Pervasive drought legacies in forest ecosystems and the models

Science 349, 528-532 DOI: 10.1126/science.aab1833

Citation Report

#	Article	IF	CITATIONS
1	Fates of trees damaged by logging in Amazonian Bolivia. Forest Ecology and Management, 2015, 357, 50-59.	1.4	33
2	Contrasting sampling designs among archived datasets: implications for synthesis efforts. Tree Physiology, 2016, 36, 1057-1059.	1.4	15
3	Individual and interactive effects of drought and heat on leaf physiology of seedlings in an economically important crop. AoB PLANTS, 2016, , plw090.	1.2	21
4	Limited Growth Recovery after Drought-Induced Forest Dieback in Very Defoliated Trees of Two Pine Species. Frontiers in Plant Science, 2016, 7, 418.	1.7	56
5	The Imprint of Extreme Climate Events in Century-Long Time Series of Wood Anatomical Traits in High-Elevation Conifers. Frontiers in Plant Science, 2016, 7, 683.	1.7	37
6	Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. New Phytologist, 2016, 212, 577-589.	3.5	168
7	North American megadroughts in the Common Era: reconstructions and simulations. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 411-432.	3.6	123
8	Forest biogeochemistry in response to drought. Global Change Biology, 2016, 22, 2318-2328.	4.2	133
9	Few multiyear precipitation–reduction experiments find aÂshift in the productivity–precipitation relationship. Global Change Biology, 2016, 22, 2570-2581.	4.2	105
10	Does one model fit all? Patterns of beech mortality in natural forests of three European regions. Ecological Applications, 2016, 26, 2465-2479.	1.8	25
11	Legacy effects of drought in the southwestern United States: A multiâ€species synthesis. Ecological Monographs, 2016, 86, 312-326.	2.4	107
12	An ecoclimatic framework for evaluating the resilience of vegetation to water deficit. Global Change Biology, 2016, 22, 1677-1689.	4.2	68
13	Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Scientific Reports, 2016, 6, 24639.	1.6	81
14	Evaluating the drought response of CMIP5 models using global gross primary productivity, leaf area, precipitation, and soil moisture data. Clobal Biogeochemical Cycles, 2016, 30, 1827-1846.	1.9	61
15	Gendered vulnerabilities and grassroots adaptation initiatives in home gardens and small orchards in Northwest Mexico. Ambio, 2016, 45, 322-334.	2.8	21
16	Recent climatological trends and potential influences on forest phenology around western Lake Superior, USA. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,364.	1.2	13
17	Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia. Scientific Reports, 2016, 6, 37747.	1.6	83
18	When a Tree Dies in the Forest: Scaling Climate-Driven Tree Mortality to Ecosystem Water and Carbon Fluxes. Ecosystems, 2016, 19, 1133-1147.	1.6	73

#	Article	IF	CITATIONS
19	Drought and frost contribute to abrupt growth decreases before tree mortality in nine temperate tree species. Forest Ecology and Management, 2016, 382, 51-63.	1.4	76
20	Sequence of plant responses to droughts of different timescales: lessons from holm oak (<i>Quercus) Tj ETQq1</i>	1 0,78431 1.0	4 rgBT /Ove
21	Drought response of upland oak (Quercus L.) species in Appalachian hardwood forests of the southeastern USA. Annals of Forest Science, 2016, 73, 971-986.	0.8	14
22	A belowground perspective on the drought sensitivity of forests: Towards improved understanding and simulation. Forest Ecology and Management, 2016, 380, 309-320.	1.4	92
23	Drought-induced vegetation shifts in terrestrial ecosystems: The key role of regeneration dynamics. Global and Planetary Change, 2016, 144, 94-108.	1.6	148
24	Recovery of trees from drought depends on belowground sink control. Nature Plants, 2016, 2, 16111.	4.7	170
25	Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event. Journal of Ecology, 2016, 104, 1453-1465.	1.9	94
26	Wood anatomy and carbonâ€isotope discrimination support longâ€term hydraulic deterioration as a major cause of droughtâ€induced dieback. Global Change Biology, 2016, 22, 2125-2137.	4.2	119
27	Mixture reduces climate sensitivity of Douglas-fir stem growth. Forest Ecology and Management, 2016, 376, 205-220.	1.4	109
28	Quantifying the effects of drought on abrupt growth decreases of major tree species in Switzerland. Ecology and Evolution, 2016, 6, 3555-3570.	0.8	45
29	Global environmental change effects on ecosystems: the importance of landâ€use legacies. Global Change Biology, 2016, 22, 1361-1371.	4.2	148
30	Predicting tree biomass growth in the temperate–boreal ecotone: Is tree size, age, competition, or climate response most important?. Global Change Biology, 2016, 22, 2138-2151.	4.2	71
31	Forward modeling of tree-ring width improves simulation of forest growth responses to drought. Agricultural and Forest Meteorology, 2016, 221, 13-33.	1.9	48
32	Exploring the Effects of Solar Radiation Management on Water Cycling in a Coupled Land–Atmosphere Model*. Journal of Climate, 2016, 29, 2635-2650.	1.2	30
33	A forest vulnerability index based on drought and high temperatures. Remote Sensing of Environment, 2016, 173, 314-325.	4.6	68
34	A review on plant diversity and forest management of European beech forests. European Journal of Forest Research, 2016, 135, 51-67.	1.1	35
35	Sustainable forest management in a mountain region in the Central Western Carpathians, northeastern Slovakia: the role of climate change. Regional Environmental Change, 2017, 17, 65-77.	1.4	26
36	Emergent climate and <scp>CO</scp> ₂ sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America. Global Change Biology, 2017, 23, 2755-2767.	4.2	43

ARTICLE IF CITATIONS # Natural enemies govern ecosystem resilience in the face of extreme droughts. Ecology Letters, 2017, 37 3.0 68 20, 194-201. Understanding the drivers of <scp>S</scp>outheast <scp>A</scp>sian biodiversity loss. Ecosphere, 1.0 2017, <u>8, e01624.</u> Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?. 39 2.2 210 Environmental Research Letters, 2017, 12, 023001. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher 3.0 348 specific leaf area. Ecology Letters, 2017, 20, 539-553. Interactions and constraints in model species response to environmental heteroscedasticity. Journal 41 0.8 3 of Theoretical Biology, 2017, 419, 343-349. Conversion of Norway spruce forests in the face of climate change: a case study in Central Europe. European Journal of Forest Research, 2017, 136, 1013-1028. 1.1 Improved tree-ring archives will support earth-system science. Nature Ecology and Evolution, 2017, 1, 43 3.4 68 8 Different responses of multispecies tree ring growth to various drought indices across Europe. 44 1.0 Dendrochronologia, 2017, 44, 1-8. Intraâ€annual plasticity of growth mediates drought resilience over multiple years in tropical seedling 45 4.2 28 communities. Global Change Biology, 2017, 23, 4235-4244. An empirical method that separates irreversible stem radial growth from bark water content changes 2.8 in trees: theory and case studies. Plant, Cell and Environment, 2017, 40, 290-303. Temperature and rainfall interact to control carbon cycling in tropical forests. Ecology Letters, 2017, 47 3.0 107 20, 779-788. Climate†and successional†related changes in functional composition of European forests are strongly 4.2 driven by tree mortality. Global Change Biology, 2017, 23, 4162-4176. Active microwave observations of diurnal and seasonal variations of canopy water content across 49 1.5 48 the humid African tropical forests. Geophysical Research Letters, 2017, 44, 2290-2299. Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic 3.5 conductance: evidence from an evergreen woodland. New Phytologist, 2017, 215, 1399-1412. Precipitation, Temperature, and Teleconnection Signals across the Combined North American, 51 1.2 46 Monsoon Asia, and Old World Drought Atlases. Journal of Climate, 2017, 30, 7141-7155. Increasing carbon discrimination rates and depth of water uptake favor the growth of Mediterranean evergreen trees in Âthe ecotone with temperate deciduous forests. Global Change Biology, 2017, 23, 5054-5068. Species composition but not diversity explains recovery from the 2011 drought in Texas grasslands. 53 1.0 20 Ecosphere, 2017, 8, e01704. Plant xylem hydraulics: What we understand, current research, and future challenges. Journal of 54 4.1 301 Integrative Plant Biology, 2017, 59, 356-389.

ARTICLE IF CITATIONS # The Effects of Interannual Rainfall Variability on Tree–Grass Composition Along Kalahari Rainfall 55 1.6 24 Gradient. Ecosystems, 2017, 20, 975-988. Mycorrhizal Networks and Forest Resilience to Drought., 2017, , 319-339. 57 Integrating Mycorrhizas Into Global Scale Models., 2017, , 479-499. 10 Risky future for Mediterranean forests unless they undergo extreme carbon fertilization. Global Change Biology, 2017, 23, 2915-2927. Longâ€term climate and competition explain forest mortality patterns under extreme drought. Ecology 59 3.0 321 Letters, 2017, 20, 78-86. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science, 2017, 6.0 358,. 61 The genetics of drought tolerance in conifers. New Phytologist, 2017, 216, 1034-1048. 3.5 133 Ecosystem functioning is enveloped by hydrometeorological variability. Nature Ecology and 3.4 Evolution, 2017, 1, 1263-1270. Vegetation anomalies caused by antecedent precipitation in most of the world. Environmental 63 2.2 123 Research Letters, 2017, 12, 074016. Tracking the impact of drought on functionally different woody plants in a Mediterranean scrubland 64 ecosystem. Plant Ecology, 2017, 218, 1009-1020. Droughtâ€induced mortality patterns and rapid biomass recovery in a terra firme forest in the 65 1.5 52 Colombian Amazon. Ecology, 2017, 98, 2538-2546. The Curious Case of Projected Twenty-First-Century Drying but Greening in the American West. 1.2 Journal of Climate, 2017, 30, 8689-8710. Trends in ecosystem recovery from drought. Nature, 2017, 548, 164-165. 67 13.7 16 Global patterns of drought recovery. Nature, 2017, 548, 202-205. 13.7 Assessing the thermal dissipation sap flux density method for monitoring cold season water 69 1.4 16 transport in seasonally snow-covered forests. Tree Physiology, 2017, 37, 984-995. Contrasting and interacting changes in simulated spring and summer carbon cycle extremes in 2.2 European ecosystems. Environmental Research Letters, 2017, 12, 075006. The Multiple Causes of Forest Decline in Spain: Drought, Historical Logging, Competition and Biotic 71 0.4 8 Stressors. Ecological Studies, 2017, , 307-323. Mechanistic Processes Controlling Persistent Changes of Forest Canopy Structure After 2005 1.3 Amazon Drought. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3378-3390.

#	Article	IF	CITATIONS
73	Competition amplifies drought stress in forests across broad climatic and compositional gradients. Ecosphere, 2017, 8, e01849.	1.0	119
74	Mixed signals in trends of variance in high-elevation tree ring chronologies. Journal of Mountain Science, 2017, 14, 1961-1968.	0.8	11
75	Calcium biogeochemical cycle at the beech tree-soil solution interface from the Strengbach CZO (NE) Tj ETQq0 0 213, 91-109.	0 rgBT /O 1.6	verlock 10 T 40
76	Tree growth across the Nepal Himalaya during the last four centuries. Progress in Physical Geography, 2017, 41, 478-495.	1.4	35
77	Xylem anatomical traits reveal different strategies of two Mediterranean oaks to cope with drought and warming. Environmental and Experimental Botany, 2017, 133, 128-138.	2.0	44
78	Aleppo pine forests from across Spain show drought-induced growth decline and partial recovery. Agricultural and Forest Meteorology, 2017, 232, 186-194.	1.9	99
79	Assessing drought-driven mortality trees with physiological process-based models. Agricultural and Forest Meteorology, 2017, 232, 279-290.	1.9	50
80	Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales. Global Change Biology, 2017, 23, 1240-1257.	4.2	102
81	Impacts of droughts on the growth resilience of Northern Hemisphere forests. Global Ecology and Biogeography, 2017, 26, 166-176.	2.7	232
82	The ecology, distribution, conservation and management of large old trees. Biological Reviews, 2017, 92, 1434-1458.	4.7	246
83	Dendroecology. Ecological Studies, 2017, , .	0.4	29
84	A non-linear data-driven approach to reveal global vegetation sensitivity to climate. , 2017, , .		2
85	Drought and reproductive effort interact to control growth of a temperate broadleaved tree species (Fagus sylvatica). Tree Physiology, 2017, 37, 744-754.	1.4	40
86	OUP accepted manuscript. Tree Physiology, 2017, 37, 523-535.	1.4	36
87	Drought reduces growth and stimulates sugar accumulation: new evidence of environmentally driven non-structural carbohydrate use. Tree Physiology, 2017, 37, 997-1000.	1.4	39
88	Climate Impacts on Tree Growth in the Sierra Nevada. Forests, 2017, 8, 414.	0.9	8
89	Climate change-associated trends in biomass dynamics are consistent across soil drainage classes in western boreal forests of Canada. Forest Ecosystems, 2017, 4, .	1.3	4
90	Detecting the fingerprint of drought across Europe's forests: do carbon isotope ratios and stem growth rates tell similar stories?. Forest Ecosystems, 2017, 4, .	1.3	19

#	Article	IF	CITATIONS
91	Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Climate of the Past, 2017, 13, 1851-1900.	1.3	93
92	Bridging long-term wood functioning and nitrogen deposition to better understand changes in tree growth and forest productivity. Tree Physiology, 2017, 37, 1-3.	1.4	53
93	Legacy effects of a regional drought on aboveground net primary production in six central US grasslands. Plant Ecology, 2018, 219, 505-515.	0.7	66
94	In situ embolism induction reveals vessel refilling in a natural aspen stand. Tree Physiology, 2018, 38, 1006-1015.	1.4	18
95	Forest resilience to drought varies across biomes. Global Change Biology, 2018, 24, 2143-2158.	4.2	267
96	Stability of tree increment in relation to episodic drought in uneven-structured, mixed stands in southwestern Germany. Forest Ecology and Management, 2018, 415-416, 148-159.	1.4	25
97	Delineating limits: Confronting predicted climatic suitability to field performance in mistletoe populations. Journal of Ecology, 2018, 106, 2218-2229.	1.9	12
98	Water availability as driver of birch mortality in Hustai National Park, Mongolia. Dendrochronologia, 2018, 49, 127-133.	1.0	6
99	Quantifying soil moisture impacts on light use efficiency across biomes. New Phytologist, 2018, 218, 1430-1449.	3.5	184
100	Conifer radial growth response to recent seasonal warming and drought from the southwestern USA. Forest Ecology and Management, 2018, 418, 55-62.	1.4	30
101	Functional diversity differently shapes growth resilience to drought for coâ€existing pine species. Journal of Vegetation Science, 2018, 29, 265-275.	1.1	34
102	Leaf- and crown-level adjustments help giant sequoias maintain favorable water status during severe drought. Forest Ecology and Management, 2018, 419-420, 257-267.	1.4	15
103	Water memory effects and their impacts on global vegetation productivity and resilience. Scientific Reports, 2018, 8, 2962.	1.6	79
104	Animals alter precipitation legacies: Trophic and ecosystem engineering effects on plant community temporal dynamics. Journal of Ecology, 2018, 106, 1454-1469.	1.9	7
105	Ozone effects on European forest growth—Towards an integrative approach. Journal of Ecology, 2018, 106, 1377-1389.	1.9	48
106	The importance of drought–pathogen interactions in driving oak mortality events in the Ozark Border Region. Environmental Research Letters, 2018, 13, 015004.	2.2	36
107	Historical and eventâ€based bioclimatic suitability predicts regional forest vulnerability to compound effects of severe drought and bark beetle infestation. Global Change Biology, 2018, 24, 1952-1964.	4.2	48
108	Variation in xylem vulnerability to embolism in European beech from geographically marginal populations. Tree Physiology, 2018, 38, 173-185.	1.4	93

#	Article	IF	CITATIONS
109	The AmeriFlux network: A coalition of the willing. Agricultural and Forest Meteorology, 2018, 249, 444-456.	1.9	140
110	Drought timing influences the legacy of tree growth recovery. Global Change Biology, 2018, 24, 3546-3559.	4.2	165
111	Tree-ring anatomy and carbon isotope ratio show both direct and legacy effects of climate on bimodal xylem formation in Pinus pinea. Tree Physiology, 2018, 38, 1098-1109.	1.4	55
112	Weakening sensitivity of global vegetation to long-term droughts. Science China Earth Sciences, 2018, 61, 60-70.	2.3	12
113	Why Functional Traits Do Not Predict Tree Demographic Rates. Trends in Ecology and Evolution, 2018, 33, 326-336.	4.2	162
114	Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula. Oecologia, 2018, 187, 343-354.	0.9	94
115	Extreme droughts affecting Mediterranean tree species' growth and water-use efficiency: the importance of timing. Tree Physiology, 2018, 38, 1127-1137.	1.4	62
116	Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots. New Phytologist, 2018, 218, 1025-1035.	3.5	95
117	Differential declines in Alaskan boreal forest vitality related to climate and competition. Global Change Biology, 2018, 24, 1097-1107.	4.2	37
118	Quantifying antecedent climatic drivers of tree growth in the Southwestern <scp>US</scp> . Journal of Ecology, 2018, 106, 613-624.	1.9	37
119	Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Global Change Biology, 2018, 24, 504-516.	4.2	233
120	Lastâ€century forest productivity in a managed dryâ€edge Scots pine population: the two sides of climate warming. Ecological Applications, 2018, 28, 95-105.	1.8	22
121	Soil legacy effects of climatic stress, management and plant functional composition on microbial communities influence the response of Lolium perenne to a new drought event. Plant and Soil, 2018, 424, 233-254.	1.8	17
122	Response of ecosystem productivity to dry/wet conditions indicated by different drought indices. Science of the Total Environment, 2018, 612, 347-357.	3.9	39
123	Linking annual tree growth with eddy-flux measures of net ecosystem productivity across twenty years of observation in a mixed conifer forest. Agricultural and Forest Meteorology, 2018, 249, 479-487.	1.9	63
124	Overstorey–Understorey Interactions Intensify After Drought-Induced Forest Die-Off: Long-Term Effects for Forest Structure and Composition. Ecosystems, 2018, 21, 723-739.	1.6	27
125	Thermal Anomalies Detect Critical Global Land Surface Changes. Journal of Applied Meteorology and Climatology, 2018, 57, 391-411.	0.6	41
126	Patterns and correlates of giant sequoia foliage dieback during California's 2012–2016 hotter drought. Forest Ecology and Management, 2018, 419-420, 268-278.	1.4	33

	Сіт	ation Report	
#	ARTICLE Broad Consistency Between Satellite and Vegetation Model Estimates of Net Primary Productivity	IF	Citations
127	Across Global and Regional Scales. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3603-3616.	1.3	26
128	Can phosphorus additions increase long-term growth and survival of red alder (Alnus rubra Bong.) on periodically dry sites?. Forest Ecology and Management, 2018, 430, 545-557.	1.4	2
129	The influence of drought intensity on soil respiration during and after multiple drying-rewetting cycles. Soil Biology and Biochemistry, 2018, 127, 82-89.	4.2	32
130	Forest management in the Sierra Nevada provides limited carbon storage potential: an expert elicitation. Ecosphere, 2018, 9, e02321.	1.0	5
131	Extreme events and subtle ecological effects: lessons from a longâ€ŧerm sugar maple–American bee comparison. Ecosphere, 2018, 9, e02336.	ch 1.0	12
132	The climatic drivers of normalized difference vegetation index and treeâ€ringâ€based estimates of fore productivity are spatially coherent but temporally decoupled in Northern Hemispheric forests. Global Ecology and Biogeography, 2018, 27, 1352-1365.	est 2.7	47
133	Stem Circadian Phenology of Four Pine Species in Naturally Contrasting Climates from Sky-Island Forests of the Western USA. Forests, 2018, 9, 396.	0.9	16
134	Legacy Effects of Climate Extremes in Alpine Grassland. Frontiers in Plant Science, 2018, 9, 1586.	1.7	45
135	Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecology Letters, 2018, 21, 1833-1844.	3.0	92
136	An inconvenient truth about xylem resistance to embolism in the model species for refilling Laurus nobilis L Annals of Forest Science, 2018, 75, 1.	0.8	53
137	Post-disturbance recovery of forest carbon in a temperate forest landscape under climate change. Agricultural and Forest Meteorology, 2018, 263, 308-322.	1.9	44
138	A Wood Biology Agenda to Support Global Vegetation Modelling. Trends in Plant Science, 2018, 23, 1006-1015.	4.3	42
139	A Conceptual Tree Model Explaining Legacy Effects on Stem Growth. Frontiers in Forests and Global Change, 2018, 1, .	1.0	48
140	Geodiversity decreases shrub mortality and increases ecosystem tolerance to droughts and climate change. Earth Surface Processes and Landforms, 2018, 43, 2808-2817.	1.2	26
141	Recovery of Ecosystem Carbon and Energy Fluxes From the 2003 Drought in Europe and the 2012 Drought in the United States. Geophysical Research Letters, 2018, 45, 4879-4888.	1.5	36
142	Wood anatomical traits highlight complex temperature influence on Pinus cembra at high elevation in the Eastern Alps. International Journal of Biometeorology, 2018, 62, 1745-1753.	1.3	22
143	Dynamic responses of treeâ€ring growth to multiple dimensions of drought. Global Change Biology, 2018, 24, 5380-5390.	4.2	91
144	Higher drought sensitivity of radial growth of European beech in managed than in unmanaged forests. Science of the Total Environment, 2018, 642, 1201-1208.	3.9	45

#	Article	IF	CITATIONS
145	Diverse responses of vegetation growth to meteorological drought across climate zones and land biomes in northern China from 1981 to 2014. Agricultural and Forest Meteorology, 2018, 262, 1-13.	1.9	179
146	Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change, 2018, 8, 579-587.	8.1	330
147	Early monsoon failure and mid-summer dryness induces growth cessation of lower range margin Picea crassifolia. Trees - Structure and Function, 2018, 32, 1401-1413.	0.9	12
148	Soil Moisture Stress as a Major Driver of Carbon Cycle Uncertainty. Geophysical Research Letters, 2018, 45, 6495-6503.	1.5	119
149	A Combined Tree Ring and Vegetation Model Assessment of European Forest Growth Sensitivity to Interannual Climate Variability. Global Biogeochemical Cycles, 2018, 32, 1226-1240.	1.9	54
150	Forest Growth Responses to Drought at Short- and Long-Term Scales in Spain: Squeezing the Stress Memory from Tree Rings. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	104
151	Relationships between Wood Formation and Cambium Phenology on the Tibetan Plateau during 1960–2014. Forests, 2018, 9, 86.	0.9	22
152	Estimating Forest Carbon Fluxes Using Machine Learning Techniques Based on Eddy Covariance Measurements. Sustainability, 2018, 10, 203.	1.6	30
153	Grasslands may be more reliable carbon sinks than forests in California. Environmental Research Letters, 2018, 13, 074027.	2.2	142
154	Disentangling seasonal and interannual legacies from inferred patterns of forest water and carbon cycling using treeâ€ring stable isotopes. Global Change Biology, 2018, 24, 5332-5347.	4.2	52
155	Climate Change and Drought: From Past to Future. Current Climate Change Reports, 2018, 4, 164-179.	2.8	304
156	Resist, recover or both? Growth plasticity in response to drought is geographically structured and linked to intraspecific variability in <i>Pinus pinaster</i> . Journal of Biogeography, 2018, 45, 1126-1139.	1.4	77
157	The road to oblivion – Quantifying pathways in the decline of large old trees. Forest Ecology and Management, 2018, 430, 259-264.	1.4	20
158	Forests dominate the interannual variability of the North American carbon sink. Environmental Research Letters, 2018, 13, 084015.	2.2	23
159	Abiotic factors modulate post-drought growth resilience of Scots pine plantations and rear-edge Scots pine and oak forests. Dendrochronologia, 2018, 51, 54-65.	1.0	19
160	Tree water balance drives temperate forest responses to drought. Ecology, 2018, 99, 2506-2514.	1.5	10
161	Coordination between leaf, stem, and root hydraulics and gas exchange in three aridâ€zone angiosperms during severe drought and recovery. Plant, Cell and Environment, 2018, 41, 2869-2881.	2.8	69
162	Carbon exchange in an Amazon forest: from hours to years. Biogeosciences, 2018, 15, 4833-4848.	1.3	20

#	Article	IF	CITATIONS
163	Visual interpretation and time series modeling of Landsat imagery highlight drought's role in forest canopy declines. Ecosphere, 2018, 9, e02195.	1.0	18
164	When tree rings go global: Challenges and opportunities for retro- and prospective insight. Quaternary Science Reviews, 2018, 197, 1-20.	1.4	131
165	Fire increases drought vulnerability of <i>Quercus alba</i> juveniles by altering forest microclimate and nitrogen availability. Functional Ecology, 2018, 32, 2298-2309.	1.7	10
166	Dendroecological Approach to Assessing Carbon Accumulation Dynamics in Two <i>Pinus</i> Species from Northern Mexico. Tree-Ring Research, 2018, 74, 196-209.	0.4	8
167	Post-drought decline of the Amazon carbon sink. Nature Communications, 2018, 9, 3172.	5.8	95
168	Drought, Heat, and the Carbon Cycle: a Review. Current Climate Change Reports, 2018, 4, 266-286.	2.8	132
169	Antecedent soil water content and vapor pressure deficit interactively control water potential in <i>Larrea tridentata</i> . New Phytologist, 2019, 221, 218-232.	3.5	26
170	Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Annals of the New York Academy of Sciences, 2019, 1436, 19-35.	1.8	407
171	No Proportional Increase of Terrestrial Gross Carbon Sequestration From the Greening Earth. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2540-2553.	1.3	51
172	Ecological memory of daily carbon exchange across the globe and its importance in drylands. Ecology Letters, 2019, 22, 1806-1816.	3.0	33
173	Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Global Change Biology, 2019, 25, 3781-3792.	4.2	152
174	A review of nutrient, water and organic matter dynamics of tropical acacias on mineral soils for improved management in Southeast Asia. Australian Forestry, 2019, 82, 45-56.	0.3	22
175	Widespread droughtâ€induced tree mortality at dry range edges indicates that climate stress exceeds species' compensating mechanisms. Global Change Biology, 2019, 25, 3793-3802.	4.2	153
176	EcoMem: An R package for quantifying ecological memory. Environmental Modelling and Software, 2019, 119, 305-308.	1.9	10
177	Long-term nutrient imbalances linked to drought-triggered forest dieback. Science of the Total Environment, 2019, 690, 1254-1267.	3.9	42
178	Relationships of intra-annual stem growth with climate indicate distinct growth niches for two co-occurring temperate eucalypts. Science of the Total Environment, 2019, 690, 991-1004.	3.9	6
179	Potential Elevation Shift of the European Beech Stands (Fagus sylvatica L.) in Serbia. Frontiers in Plant Science, 2019, 10, 849.	1.7	13
180	Land use legacies drive higher growth, lower wood density and enhanced climatic sensitivity in recently established forests. Agricultural and Forest Meteorology, 2019, 276-277, 107630.	1.9	29

#	Article	IF	Citations
181	Greater growth stability of trees in marginal habitats suggests a patchy pattern of population loss and retention in response to increased drought at the rear edge. Ecology Letters, 2019, 22, 1439-1448.	3.0	14
182	High ecosystem stability of evergreen broadleaf forests under severe droughts. Global Change Biology, 2019, 25, 3494-3503.	4.2	89
183	Drought Enhances the Role of Competition in Mediating the Relationship between Tree Growth and Climate in Semi-Arid Areas of Northwest China. Forests, 2019, 10, 804.	0.9	11
184	Century-Scale Fire Dynamics in a Savanna Ecosystem. Fire, 2019, 2, 51.	1.2	7
185	The stomatal response to rising CO2 concentration and drought is predicted by a hydraulic trait-based optimization model. Tree Physiology, 2019, 39, 1416-1427.	1.4	25
186	Different ways to die in a changing world: Consequences of climate change for tree species performance and survival through an ecophysiological perspective. Ecology and Evolution, 2019, 9, 11979-11999.	0.8	57
187	Coping With Extreme Events: Growth and Waterâ€Use Efficiency of Trees in Western Mexico During the Driest and Wettest Periods of the Past One Hundred Sixty Years. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3419-3431.	1.3	16
188	Increased drought and atmospheric CO2 positively impact intrinsic water use efficiency but do not promote tree growth in semi-arid areas of northwestern China. Trees - Structure and Function, 2019, 33, 669-679.	0.9	9
189	Spatial patterns of precipitation-induced moisture availability and their effects on the divergence of conifer stem growth in the western and eastern parts of China's semi-arid region. Forest Ecology and Management, 2019, 451, 117524.	1.4	19
190	Regional and Local Moisture Gradients Drive the Resistance to and Recovery from Drought of Picea crassifolia Kom. in the Qilian Mountains, Northwest China. Forests, 2019, 10, 817.	0.9	8
191	The effect of tree diversity on the resistance and recovery of forest stands in the French Alps may depend on species differences in hydraulic features. Forest Ecology and Management, 2019, 450, 117486.	1.4	19
192	Drought tolerance of a Pinus palustris plantation. Forest Ecology and Management, 2019, 451, 117557.	1.4	19
193	Assessing the Impacts of Drought on Grassland Net Primary Production at the Global Scale. Scientific Reports, 2019, 9, 14041.	1.6	33
194	Redefining temperate forest responses to climate and disturbance in the eastern United States: New insights at the mesoscale. Global Ecology and Biogeography, 2019, 28, 557-575.	2.7	28
195	Does interspecific competition change the barley's response and recovery from heat wave?. Journal of Agronomy and Crop Science, 2019, 205, 401-413.	1.7	5
196	Anisohydric behavior linked to persistent hydraulic damage and delayed drought recovery across seven North American tree species. New Phytologist, 2019, 222, 1862-1872.	3.5	51
197	Drought and its legacy modulate the postâ€fire recovery of soil functionality and microbial community structure in a Mediterranean shrubland. Global Change Biology, 2019, 25, 1409-1427.	4.2	44
198	Geographically Structured Growth decline of Rear-Edge Iberian Fagus sylvatica Forests After the 1980s Shift Toward a Warmer Climate. Ecosystems, 2019, 22, 1325-1337.	1.6	28

		CITATION REPORT		
#	Article		IF	CITATIONS
199	Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, 2019,	565, 476-479.	13.7	409
200	Forest Drought Resistance at Large Geographic Scales. Geophysical Research Letters, 2 2752-2760.	2019, 46,	1.5	30
201	Linking drought legacy effects across scales: From leaves to tree rings to ecosystems. Biology, 2019, 25, 2978-2992.	Global Change	4.2	133
202	Legacy effects of tree mortality mediated by ectomycorrhizal fungal communities. Nev 2019, 224, 155-165.	v Phytologist,	3.5	21
203	Growth and photosynthetic responses in Brassica napus differ during stress and recover when exposed to combined heat, drought and elevated CO2. Plant Physiology and Bio 142, 59-72.	ery periods chemistry, 2019,	2.8	32
204	Filling in the gaps in survival analysis: using field data to infer plant responses to enviro stressors. Ecology, 2019, 100, e02778.	onmental	1.5	1
205	Remote sensing of forest die-off in the Anthropocene: From plant ecophysiology to ca Remote Sensing of Environment, 2019, 231, 111233.	nopy structure.	4.6	45
206	Legacies of more frequent drought in ponderosa pine across the western United State Change Biology, 2019, 25, 3803-3816.	s. Clobal	4.2	86
207	The impacts of climate extremes on the terrestrial carbon cycle: A review. Science Chir Sciences, 2019, 62, 1551-1563.	ia Earth	2.3	134
208	The Evolution of Climate Changes in Portugal: Determination of Trend Series and Its In Development. Climate, 2019, 7, 78.	npact on Forest	1.2	14
209	Species-specific and elevation-differentiated responses of tree growth to rapid warmin forest lead to a continuous growth enhancement in semi-humid Northeast Asia. Forest Management, 2019, 448, 76-84.	g in a mixed Ecology and	1.4	14
210	Characteristics of human-climate feedbacks differ at different radiative forcing levels. (Planetary Change, 2019, 180, 126-135.	Global and	1.6	10
211	Coupling between the terrestrial carbon and water cycles—a review. Environmental № 2019, 14, 083003.	lesearch Letters,	2.2	118
212	Effects of 21st entury climate, land use, and disturbances on ecosystem carbon bal Global Change Biology, 2019, 25, 3334-3353.	ance in California.	4.2	34
213	Ecosystem water use efficiency in a young plantation in Northern China and its relation drought. Agricultural and Forest Meteorology, 2019, 275, 1-10.	nship to	1.9	73
214	Limited capacity of tree growth to mitigate the global greenhouse effect under predict Nature Communications, 2019, 10, 2171.	ted warming.	5.8	92
215	Climate drivers of the terrestrial carbon cycle variability in Europe. Environmental Rese 2019, 14, 063001.	arch Letters,	2.2	16
216	Regime shifts of Mediterranean forest carbon uptake and reduced resilience driven by ocean surface temperatures. Global Change Biology, 2019, 25, 2825-2840.	multidecadal	4.2	22

#	Article	IF	CITATIONS
217	Rainfall exclusion and thinning can alter the relationships between forest functioning and drought. New Phytologist, 2019, 223, 1267-1279.	3.5	48
218	Tree Circumference Changes and Species-Specific Growth Recovery After Extreme Dry Events in a Montane Rainforest in Southern Ecuador. Frontiers in Plant Science, 2019, 10, 342.	1.7	16
219	Differentiated responses of nonstructural carbohydrate allocation to climatic dryness and drought events in the Inner Asian arid timberline. Agricultural and Forest Meteorology, 2019, 271, 355-361.	1.9	26
220	Long-Term Studies Reveal Differential Responses to Climate Change for Trees Under Soil- or Herbivore-Related Stress. Frontiers in Plant Science, 2019, 10, 132.	1.7	9
221	Land carbon models underestimate the severity and duration of drought's impact on plant productivity. Scientific Reports, 2019, 9, 2758.	1.6	42
222	Cumulative Effects of Climatic Factors on Terrestrial Vegetation Growth. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 789-806.	1.3	90
223	Carbon-use strategies in stem radial growth of two oak species, one Temperate deciduous and one Mediterranean evergreen: what can be inferred from seasonal variations in the δ13C of the current year ring?. Tree Physiology, 2019, 39, 1329-1341.	1.4	11
224	Ecosystem processes at the watershed scale: Influence of flowpath patterns of canopy ecophysiology on emergent catchment water and carbon cycling. Ecohydrology, 2019, 12, e2093.	1.1	19
225	Beyond the extreme: recovery of carbon and water relations in woody plants following heat and drought stress. Tree Physiology, 2019, 39, 1285-1299.	1.4	147
226	Droughts, Biodiversity, and Rural Incomes in the Tropics. Journal of the Association of Environmental and Resource Economists, 2019, 6, 823-852.	1.0	31
227	Abrupt regime shifts in post-fire resilience of Mediterranean mountain pinewoods are fuelled by land use. International Journal of Wildland Fire, 2019, 28, 329.	1.0	15
228	Drought impacts on tree phloem: from cell-level responses to ecological significance. Tree Physiology, 2019, 39, 173-191.	1.4	68
229	The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agricultural and Forest Meteorology, 2019, 269-270, 239-248.	1.9	199
230	Will Landscape Fire Increase in the Future? A Systems Approach to Climate, Fire, Fuel, and Human Drivers. Current Pollution Reports, 2019, 5, 9-24.	3.1	22
231	Implementing Plant Hydraulics in the Community Land Model, Version 5. Journal of Advances in Modeling Earth Systems, 2019, 11, 485-513.	1.3	213
232	â€~Pressure fatigue': the influence of sap pressure cycles on cavitation vulnerability in Acer negundo. Tree Physiology, 2019, 39, 740-746.	1.4	12
233	Linking functional traits and climate-growth relationships in Mediterranean species through wood density. IAWA Journal, 2019, 40, 215-S2.	2.7	13
234	From xylogenesis to tree rings: wood traits to investigate tree response to environmental changes. IAWA Journal, 2019, 40, 155-182.	2.7	85

#	Article	IF	CITATIONS
235	An Analysis of Common Forest Management Practices for Carbon Sequestration in South Carolina. Forests, 2019, 10, 949.	0.9	12
236	Does Drought Stress on Seedlings Have Longer Term Effects on Sapling Phenology, Reshooting, Growth and Plant Architecture in Quercus robur, Q. petraea and Their Morphological Intermediates?. Forests, 2019, 10, 1012.	0.9	3
237	Analysis of the condition of forest shelterbelts of the agro-climatic zone in Stavropol territory using the example of "luch―enterprise of Blagodarnensky region. IOP Conference Series: Earth and Environmental Science, 2019, 341, 012026.	0.2	0
238	Managing red pine stand structure to mitigate drought impacts. Dendrochronologia, 2019, 57, 125623.	1.0	15
239	Using δ13C and δ18O to analyze loblolly pine (Pinus taeda L.) response to experimental drought and fertilization. Tree Physiology, 2019, 39, 1984-1994.	1.4	6
240	Increasing impacts of extreme droughts on vegetation productivity under climate change. Nature Climate Change, 2019, 9, 948-953.	8.1	260
241	Exposures to temperature beyond threshold disproportionately reduce vegetation growth in the northern hemisphere. National Science Review, 2019, 6, 786-795.	4.6	29
242	Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecology Letters, 2019, 22, 119-127.	3.0	106
243	Hydrological drought persistence and recovery over the CONUS: A multi-stage framework considering water quantity and quality. Water Research, 2019, 150, 97-110.	5.3	45
244	Disentangling the effect of drought on stand mortality and productivity in northern temperate and boreal forests. Journal of Applied Ecology, 2019, 56, 758-768.	1.9	12
245	Termites mitigate the effects of drought in tropical rainforest. Science, 2019, 363, 174-177.	6.0	98
246	Enhanced growth after extreme wetness compensates for post-drought carbon loss in dry forests. Nature Communications, 2019, 10, 195.	5.8	59
247	Twentieth century redistribution in climatic drivers of global tree growth. Science Advances, 2019, 5, eaat4313.	4.7	282
248	Dendrochronological assessment of springs effects on ponderosa pine growth, Arizona, USA. Forest Ecology and Management, 2019, 435, 89-96.	1.4	8
249	Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth. Frontiers in Plant Science, 2018, 9, 1964.	1.7	117
250	Variation in Aquaporin and Physiological Responses Among Pinus contorta Families Under Different Moisture Conditions. Plants, 2019, 8, 13.	1.6	4
251	Legacies of La Niña: North American monsoon can rescue trees from winter drought. Global Change Biology, 2019, 25, 121-133.	4.2	30
252	Boreal tree growth exhibits decadalâ€scale ecological memory to drought and insect defoliation, but no negative response to their interaction. Journal of Ecology, 2019, 107, 1288-1301.	1.9	49

#	Article	IF	CITATIONS
253	Pathogen-induced tree mortality interacts with predicted climate change to alter soil respiration and nutrient availability in Mediterranean systems. Biogeochemistry, 2019, 142, 53-71.	1.7	14
254	Uneven winter snow influence on tree growth across temperate China. Global Change Biology, 2019, 25, 144-154.	4.2	39
255	Climate effects on stem radial growth of <i>Quercus suber</i> L.: does tree size matter?. Forestry, 2019, 92, 73-84.	1.2	12
256	Coupled ecohydrology and plant hydraulics modeling predicts ponderosa pine seedling mortality and lower treeline in the <scp>US</scp> Northern Rocky Mountains. New Phytologist, 2019, 221, 1814-1830.	3.5	37
257	Age- and region-related response of radial growth to climate warming and a warming hiatus. Trees - Structure and Function, 2020, 34, 199-212.	0.9	3
258	Partitioning evapotranspiration with concurrent eddy covariance measurements in a mixed forest. Agricultural and Forest Meteorology, 2020, 280, 107786.	1.9	39
259	Qinghai spruce (Picea crassifolia) and Chinese pine (Pinus tabuliformis) show high vulnerability and similar resilience to early-growing-season drought in the Helan Mountains, China. Ecological Indicators, 2020, 110, 105871.	2.6	34
260	Do plants respond and recover from a combination of drought and heatwave in the same manner under adequate and deprived soil nutrient conditions?. Plant Science, 2020, 291, 110333.	1.7	7
262	Die hard: timberline conifers survive annual winter embolism. New Phytologist, 2020, 226, 13-20.	3.5	31
263	Ecological memory at millennial timeâ€scales: the importance of data constraints, species longevity and niche features. Ecography, 2020, 43, 1-10.	2.1	68
264	Recent increases in drought frequency cause observed multi-year drought legacies in the tree rings of semi-arid forests. Oecologia, 2020, 192, 241-259.	0.9	55
265	Arid environments select for larger seeds in pines (Pinus spp.). Evolutionary Ecology, 2020, 34, 11-26.	0.5	11
266	Leaf drought tolerance cannot be inferred from classic leaf traits in a tropical rainforest. Journal of Ecology, 2020, 108, 1030-1045.	1.9	29
267	Drought characteristics and its impact on changes in surface vegetation from 1981 to 2015 in the Yangtze River Basin, China. International Journal of Climatology, 2020, 40, 3380-3397.	1.5	47
268	Scientists' Warning on Climate Change and Medicinal Plants. Planta Medica, 2020, 86, 10-18.	0.7	85
269	Testing for changes in biomass dynamics in largeâ€scale forest datasets. Global Change Biology, 2020, 26, 1485-1498.	4.2	14
270	Temporal shifts in iso/anisohydry revealed from daily observations of plant water potential in a dominant desert shrub. New Phytologist, 2020, 225, 713-726.	3.5	46
271	Competition modulates the response of growth to climate in pure and mixed Abies pinsapo subsp. Maroccana forests in northern Morocco. Forest Ecology and Management, 2020, 459, 117847.	1.4	32

#	Article	IF	CITATIONS
272	To which side are the scales swinging? Growth stability of Siberian larch under permanent moisture deficit with periodic droughts. Forest Ecology and Management, 2020, 459, 117841.	1.4	13
273	Traditional dry soil layer index method overestimates soil desiccation severity following conversion of cropland into forest and grassland on China's Loess Plateau. Agriculture, Ecosystems and Environment, 2020, 291, 106794.	2.5	71
274	Available and missing data to model impact of climate change on European forests. Ecological Modelling, 2020, 416, 108870.	1.2	58
275	Drought can offset potential water use efficiency of forest ecosystems from rising atmospheric CO2. Journal of Environmental Sciences, 2020, 90, 262-274.	3.2	14
276	Estimation of Global Grassland Net Ecosystem Carbon Exchange Using a Model Tree Ensemble Approach. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005034.	1.3	16
277	Forecasting semiâ€arid biome shifts in the Anthropocene. New Phytologist, 2020, 226, 351-361.	3.5	5
278	Probabilistic drought risk analysis for even-aged forests. , 2020, , 159-176.		0
279	Drought: Progress in broadening its understanding. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1407.	2.8	79
280	Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Global Change Biology, 2020, 26, 2505-2518.	4.2	101
281	The Possible Role of Non-Structural Carbohydrates in the Regulation of Tree Hydraulics. International Journal of Molecular Sciences, 2020, 21, 144.	1.8	76
282	Linkages between Climate, Radial Growth and Defoliation in Abies pinsapo Forests from Southern Spain. Forests, 2020, 11, 1002.	0.9	7
283	Survival strategies based on the hydraulic vulnerability segmentation hypothesis, for the tea plant [Camellia sinensis(L.) O. Kuntze] in long-term drought stress condition. Plant Physiology and Biochemistry, 2020, 156, 484-493.	2.8	9
284	Resilience of Spanish forests to recent droughts and climate change. Global Change Biology, 2020, 26, 7079-7098.	4.2	27
285	Warmer spring alleviated the impacts of 2018 European summer heatwave and drought on vegetation photosynthesis. Agricultural and Forest Meteorology, 2020, 295, 108195.	1.9	48
286	Simulating forest resilience: A review. Global Ecology and Biogeography, 2020, 29, 2082-2096.	2.7	51
287	Excessive positive response of modelâ€simulated land net primary production to climate changes over circumboreal forests. Plant-Environment Interactions, 2020, 1, 102-121.	0.7	5
288	An optimalityâ€based model explains seasonal variation in C3 plant photosynthetic capacity. Global Change Biology, 2020, 26, 6493-6510.	4.2	29
289	Sixtyâ€five years of fire manipulation reveals climate and fire interact to determine growth rates ofQuercusspp Ecosphere, 2020, 11, e03287.	1.0	4

#	Article	IF	CITATIONS
290	Tree Species Are Differently Impacted by Cumulative Drought Stress and Present Higher Growth Synchrony in Dry Places. Frontiers in Forests and Global Change, 2020, 3, .	1.0	18
291	A climatic dipole drives short- and long-term patterns of postfire forest recovery in the western United States. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29730-29737.	3.3	22
292	Drought responses and their effects on radial stem growth of two co-occurring conifer species in the Mediterranean mountain range. Annals of Forest Science, 2020, 77, 1.	0.8	15
293	A novel approach for the identification of pointer years. Dendrochronologia, 2020, 63, 125746.	1.0	9
294	Tree growth sensitivity to climate is temporally variable. Ecology Letters, 2020, 23, 1561-1572.	3.0	60
295	The positive contribution of iWUE to the resilience of Schrenk spruce (Picea schrenkiana) to extreme drought in the western Tianshan Mountains, China. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	7
296	Topographic, soil, and climate drivers of drought sensitivity in forests and shrublands of the Pacific Northwest, USA. Scientific Reports, 2020, 10, 18486.	1.6	34
297	Elevation dependence of drought legacy effects on vegetation greenness over the Tibetan Plateau. Agricultural and Forest Meteorology, 2020, 295, 108190.	1.9	39
298	Concurrent and Lagged Effects of Extreme Drought Induce Net Reduction in Vegetation Carbon Uptake on Tibetan Plateau. Remote Sensing, 2020, 12, 2347.	1.8	42
299	An accumulation of climatic stress events has led to years of reduced growth for sugar maple in southern Quebec, Canada. Ecosphere, 2020, 11, e03183.	1.0	13
300	Changing climate reallocates the carbon debt of frequentâ€fire forests. Global Change Biology, 2020, 26, 6180-6189.	4.2	24
301	Drought-Induced Xylem Embolism Limits the Recovery of Leaf Gas Exchange in Scots Pine. Plant Physiology, 2020, 184, 852-864.	2.3	47
302	Impacts of Climatic Variation on the Growth of Black Spruce Across the Forest-Tundra Ecotone: Positive Effects of Warm Growing Seasons and Heat Waves Are Offset by Late Spring Frosts. Frontiers in Forests and Global Change, 2020, 3, .	1.0	14
303	Topography and Traits Modulate Tree Performance and Drought Response in a Tropical Forest. Frontiers in Forests and Global Change, 2020, 3, .	1.0	17
304	Links between climate, drought and minimum wood density in conifers. IAWA Journal, 2020, 41, 236-255.	2.7	9
305	Capturing the Impact of the 2018 European Drought and Heat across Different Vegetation Types Using OCO-2 Solar-Induced Fluorescence. Remote Sensing, 2020, 12, 3249.	1.8	25
306	Tree species diversity improves beech growth and alters its physiological response to drought. Trees - Structure and Function, 2020, 34, 1059-1073.	0.9	7
307	Provenance selection and site conditions determine growth performance of pedunculate oak. Dendrochronologia, 2020, 61, 125705.	1.0	25

#	Article	IF	CITATIONS
308	Changes in the radial growth of Picea crassifolia and its driving factors in the mid-western Qilian Mountains, Northwest China since 1851 C.E. Dendrochronologia, 2020, 61, 125707.	1.0	8
309	Climatic factors of radial growth of <i>Pinus tabulaeformis</i> in eastern Gansu, northwest China based on Vaganov–Shashkin model. Geografiska Annaler, Series A: Physical Geography, 2020, 102, 196-208.	0.6	7
310	Soil moisture gradients and climate change: predicting growth of a critical boreal tree species. Canadian Journal of Forest Research, 2020, 50, 1074-1080.	0.8	2
311	Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions. Global Change Biology, 2020, 26, 4521-4537.	4.2	105
312	Hydraulic and photosynthetic limitations prevail over root nonâ€structural carbohydrate reserves as drivers of resprouting in two Mediterranean oaks. Plant, Cell and Environment, 2020, 43, 1944-1957.	2.8	24
313	Evidence of nonâ€stationary relationships between climate and forest responses: Increased sensitivity to climate change in Iberian forests. Global Change Biology, 2020, 26, 5063-5076.	4.2	56
314	The way back: recovery of trees from drought and its implication for acclimation. New Phytologist, 2020, 228, 1704-1709.	3.5	79
315	Climate Change Synchronizes Growth and iWUE Across Species in a Temperate-Submediterranean Mixed Oak Forest. Frontiers in Plant Science, 2020, 11, 706.	1.7	8
316	Linking variability of tree water use and growth with species resilience to environmental changes. Ecography, 2020, 43, 1386-1399.	2.1	15
317	Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nature Ecology and Evolution, 2020, 4, 1075-1083.	3.4	134
318	Global analysis of time-lag and -accumulation effects of climate on vegetation growth. International Journal of Applied Earth Observation and Geoinformation, 2020, 92, 102179.	1.4	75
319	Competition and Drought Alter Optimal Stomatal Strategy in Tree Seedlings. Frontiers in Plant Science, 2020, 11, 478.	1.7	15
320	Quantifying Growth Responses of Trees to Drought—a Critique of Commonly Used Resilience Indices and Recommendations for Future Studies. Current Forestry Reports, 2020, 6, 185-200.	3.4	92
321	Implications of Reduced Stand Density on Tree Growth and Drought Susceptibility: A Study of Three Species under Varying Climate. Forests, 2020, 11, 627.	0.9	27
322	Species-specific drought resilience in juniper and fir forests in the central Himalayas. Ecological Indicators, 2020, 117, 106615.	2.6	10
323	Introducing water stress hysteresis to the Feddes empirical macroscopic root water uptake model. Agricultural Water Management, 2020, 240, 106293.	2.4	19
324	Atmosphereâ€ S oil Interactions Govern Ecosystem Flux Sensitivity to Environmental Conditions in Semiarid Woody Ecosystems Over Varying Timescales. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JC005554.	1.3	6
325	Identifying areas at risk of droughtâ€induced tree mortality across Southâ€Eastern Australia. Global Change Biology, 2020, 26, 5716-5733.	4.2	79

#	Article	IF	CITATIONS
326	African biomes are most sensitive to changes in CO ₂ under recent and near-future CO ₂ conditions. Biogeosciences, 2020, 17, 1147-1167.	1.3	6
327	An Observationâ€Driven Approach to Improve Vegetation Phenology in a Global Land Surface Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002083.	1.3	8
328	Asymmetric impacts of dryness and wetness on tree growth and forest coverage. Agricultural and Forest Meteorology, 2020, 288-289, 107980.	1.9	13
329	Evaluating the cumulative and time-lag effects of drought on grassland vegetation: A case study in the Chinese Loess Plateau. Journal of Environmental Management, 2020, 261, 110214.	3.8	103
330	The Greening of the Sahara: Past Changes and Future Implications. One Earth, 2020, 2, 235-250.	3.6	91
331	Low stand density moderates growth declines during hot droughts in semiâ€arid forests. Journal of Applied Ecology, 2020, 57, 1089-1102.	1.9	44
332	Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecology Letters, 2020, 23, 891-901.	3.0	168
333	Multivariate climate departures have outpaced univariate changes across global lands. Scientific Reports, 2020, 10, 3891.	1.6	23
334	Impact of a Regional U.S. Drought on Land and Atmospheric Carbon. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005599.	1.3	5
335	Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand?. Global Change Biology, 2020, 26, 3336-3355.	4.2	50
336	Uncertainty analysis of multiple global GPP datasets in characterizing the lagged effect of drought on photosynthesis. Ecological Indicators, 2020, 113, 106224.	2.6	32
337	Spatial and temporal effects of drought on Chinese vegetation under different coverage levels. Science of the Total Environment, 2020, 716, 137166.	3.9	84
338	Greater risk of hydraulic failure due to increased drought threatens pine plantations in Horqin Sandy Land of northern China. Forest Ecology and Management, 2020, 461, 117980.	1.4	26
339	Determining the dominant factors determining the variability of terrestrial ecosystem productivity in China during the last two decades. Land Degradation and Development, 2020, 31, 2131-2145.	1.8	11
340	Greater sensitivity to hotter droughts underlies juniper dieback and mortality in Mediterranean shrublands. Science of the Total Environment, 2020, 721, 137599.	3.9	30
341	Active 3D Imaging of Vegetation Based on Multi-Wavelength Fluorescence LiDAR. Sensors, 2020, 20, 935.	2.1	13
342	A catastrophic tropical drought kills hydraulically vulnerable tree species. Global Change Biology, 2020, 26, 3122-3133.	4.2	132
343	Review of drought impacts on carbon cycling in grassland ecosystems. Frontiers of Earth Science, 2020, 14, 462-478.	0.9	15

#	Article	IF	CITATIONS
344	Low growth resilience to drought is related to future mortality risk in trees. Nature Communications, 2020, 11, 545.	5.8	228
345	Quantifying losses of plant hydraulic function: seeing the forest, the trees and the xylem. Tree Physiology, 2020, 40, 285-289.	1.4	6
346	Responses of the Terrestrial Ecosystem Productivity to Droughts in China. Frontiers in Earth Science, 2020, 8, .	0.8	14
347	Accelerated dryland expansion regulates future variability in dryland gross primary production. Nature Communications, 2020, 11, 1665.	5.8	158
348	Determinants of legacy effects in pine trees – implications from an irrigationâ€stop experiment. New Phytologist, 2020, 227, 1081-1096.	3.5	52
349	OCO-2 Solar-Induced Chlorophyll Fluorescence Variability across Ecoregions of the Amazon Basin and the Extreme Drought Effects of El Niño (2015–2016). Remote Sensing, 2020, 12, 1202.	1.8	19
350	Tree growth at the end of the 21st century - the extreme years 2018/19 as template for future growth conditions. Environmental Research Letters, 2020, 15, 074022.	2.2	37
351	Large contribution from anthropogenic warming to an emerging North American megadrought. Science, 2020, 368, 314-318.	6.0	527
352	Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences, 2020, 17, 1655-1672.	1.3	264
353	Divergent responses of ecosystem water-use efficiency to extreme seasonal droughts in Southwest China. Science of the Total Environment, 2021, 760, 143427.	3.9	77
354	Tree vitality indicators revealed a rapid response of beech forests to the 2018 drought. Ecological Indicators, 2021, 120, 106903.	2.6	52
355	Mortality predispositions of conifers across western USA. New Phytologist, 2021, 229, 831-844.	3.5	11
356	Drought, axe and goats. More variable and synchronized growth forecasts worsening dieback in Moroccan Atlas cedar forests. Science of the Total Environment, 2021, 765, 142752.	3.9	15
357	Legacies of past forest management determine current responses to severe drought events of conifer species in the Romanian Carpathians. Science of the Total Environment, 2021, 751, 141851.	3.9	12
358	Increasing plant water stress and decreasing summer streamflow in response to a warmer and wetter climate in seasonally snow overed forests. Ecohydrology, 2021, 14, .	1.1	7
359	Pervasive tree-growth reduction in Tibetan juniper forests. Forest Ecology and Management, 2021, 480, 118642.	1.4	13
360	Unifying ecosystem responses to disturbance into a single statistical framework. Oikos, 2021, 130, 408-421.	1.2	8
361	Physiological and environmental control on ecosystem water use efficiency in response to drought across the northern hemisphere. Science of the Total Environment, 2021, 758, 143599.	3.9	48

#	Article	IF	CITATIONS
362	Developing a spectral angle based vegetation index for detecting the early dying process of Chinese fir trees. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171, 253-265.	4.9	7
363	Vegetation-heatwave correlations and contrasting energy exchange responses of different vegetation types to summer heatwaves in the Northern Hemisphere during the 1982–2011 period. Agricultural and Forest Meteorology, 2021, 296, 108208.	1.9	16
364	Precipitation–productivity relationships and the duration of precipitation anomalies: An underappreciated dimension of climate change. Global Change Biology, 2021, 27, 1127-1140.	4.2	53
365	Soil moisture variation drives canopy water content dynamics across the western U.S Remote Sensing of Environment, 2021, 253, 112233.	4.6	25
366	Increasing climate sensitivity of subtropical conifers along an aridity gradient. Forest Ecology and Management, 2021, 482, 118841.	1.4	18
367	Interannual variability of ecosystem iso/anisohydry is regulated by environmental dryness. New Phytologist, 2021, 229, 2562-2575.	3.5	23
368	High resilience, but low viability, of pine plantations in the face of a shift towards a drier climate. Forest Ecology and Management, 2021, 479, 118537.	1.4	14
369	Lagged precipitation effect on plant productivity is influenced collectively by climate and edaphic factors in drylands. Science of the Total Environment, 2021, 755, 142506.	3.9	5
370	Chapter 7 Tree Physiology and Intraspecific Responses to Extreme Events: Insights from the Most Extreme Heat Year in U.S. History. Advances in Photosynthesis and Respiration, 2021, , 171-190.	1.0	0
371	Shelterbelts of the 3rd Agroclimatic Zone in the Stavropol Region, Russia. Lecture Notes in Networks and Systems, 2021, , 925-931.	0.5	0
372	Life after recovery: Increased resolution of forest resilience assessment sheds new light on postâ€drought compensatory growth and recovery dynamics. Journal of Ecology, 2021, 109, 3157-3170.	1.9	41
373	Water Availability–Demand Balance under Climate Change Scenarios in an Overpopulated Region of Mexico. International Journal of Environmental Research and Public Health, 2021, 18, 1846.	1.2	4
374	60-year record of stem xylem anatomy and related hydraulic modification under increased summer drought in ring- and diffuse-porous temperate broad-leaved tree species. Trees - Structure and Function, 2021, 35, 919-937.	0.9	14
375	Compensation effect of winter snow on larch growth in Northeast China. Climatic Change, 2021, 164, 1.	1.7	14
376	Metabolic responses of date palm (<i>Phoenix dactylifera</i> L.) leaves to drought differ in summer and winter climate. Tree Physiology, 2021, 41, 1685-1700.	1.4	10
377	Development of a Daily Multilayer Cropland Soil Moisture Dataset for China Using Machine Learning and Application to Cropping Patterns. Journal of Hydrometeorology, 2021, 22, 445-461.	0.7	3
378	Seasonal biological carryover dominates northern vegetation growth. Nature Communications, 2021, 12, 983.	5.8	45
379	The Effects of Drought and Re-Watering on Non-Structural Carbohydrates of Pinus tabulaeformis Seedlings. Biology, 2021, 10, 281.	1.3	19

#	Article	IF	CITATIONS
380	Tree Rings and Observations Suggest No Stable Cycles in Sierra Nevada Cool‧eason Precipitation. Water Resources Research, 2021, 57, e2020WR028599.	1.7	16
381	Tree growth decline as a response to projected climate change in the 21st century in Mediterranean mountain forests of Chile. Global and Planetary Change, 2021, 198, 103406.	1.6	31
382	Groundwater extraction reduces tree vitality, growth and xylem hydraulic capacity in Quercus robur during and after drought events. Scientific Reports, 2021, 11, 5149.	1.6	10
384	Responses of vegetation greenness and carbon cycle to extreme droughts in China. Agricultural and Forest Meteorology, 2021, 298-299, 108307.	1.9	46
385	Are pine-oak mixed stands in Mediterranean mountains more resilient to drought than their monospecific counterparts?. Forest Ecology and Management, 2021, 484, 118955.	1.4	15
386	The European Heat Wave 2018: The Dendroecological Response of Oak and Spruce in Western Germany. Forests, 2021, 12, 283.	0.9	8
387	Tree growth is more limited by drought in rear-edge forests most of the times. Forest Ecosystems, 2021, 8, .	1.3	33
388	Drought and cold spells trigger dieback of temperate oak and beech forests in northern Spain. Dendrochronologia, 2021, 66, 125812.	1.0	20
389	Divergent responses of ecosystem water use efficiency to drought timing over Northern Eurasia. Environmental Research Letters, 2021, 16, 045016.	2.2	19
390	Drought disaster monitoring using MODIS derived index for drought years: A space-based information for ecosystems and environmental conservation. Journal of Environmental Management, 2021, 284, 112028.	3.8	38
391	Climate response and drought resilience of Nothofagus obliqua secondary forests across a latitudinal gradient in south-central Chile. Forest Ecology and Management, 2021, 485, 118962.	1.4	27
392	Multi-sensor remote sensing for drought characterization: current status, opportunities and a roadmap for the future. Remote Sensing of Environment, 2021, 256, 112313.	4.6	114
393	Minimum temperature and evapotranspiration in Central Amazonian floodplains limit tree growth of Nectandra amazonum (Lauraceae). Trees - Structure and Function, 2021, 35, 1367-1384.	0.9	6
394	Dew water-uptake pathways in Negev desert plants: a study using stable isotope tracers. Oecologia, 2021, 196, 353-361.	0.9	5
395	Meta-analysis Reveals Different Competition Effects on Tree Growth Resistance and Resilience to Drought. Ecosystems, 2022, 25, 30-43.	1.6	40
396	Long term forest management drives drought resilience in Mediterranean black pine forest. Trees - Structure and Function, 2021, 35, 1651-1662.	0.9	13
397	Drought resistance and resilience: The role of soil moisture–plant interactions and legacies in a dryland ecosystem. Journal of Ecology, 2021, 109, 3280-3294.	1.9	34
398	Trees at a Moderately Arid Site Were More Sensitive to Long-Term Drought. Forests, 2021, 12, 579.	0.9	3

#	Article	IF	CITATIONS
399	The value of climate responses of individual trees to detect areas of climate-change refugia, a tree-ring study in the Brazilian seasonally dry tropical forests. Forest Ecology and Management, 2021, 488, 118971.	1.4	8
400	Quantifying the role of soil in local precipitation redistribution to vegetation growth. Ecological Indicators, 2021, 124, 107355.	2.6	5
401	Impact of successive spring frosts on leaf phenology and radial growth in three deciduous tree species with contrasting climate requirements in central Spain. Tree Physiology, 2021, 41, 2279-2292.	1.4	13
402	Abiotic disturbances affect forest short-term vegetation cover and phenology in Southwest China. Ecological Indicators, 2021, 124, 107393.	2.6	7
403	Topsoil organic carbon increases but its stability declines after fiveÂyearsÂof reduced throughfall. Soil Biology and Biochemistry, 2021, 156, 108221.	4.2	10
404	Processing and Extraction of Seasonal Tree Physiological Parameters from Stem Radius Time Series. Forests, 2021, 12, 765.	0.9	27
405	Drought Affected Ecosystem Water Use Efficiency of a Natural Oak Forest in Central China. Forests, 2021, 12, 839.	0.9	6
407	A triple tree-ring constraint for tree growth and physiology in a global land surface model. Biogeosciences, 2021, 18, 3781-3803.	1.3	16
408	A national tree-ring data repository for Canadian forests (CFS-TRenD): structure, synthesis, and applications. Environmental Reviews, 2021, 29, 225-241.	2.1	21
409	Tree Diversity, Site Index, and Carbon Storage Decrease With Aridity in Douglas-Fir Forests in Western Canada. Frontiers in Forests and Global Change, 2021, 4, .	1.0	4
410	Disentangling the Legacies of Climate and Management on Tree Growth. Ecosystems, 2022, 25, 215-235.	1.6	7
411	Effects of El Niño drought on tree mortality and growth across forest types at different elevations in Borneo. Forest Ecology and Management, 2021, 490, 119096.	1.4	14
413	Drought legacies mediated by trait tradeâ€offs in soil microbiomes. Ecosphere, 2021, 12, e03562.	1.0	21
414	Tree growth in Switzerland is increasingly constrained by rising evaporative demand. Journal of Ecology, 2021, 109, 2981-2990.	1.9	22
415	Extreme wet events as important as extreme dry events in controlling spatial patterns of vegetation greenness anomalies. Environmental Research Letters, 2021, 16, 074014.	2.2	11
416	Postdrought Recovery Time Across Clobal Terrestrial Ecosystems. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005699.	1.3	11
417	Growth resistance and resilience of mixed silver fir and Norway spruce forests in central Europe: Contrasting responses to mild and severe droughts. Global Change Biology, 2021, 27, 4403-4419.	4.2	64
418	Observed increasing water constraint on vegetation growth over the last three decades. Nature Communications, 2021, 12, 3777.	5.8	246

#	Article	IF	CITATIONS
419	Response of avian cavity nesters and carbon dynamics to forest management and climate change in the Northern Rockies. Ecosphere, 2021, 12, e03636.	1.0	1
420	Nonlinear plant–plant interactions modulate impact of extreme drought and recovery on a Mediterranean ecosystem. New Phytologist, 2021, 231, 1784-1797.	3.5	14
421	Patterns of postâ€drought recovery are strongly influenced by drought duration, frequency, postâ€drought wetness, and bioclimatic setting. Global Change Biology, 2021, 27, 4630-4643.	4.2	37
422	Germination responses of two key mountain tree species to single and combined fire-related stresses: does elevational origin matter?. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021, 280, 151832.	0.6	5
423	Inter and intra-annual links between climate, tree growth and NDVI: improving the resolution of drought proxies in conifer forests. International Journal of Biometeorology, 2021, 65, 2111-2121.	1.3	12
424	Post-glacial re-colonization and natural selection have shaped growth responses of silver fir across Europe. Science of the Total Environment, 2021, 779, 146393.	3.9	14
425	Forest Resistance and Resilience to 2002 Drought in Northern China. Remote Sensing, 2021, 13, 2919.	1.8	4
426	Temperature memory and non-structural carbohydrates mediate legacies of a hot drought in trees across the southwestern USA. Tree Physiology, 2022, 42, 71-85.	1.4	17
427	Effects of climate variability and management on shortleaf pine radial growth across a forest-savanna continuum in a 34-year experiment. Forest Ecology and Management, 2021, 491, 119125.	1.4	4
428	Defoliated trees die below a critical threshold of stored carbon. Functional Ecology, 2021, 35, 2156-2167.	1.7	16
429	The intraspecific variation of functional traits modulates drought resilience of European beech and pubescent oak. Journal of Ecology, 2021, 109, 3652-3669.	1.9	27
430	Gas exchange and hydraulic function in seedlings of three basal angiosperm tree-species during water-withholding and re-watering. Global Ecology and Conservation, 2021, 28, e01702.	1.0	1
431	Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe. Science of the Total Environment, 2021, 784, 147222.	3.9	61
432	Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nature Climate Change, 2021, 11, 772-779.	8.1	148
433	Assessing Tree Drought Resistance and Climate-Growth Relationships under Different Tree Age Classes in a Pinus nigra Arn. ssp. salzmannii Forest. Forests, 2021, 12, 1161.	0.9	10
434	Drought stress mitigation by nitrogen in boreal forests inferred from stable isotopes. Global Change Biology, 2021, 27, 5211-5224.	4.2	15
435	Modeling Climate Impacts on Tree Growth to Assess Tree Vulnerability to Drought During Forest Dieback. Frontiers in Plant Science, 2021, 12, 672855.	1.7	12
436	Long-term growth effects of simulated-drought, mid-rotation fertilization, and thinning on a lobiolly pine plantation in southeastern Oklahoma, USA. Forest Ecology and Management, 2021, 494, 119323.	1.4	7

#	Article	IF	CITATIONS
437	How to cope with drought and not die trying: Drought acclimation across tree species with contrasting niche breadth. Functional Ecology, 2021, 35, 1903-1913.	1.7	15
438	Growth resilience of Austrocedrus chilensis to drought along a precipitation gradient in Patagonia, Argentina. Forest Ecology and Management, 2021, 496, 119388.	1.4	11
439	Comparison of the response stability of Siberian larch to climate change in the Altai and Tianshan. Ecological Indicators, 2021, 128, 107823.	2.6	9
440	Different Temporal Stability and Responses to Droughts between Needleleaf Forests and Broadleaf Forests in North China during 2001–2018. Forests, 2021, 12, 1331.	0.9	2
441	TRIPLEX-Mortality model for simulating drought-induced tree mortality in boreal forests: Model development and evaluation. Ecological Modelling, 2021, 455, 109652.	1.2	8
442	Modelling forest ruin due to climate hazards. Earth System Dynamics, 2021, 12, 997-1013.	2.7	1
443	Physiological responses of Douglas-fir to climate and forest disturbances as detected by cellulosic carbon and oxygen isotope ratios. Tree Physiology, 2022, 42, 5-25.	1.4	4
444	Drought Resilience Debt Drives NPP Decline in the Amazon Forest. Global Biogeochemical Cycles, 2021, 35, e2021GB007004.	1.9	12
445	Potential elevation shift of oriental beech (Fagus orientalis L.) in Hyrcanian mixed forest ecoregion under future global warming. Ecological Modelling, 2021, 455, 109637.	1.2	8
446	Droneâ€based physiological index reveals longâ€term acclimation and drought stress responses in trees. Plant, Cell and Environment, 2021, 44, 3552-3570.	2.8	25
447	The drought‒dieback‒death conundrum in trees and forests. Plant Ecology and Diversity, 2021, 14, 1-12.	1.0	17
448	Tree mortality of European beech and Norway spruce induced by 2018-2019 hot droughts in central Germany. Agricultural and Forest Meteorology, 2021, 307, 108482.	1.9	86
449	Biotic and climatic controls on the interannual variation in canopy litterfall of a deciduous broad-leaved forest. Agricultural and Forest Meteorology, 2021, 307, 108483.	1.9	10
450	Douglas-fir encroachment reduces drought resistance in Oregon white oak of northern California. Forest Ecology and Management, 2021, 498, 119543.	1.4	6
451	Tree resistance and recovery from drought mediated by multiple abiotic and biotic processes across a large geographic gradient. Science of the Total Environment, 2021, 789, 147744.	3.9	14
452	Disentangling the role of sex dimorphism and forest structure as drivers of growth and wood density in expanding Juniperus thurifera L. woodlands. Annals of Forest Science, 2021, 78, 1.	0.8	5
453	Drought sensitivity of vegetation photosynthesis along the aridity gradient in northern China. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102418.	1.4	20
454	Recovery time of juniper trees is longer in wet than dry conditions on the Tibetan Plateau in the past two centuries. Forest Ecology and Management, 2021, 497, 119514.	1.4	5

#	Article	IF	CITATIONS
455	Differences in temperature sensitivity and drought recovery between natural stands and plantations of conifers are species-specific. Science of the Total Environment, 2021, 796, 148930.	3.9	19
456	Climate-growth pattern of Pinus tabulaeformis plantations and their resilience to drought events in the Loess Plateau. Forest Ecology and Management, 2021, 499, 119642.	1.4	13
457	Assessing vegetation stability to climate variability in Central Asia. Journal of Environmental Management, 2021, 298, 113330.	3.8	28
458	Regional-scale vegetation-climate interactions on the Qinghai-Tibet Plateau. Ecological Informatics, 2021, 65, 101413.	2.3	29
459	Importance of the legacy effect for assessing spatiotemporal correspondence between interannual tree-ring width and remote sensing products in the Sierra Nevada. Remote Sensing of Environment, 2021, 265, 112635.	4.6	14
460	Temporal effects of climate on vegetation trigger the response biases of vegetation to human activities. Global Ecology and Conservation, 2021, 31, e01822.	1.0	8
461	Contrasting life-history traits of black spruce and jack pine influence their physiological response to drought and growth recovery in northeastern boreal Canada. Science of the Total Environment, 2021, 794, 148514.	3.9	11
462	Identifying the full spectrum of climatic signals controlling a tree species' growth and adaptation to climate change. Ecological Indicators, 2021, 130, 108109.	2.6	8
463	Impacts of recurrent dry and wet years alter longâ€ŧerm tree growth trajectories. Journal of Ecology, 2021, 109, 1561-1574.	1.9	22
464	Response of terrestrial net primary productivity to precipitation extremes: Patterns, mechanisms, and uncertainties. , 2021, , 57-81.		3
465	Vegetation modulates the impact of climate extremes on gross primary production. Biogeosciences, 2021, 18, 39-53.	1.3	33
466	Converging Climate Sensitivities of European Forests Between Observed Radial Tree Growth and Vegetation Models. Ecosystems, 2018, 21, 410-425.	1.6	32
467	Long-term thinning effects on tree growth, drought response and water use efficiency at two Aleppo pine plantations in Spain. Science of the Total Environment, 2020, 728, 138536.	3.9	66
468	Divergent forest sensitivity to repeated extreme droughts. Nature Climate Change, 2020, 10, 1091-1095.	8.1	160
469	Hot moments in ecosystem fluxes: High GPP anomalies exert outsized influence on the carbon cycle and are differentially driven by moisture availability across biomes. Environmental Research Letters, 2020, 15, 054004.	2.2	16
470	Both day and night warming reduce tree growth in extremely dry soils. Environmental Research Letters, 2020, 15, 094074.	2.2	9
471	Drought legacies are short, prevail in dry conifer forests and depend on growth variability. Journal of Ecology, 2020, 108, 2473-2484.	1.9	74
472	A synthesis of radial growth patterns preceding tree mortality. Global Change Biology, 2017, 23, 1675-1690.	4.2	394

#	Article	IF	CITATIONS
473	Coupled effects of windâ€ s torms and drought on tree mortality across 115 forest stands from the Western Alps and the Jura mountains. Global Change Biology, 2017, 23, 5092-5107.	4.2	40
474	Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytologist, 2018, 219, 947-958.	3.5	73
475	A global analysis of plant recovery performance from water stress. Oikos, 2017, 126, 1377-1388.	1.2	50
476	Plant water potential improves prediction of empirical stomatal models. PLoS ONE, 2017, 12, e0185481.	1.1	77
477	Plant identity and shallow soil moisture are primary drivers of stomatal conductance in the savannas of Kruger National Park. PLoS ONE, 2018, 13, e0191396.	1.1	11
478	Propagation Model of Invasive Species: Road Systems as Dispersion Facilitators. Research in Ecology, 2020, 2, 44-51.	0.2	3
479	Priority questions in multidisciplinary drought research. Climate Research, 2018, 75, 241-260.	0.4	35
480	Lagged effects regulate the inter-annual variability of the tropical carbon balance. Biogeosciences, 2020, 17, 6393-6422.	1.3	26
483	Effects of Global Change on Tree Growth and Vigor of Mediterranean Pines. Managing Forest Ecosystems, 2021, , 237-249.	0.4	3
484	The changing culture of silviculture. Forestry, 2022, 95, 143-152.	1.2	54
485	Greater hydraulic safety contributes to higher growth resilience to drought across seven pine species in a semi-arid environment. Tree Physiology, 2022, 42, 727-739.	1.4	9
486	Trends in climatically driven extreme growth reductions of <i>Picea abies</i> and <i>Pinus sylvestris</i> in Central Europe. Clobal Change Biology, 2022, 28, 557-570.	4.2	13
487	Tree allocation dynamics beyond heat and hot drought stress reveal changes in carbon storage, belowground translocation and growth. New Phytologist, 2022, 233, 687-704.	3.5	17
488	Delayed effects of climate on vital rates lead to demographic divergence in Amazonian forest fragments. Global Change Biology, 2022, 28, 463-479.	4.2	3
491	Impact of Climate Changes in Forest Development. SpringerBriefs in Environmental Science, 2020, , 69-83.	0.3	0
492	Urgent need for updating the slogan of global climate actions from "tree planting―to "restore native vegetation― Restoration Ecology, 2022, 30, e13594.	1.4	27
493	Individual tree damage dominates mortality risk factors across six tropical forests. New Phytologist, 2022, 233, 705-721.	3.5	18
494	Will silver fir be under higher risk due to drought? A comment on Walder et al. (2021). Forest Ecology and Management, 2022, 503, 119826.	1.4	5

#	Article	IF	CITATIONS
495	Diverse Roles of Previous Years' Water Conditions in Gross Primary Productivity in China. Remote Sensing, 2021, 13, 58.	1.8	9
496	Effects of partial organic fertilizer replacement combined with rainwater collection system on soil water, nitrate-nitrogen and apple yield of rainfed apple orchard in the Loess Plateau of China: A 3-year field experiment. Agricultural Water Management, 2022, 260, 107295.	2.4	19
497	Effect of Climate Change on Tropical Dry Forests. Impact of Meat Consumption on Health and Environmental Sustainability, 2020, , 24-41.	0.4	0
498	A copula model integrating atmospheric moisture demand and supply for vegetation vulnerability mapping. Science of the Total Environment, 2022, 812, 151464.	3.9	8
499	Integrating plant physiology and community ecology across scales through traitâ€based models to predict drought mortality. New Phytologist, 2022, 234, 21-27.	3.5	16
500	Diverging responses of water and carbon relations during and after heat and hot drought stress in <i>Pinus sylvestris</i> . Tree Physiology, 2022, 42, 1532-1548.	1.4	8
501	The lagged effect and impact of soil moisture drought on terrestrial ecosystem water use efficiency. Ecological Indicators, 2021, 133, 108349.	2.6	25
502	Giving a temporal context to drought and frost vulnerability of trees. , 0, , .		Ο
503	Changes in tree growth synchrony and resilience in Siberian Pinus sylvestris forests are modulated by fire dynamics and ecohydrological conditions. Agricultural and Forest Meteorology, 2022, 312, 108712.	1.9	6
504	Effect of Climate Change on Tropical Dry Forests. , 2022, , 1132-1149.		0
505	The European Forest Condition Monitor: Using Remotely Sensed Forest Greenness to Identify Hot Spots of Forest Decline. Frontiers in Plant Science, 2021, 12, 689220.	1.7	14
506	Climate legacies determine grassland responses to future rainfall regimes. Global Change Biology, 2022, 28, 2639-2656.	4.2	16
507	Long-term effects of forest management on post-drought growth resilience: An analytical framework. Science of the Total Environment, 2022, 810, 152374.	3.9	16
508	Altered climate memory characterizes tree growth during forest dieback. Agricultural and Forest Meteorology, 2022, 314, 108787.	1.9	6
509	Global evidence on the asymmetric response of gross primary productivity to interannual precipitation changes. Science of the Total Environment, 2022, 814, 152786.	3.9	10
510	Interannual variation of gross primary production detected from optimal convolutional neural network at multiâ€timescale water stress. Remote Sensing in Ecology and Conservation, 2022, 8, 409-425.	2.2	7
511	Post-drought conditions and hydraulic dysfunction determine tree resilience and mortality across Mediterranean Aleppo pine (<i>Pinus halepensis</i>) populations after an extreme drought event. Tree Physiology, 2022, 42, 1364-1376.	1.4	11
512	The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications, 2022, 13, 28.	5.8	66

#	Article	IF	CITATIONS
513	Testing the limits of plant drought stress and subsequent recovery in four provenances of a widely distributed subtropical tree species. Plant, Cell and Environment, 2022, 45, 1187-1203.	2.8	13
514	The Effect of the Human Footprint and Climate Change on Landscape Ecological Risks: A Case Study of the Loess Plateau, China. Land, 2022, 11, 217.	1.2	14
515	Lessons learned from a longâ€ŧerm irrigation experiment in a dry Scots pine forest: Impacts on traits and functioning. Ecological Monographs, 2022, 92, e1507.	2.4	15
516	Increased drought frequency causes the extra-compensation of climate wetness on tree growth to fade across inner Asia. Agricultural and Forest Meteorology, 2022, 315, 108829.	1.9	5
517	Responding time scales of vegetation production to extreme droughts over China. Ecological Indicators, 2022, 136, 108630.	2.6	14
518	Combining tree-ring width and carbon isotope data to investigate stem carbon allocation in an evergreen coniferous species. Agricultural and Forest Meteorology, 2022, 316, 108845.	1.9	5
519	Pine processionary moth outbreaks cause longer growth legacies than drought and are linked to the North Atlantic Oscillation. Science of the Total Environment, 2022, 819, 153041.	3.9	12
520	The Past Matters: Previous Management Strategies Modulate Current Growth and Drought Responses of Norway Spruce (Picea abies H. Karst.). Forests, 2022, 13, 243.	0.9	12
521	Wood density and hydraulic traits influence species' growth response to drought across biomes. Global Change Biology, 2022, 28, 3871-3882.	4.2	34
522	Stem xylem traits and wood formation affect sex-specific responses to drought and rewatering in <i>Populus cathayana</i> . Tree Physiology, 2022, 42, 1350-1363.	1.4	8
523	Drought impacts in forest canopy and deciduous tree saplings in Central European forests. Forest Ecology and Management, 2022, 509, 120075.	1.4	17
524	Longer summer seasons after fire induce permanent drought legacy effects on Mediterranean plant communities dominated by obligate seeders. Science of the Total Environment, 2022, 822, 153655.	3.9	1
525	Preserving life on Earth. , 2022, , 503-602.		0
526	Tree-Ring Analysis and Genetic Associations Help to Understand Drought Sensitivity in the Chilean Endemic Forest of Nothofagus macrocarpa. Frontiers in Forests and Global Change, 2022, 5, .	1.0	9
527	Impacts of Drought and Climatic Factors on Vegetation Dynamics in the Yellow River Basin and Yangtze River Basin, China. Remote Sensing, 2022, 14, 930.	1.8	63
528	Drought Sensitivity and Resilience of Oak–Hickory Stands in the Eastern United States. Forests, 2022, 13, 389.	0.9	2
529	The forest recovery path after drought dependence on forest type and stock volume. Environmental Research Letters, 0, , .	2.2	2
530	Field experiments underestimate aboveground biomass response to drought. Nature Ecology and Evolution, 2022, 6, 540-545.	3.4	30

#	Article	IF	CITATIONS
531	Does Below-Above Canopy Air Mass Decoupling Impact Temperate Floodplain Forest CO2 Exchange?. Atmosphere, 2022, 13, 437.	1.0	1
532	Drought timing and species growth phenology determine intra-annual recovery of tree height and diameter growth. AoB PLANTS, 2022, 14, plac012.	1.2	4
533	Lack of hydraulic recovery as a cause of postâ€drought foliage reduction and canopy decline in European beech. New Phytologist, 2022, 234, 1195-1205.	3.5	40
534	Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability. Nature Communications, 2022, 13, 1193.	5.8	18
535	Short-Term Effects of Droughts and Cold Winters on the Growth of Scots Pine at Coastal Sand Dunes around the South Baltic Sea. Forests, 2022, 13, 477.	0.9	1
536	Big data and remote sensing for multi-decadal drought impact assessment on Shorea robusta. Theoretical and Applied Climatology, 2022, 148, 1587-1602.	1.3	7
537	Contrasting responses of forest growth and carbon sequestration to heat and drought in the Alps. Environmental Research Letters, 2022, 17, 045015.	2.2	6
538	The role of species interactions for forest resilience to drought. Plant Biology, 2022, 24, 1098-1107.	1.8	36
539	Tree growth response to drought partially explains regionalâ€scale growth and mortality patterns in Iberian forests. Ecological Applications, 2022, 32, e2589.	1.8	13
540	Global assessment of lagged and cumulative effects of drought on grassland gross primary production. Ecological Indicators, 2022, 136, 108646.	2.6	52
541	Assessing Vegetation Ecosystem Resistance to Drought in the Middle Reaches of the Yellow River Basin, China. International Journal of Environmental Research and Public Health, 2022, 19, 4180.	1.2	6
542	Satellite data reveal differential responses of Swiss forests to unprecedented 2018 drought. Global Change Biology, 2022, 28, 2956-2978.	4.2	28
543	Examining the role of environmental memory in the predictability of carbon and water fluxes across Australian ecosystems. Biogeosciences, 2022, 19, 1913-1932.	1.3	6
544	Influence of site conditions and land management on Quercus suber L. population dynamics in the southern Iberian Peninsula. IForest, 2022, 15, 77-84.	0.5	1
545	Coupling of Tree Growth and Photosynthetic Carbon Uptake Across Six North American Forests. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	3
546	What happens after drought ends: synthesizing terms and definitions. New Phytologist, 2022, 235, 420-431.	3.5	27
547	The increasing relevance of phenology to conservation. Nature Climate Change, 2022, 12, 305-307.	8.1	10
548	Private Forestlands in South Carolina: Motivations for Implementing Conservation Practices. Small-Scale Forestry, 0, , 1.	0.7	2

#	Article	IF	CITATIONS
549	Root foraging alters global patterns of ecosystem legacy from climate perturbations. Journal of Geophysical Research G: Biogeosciences, 0, , .	1.3	3
550	Dense canopies browning overshadowed by global greening dominant in sparse canopies. Science of the Total Environment, 2022, 826, 154222.	3.9	9
551	Photosynthetic and hydraulic traits influence forest resistance and resilience to drought stress across different biomes. Science of the Total Environment, 2022, 828, 154517.	3.9	10
552	Linking the growth patterns of coniferous species with their performance under climate aridization. Science of the Total Environment, 2022, 831, 154971.	3.9	9
553	A multi-metric assessment of drought vulnerability across different vegetation types using high resolution remote sensing. Science of the Total Environment, 2022, 832, 154970.	3.9	11
554	Soil Property Plays a Vital Role in Vegetation Drought Recovery in Karst Region of Southwest China. Journal of Geophysical Research G: Biogeosciences, 2021, 126, .	1.3	7
555	Cumulative growth and stress responses to the 2018–2019 drought in a European floodplain forest. Global Change Biology, 2022, 28, 1870-1883.	4.2	31
556	Threshold Response to Extreme Drought Shifts Inter-Tree Growth Dominance in Pinus sylvestris. Frontiers in Forests and Global Change, 2021, 4, .	1.0	2
557	Shifting Precipitation Patterns Drive Growth Variability and Drought Resilience of European Atlas Cedar Plantations. Forests, 2021, 12, 1751.	0.9	1
558	Nonlinear characteristics of the vegetation change and its response to climate change in the karst region of southwest China. Progress in Physical Geography, 2022, 46, 497-514.	1.4	2
559	Drought Drives Growth and Mortality Rates in Three Pine Species under Mediterranean Conditions. Forests, 2021, 12, 1700.	0.9	12
560	Dry landscapes and parched economies: A review of how drought impacts nonagricultural socioeconomic sectors in the <scp>US</scp> Intermountain West. Wiley Interdisciplinary Reviews: Water, 2022, 9, .	2.8	9
561	Did the 2018 megadrought change the partitioning of growth between tree sizes and species? A Swiss caseâ€study. Plant Biology, 2022, 24, 1146-1156.	1.8	11
562	Tree growth sensitivity to climate varies across a seasonal precipitation gradient. Oecologia, 2022, 198, 933-946.	0.9	2
563	Jet stream position explains regional anomalies in European beech forest productivity and tree growth. Nature Communications, 2022, 13, 2015.	5.8	8
564	Characteristics and trends of rainstorm activities and their impacts on seasonal vegetation variations in coastal China. Ecological Indicators, 2022, 138, 108851.	2.6	5
565	Contrasting community responses of root and soil dwelling fungi to extreme drought in a temperate grassland. Soil Biology and Biochemistry, 2022, 169, 108670.	4.2	11
566	How precipitation legacies affect broad-scale patterns of primary productivity: Evidence from the Inner Mongolia grassland. Agricultural and Forest Meteorology, 2022, 320, 108954	1.9	5

#	Article	IF	CITATIONS
581	Temporal effects of climatic factors on vegetation phenology on the Loess Plateau, China. Journal of Plant Ecology, 2023, 16, .	1.2	4
582	Impact of Extreme Events on Terrestrial Ecosystems and Biodiversity. , 2024, , 943-961.		0
583	Advances in the Relationship between Non-Structural Carbohydrates and Embolism Repair in Woody Plants. Botanical Research, 2022, 11, 239-245.	0.0	0
584	The response of ABA and hydraulic indicator-mediated leaf gas exchange and nonstructural carbohydrate of Ginkgo biloba saplings to drought and rehydration. Acta Physiologiae Plantarum, 2022, 44, .	1.0	2
585	Seeing the forest through the trees: how treeâ€level measurements can help understand forest dynamics. New Phytologist, 2022, 234, 1544-1546.	3.5	6
586	Comprehensive Quantification of the Responses of Ecosystem Production and Respiration to Drought Time Scale, Intensity and Timing in Humid Environments: A FLUXNET Synthesis. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	10
587	Refining the standardized growth change method for pointer year detection: Accounting for statistical bias and estimating the deflection period. Dendrochronologia, 2022, 74, 125964.	1.0	4
588	Evaluating Cumulative Drought Effect on Global Vegetation Photosynthesis Using Numerous GPP Products. Frontiers in Environmental Science, 2022, 10, .	1.5	5
589	Did stand opening 60 years ago predispose a European beech population to death?. Trees, Forests and People, 2022, 8, 100265.	0.8	2
590	Climate-catchment-soil control on hydrological droughts in peninsular India. Scientific Reports, 2022, 12, 8014.	1.6	14
591	Whether increased waterâ€use efficiency of <i>Picea crassifolia</i> promotes radial growth of trees in the eastern Qilian Mountains. International Journal of Climatology, 2022, 42, 8201-8213.	1.5	1
592	Drought impacts on tree carbon sequestration and water use – evidence from intraâ€annual treeâ€ring characteristics. New Phytologist, 2022, 236, 58-70.	3.5	23
593	Drought-induced decoupling between carbon uptake and tree growth impacts forest carbon turnover time. Agricultural and Forest Meteorology, 2022, 322, 108996.	1.9	16
594	Recovery after longâ€ŧerm summer drought: Hydraulic measurements reveal legacy effects in trunks of <i>Picea abies</i> but not in <i>Fagus sylvatica</i> . Plant Biology, 2022, 24, 1240-1253.	1.8	5
595	Response of drought index to land use types in the Loess Plateau of Shaanxi, China. Scientific Reports, 2022, 12, .	1.6	1
596	Drought legacies and ecosystem responses to subsequent drought. Global Change Biology, 2022, 28, 5086-5103.	4.2	67
597	Different xylogenesis responses to atmospheric water demand contribute to species coexistence in a mixed pine–oak forest. Journal of Forestry Research, 2023, 34, 51-62.	1.7	4
598	Two Nothofagus Species in Southernmost South America Are Recording Divergent Climate Signals. Forests, 2022, 13, 794.	0.9	2

#	Article	IF	CITATIONS
599	Crop yield estimation and irrigation scheduling optimization using a root-weighted soil water availability based water production function. Field Crops Research, 2022, 284, 108579.	2.3	5
600	Applicability of the Crop Water Stress Index Based on Canopy–Air Temperature Differences for Water Diagnosis in a Cork Oak Plantation, Northern China. SSRN Electronic Journal, 0, , .	0.4	0
601	Regional and local determinants of drought resilience in tropical forests. Ecology and Evolution, 2022, 12, .	0.8	5
602	Growth resilience of conifer species decreases with early, longâ€lasting and intense droughts but cannot be explained by hydraulic traits. Journal of Ecology, 2022, 110, 2088-2104.	1.9	8
603	Amplifying effects of recurrent drought on the dynamics of tree growth and water use in a subalpine forest. Plant, Cell and Environment, 2022, 45, 2617-2635.	2.8	3
604	Tree rings reveal a growth-decline event in A.D. 1875–1883 in a Tibetan plateau juniper forest. Dendrochronologia, 2022, 74, 125981.	1.0	1
605	Wood Anatomical Traits Respond to Climate but More Individualistically as Compared to Radial Growth: Analyze Trees, Not Means. Forests, 2022, 13, 956.	0.9	1
606	Spatial Scale Effect and Correction of Forest Aboveground Biomass Estimation Using Remote Sensing. Remote Sensing, 2022, 14, 2828.	1.8	15
607	Timing and Order of Extreme Drought and Wetness Determine Bioclimatic Sensitivity of Tree Growth. Earth's Future, 2022, 10, .	2.4	7
608	Predicting resilience through the lens of competing adjustments to vegetation function. Plant, Cell and Environment, 2022, 45, 2744-2761.	2.8	8
609	New treeâ€level temperature response curves document sensitivity of tree growth to high temperatures across a <scp>US</scp> â€wide climatic gradient. Global Change Biology, 2022, 28, 6002-6020.	4.2	8
610	Radial Growth of Korshinsk Peashrub and its Response to Drought in Different Sub-Arid Climate Regions of Northwest China. SSRN Electronic Journal, 0, , .	0.4	0
611	Mixed Pine Forests in a Hotter and Drier World: The Great Resilience to Drought of Aleppo Pine Benefits It Over Other Coexisting Pine Species. Frontiers in Forests and Global Change, 0, 5, .	1.0	3
612	Species- and Age-Specific Growth Reactions to Extreme Droughts of the Keystone Tree Species across Forest-Steppe and Sub-Taiga Habitats of South Siberia. Forests, 2022, 13, 1027.	0.9	5
613	Resistance and Resilience of Desert Riparian Communities to Extreme Droughts. Forests, 2022, 13, 1032.	0.9	3
614	Drought Legacy in Sub‣easonal Vegetation State and Sensitivity to Climate Over the Northern Hemisphere. Geophysical Research Letters, 2022, 49, .	1.5	11
615	Spatiotemporal Variability in Water-Use Efficiency in Tianshan Mountains (Xinjiang, China) and the Influencing Factors. Sustainability, 2022, 14, 8191.	1.6	5
616	Non-growing season drought legacy effects on vegetation growth in southwestern China. Science of the Total Environment, 2022, 846, 157334.	3.9	10

#	Article	IF	CITATIONS
617	Climatic legacy effects on the drought response of the Amazon rainforest. Global Change Biology, 0, ,	4.2	0
618	New evidence for population-specific responses to drought events from tree ring chronologies of Pinus nigra ssp. laricio across the entire distribution range. Agricultural and Forest Meteorology, 2022, 323, 109076.	1.9	2
619	Influence of drought duration and severity on drought recovery period for different land cover types: evaluation using MODIS-based indices. Ecological Indicators, 2022, 141, 109146.	2.6	16
620	Growth peak of vegetation and its response to drought on the Mongolian Plateau. Ecological Indicators, 2022, 141, 109150.	2.6	11
621	Central European 2018 hot drought shifts scots pine forest to its tipping point. Plant Biology, 2022, 24, 1186-1197.	1.8	21
622	Divergent dynamics between grassland greenness and gross primary productivity across China. Ecological Indicators, 2022, 142, 109100.	2.6	5
623	Significant water stress on gross primary productivity during flash droughts with hot conditions. Agricultural and Forest Meteorology, 2022, 324, 109100.	1.9	19
624	Limited hydraulic recovery in seedlings of six tree species with contrasting leaf habits in subtropical China. Frontiers in Plant Science, 0, 13, .	1.7	3
625	Timing and duration of drought modulate tree growth response in pure and mixed stands of Scots pine and Norway spruce. Journal of Ecology, 2022, 110, 2673-2683.	1.9	6
626	Emerging stability of forest productivity by mixing two species buffers temperature destabilizing effect. Journal of Applied Ecology, 2022, 59, 2730-2741.	1.9	16
627	Resilience capacity of Araucaria araucana to extreme drought events. Dendrochronologia, 2022, 75, 125996.	1.0	4
628	Patterns and drivers of recent land cover change on two trailing-edge forest landscapes. Forest Ecology and Management, 2022, 521, 120449.	1.4	6
629	Individual tree growth responses to coinciding thinning and drought events in mixed stands of Norway spruce and Scots pine. Forest Ecology and Management, 2022, 522, 120447.	1.4	2
630	Mixed forest suffered less drought stress than pure forest in southern Siberia. Agricultural and Forest Meteorology, 2022, 325, 109137.	1.9	2
631	European beech dieback after premature leaf senescence during the 2018 drought in northern Switzerland. Plant Biology, 2022, 24, 1132-1145.	1.8	28
632	Precipitation and soil nutrients determine the spatial variability of grassland productivity at large scales in China. Frontiers in Plant Science, 0, 13, .	1.7	6
633	The impact of climate change on growth and drought-induced mortality risk of Robinia pseudoacacia plantations along a precipitation gradient on the Chinese Loess Plateau. Agricultural and Forest Meteorology, 2022, 325, 109160.	1.9	3
634	Later growth onsets or reduced growth rates: What characterises legacy effects at the tree-ring level in conifers after the severe 2018 drought?. Science of the Total Environment, 2023, 854, 158703.	3.9	3

#	Article	IF	CITATIONS
635	Contrasting drought legacy effects on gross primary productivity in a mixed versus pure beech forest. Biogeosciences, 2022, 19, 4315-4329.	1.3	7
636	Drought resistance enhanced by tree species diversity in global forests. Nature Geoscience, 2022, 15, 800-804.	5.4	29
637	Assessing the Drought Variability in Northeast China over Multiple Temporal and Spatial Scales. Atmosphere, 2022, 13, 1506.	1.0	4
638	Technical note: Common ambiguities in plant hydraulics. Biogeosciences, 2022, 19, 4705-4714.	1.3	3
639	Drought timing and severity affect radial growth of Picea crassifolia at different elevations in the western Qilian Mountains. International Journal of Biometeorology, 2022, 66, 2449-2462.	1.3	5
640	Empirical analysis of the influences of meteorological factors on the interannual variations in carbon fluxes of a Quercus variabilis plantation. Agricultural and Forest Meteorology, 2022, 326, 109190.	1.9	4
641	Process representation of conifer tree-ring growth is improved by incorporation of climate memory effects. Agricultural and Forest Meteorology, 2022, 327, 109196.	1.9	2
642	On the Impacts of Historical and Future Climate Changes to the Sustainability of the Main Sardinian Forests. Remote Sensing, 2022, 14, 4893.	1.8	2
643	Effect of Vegetation Carryover and Climate Variability on the Seasonal Growth of Vegetation in the Upper and Middle Reaches of the Yellow River Basin. Remote Sensing, 2022, 14, 5011.	1.8	4
644	Tree-ring evidence of ecological stress memory. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	4
645	Will drought exacerbate the decline in the sustainability of plantation forests relative to natural forests?. Land Degradation and Development, 0, , .	1.8	1
646	Contemporary tree growth shows altered climate memory. Ecology Letters, 2022, 25, 2663-2674.	3.0	7
647	Multi-scale quantification of anthropogenic, fire, and drought-associated forest disturbances across the continental U.S., 2000–2014. Frontiers in Forests and Global Change, 0, 5, .	1.0	0
648	Radial growth of Korshinsk peashrub and its response to drought in different sub-arid climate regions of northwest China. Journal of Environmental Management, 2023, 326, 116708.	3.8	7
650	Global Assessment of Cumulative and Time-Lag Effects of Drought on Land Surface Phenology. GIScience and Remote Sensing, 2022, 59, 1918-1937.	2.4	3
651	Interannual dynamics of stemwood nonstructural carbohydrates in temperate forest trees surrounding drought. Journal of Forestry Research, 2023, 34, 77-86.	1.7	4
652	Applicability of the crop water stress index based on canopy–air temperature differences for monitoring water status in a cork oak plantation, northern China. Agricultural and Forest Meteorology, 2022, 327, 109226.	1.9	4
653	Thinning improves growth and resilience after severe droughts in Quercus subpyrenaica coppice forests in the Spanish Pre-Pyrenees. Dendrochronologia, 2023, 77, 126042.	1.0	2

#	Article	IF	CITATIONS
654	Study of the mechanism of embolism removal in xylem vessels by using microfluidic devices. Lab on A Chip, 0, , .	3.1	1
655	Detection and attribution of vegetation dynamics in the National Barrier Zone of China by considering climate temporal effects. International Journal of Applied Earth Observation and Geoinformation, 2023, 116, 103140.	0.9	1
656	Tradeoffs in forest resilience to satellite-based estimates of water and productivity losses. Remote Sensing of Environment, 2023, 285, 113414.	4.6	1
657	Tree growth, wood anatomy and carbon and oxygen isotopes responses to drought in Mediterranean riparian forests. Forest Ecology and Management, 2023, 529, 120710.	1.4	3
658	The sensitivity of maize evapotranspiration to vapor pressure deficit and soil moisture with lagged effects under extreme drought in Southwest China. Agricultural Water Management, 2023, 277, 108101.	2.4	2
659	Toward the Genetic Improvement of Drought Tolerance in Conifers: An Integrated Approach. Forests, 2022, 13, 2016.	0.9	6
660	Stand characteristics modulate secondary growth responses to drought and gross primary production in Pinus halepensis afforestation. European Journal of Forest Research, 2023, 142, 353-366.	1.1	2
661	Legacy effects in radial tree growth are rarely significant after accounting for biological memory. Journal of Ecology, 2023, 111, 1188-1202.	1.9	3
662	Simulating the Impacts of Drought and Warming in Summer and Autumn on the Productivity of Subtropical Coniferous Forests. Forests, 2022, 13, 2147.	0.9	1
663	Younger trees in the upper canopy are more sensitive but also more resilient to drought. Nature Climate Change, 2022, 12, 1168-1174.	8.1	26
664	Changing climate sensitivity of secondary growth following extreme drought events in forest ecosystems: a global analysis. Environmental Research Letters, 2023, 18, 014021.	2.2	5
665	Ectomycorrhizal fungi with hydrophobic mycelia and rhizomorphs dominate in young pine trees surviving experimental drought stress. Soil Biology and Biochemistry, 2023, 178, 108932.	4.2	6
666	Differentiating cumulative and lagged effects of drought on vegetation growth over the Mongolian Plateau. Ecosphere, 2022, 13, .	1.0	4
667	Editorial: Vital rates of forest dynamics driven by traits and performance of trees. Frontiers in Forests and Global Change, 0, 5, .	1.0	0
668	Revealing how intra- and inter-annual variability of carbon uptake (GPP) affects wood cell biomass in an eastern white pine forest. Environmental Research Letters, 2023, 18, 024027.	2.2	1
669	Species Sensitivity to Hydrologic Whiplash in The Tree-Ring Record of the High Sierra Nevada. Environments - MDPI, 2023, 10, 12.	1.5	1
670	Response of Photosynthetic Efficiency to Extreme Drought and Its Influencing Factors in Southwest China. Sustainability, 2023, 15, 1095.	1.6	1
671	Future socio-ecosystem productivity threatened by compound drought–heatwave events. Nature Sustainability, 2023, 6, 259-272.	11.5	75

#	Article	IF	CITATIONS
672	Traits that distinguish dominant species across aridity gradients differ from those that respond to soil moisture. Oecologia, 2023, 201, 311-322.	0.9	2
673	The detection and attribution of extreme reductions in vegetation growth across the global land surface. Global Change Biology, 2023, 29, 2351-2362.	4.2	16
674	Spatiotemporal dynamic of subtropical forest carbon storage and its resistance and resilience to drought in China. Frontiers in Plant Science, 0, 14, .	1.7	3
675	Warming-induced tree growth may help offset increasing disturbance across the Canadian boreal forest. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	18
676	Within and between population phenotypic variation in growth vigor and sensitivity to drought stress in five temperate tree species. Forest Ecology and Management, 2023, 531, 120754.	1.4	3
677	Nutrient regime modulates drought response patterns of three temperate tree species. Science of the Total Environment, 2023, 868, 161601.	3.9	17
678	Resilience of Pinus durangensis MartÃnez in Extreme Drought Periods: Vertical and Horizontal Response of Tree Rings. Atmosphere, 2023, 14, 43.	1.0	3
679	Droughtâ€induced increase in tree mortality and corresponding decrease in the carbon sink capacity of Canada's boreal forests from 1970 to 2020. Global Change Biology, 2023, 29, 2274-2285.	4.2	22
680	Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems. Nature Climate Change, 2023, 13, 182-188.	8.1	26
681	Variability in Tree-ring Width and NDVI Responses to Climate at a Landscape Level. Ecosystems, 2023, 26, 1144-1157.	1.6	8
682	Distinct Responses of European Beech (Fagus sylvatica L.) to Drought Intensity and Length—A Review of the Impacts of the 2003 and 2018–2019 Drought Events in Central Europe. Forests, 2023, 14, 248.	0.9	8
683	Faster drought recovery in anisohydric beech compared with isohydric spruce. Tree Physiology, 2023, 43, 517-521.	1.4	4
684	Combined tree-ring width and wood anatomy chronologies provide insights into the radial growth and hydraulic strategies in response to an extreme drought in plantation-grown Mongolian pine trees. Environmental and Experimental Botany, 2023, 208, 105259.	2.0	1
685	A comprehensive resilience assessment of Mexican tree species and their relationship with drought events over the last century. Global Change Biology, 2023, 29, 3652-3666.	4.2	4
686	Riparian forest response to extreme drought is influenced by climatic context and canopy structure. Science of the Total Environment, 2023, 881, 163128.	3.9	1
687	Physiological response and photosynthetic recovery to an extreme drought: Evidence from plants in a dry-hot valley savanna of Southwest China. Science of the Total Environment, 2023, 868, 161711.	3.9	2
688	Drought constrains acorn production and tree growth in the Mediterranean holm oak and triggers weak legacy effects. Agricultural and Forest Meteorology, 2023, 334, 109435.	1.9	3
689	The ecological scale mediates whether trees experience drought legacies in radial growth. Forest Ecosystems, 2023, , 100112.	1.3	1

#	Article	IF	CITATIONS
690	The Forest Resistance to Droughts Differentiated by Tree Height in Central Europe. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	1.3	1
693	Species mixing enhances the resistance of Robinia pseudoacacia L. to drought events in semi-arid regions: Evidence from China's Loess Plateau. Science of the Total Environment, 2023, 869, 161796.	3.9	1
694	Spatio-Temporal Diversity in the Link between Tree Radial Growth and Remote Sensing Vegetation Index of Qinghai Spruce on the Northeastern Margin of the Tibetan Plateau. Forests, 2023, 14, 260.	0.9	3
695	Imprints of climate stress on tree growth (the past as harbinger of the future): ecological stress memory in Tibetan Plateau juniper forests. Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	1.2	0
697	Monitoring of Drought Stress in Chinese Forests Based on Satellite Solar-Induced Chlorophyll Fluorescence and Multi-Source Remote Sensing Indices. Remote Sensing, 2023, 15, 879.	1.8	5
698	The Multiple Perspective Response of Vegetation to Drought on the Qinghai-Tibetan Plateau. Remote Sensing, 2023, 15, 902.	1.8	4
699	Overcompensation of ecosystem productivity following sustained extreme drought in a semiarid grassland. Ecology, 2023, 104, .	1.5	8
700	Chronic Warming and Nitrogen-Addition Alter Soil Organic Matter Molecular Composition Distinctly in Tandem Compared to Individual Stressors. ACS Earth and Space Chemistry, 2023, 7, 609-622.	1.2	0
701	Responses of agricultural drought to meteorological drought under different climatic zones and vegetation types. Journal of Hydrology, 2023, 619, 129305.	2.3	15
702	Legacy effect of plant chemical defence substances on litter decomposition. Plant and Soil, 2023, 487, 93-108.	1.8	5
703	Abscisic Acid and Cytokinins Are Not Involved in the Regulation of Stomatal Conductance of Scots Pine Saplings during Post-Drought Recovery. Biomolecules, 2023, 13, 523.	1.8	0
704	What stops stomata reopening after a drought?. Tree Physiology, 2023, 43, 879-882.	1.4	1
705	Modeling Global Vegetation Gross Primary Productivity, Transpiration and Hyperspectral Canopy Radiative Transfer Simultaneously Using a Next Generation Land Surface Model—CliMA Land. Journal of Advances in Modeling Earth Systems, 2023, 15, .	1.3	7
706	Spatial minimum temperature reconstruction over the last three centuries for eastern Nepal Himalaya based on tree rings of Larix griffithiana. Theoretical and Applied Climatology, 2023, 152, 895-910.	1.3	2
707	Meteorological history of low-forest-greenness events in Europe in 2002–2022. Biogeosciences, 2023, 20, 1155-1180.	1.3	4
708	Growth plasticity of conifers did not avoid declining resilience to soil and atmospheric droughts during the 20th century. Forest Ecosystems, 2023, 10, 100107.	1.3	2
709	Effectiveness of forest density reduction treatments for increasing drought resistance of ponderosa pine growth. Ecological Applications, 0, , .	1.8	1
710	Spatiotemporal Features and Time-Lagged Effects of Drought on Terrestrial Ecosystem in Southwest China. Forests, 2023, 14, 781.	0.9	2

#	Article	IF	CITATIONS
711	Spatial Heterogeneity of Vegetation Resilience Changes to Different Drought Types. Earth's Future, 2023, 11, .	2.4	5
712	A multiâ€ s atellite framework to rapidly evaluate extreme biosphere cascades: the Western <scp>US</scp> 2021 drought and heatwave. Global Change Biology, 0, , .	4.2	0
713	Concurrent and lagged effects of drought on grassland net primary productivity: a case study in Xinjiang, China. Frontiers in Ecology and Evolution, 0, 11, .	1.1	1
714	The Relevance of Maintaining Standing Forests for Global Climate Balance: A Case Study in Brazilian Forests. , 0, , .		0
715	Vegetation browning: global drivers, impacts, and feedbacks. Trends in Plant Science, 2023, 28, 1014-1032.	4.3	5
779	Temperate forests. , 2024, , 177-202.		0
823	Socioeconomic and Environmental Changes in Global Drylands. , 2024, , 161-201.		0