primary progressive multiple sclerosis. Frontiers in Cellular Neuroscience, 0, 16, .Humanized zebrafish as a tractable tool for inÂvivo evaluation of pro-myelinating drugs. Cell Chemical Biology, 2022, 29, 1541-1555.e7.LPS-Induced Coagulation and Neuronal Damage in a Mice Model Is Attenuated by Enoxaparin. International Journal of Molecular Sciences, 2022, 23, 10472.The Translatability of Multiple Sclerosis Animal Models for Biomarkers Discovery and Their Clinical Use. International Journal of Molecular Sciences, 2022, 23, 11532.The "6B―Strategy: Build Back a Better Blood–Brain Barrier. Immuno, 2022, 2, 506-511.How Microbiota-Derived Metabolites Link the Gut to the Brain during Neuroinflammation. International Journal of Molecular Sciences, 2022, 23, 10128.	1.8 2.5 1.8 1.8 0.6 1.8	2 4 2 13 2 8

#	Article	IF	CITATIONS
1329	IL-10-Functionalized Hydrogels Support Immunosuppressive Dendritic Cell Phenotype and Function. ACS Biomaterials Science and Engineering, 2022, 8, 4341-4353.	2.6	2
1330	Inhibition of Th1 activation and differentiation by dietary guar gum ameliorates experimental autoimmune encephalomyelitis. Cell Reports, 2022, 40, 111328.	2.9	9
1331	Crosstalk between dendritic cells and regulatory T cells: Protective effect and therapeutic potential in multiple sclerosis. Frontiers in Immunology, 0, 13, .	2.2	7
1333	Interleukin 22 and its association with neurodegenerative disease activity. Frontiers in Pharmacology, 0, 13, .	1.6	7
1334	Brain functional connectivity analysis in patients with relapsing-remitting multiple sclerosis: A graph theory approach of EEG resting state. Frontiers in Neuroscience, 0, 16, .	1.4	2
1335	The Angiotensin AT ₂ Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacological Reviews, 2022, 74, 1051-1135.	7.1	30
1336	Inhibitory synaptic loss drives network changes in multiple sclerosis: An ex vivo to in silico translational study. Multiple Sclerosis Journal, 2022, 28, 2010-2019.	1.4	10
1337	Increased Type I interferon signaling and brain endothelial barrier dysfunction in an experimental model of Alzheimer's disease. Scientific Reports, 2022, 12, .	1.6	12
1338	Emodin attenuates inflammation and demyelination in experimental autoimmune encephalomyelitis. Neural Regeneration Research, 2023, 18, 1535.	1.6	5
1340	The role of the adaptive immune system and T cell dysfunction in neurodegenerative diseases. Journal of Neuroinflammation, 2022, 19, .	3.1	29
1341	Interferon Beta-1a versus Combined Interferon Beta-1a and Oligodendrocyte-Specific FGFR1 Deletion in Experimental Autoimmune Encephalomyelitis. International Journal of Molecular Sciences, 2022, 23, 12183.	1.8	2
1342	Involvement of NINJ2 Protein in Inflammation and Blood–Brain Barrier Transmigration of Monocytes in Multiple Sclerosis. Genes, 2022, 13, 1946.	1.0	4
1343	Tolerogenic Nanovaccine for Prevention and Treatment of Autoimmune Encephalomyelitis. Advanced Materials, 2023, 35, .	11.1	8
1344	Correlation between the Neutrophil-to-Lymphocyte Ratio and Multiple Sclerosis: Recent Understanding and Potential Application Perspectives. Neurology Research International, 2022, 2022, 1-10.	0.5	5
1345	Genetic risk variants for multiple sclerosis are linked to differences in alternative pre-mRNA splicing. Frontiers in Immunology, 0, 13, .	2.2	5
1346	Impact of histone modifier-induced protection against autoimmune encephalomyelitis on multiple sclerosis treatment. Frontiers in Neurology, 0, 13, .	1.1	0
1347	Oral Pathobionts Promote MS-like Symptoms in Mice. Journal of Dental Research, 2023, 102, 217-226.	2.5	4
1348	The interplay between the gut-brain axis and the microbiome: A perspective on psychiatric and neurodegenerative disorders. Frontiers in Neuroscience, 0, 16, .	1.4	5

	CITATION REI	PORT	
#	Article	IF	CITATIONS
1349	Evaluating Risk: Benefit Ratio of Fat-Soluble Vitamin Supplementation to SARS-CoV-2-Infected Autoimmune and Cancer Patients: Do Vitamin–Drug Interactions Exist?. Life, 2022, 12, 1654.	1.1	1
1350	Patients With Severe Multiple Sclerosis Exhibit Functionally Altered CD8 ⁺ Regulatory T Cells. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	4
1351	Advanced inÂvitro models: Microglia in action. Neuron, 2022, 110, 3444-3457.	3.8	8
1352	CNS remyelination and inflammation: From basic mechanisms to therapeutic opportunities. Neuron, 2022, 110, 3549-3565.	3.8	31
1353	Automated Registration and Color Labeling of Serial 3D Double Inversion Recovery MR Imaging for Detection of Lesion Progression in Multiple Sclerosis. Journal of Digital Imaging, 0, , .	1.6	0
1354	MicroRNAs as a possible biomarker in the treatment of multiple sclerosis. IBRO Neuroscience Reports, 2022, 13, 492-499.	0.7	3
1355	Peripheral T-Cells, B-Cells, and Monocytes from Multiple Sclerosis Patients Supplemented with High-Dose Vitamin D Show Distinct Changes in Gene Expression Profiles. Nutrients, 2022, 14, 4737.	1.7	6
1356	Multistage classification identifies altered cortical phase- and amplitude-coupling in Multiple Sclerosis. NeuroImage, 2022, 264, 119752.	2.1	0
1357	The protective role of interaction between vitamin D, sex hormones andÂcalcium in multiple sclerosis. International Journal of Neuroscience, 0, , 1-19.	0.8	2
1358	Multilevel X-ray imaging approach to assess the sequential evolution of multi-organ damage in multiple sclerosis. Communications Physics, 2022, 5, .	2.0	4
1359	GPX4 aggravates experimental autoimmune encephalomyelitis by inhibiting the functions of CD4+ T cells. Biochemical and Biophysical Research Communications, 2023, 642, 57-65.	1.0	1
1360	Liposome-based nanoparticles impact on regulatory and effector phenotypes of macrophages and T cells in multiple Sclerosis patients. Biomaterials, 2023, 292, 121930.	5.7	3
1361	CHANGES IN THE CONTENT OF IMMUNOGLOBULINS AND CIRCULATING IMMUNE COMPLEXES IN THE BLOOD SERUM OF RABBIT RECIPIENTS DURING ALLOGENEOUS WHOLE BLOOD TRANSFUSION. Naukovì Dopovìdì Nacìonalʹnogo Unìversitetu Bìoresursiv ì Prirodokoristuvannâ Ukraìni, 2022, 2022, .	0.1	2
1362	Quantitative susceptibility mapping in assessment of inflammation and neurodegeneration in multiple sclerosis. Zhurnal Nevrologii I Psikhiatrii Imeni S S Korsakova, 2022, 122, 16.	0.1	0
1363	Mitochondria: how eminent in ageing and neurodegenerative disorders?. Human Cell, 2023, 36, 41-61.	1.2	5
1364	Real-Life Experience of the Effects of Cladribine Tablets on Lymphocyte Subsets and Serum Neurofilament Light Chain Levels in Relapsing Multiple Sclerosis Patients. Brain Sciences, 2022, 12, 1595.	1.1	3
1365	IFN-Î ³ R/STAT1 signaling in recipient hematopoietic antigen-presenting cells suppresses graft-versus-host disease. Journal of Clinical Investigation, 2023, 133, .	3.9	4
1366	Probiotics and Commensal Gut Microbiota as the Effective Alternative Therapy for Multiple Sclerosis Patients Treatment. International Journal of Molecular Sciences, 2022, 23, 14478.	1.8	7

#	Article	IF	CITATIONS
1367	Endocannabinoid levels in peripheral blood mononuclear cells of multiple sclerosis patients treated with dimethyl fumarate. Scientific Reports, 2022, 12, .	1.6	0
1368	White matter dementia thenâ \in $_{ m i}$ and now. Frontiers in Neurology, 0, 13, .	1.1	1
1369	Neuroprotective effects of bornyl acetate on experimental autoimmune encephalomyelitis via anti-inflammatory effects and maintaining blood-brain-barrier integrity. Phytomedicine, 2023, 112, 154569.	2.3	6
1370	A combination microparticle strategy for achieving antigen-specific tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	Ο
1371	Redox State of Human Serum Albumin in Multiple Sclerosis: A Pilot Study. International Journal of Molecular Sciences, 2022, 23, 15806.	1.8	3
1372	Role of Endogenous Lipopolysaccharides in Neurological Disorders. Cells, 2022, 11, 4038.	1.8	19
1373	Ðjognitive rehabilitation methods in multiple sclerosis patients. Alʹmanah KliniÄeskoj Mediciny, 2022, 50, 321-328.	0.2	0
1374	Impact of disease-modifying therapy on dendritic cells and exploring their immunotherapeutic potential in multiple sclerosis. Journal of Neuroinflammation, 2022, 19, .	3.1	5
1375	Gastrointestinal Tract, Microbiota and Multiple Sclerosis (MS) and the Link Between Gut Microbiota and CNS. Current Microbiology, 2023, 80, .	1.0	2
1376	Increased Percentage of CD8 ⁺ CD28 ^{â^'} Regulatory T Cells With Fingolimod Therapy in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2023, 10, .	3.1	3
1377	Current advances in stem cell therapy in the treatment of multiple sclerosis. Reviews in the Neurosciences, 2022, .	1.4	0
1378	Treatment with MDL 72527 Ameliorated Clinical Symptoms, Retinal Ganglion Cell Loss, Optic Nerve Inflammation, and Improved Visual Acuity in an Experimental Model of Multiple Sclerosis. Cells, 2022, 11, 4100.	1.8	3
1379	Infectious diseases, autoantibodies, and autoimmunity. Journal of Autoimmunity, 2023, 137, 102962.	3.0	14
1380	The protective effect of total glucosides of white paeony capsules on experimental autoimmune encephalomyelitis. Immunobiology, 2023, 228, 152313.	0.8	2
1381	Tissueâ€Targeted Drug Delivery Strategies to Promote Antigenâ€Specific Immune Tolerance. Advanced Healthcare Materials, 2023, 12, .	3.9	4
1382	Integrated single-cell transcriptomics of cerebrospinal fluid cells in treatment-naÃ ⁻ ve multiple sclerosis. Journal of Neuroinflammation, 2022, 19, .	3.1	2
1384	XCL1, a serum biomarker in neurological diseases; HTLV-1-associated myelopathy and multiple sclerosis. Microbial Pathogenesis, 2023, 174, 105962.	1.3	1
1385	Microglia and meningeal macrophages depletion delays the onset of experimental autoimmune encephalomyelitis. Cell Death and Disease, 2023, 14, .	2.7	18
#	Article	IF	CITATIONS
------	--	------	-----------
1386	Role of Microglial Cells in the Pathophysiology of MS: Synergistic or Antagonistic?. International Journal of Molecular Sciences, 2023, 24, 1861.	1.8	7
1387	Mitogen-activated protein kinase inhibitor PD98059 improves neuroimmune dysfunction in experimental autoimmune encephalomyelitis in SJL/J mice through the inhibition of nuclear factor-kappa B signaling in B cells. Brain Research Bulletin, 2023, 194, 45-53.	1.4	3
1388	Chimeric antigen receptor–based therapies beyond cancer. European Journal of Immunology, 2023, 53, .	1.6	2
1389	Synapse Dysfunctions in Multiple Sclerosis. International Journal of Molecular Sciences, 2023, 24, 1639.	1.8	5
1390	CNS demyelinating disease following inactivated or viral vector SARS-CoV-2 vaccines: A case series. Vaccine, 2023, 41, 1003-1008.	1.7	1
1391	Synthesis and Comprehensive in Vivo Activity Profiling of Olean-12-en-28-ol, 3β-Pentacosanoate in Experimental Autoimmune Encephalomyelitis: A Natural Remyelinating and Anti-Inflammatory Agent. Journal of Natural Products, 2023, 86, 103-118.	1.5	10
1392	Resurrection of endogenous retroviruses during aging reinforces senescence. Cell, 2023, 186, 287-304.e26.	13.5	82
1393	Vitamin D and neurodegenerative diseases. Heliyon, 2023, 9, e12877.	1.4	12
1394	Therapeutic effect of combination vitamin D3 and siponimod on remyelination and modulate microglia activation in cuprizone mouse model of multiple sclerosis. Frontiers in Behavioral Neuroscience, 0, 16, .	1.0	2
1395	Regulatory T cell therapy for multiple sclerosis: Breaching (blood-brain) barriers. Human Vaccines and Immunotherapeutics, 2022, 18, .	1.4	5
1396	Is there a role for herpes simplex virus type 1 in multiple sclerosis?. Microbes and Infection, 2023, 25, 105084.	1.0	3
1397	Factores asociados con el tiempo de progresión de la discapacidad en pacientes con esclerosis múltiple. Revista Peruana De Medicina De Experimental Y Salud Publica, 0, , 442-49.	0.1	0
1398	People with Primary Progressive Multiple Sclerosis Have a Lower Number of Central Memory T Cells and HLA-DR+ Tregs. Cells, 2023, 12, 439.	1.8	6
1399	GPR52 regulates cAMP in T cells but is dispensable for encephalitogenic responses. Frontiers in Immunology, 0, 13, .	2.2	0
1400	Alterations in Lymphocytic Metabolism—An Emerging Hallmark of MS Pathophysiology?. International Journal of Molecular Sciences, 2023, 24, 2094.	1.8	1
1401	Therapeutic Plasma Exchange in Certain Immune-Mediated Neurological Disorders: Focus on a Novel Nanomembrane-Based Technology. Biomedicines, 2023, 11, 328.	1.4	4
1402	In Vivo Corneal Confocal Microscopy in Multiple Sclerosis: Can it Differentiate Disease Relapse in Multiple Sclerosis?. American Journal of Ophthalmology, 2023, 250, 138-148.	1.7	1
1404	Stem cell- derived extracellular vesicles as new tools in regenerative medicine - Immunomodulatory role and future perspectives. Frontiers in Immunology, 0, 14, .	2.2	12

CITATION REPORT

#	Article	IF	CITATIONS
1405	Contribution of Intravital Neuroimaging to Study Animal Models of Multiple Sclerosis. Neurotherapeutics, 2023, 20, 22-38.	2.1	2
1406	Endothelial cellâ€derived oxysterol ablation attenuates experimental autoimmune encephalomyelitis. EMBO Reports, 2023, 24, .	2.0	5
1407	Novel evaluation indicators of MOG35â^1/455 induced experimental autoimmune encephalomyelitis in C57BL/6J mice. Immunobiology, 2023, 228, 152341.	0.8	0
1408	Lymphocyte Adhesion and Trafficking. , 2023, , 228-238.		0
1409	Itaconate ameliorates autoimmunity by modulating T cell imbalance via metabolic and epigenetic reprogramming. Nature Communications, 2023, 14, .	5.8	26
1410	Bruton tyrosine kinase inhibitors for multiple sclerosis. Nature Reviews Neurology, 2023, 19, 289-304.	4.9	30
1411	CDX-modified chitosan nanoparticles remarkably reduce therapeutic dose of fingolimod in the EAE model of mice. International Journal of Pharmaceutics, 2023, 636, 122815.	2.6	4
1412	Restoration of metal homeostasis: a potential strategy against neurodegenerative diseases. Ageing Research Reviews, 2023, 87, 101931.	5.0	5
1413	Design principles of microparticle size and immunomodulatory factor formulation dictate antigen-specific amelioration of multiple sclerosis in a mouse model. Biomaterials, 2023, 294, 122001.	5.7	1
1414	Multiple sclerosis and circadian rhythms: Can diet act as a treatment?. Acta Physiologica, 2023, 237, .	1.8	5
1415	Specific alterations in NKG2D+ T lymphocytes in relapsing-remitting and progressive multiple sclerosis patients. Multiple Sclerosis and Related Disorders, 2023, 71, 104542.	0.9	2
1417	Acupuncture regulates the Th17/Treg balance and improves cognitive deficits in a rat model of vascular dementia. Heliyon, 2023, 9, e13346.	1.4	2
1418	Disease severity classification using passively collected smartphone-based keystroke dynamics within multiple sclerosis. Scientific Reports, 2023, 13, .	1.6	2
1419	The role of the gut microbiota and fecal microbiota transplantation in neuroimmune diseases. Frontiers in Neurology, 0, 14, .	1.1	5
1420	Neuroprotective effect of Vesatolimod in an experimental autoimmune encephalomyelitis mice model. International Immunopharmacology, 2023, 116, 109717.	1.7	0
1421	The importance of gut-brain axis and use of probiotics as a treatment strategy for multiple sclerosis. Multiple Sclerosis and Related Disorders, 2023, 71, 104547.	0.9	14
1422	Role of DAMPs and cell death in autoimmune diseases: the example of multiple sclerosis. Genes and Immunity, 2023, 24, 57-70.	2.2	3
1423	Neuroprotective effects of melatonin in neurodegenerative and autoimmune central nervous system diseases. Encephalitis, 2023, 3, 44-53.	0.3	1

CITATION REPORT

#	Article	IF	CITATIONS
1424	The role of systemic ımmune ınflammatory ındex in showing active lesion ın patients with multiple sclerosis. BMC Neurology, 2023, 23, .	0.8	7
1425	IRAK-M suppresses the activation of microglial NLRP3 inflammasome and GSDMD-mediated pyroptosis through inhibiting IRAK1 phosphorylation during experimental autoimmune encephalomyelitis. Cell Death and Disease, 2023, 14, .	2.7	3
1426	High serum neurofilament light chain levels correlate with brain atrophy and physical disability in multiple sclerosis. European Journal of Neurology, 2023, 30, 1389-1399.	1.7	3
1427	Molecular detection of EBV in multiple sclerosis Iraqis patients and correlation with IL-12. AIP Conference Proceedings, 2023, , .	0.3	0
1428	Risk HLA Variants Affect the T-Cell Repertoire in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2023, 10, e200093.	3.1	1
1429	Citrullinated human and murine MOG35–55 display distinct biophysical and biochemical behavior. Journal of Biological Chemistry, 2023, 299, 103065.	1.6	0
1430	Musculin does not modulate the disease course of Experimental Autoimmune Encephalomyelitis and DSS colitis. Immunology Letters, 2023, 255, 21-31.	1.1	0
1431	Epigenetic Regulation of Ferroptosis in Central Nervous System Diseases. Molecular Neurobiology, 2023, 60, 3584-3599.	1.9	8
1432	Interplay between gut microbiota in immune homeostasis and inflammatory diseases. , 2023, , 143-154.		0
1433	Aryl hydrocarbon receptor activity downstream of IL-10 signaling is required to promote regulatory functions in human dendritic cells. Cell Reports, 2023, 42, 112193.	2.9	3
1434	Prolonged Interferon-Stimulated Gene and Protein Signatures in Multiple Sclerosis Induced by PEGylated IFN-β-1a Compared to Non-PEGylated IFN-β-1a. Journal of Interferon and Cytokine Research, 2023, 43, 108-120.	0.5	2
1435	MicroRNA-155 Plays Selective Cell-Intrinsic Roles in Brain-Infiltrating Immune Cell Populations during Neuroinflammation. Journal of Immunology, 2023, 210, 926-934.	0.4	3
1436	Pregnancy Is Associated with Impaired Transcription of Human Endogenous Retroviruses and of TRIM28 and SETDB1, Particularly in Mothers Affected by Multiple Sclerosis. Viruses, 2023, 15, 710.	1.5	1
1437	B cell targeted therapies in inflammatory autoimmune disease of the central nervous system. Frontiers in Immunology, 0, 14, .	2.2	7
1438	DAMPs in Organ-Specific Autoimmune Diseases. , 2023, , 569-656.		0
1439	The role of iron metabolism in the pathogenesis and treatment of multiple sclerosis. Frontiers in Immunology, 0, 14, .	2.2	10
1443	The Heart–Brain Interplay in Multiple Sclerosis from Pathophysiology to Clinical Practice: A Narrative Review. Journal of Cardiovascular Development and Disease, 2023, 10, 153.	0.8	0
1444	Platelets and platelet-derived vesicles as an innovative cellular and subcellular platform for managing multiple sclerosis. Molecular Biology Reports, 2023, 50, 4675-4686.	1.0	3

ARTICLE IF CITATIONS Taurochenodeoxycholic acid reduces astrocytic neuroinflammation and alleviates experimental 0.8 4 1445 autoimmune encephalomyelitis in mice. Immunobiology, 2023, 228, 152388. Bidirectional Communication Between the Brain and Other Organs: The Role of Extracellular Vesicles. 1446 1.7 Cellular and Molecular Neurobiology, 2023, 43, 2675-2696. STA-21, a small molecule STAT3 inhibitor, ameliorates experimental autoimmune encephalomyelitis by 1447 1.7 1 altering Th-17/Treg balance. International Immunopharmacology, 2023, 119, 110160. A backpack-based myeloid cell therapy for multiple sclerosis. Proceedings of the National Academy of 1448 Sciences of the United States of America, 2023, 120, . Efficacy of surgical treatment in patients with trigeminal neuralgia secondary to multiple sclerosis: A 1449 prospective study of 18 cases with evaluation of outcome and complications by independent 1.8 3 evaluators. Cephalalgia, 2023, 43, 033310242311671. Astrocyte-Derived Exosomes Differentially Shape T Cells' Immune Response in MS Patients. 1.8 International Journal of Molecular Sciences, 2023, 24, 7470. Molecular insights into the pathogenic impact of vitamin D deficiency in neurological disorders. 1451 2.5 6 Biomedicine and Pharmacotherapy, 2023, 162, 114718. Inflammatory diseases of the CNS., 2023, , 533-561. 1456 Human Microbiome and the Neurological Disorders., 2023, , 139-151. 0 1469 The endocannabinoid system and autoimmune demyelination: A focus on multiple sclerosis. , 2023, , 1470 229-240. Linking diet and gut microbiota in multiple sclerosis., 2023, , 557-570. 0 1473 Dietary management of multiple sclerosis., 2023, , 527-543. 1475 Effect of Tinospora cordifolia on neuroinflammation., 2023, , 601-621. 1476 0 Associations and interactions with herpesviruses and parasites (helminths) in people with multiple 1478 sclerosis., 2023,, 89-103. 1502 Microbial Technology for Neurological Disorders., 2023, , 299-339. 0 Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal 1529 Transduction and Targeted Therapy, 2023, 8, . Clinical efficacy of anti-CD20 antibodies in neurological and neuromuscular diseases. , 2024, , 375-400. 1540 0 The Influence of Sex Hormones and X Chromosome in Immune Responses. Current Topics in 1543 Microbiology and Immunology, 2023, , 21-59.

CITATION REPORT

IF CITATIONS ARTICLE # 20.ÂNeurological Disorders., 2023,,. 0 1559 $\hat{I}^3\hat{I}$ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduction and Targeted Therapy, 2023, 8, . 7.1 Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of 1566 7.1 5 diseases. Signal Transduction and Targeted Therapy, 2023, 8, . The effect of fingolimod drug on blood profile in multiple sclerosis patients. AIP Conference Proceedings, 2023, , . Epigenetics and multiple sclerosis., 2024, , 183-223. 1599 0 Helicobacter pylori infection and risk of multiple sclerosis: an updated meta-analysis. Neurological Sciences, 0, , Autoimmune Diseases., 2023, , 113-124. 1610 0 Diagnosis and Analysis of Multiple Sclerosis Disease Using Artificial Intelligence. Studies in Computational Intelligence, 2024, , 125-150.

CITATION REPORT