Two-dimensional covalent carbon nitride nanosheets: s applications

Energy and Environmental Science 8, 3092-3108 DOI: 10.1039/c5ee01895a

Citation Report

#	Article	IF	CITATIONS
1	Conductive Graphitic Carbon Nitride as an Ideal Material for Electrocatalytically Switchable CO2 Capture. Scientific Reports, 2015, 5, 17636.	1.6	60
2	Shifting the Sun: Solar Spectral Conversion and Extrinsic Sensitization in Natural and Artificial Photosynthesis. Advanced Science, 2015, 2, 1500218.	5.6	77
3	Cobalt selenide: a versatile cocatalyst for photocatalytic water oxidation with visible light. Journal of Materials Chemistry A, 2015, 3, 17946-17950.	5.2	96
4	Recent development in exfoliated two-dimensional g-C ₃ N ₄ nanosheets for photocatalytic applications. Journal of Materials Chemistry A, 2015, 3, 23642-23652.	5.2	377
5	Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High apacity Hydrogen Storage. ChemSusChem, 2015, 8, 3626-3631.	3.6	37
6	Enhanced Driving Force and Charge Separation Efficiency of Protonated g-C ₃ N ₄ for Photocatalytic O ₂ Evolution. ACS Catalysis, 2015, 5, 6973-6979.	5.5	414
7	The function-led design of Z-scheme photocatalytic systems based on hollow carbon nitride semiconductors. Chemical Communications, 2015, 51, 17467-17470.	2.2	140
8	Transformation of worst weed into N-, S-, and P-tridoped carbon nanorings as metal-free electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 23376-23384.	5.2	48
9	Magnetic graphitic carbon nitride: its application in the C–H activation of amines. Chemical Communications, 2015, 51, 15554-15557.	2.2	81
10	Photocatalytic water oxidation by layered Co/h-BCN hybrids. Science China Materials, 2015, 58, 867-876.	3.5	67
11	ZnO-Layered Double Hydroxide@Graphitic Carbon Nitride Composite for Consecutive Adsorption and Photodegradation of Dyes under UV and Visible Lights. Materials, 2016, 9, 927.	1.3	46
12	Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances. Molecules, 2016, 21, 900.	1.7	447
13	Nitrogen enrichment of S-doped nanoporous carbon by g-C3N4: Insight into photosensitivity enhancement. Carbon, 2016, 107, 895-906.	5.4	28
14	Morphologyâ€Dependent Activities of Silver Phosphates: Visibleâ€Light Water Oxidation and Dye Degradation. ChemPlusChem, 2016, 81, 1068-1074.	1.3	24
15	Towards effective design of active nanocarbon materials for integrating visible-light photocatalysis with ozonation. Carbon, 2016, 107, 658-666.	5.4	52
16	Bandgap Engineering of Conjugated Nanoporous Polyâ€benzobisthiadiazoles <i>via</i> Copolymerization for Enhanced Photocatalytic 1,2,3,4â€Tetrahydroquinoline Synthesis under Visible Light. Advanced Synthesis and Catalysis, 2016, 358, 2576-2582.	2.1	44
17	Photocatalytic Water Oxidation over Metal Oxide Nanosheets Having a Three‣ayer Perovskite Structure. ChemSusChem, 2016, 9, 396-402.	3.6	21
18	Imidazolium Ionic Liquids, Imidazolylidene Heterocyclic Carbenes, and Zeolitic Imidazolate Frameworks for CO ₂ Capture and Photochemical Reduction. Angewandte Chemie - International Edition, 2016, 55, 2308-2320	7.2	377

#	Article	IF	CITATIONS
19	Invisible Security Ink Based on Water‧oluble Graphitic Carbon Nitride Quantum Dots. Angewandte Chemie - International Edition, 2016, 55, 2773-2777.	7.2	336
20	Phenylâ€Modified Carbon Nitride Quantum Dots with Distinct Photoluminescence Behavior. Angewandte Chemie - International Edition, 2016, 55, 3672-3676.	7.2	233
21	Construction of a 2D Grapheneâ€Like MoS ₂ /C ₃ N ₄ Heterojunction with Enhanced Visibleâ€Light Photocatalytic Activity and Photoelectrochemical Activity. Chemistry - A European Journal, 2016, 22, 4764-4773.	1.7	149
22	Hydrogen from Water over Openly‣tructured Graphitic Carbon Nitride Polymer through Photocatalysis. ChemSusChem, 2016, 9, 478-484.	3.6	29
23	Photoactivity of gâ€C ₃ N ₄ /Sâ€Doped Porous Carbon Composite: Synergistic Effect of Composite Formation. ChemSusChem, 2016, 9, 795-799.	3.6	55
24	Imidazolatsysteme zur CO ₂ â€Abscheidung und photochemischen Reduktion. Angewandte Chemie, 2016, 128, 2352-2364.	1.6	52
25	Invisible Security Ink Based on Waterâ€Soluble Graphitic Carbon Nitride Quantum Dots. Angewandte Chemie, 2016, 128, 2823-2827.	1.6	69
26	Phenylâ€Modified Carbon Nitride Quantum Dots with Distinct Photoluminescence Behavior. Angewandte Chemie, 2016, 128, 3736-3740.	1.6	31
27	Polycondensation of ammonium thiocyanate into novel porous g-C3N4 nanosheets as photocatalysts for enhanced hydrogen evolution under visible light irradiation. Chinese Journal of Catalysis, 2016, 37, 1899-1906.	6.9	31
28	Preparation, Physicochemical Properties, and Functional Characteristics of Carbon Nitride: a Review. Theoretical and Experimental Chemistry, 2016, 52, 265-284.	0.2	7
29	Nature-Inspired, Highly Durable CO ₂ Reduction System Consisting of a Binuclear Ruthenium(II) Complex and an Organic Semiconductor Using Visible Light. Journal of the American Chemical Society, 2016, 138, 5159-5170.	6.6	403
30	Self-catalytic membrane photo-reactor made of carbon nitride nanosheets. Journal of Materials Chemistry A, 2016, 4, 11666-11671.	5.2	47
31	A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting. Applied Catalysis B: Environmental, 2016, 192, 116-125.	10.8	460
32	Sulfur-doped graphitic carbon nitride decorated with zinc phthalocyanines towards highly stable and efficient photocatalysis. Applied Catalysis A: General, 2016, 519, 107-115.	2.2	92
33	Enhancement of g-C 3 N 4 nanosheets photocatalysis by synergistic interaction of ZnS microsphere and RGO inducing multistep charge transfer. Applied Catalysis B: Environmental, 2016, 198, 200-210.	10.8	165
34	Synthesis and characterization of dye/CNS nanocomposites with enhanced visible light photocatalytic activity. Materials Letters, 2016, 180, 114-118.	1.3	9
35	Constructing confined surface carbon defects in ultrathin graphitic carbon nitride for photocatalytic free radical manipulation. Carbon, 2016, 107, 1-10.	5.4	159
36	Graphitic Carbon Nitride (g-C ₃ N ₄)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?. Chemical Reviews, 2016, 116, 7159-7329.	23.0	5,505

#	Article	IF	CITATIONS
37	Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane. RSC Advances, 2016, 6, 52377-52383.	1.7	76
38	Facile synthesis of nanorod-type graphitic carbon nitride/Fe2O3 composite with enhanced photocatalytic performance. Journal of Solid State Chemistry, 2016, 238, 246-251.	1.4	38
39	Facile Large-Scale Synthesis of Urea-Derived Porous Graphitic Carbon Nitride with Extraordinary Visible-Light Spectrum Photodegradation. Industrial & Engineering Chemistry Research, 2016, 55, 4506-4514.	1.8	116
40	Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2016, 193, 248-258.	10.8	322
41	Visible-Light Photocatalysis of Aerobic Oxidation Reactions Using Carbazolic Conjugated Microporous Polymers. ACS Catalysis, 2016, 6, 3594-3599.	5.5	195
42	Carbon-based H2-production photocatalytic materials. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 27, 72-99.	5.6	252
43	Tri- <i>s</i> -triazine-Based Crystalline Graphitic Carbon Nitrides for Highly Efficient Hydrogen Evolution Photocatalysis. ACS Catalysis, 2016, 6, 3921-3931.	5.5	756
44	One-pot hydrothermal fabrication of layered β-Ni(OH) 2 /g-C 3 N 4 nanohybrids for enhanced photocatalytic water splitting. Applied Catalysis B: Environmental, 2016, 194, 74-83.	10.8	102
45	A metal sulfide photocatalyst composed of ubiquitous elements for solar hydrogen production. Chemical Communications, 2016, 52, 7470-7473.	2.2	81
46	Nitrogen-rich graphitic carbon nitride: Controllable nanosheet-like morphology, enhanced visible light absorption and superior photocatalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508, 257-264.	2.3	94
47	Bi 4 O 5 Br 2 ultrasmall nanosheets in situ strong coupling to MWCNT and improved photocatalytic activity for tetracycline hydrochloride degradation. Journal of Molecular Catalysis A, 2016, 424, 331-341.	4.8	52
48	Solar and visible light photocatalytic enhancement of halloysite nanotubes/g-C ₃ N ₄ heteroarchitectures. RSC Advances, 2016, 6, 86617-86626.	1.7	50
49	Metal/Graphitic Carbon Nitride Composites: Synthesis, Structures, and Applications. Chemistry - an Asian Journal, 2016, 11, 3305-3328.	1.7	102
50	Facile fabrication of g-C3N4/precipitated silica composite with enhanced visible-light photoactivity for the degradation of rhodamine B and Congo red. Advanced Powder Technology, 2016, 27, 2051-2060.	2.0	37
51	Co ₃ (OH) ₂ (HPO ₄) ₂ as a novel photocatalyst for O ₂ evolution under visible-light irradiation. Catalysis Science and Technology, 2016, 6, 8080-8088.	2.1	27
52	One step preparation of proton-functionalized photoluminescent graphitic carbon nitride and its sensing applications. RSC Advances, 2016, 6, 98893-98898.	1.7	19
53	(NH ₄) ₂ SO ₄ -assisted polycondensation of dicyandiamide for porous g-C ₃ N ₄ with enhanced photocatalytic NO removal. RSC Advances, 2016, 6, 96334-96338.	1.7	19
54	Synthesis of Spherical Carbon Nitride-Based Polymer Composites by Continuous Aerosol–Photopolymerization with Efficient Light Harvesting. ACS Applied Materials & Interfaces, 2016, 8, 21731-21741.	4.0	24

#	Article	IF	CITATIONS
55	Structural and optical properties of carbon nitride polymorphs. Diamond and Related Materials, 2016, 68, 84-92.	1.8	41
56	In Situ Bond Modulation of Graphitic Carbon Nitride to Construct p–n Homojunctions for Enhanced Photocatalytic Hydrogen Production. Advanced Functional Materials, 2016, 26, 6822-6829.	7.8	583
57	Construction of Largeâ€Scale Ultrathin Graphitic Carbon Nitride Nanosheets by a Hydrogenâ€Bondâ€Assisted Strategy for Improved Photocatalytic Hydrogen Production and Ciprofloxacin Degradation Activity. ChemCatChem, 2016, 8, 2838-2845.	1.8	58
58	A post-grafting strategy to modify g-C ₃ N ₄ with aromatic heterocycles for enhanced photocatalytic activity. Journal of Materials Chemistry A, 2016, 4, 13814-13821.	5.2	113
59	MnPSe ₃ Monolayer: A Promising 2D Visible‣ight Photohydrolytic Catalyst with High Carrier Mobility. Advanced Science, 2016, 3, 1600062.	5.6	291
60	Crystallinity Modulation of Layered Carbon Nitride for Enhanced Photocatalytic Activities. Chemistry - A European Journal, 2016, 22, 12449-12454.	1.7	66
61	Facile Construction of g ₃ N ₄ Nanosheets/TiO ₂ Nanotube Arrays as Z‣cheme Photocatalyst with Enhanced Visible‣ight Performance. ChemCatChem, 2016, 8, 3064-3073.	1.8	81
62	Carbon Selfâ€Doping Induced Activation of n–π* Electronic Transitions of gâ€C ₃ N ₄ Nanosheets for Efficient Photocatalytic H ₂ Evolution. ChemCatChem, 2016, 8, 3527-3535.	1.8	139

#	Article	IF	CITATIONS
73	Voltammetric Sensor Modified by EDTA-immobilized Graphene-like Carbon Nitride Nanosheets: Preparation, Characterization and Selective Determination of Ultra-Trace Pb (II) in Water Samples. Electrochimica Acta, 2016, 212, 722-733.	2.6	36
74	One-step synthesis and visible-light-driven H 2 production from water splitting of Ag quantum dots/g-C 3 N 4 photocatalysts. Journal of Alloys and Compounds, 2016, 686, 628-634.	2.8	87
75	Mesoporous graphitic carbon nitride as photo-catalyst for oxidative desulfurization with oxygen. Catalysis Communications, 2016, 85, 5-8.	1.6	34
76	Engineering water dissociation sites in MoS ₂ nanosheets for accelerated electrocatalytic hydrogen production. Energy and Environmental Science, 2016, 9, 2789-2793.	15.6	503
77	Synthesis and application of ternary photocatalyst with a gradient band structure from two-dimensional nanosheets as precursors. RSC Advances, 2016, 6, 108955-108963.	1.7	18
78	Graphitic carbon nitride nanoribbon for enhanced visible-light photocatalytic H ₂ production. RSC Advances, 2016, 6, 112210-112214.	1.7	28
79	NIR-driven graphitic-phase carbon nitride nanosheets for efficient bioimaging and photodynamic therapy. Journal of Materials Chemistry B, 2016, 4, 8000-8008.	2.9	50
80	A three-dimensional graphitic carbon nitride belt network for enhanced visible light photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 19003-19010.	5.2	111
81	Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water. Scientific Reports, 2016, 6, 29851.	1.6	33
82	Protonated Graphitic Carbon Nitride with Surface Attached Molecule as Hole Relay for Efficient Photocatalytic O ₂ Evolution. ACS Catalysis, 2016, 6, 8336-8341.	5.5	44
83	Threeâ€dimensional Carbon Nitride/Graphene Framework as a Highâ€Performance Cathode for Lithiumâ€ion Batteries. Chemistry - an Asian Journal, 2016, 11, 1194-1198.	1.7	5
84	Challenges and Perspectives in Designing Artificial Photosynthetic Systems. Chemistry - A European Journal, 2016, 22, 9870-9885.	1.7	64
85	The enhanced photocatalytic performance of Z-scheme two-dimensional/two-dimensional heterojunctions from graphitic carbon nitride nanosheets and titania nanosheets. Journal of Colloid and Interface Science, 2016, 478, 263-270.	5.0	42
86	Platinum-coordinated graphitic carbon nitride nanosheet used for targeted inhibition of amyloid β-peptide aggregation. Nano Research, 2016, 9, 2411-2423.	5.8	33
87	Fabrication of Bi2O2CO3/g-C3N4 heterojunctions for efficiently photocatalytic NO in air removal: In-situ self-sacrificial synthesis, characterizations and mechanistic study. Applied Catalysis B: Environmental, 2016, 199, 123-133.	10.8	214
88	Magnetic Co@g-C ₃ N ₄ Core–Shells on rGO Sheets for Momentum Transfer with Catalytic Activity toward Continuous-Flow Hydrogen Generation. Langmuir, 2016, 32, 6272-6281.	1.6	67
89	Enhancement of catalytic activity and oxidative ability for graphitic carbon nitride. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 28, 87-115.	5.6	192
90	Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency. Nano Energy, 2016, 27, 138-146.	8.2	379

ARTICLE IF CITATIONS Long afterglow phosphor driven round-the-clock g-C3N4 photocatalyst. Journal of Photochemistry 2.0 43 91 and Photobiology A: Chemistry, 2016, 328, 182-188. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon 1.4 nítride oxide (g-C3N4)O. Journal of Solid State Chemistry, 2016, 241, 115-120. Bi Cocatalyst/Bi₂MoO₆ Microspheres Nanohybrid with SPR-Promoted 93 1.5 212 Visible-Light Photocatalysis. Journal of Physical Chemistry C, 2016, 120, 11889-11898. Enhanced visible-light photocatalytic activity of a g-C3N4/m-LaVO4 heterojunction: band offset 94 34 determination. Science Bulletin, 2016, 61, 645-655. Mesoporous Graphitic Carbon Nitrideâ€Based Nanospheres as Visibleâ€Light Active Chemical Warfare 95 1.5 42 Agents Decontaminant. ChemNanoMat, 2016, 2, 268-272. Facile synthesis of Y-doped graphitic carbon nitride with enhanced photocatalytic performance. Catalysis Communications, 2016, 84, 179-182. 1.6 An alkali treating strategy for the colloidization of graphitic carbon nitride and its excellent 97 5.0 113 photocatalytic performance. Journal of Colloid and Interface Science, 2016, 468, 103-109. Fabrication of C/X-TiO 2 @C 3 N 4 NTs (X = N, F, Cl) composites by using phenolic organic pollutants as raw materials and their visible-light photocatalytic performance in different photocatalytic systems. Applied Catalysis B: Environmental, 2016, 187, 269-280. 10.8 60 Overall water splitting by Pt/g-C₃N₄photocatalysts without using sacrificial 99 3.7 835 agents. Chemical Science, 2016, 7, 3062-3066. Surface activated carbon nitride nanosheets with optimized electro-optical properties for highly 5.2 efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016, 4, 2445-2452. Enhancement of the Cr(VI) adsorption and photocatalytic reduction activity of g-C3N4 by 101 2.2 123 hydrothermal treatment in HNO3 aqueous solution. Applied Catalysis A: Géneral, 2016, 521, 9-18. Artificial photosynthesis using metal/nonmetal-nitride semiconductors: current status, prospects, 5.2 and challenges. Journal of Materials Chemistry A, 2016, 4, 2801-2820. Efficient band structure tuning, charge separation, and visible-light response in 103 ZrS₂-based van der Waals heterostructures. Energy and Environmental Science, 2016, 9, 15.6 161 841-849. Visible Photocatalytic Water Splitting and Photocatalytic Two-Electron Oxygen Formation over Cu-104 1.5 251 and Fe-Doped g-C(sub>3(sub>N(sub>4(sub). Journal of Physical Chemistry C, 2016, 120, 56-63. Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water 105 10.8 344 splitting. Applied Catalysis B: Environmental, 2016, 191, 130-137. Highly efficient hydrogen evolution over Co(OH)2 nanoparticles modified g-C3N4 co-sensitized by Eosin Y and Rose Bengal under Visible Light Irradiation. Applied Catalysis B: Environmental, 2016, 188, 150 56-64. Novel ternary g -C 3 N 4 /Fe 3 O 4 /Ag 2 CrO 4 nanocomposites: magnetically separable and visible-light-driven photocatalysts for degradation of water pollutants. Journal of Molecular 107 4.8 155Catalysis A, 2016, 415, 122-130. One-step construction of FeOx modified g-C3N4 for largely enhanced visible-light photocatalytic 5.4 hydrogen evolution. Carbon, 2016, 101, 62-70.

#	Article	IF	CITATIONS
109	Engineering monomer structure of carbon nitride for the effective and mild photooxidation reaction. Carbon, 2016, 100, 450-455.	5.4	65
110	Ultrafine Cobalt Catalysts on Covalent Carbon Nitride Frameworks for Oxygenic Photosynthesis. ACS Applied Materials & Interfaces, 2016, 8, 2287-2296.	4.0	103
111	Thiourea assisted hydrothermal synthesis of ZnS/CdS/Ag ₂ S nanocatalysts for photocatalytic degradation of Congo red under direct sunlight illumination. RSC Advances, 2016, 6, 4227-4236.	1.7	32
112	Dramatic coupling of visible light with ozone on honeycomb-like porous g-C 3 N 4 towards superior oxidation of water pollutants. Applied Catalysis B: Environmental, 2016, 183, 417-425.	10.8	165
113	Facile synthesis and enhanced visible-light photoactivity of DyVO 4 /g-C 3 N 4 I composite semiconductors. Applied Catalysis B: Environmental, 2016, 183, 426-432.	10.8	60
114	Spatial separation of oxidation and reduction co-catalysts for efficient charge separation: Pt@TiO ₂ @MnO _x hollow spheres for photocatalytic reactions. Chemical Science, 2016, 7, 890-895.	3.7	130
115	Structural effects of two-dimensional perovskite Ca ₂ Nb ₂ TaO ₁₀ ^{â^'} nanosheets for photocatalytic hydrogen evolution. Catalysis Science and Technology, 2016, 6, 1064-1069.	2.1	24
116	Nickel as a co-catalyst for photocatalytic hydrogen evolution on graphitic-carbon nitride (sg-CN): what is the nature of the active species?. Chemical Communications, 2016, 52, 104-107.	2.2	147
117	Graphitic carbon nitride nanosheet for photocatalytic hydrogen production: The impact of morphology and element composition. Applied Surface Science, 2017, 391, 369-375.	3.1	88
118	Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection. Biosensors and Bioelectronics, 2017, 89, 152-166.	5.3	316
119	A review on g-C 3 N 4 -based photocatalysts. Applied Surface Science, 2017, 391, 72-123.	3.1	2,318
120	n/n junctioned g-C ₃ N ₄ for enhanced photocatalytic H ₂ generation. Sustainable Energy and Fuels, 2017, 1, 317-323.	2.5	96
121	Boosting Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide–Carbon Nitride System. Angewandte Chemie, 2017, 129, 1675-1679.	1.6	57
122	Boosting Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide–Carbon Nitride System. Angewandte Chemie - International Edition, 2017, 56, 1653-1657.	7.2	261
123	Heteroatom Nitrogen- and Boron-Doping as a Facile Strategy to Improve Photocatalytic Activity of Standalone Reduced Graphene Oxide in Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 4558-4569.	4.0	128
124	Twoâ€Dimensional Nanomaterials for Cancer Nanotheranostics. Small, 2017, 13, 1603446.	5.2	130
125	Cubic mesoporous carbon nitride polymers with large cage-type pores for visible light photocatalysis. Journal of Materials Chemistry A, 2017, 5, 16179-16188.	5.2	43
126	A fixed-bed photoreactor using conjugated nanoporous polymer-coated glass fibers for visible light-promoted continuous photoredox reactions. Journal of Materials Chemistry A, 2017, 5, 3792-3797.	5.2	45

#	Article	IF	CITATIONS
127	Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Applied Surface Science, 2017, 405, 60-70.	3.1	328
128	A novel 2D/2D carbonized poly-(furfural alcohol)/g-C3N4 nanocomposites with enhanced charge carrier separation for photocatalytic H2 evolution. Carbon, 2017, 115, 486-492.	5.4	54
129	Assembly of g-C ₃ N ₄ -based type II and Z-scheme heterojunction anodes with improved charge separation for photoelectrojunction water oxidation. Physical Chemistry Chemical Physics, 2017, 19, 4507-4515.	1.3	67
130	Photocatalytic Hydrogen Production: A Rift into the Future Energy Supply. ChemCatChem, 2017, 9, 1523-1544.	1.8	396
131	Advent of 2D Rhenium Disulfide (ReS ₂): Fundamentals to Applications. Advanced Functional Materials, 2017, 27, 1606129.	7.8	296
132	A Redox Shuttle Accelerates O ₂ Evolution of Photocatalysts Formed In Situ under Visible Light. Advanced Materials, 2017, 29, 1606009.	11.1	48
133	Sulfur-Modified Graphitic Carbon Nitride Nanostructures as an Efficient Electrocatalyst for Water Oxidation. Small, 2017, 13, 1603893.	5.2	52
134	A Facile Steam Reforming Strategy to Delaminate Layered Carbon Nitride Semiconductors for Photoredox Catalysis. Angewandte Chemie - International Edition, 2017, 56, 3992-3996.	7.2	374
135	Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study. Nano Research, 2017, 10, 1673-1696.	5.8	376
136	A Facile Steam Reforming Strategy to Delaminate Layered Carbon Nitride Semiconductors for Photoredox Catalysis. Angewandte Chemie, 2017, 129, 4050-4054.	1.6	87
137	Integrating AgI/AgBr biphasic heterostructures encased by few layer h-BN with enhanced catalytic activity and stability. Journal of Colloid and Interface Science, 2017, 496, 434-445.	5.0	36
138	Efficient exfoliation of g-C3N4 and NO2 sensing behavior of graphene/g-C3N4 nanocomposite. Sensors and Actuators B: Chemical, 2017, 248, 940-948.	4.0	74
139	Ultrasonic chemical synthesis of hybrid mpg-C3N4/BiPO4 heterostructured photocatalysts with improved visible light photocatalytic activity. Applied Catalysis B: Environmental, 2017, 207, 120-133.	10.8	124
140	Novel visible-light-driven Z-scheme Bi12GeO20/g-C3N4 photocatalyst: Oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of Cr(VI) reduction. Applied Catalysis B: Environmental, 2017, 207, 17-26.	10.8	253
141	Efficient Removal of Organic Dyes from Water by β-Cyclodextrin Functionalized Graphite Carbon Nitride Composite. ChemistrySelect, 2017, 2, 1753-1758.	0.7	17
142	Triâ€ <i>s</i> â€ŧriazineâ€Based Crystalline Carbon Nitride Nanosheets for an Improved Hydrogen Evolution. Advanced Materials, 2017, 29, 1700008.	11.1	541
143	Graphitic-C ₃ N ₄ nanosheets: synergistic effects of hydrogenation and n/n junctions for enhanced photocatalytic activities. Dalton Transactions, 2017, 46, 10641-10649.	1.6	53
144	Fabrication of an all solid Z-scheme photocatalyst g-C 3 N 4 /GO/AgBr with enhanced visible light photocatalytic activity. Applied Catalysis A: General, 2017, 539, 104-113.	2.2	124

#	Article	IF	CITATIONS
145	Electrospinning Preparation of Nanostructured g-C ₃ N ₄ /BiVO ₄ Composite Films with an Enhanced Photoelectrochemical Performance. Langmuir, 2017, 33, 4694-4701.	1.6	81
146	Converting Carbohydrates to Carbon-Based Photocatalysts for Environmental Treatment. Environmental Science & Technology, 2017, 51, 7076-7083.	4.6	107
147	Graphitic carbon nitride-based nanocomposites as visible-light driven photocatalysts for environmental purification. Environmental Science: Nano, 2017, 4, 1455-1469.	2.2	142
148	Evaluation of a multi-dimensional hybrid photocatalyst for enrichment of H ₂ evolution and elimination of dye/non-dye pollutants. Catalysis Science and Technology, 2017, 7, 2579-2590.	2.1	49
149	Exfoliated metal free homojunction photocatalyst prepared by a biomediated route for enhanced hydrogen evolution and Rhodamine B degradation. Materials Chemistry Frontiers, 2017, 1, 1641-1653.	3.2	49
150	3D Au-decorated BiMoO ₆ nanosheet/TiO ₂ nanotube array heterostructure with enhanced UV and visible-light photocatalytic activity. Journal of Materials Chemistry A, 2017, 5, 16412-16421.	5.2	150
151	Voids padding induced further enhancement in photocatalytic performance of porous graphene-like carbon nitride. Journal of Hazardous Materials, 2017, 335, 66-74.	6.5	31
152	In Situ Hydrothermal Construction of Direct Solid-State Nano-Z-Scheme BiVO ₄ /Pyridine-Doped g-C ₃ N ₄ Photocatalyst with Efficient Visible-Light-Induced Photocatalytic Degradation of Phenol and Dyes. ACS Omega, 2017, 2, 2728-2739.	1.6	75
153	Conductive Carbon Nitride for Excellent Energy Storage. Advanced Materials, 2017, 29, 1701674.	11.1	142
154	Graphene-like carbon nitride nanosheet as a novel sensing platform for electrochemical determination of tryptophan. Journal of Colloid and Interface Science, 2017, 505, 964-972.	5.0	58
155	Oxidized Quasi arbon Nitride Quantum Dots Inhibit Ice Growth. Advanced Materials, 2017, 29, 1606843.	11.1	121
156	Inâ€Situ Construction of Globeâ€like Carbon Nitride as a Selfâ€Cocatalyst Modified Treeâ€like Carbon Nitride for Drastic Improvement in Visibleâ€Light Photocatalytic Hydrogen Evolution. ChemCatChem, 2017, 9, 4035-4042.	1.8	20
157	Rational synthesis of ultrathin graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen evolution. Carbon, 2017, 121, 463-471.	5.4	94
158	Fabrication of two-dimensional porous CdS nanoplates decorated with C3N4 nanosheets for highly efficient photocatalytic hydrogen production from water splitting. Catalysis Communications, 2017, 99, 79-82.	1.6	36
159	Porous Mn doped g-C3N4 photocatalysts for enhanced synergetic degradation under visible-light illumination. Journal of Hazardous Materials, 2017, 339, 43-53.	6.5	136
160	Recent Advances of Graphitic Carbon Nitride-Based Structures and Applications in Catalyst, Sensing, Imaging, and LEDs. Nano-Micro Letters, 2017, 9, 47.	14.4	348
161	A Conjugated Microporous Polymer for Palladiumâ€Free, Visible Lightâ€Promoted Photocatalytic Stilleâ€Type Coupling Reactions. Advanced Science, 2017, 4, 1700101.	5.6	51
162	Strategies for Efficient Solar Water Splitting Using Carbon Nitride. Chemistry - an Asian Journal, 2017, 12, 1421-1434.	1.7	72

#	Article	IF	CITATIONS
163	Covalent functionalization of multi-walled carbon nanotubes with spiropyran for high solubility both in water and in non-aqueous solvents. Inorganic Chemistry Communication, 2017, 83, 31-35.	1.8	24
164	Creating distortion in g-C 3 N 4 framework by incorporation of ethylenediaminetetramethylene for enhancing photocatalytic generation of hydrogen. Molecular Catalysis, 2017, 432, 64-75.	1.0	18
165	Selfâ€Exfoliated Metalâ€Organic Nanosheets through Hydrolytic Unfolding of Metalâ€Organic Polyhedra. Chemistry - A European Journal, 2017, 23, 7361-7366.	1.7	45
166	Design and synthesis of multistructured three-dimensionally ordered macroporous composite bismuth oxide/zirconia: Photocatalytic degradation and hydrogen production. Journal of Colloid and Interface Science, 2017, 499, 159-169.	5.0	22
167	Constructing a novel p-n heterojunction photocatalyst LaFeO 3 /g-C 3 N 4 with enhanced visible-light-driven photocatalytic activity. Journal of Alloys and Compounds, 2017, 709, 542-548.	2.8	75
168	Layered 2D semiconducting transition metal dichalcogenides for solar energy conversion. Current Opinion in Electrochemistry, 2017, 2, 97-103.	2.5	33
169	A Facile Oneâ€Step Synthesis of Feâ€Doped gâ€C ₃ N ₄ Nanosheets and Their Improved Visibleâ€Light Photocatalytic Performance. ChemCatChem, 2017, 9, 1708-1715.	1.8	278
170	Insights into the excitonic processes in polymeric photocatalysts. Chemical Science, 2017, 8, 4087-4092.	3.7	136
171	Oxidative Polyoxometalates Modified Graphitic Carbon Nitride for Visible-Light CO ₂ Reduction. ACS Applied Materials & Interfaces, 2017, 9, 11689-11695.	4.0	122
172	Fe(<scp>iii</scp>) doped NiS ₂ nanosheet: a highly efficient and low-cost hydrogen evolution catalyst. Journal of Materials Chemistry A, 2017, 5, 10173-10181.	5.2	137
173	The role of dissolution in the synthesis of high-activity organic nanocatalysts in a wet chemical reaction. Journal of Materials Chemistry A, 2017, 5, 8029-8036.	5.2	6
174	Synthesis of Ta ₃ N ₅ /Bi ₂ MoO ₆ core–shell fiber-shaped heterojunctions as efficient and easily recyclable photocatalysts. Environmental Science: Nano, 2017, 4, 1155-1167.	2.2	180
175	Freestanding atomically-thin two-dimensional materials beyond graphene meeting photocatalysis: Opportunities and challenges. Nano Energy, 2017, 35, 79-91.	8.2	179
176	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	23.0	3,940
177	Visible and near infrared light active photocatalysis based on conjugated polymers. Journal of Industrial and Engineering Chemistry, 2017, 51, 27-43.	2.9	73
178	Phosphorus containing materials for photocatalytic hydrogen evolution. Green Chemistry, 2017, 19, 588-613.	4.6	148
179	A ternary photocatalyst of graphitic carbon nitride/cadmium sulfide/titania based on the electrostatic assembly using two-dimensional semiconductor nanosheets. Journal of Colloid and Interface Science, 2017, 491, 367-374.	5.0	27
180	Highly efficient visible-light-driven catalytic hydrogen evolution from ammonia borane using non-precious metal nanoparticles supported by graphitic carbon nitride. Journal of Materials Chemistry A, 2017, 5, 2288-2296.	5.2	66

#	Article	IF	CITATIONS
181	Reduced-sized monolayer carbon nitride nanosheets for highly improved photoresponse for cell imaging and photocatalysis. Science China Materials, 2017, 60, 109-118.	3.5	60
182	A Composite Polymeric Carbon Nitride with In Situ Formed Isotype Heterojunctions for Highly Improved Photocatalysis under Visible Light. Small, 2017, 13, 1603182.	5.2	55
183	Simple synthesis of oxygen functional layered carbon nitride with near-infrared light photocatalytic activity. Catalysis Communications, 2017, 91, 21-24.	1.6	8
184	Ultrathin graphitic C3N4 nanosheets as highly efficient metal-free cocatalyst for water oxidation. Applied Catalysis B: Environmental, 2017, 205, 19-23.	10.8	105
185	One-step synthesis of graphitic carbon nitride nanosheets with the help of melamine and its application for fluorescence detection of mercuric ions. Talanta, 2017, 164, 458-462.	2.9	37
186	Effect of template-induced surface species on electronic structure and photocatalytic activity of g-C3N4. Applied Surface Science, 2017, 396, 933-938.	3.1	20
187	A Metalâ€Organic Framework Approach toward Highly Nitrogenâ€Doped Graphitic Carbon as a Metalâ€Free Photocatalyst for Hydrogen Evolution. Small, 2017, 13, 1603279.	5.2	78
188	Tunable oxygen activation induced by oxygen defects in nitrogen doped carbon quantum dots for sustainable boosting photocatalysis. Carbon, 2017, 114, 601-607.	5.4	86
189	Computational design of two-dimensional nanomaterials for charge modulated CO2/H2 capture and/or storage. Energy Storage Materials, 2017, 8, 169-183.	9.5	25
190	Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis. Journal of Materials Chemistry A, 2017, 5, 2195-2203.	5.2	21
191	Effective Prevention of Charge Trapping in Graphitic Carbon Nitride with Nanosized Red Phosphorus Modification for Superior Photo(electro)catalysis. Advanced Functional Materials, 2017, 27, 1703484.	7.8	188
192	Two-dimensional materials confining single atoms for catalysis. Chinese Journal of Catalysis, 2017, 38, 1443-1453.	6.9	61
193	Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. Coordination Chemistry Reviews, 2017, 352, 306-327.	9.5	484
194	A Novel Metal-Free Polymer-Based POPD/g-C ₃ N ₄ Photocatalyst with Enhanced Charge Carrier Separation for the Degradation of Tetracycline Hydrochloride. ChemistrySelect, 2017, 2, 9256-9260.	0.7	13
195	Recent Progress in Semiconductorâ€Based Nanocomposite Photocatalysts for Solarâ€ŧoâ€Chemical Energy Conversion. Advanced Energy Materials, 2017, 7, 1700529.	10.2	189
196	Graphitic carbon nitride (g-C ₃ N ₄)-based photocatalysts for solar hydrogen generation: recent advances and future development directions. Journal of Materials Chemistry A, 2017, 5, 23406-23433.	5.2	472
197	Precisely tunable thickness of graphitic carbon nitride nanosheets for visible-light-driven photocatalytic hydrogen evolution. Nanoscale, 2017, 9, 14103-14110.	2.8	91
198	Two-dimensional nanomaterials for photocatalytic CO ₂ reduction to solar fuels. Sustainable Energy and Fuels, 2017, 1, 1875-1898.	2.5	156

#	Article	IF	CITATIONS
199	Reduced Oxygenated <i>g</i> ₃ N ₄ with Abundant Nitrogen Vacancies for Visibleâ€Light Photocatalytic Applications. Chemistry - A European Journal, 2017, 23, 15466-15473.	1.7	62
200	<i>Grafting from</i> versus <i>Grafting to</i> Approaches for the Functionalization of Graphene Nanoplatelets with Poly(methyl methacrylate). Macromolecules, 2017, 50, 7070-7079.	2.2	58
201	Efficient Photocatalytic Hydrogen Evolution on Band Structure Tuned Polytriazine/Heptazine Based Carbon Nitride Heterojunctions with Ordered Needle-like Morphology Achieved by an In Situ Molten Salt Method. Journal of Physical Chemistry C, 2017, 121, 21497-21509.	1.5	64
202	Tuning the Chemical Hardness of Boron Nitride Nanosheets by Doping Carbon for Enhanced Adsorption Capacity. ACS Omega, 2017, 2, 5385-5394.	1.6	86
203	Non-Noble Metal Nanoparticles Supported by Postmodified Porous Organic Semiconductors: Highly Efficient Catalysts for Visible-Light-Driven On-Demand H ₂ Evolution from Ammonia Borane. ACS Applied Materials & Interfaces, 2017, 9, 32767-32774.	4.0	30
204	Melem: an efficient metal-free luminescent material. Journal of Materials Chemistry C, 2017, 5, 10746-10753.	2.7	61
205	Scalable and super-stable exfoliation of graphitic carbon nitride in biomass-derived γ-valerolactone: enhanced catalytic activity for the alcoholysis and cycloaddition of epoxides with CO ₂ . Green Chemistry, 2017, 19, 5041-5045.	4.6	33
206	One-Pot Synthesis of Nickel-Modified Carbon Nitride Layers Toward Efficient Photoelectrochemical Cells. ACS Applied Materials & Interfaces, 2017, 9, 32667-32677.	4.0	66
207	High efficiency for H2 evolution and NO removal over the Ag nanoparticles bridged g-C3N4 and WS2 heterojunction photocatalysts. Applied Catalysis B: Environmental, 2017, 219, 467-478.	10.8	78
208	Toward Activity Origin of Electrocatalytic Hydrogen Evolution Reaction on Carbonâ€Rich Crystalline Coordination Polymers. Small, 2017, 13, 1700783.	5.2	16
209	Visible-Light-Promoted Selective Oxidation of Alcohols Using a Covalent Triazine Framework. ACS Catalysis, 2017, 7, 5438-5442.	5.5	261
210	Redox Active Metal– and Covalent Organic Frameworks for Energy Storage: Balancing Porosity and Electrical Conductivity. Chemistry - A European Journal, 2017, 23, 16419-16431.	1.7	121
211	The facile synthesis of graphitic carbon nitride from amino acid and urea for photocatalytic H2 production. Research on Chemical Intermediates, 2017, 43, 5137-5152.	1.3	38
212	Facile synthesis of AuPd/g-C3N4 nanocomposite: An effective strategy to enhance photocatalytic hydrogen evolution activity. International Journal of Hydrogen Energy, 2017, 42, 22765-22775.	3.8	67
213	Emerging investigators series: advances and challenges of graphitic carbon nitride as a visible-light-responsive photocatalyst for sustainable water purification. Environmental Science: Water Research and Technology, 2017, 3, 982-1001.	1.2	33
214	Fabrication of metal-free two dimensional/two dimensional homojunction photocatalyst using various carbon nitride nanosheets as building blocks. Journal of Colloid and Interface Science, 2017, 507, 209-216.	5.0	49
215	Decoration of MoS2 on g-C3N4 surface for efficient hydrogen evolution reaction. Electrochimica Acta, 2017, 258, 1273-1283.	2.6	67
216	A biomimetic photoelectrocatalyst of Co–porphyrin combined with a g-C ₃ N ₄ nanosheet based on π–π supramolecular interaction for high-efficiency CO ₂ reduction in	4.6	72

#	Article	IF	CITATIONS
217	High Photocatalytic Activity of Heptazine-Based g-C ₃ N ₄ /SnS ₂ Heterojunction and Its Origin: Insights from Hybrid DFT. Journal of Physical Chemistry C, 2017, 121, 25827-25835.	1.5	142
218	Understanding the high-electrocatalytic performance of two-dimensional MoS ₂ nanosheets and their composite materials. Journal of Materials Chemistry A, 2017, 5, 24540-24563.	5.2	183
219	Z-Scheme NiTiO ₃ /g-C ₃ N ₄ Heterojunctions with Enhanced Photoelectrochemical and Photocatalytic Performances under Visible LED Light Irradiation. ACS Applied Materials & Interfaces, 2017, 9, 41120-41125.	4.0	130
220	Metal Phosphides as Coâ€Catalysts for Photocatalytic and Photoelectrocatalytic Water Splitting. ChemSusChem, 2017, 10, 4306-4323.	3.6	150
221	Recent advances in functional mesoporous graphitic carbon nitride (mpg-C ₃ N ₄) polymers. Nanoscale, 2017, 9, 10544-10578.	2.8	189
222	Biomass-derived heteroatoms-doped mesoporous carbon for efficient oxygen reduction in microbial fuel cells. Biosensors and Bioelectronics, 2017, 98, 350-356.	5.3	92
223	Interfacial Manipulation by Rutile TiO ₂ Nanoparticles to Boost CO ₂ Reduction into CO on a Metal-Complex/Semiconductor Hybrid Photocatalyst. ACS Applied Materials & Interfaces, 2017, 9, 23869-23877.	4.0	69
224	2D/2D heterojunctions of WO ₃ nanosheet/K ⁺ Ca ₂ Nb ₃ O ₁₀ ^{â^'} ultrathin nanosheet with improved charge separation efficiency for significantly boosting photocatalysis. Catalysis Science and Technology. 2017. 7. 3481-3491.	2.1	68
225	Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. Chemical Science, 2017, 8, 5261-5274.	3.7	299
226	Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2017, 5, 3230-3238.	5.2	621
227	Post-Calcined Carbon Nitride Nanosheets as an Efficient Photocatalyst for Hydrogen Production under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2017, 5, 213-220.	3.2	85
228	In site acid template induced facile synthesis of porous graphitic carbon nitride with enhanced visible-light photocatalytic activity. Catalysis Communications, 2017, 89, 129-132.	1.6	34
229	Mesoporous Carbon Materials with Functional Compositions. Chemistry - A European Journal, 2017, 23, 1986-1998.	1.7	56
230	Activation of the Carbon Nitride Surface by Silica in a COâ€Evolving Hybrid Photocatalyst. ChemSusChem, 2017, 10, 287-295.	3.6	36
231	Comparison of photocatalytic reaction-induced selective corrosion with photocorrosion: Impact on morphology and stability of Ag-ZnO. Applied Catalysis B: Environmental, 2017, 201, 348-358.	10.8	72
232	Decorating CoP and Pt Nanoparticles on Graphitic Carbon Nitride Nanosheets to Promote Overall Water Splitting by Conjugated Polymers. ChemSusChem, 2017, 10, 87-90.	3.6	278
233	Ultra-high sensitive voltammetric sensor modified by largely oxygenous functionalized ultrathin carbon nitride nanosheets for detection of Cu (II). Sensors and Actuators B: Chemical, 2017, 242, 897-903.	4.0	19
234	Facilitation of the visible light-induced Fenton-like excitation of H2O2 via heterojunction of g-C3N4/NH2-Iron terephthalate metal-organic framework for MB degradation. Applied Catalysis B: Environmental, 2017, 202, 653-663.	10.8	316

#	Article	IF	CITATIONS
235	Facile Electrospinning Synthesis of Carbonized Polyvinylpyrrolidone (PVP)/g ₃ N ₄ Hybrid Films for Photoelectrochemical Applications. Chemistry - A European Journal, 2017, 23, 419-426.	1.7	44
236	Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst. Applied Catalysis B: Environmental, 2017, 200, 378-385.	10.8	225
237	A Novel <scp>CdS</scp> /gâ€ <scp>C₃N₄</scp> Composite Photocatalyst: Preparation, Characterization and Photocatalytic Performance with Different Reaction Solvents under Visible Light Irradiation. Chinese Journal of Chemistry, 2017, 35, 217-225.	2.6	25
238	Bandgap engineering of ultrathin graphene-like carbon nitride nanosheets with controllable oxygenous functionalization. Carbon, 2017, 113, 63-75.	5.4	109
239	A Novel Heterostructure of BiOI Nanosheets Anchored onto MWCNTs with Excellent Visible-Light Photocatalytic Activity. Nanomaterials, 2017, 7, 22.	1.9	45
240	2D/2D Graphitic Carbon Nitride (g-C3N4) Heterojunction Nanocomposites for Photocatalysis: Why Does Face-to-Face Interface Matter?. Frontiers in Materials, 2017, 4, .	1.2	201
241	Post-activation of in situ B F codoped g-C3N4 for enhanced photocatalytic H2 evolution. Applied Surface Science, 2018, 441, 621-630.	3.1	33
242	Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chemical Society Reviews, 2018, 47, 2298-2321.	18.7	488
243	A Facile Construction of Porous g-C ₃ N ₄ /poly(3,4-ethylenedioxythiophene) Composite Modified Electrode for Ascorbic Acid Determination. Journal of the Electrochemical Society, 2018, 165, B118-B126.	1.3	11
244	Point Defect Effects on Photoelectronic Properties of the Potential Metal-Free C ₂ N Photocatalysts: Insight from First-Principles Computations. Journal of Physical Chemistry C, 2018, 122, 5291-5302.	1.5	47
245	Exploring the formation and electronic structure properties of the g-C ₃ N ₄ nanoribbon with density functional theory. Journal of Physics Condensed Matter, 2018, 30, 155303.	0.7	11
246	Porous graphitic carbon nitride nanosheets by pre-polymerization for enhanced photocatalysis. Materials Characterization, 2018, 139, 89-99.	1.9	61
247	Recent progress in ultrathin two-dimensional semiconductors for photocatalysis. Materials Science and Engineering Reports, 2018, 130, 1-39.	14.8	116
248	g ₃ N ₄ Loading Black Phosphorus Quantum Dot for Efficient and Stable Photocatalytic H ₂ Generation under Visible Light. Advanced Functional Materials, 2018, 28, 1800668.	7.8	257
249	Gold/monolayer graphitic carbon nitride plasmonic photocatalyst for ultrafast electron transfer in solar-to-hydrogen energy conversion. Chinese Journal of Catalysis, 2018, 39, 760-770.	6.9	36
250	Carbon and Nitrogen Based Nanosheets as Fluorescent Probes with Tunable Emission. Small, 2018, 14, e1800516.	5.2	20
251	A Highly Solventâ€Stable Metal–Organic Framework Nanosheet: Morphology Control, Exfoliation, and Luminescent Property. Small, 2018, 14, e1703873.	5.2	88
252	Density functional theory study on the effects of oxygen groups on band gap tuning of graphitic carbon nitrides for possible photocatalytic applications. Sustainable Materials and Technologies,	1.7	33

#	Article	IF	CITATIONS
254	A facile and scalable route for synthesizing ultrathin carbon nitride nanosheets with efficient solar hydrogen evolution. Carbon, 2018, 136, 160-167.	5.4	33
255	Boosting Photocatalytic Hydrogen Production of Porphyrinic MOFs: The Metal Location in Metalloporphyrin Matters. ACS Catalysis, 2018, 8, 4583-4590.	5.5	184
256	Doping effect of non-metal group in porous ultrathin g-C ₃ N ₄ nanosheets towards synergistically improved photocatalytic hydrogen evolution. Nanoscale, 2018, 10, 5239-5245.	2.8	86
257	Rational design of donor-ï€-acceptor conjugated microporous polymers for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 228, 1-9.	10.8	215
258	WS ₂ /Graphitic Carbon Nitride Heterojunction Nanosheets Decorated with CdS Quantum Dots for Photocatalytic Hydrogen Production. ChemSusChem, 2018, 11, 1187-1197.	3.6	129
259	Two-Dimensional Phosphorus-Doped Carbon Nanosheets with Tunable Porosity for Oxygen Reactions in Zinc-Air Batteries. ACS Catalysis, 2018, 8, 2464-2472.	5.5	175
260	Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 229, 41-51.	10.8	529
261	Template-Induced High-Crystalline g-C ₃ N ₄ Nanosheets for Enhanced Photocatalytic H ₂ Evolution. ACS Energy Letters, 2018, 3, 514-519.	8.8	259
262	Rationally designed hierarchical N-doped carbon@NiCo ₂ O ₄ double-shelled nanoboxes for enhanced visible light CO ₂ reduction. Energy and Environmental Science, 2018, 11, 306-310.	15.6	357
263	Template-Free Synthesis of Hollow G-C ₃ N ₄ Polymer with Vesicle Structure for Enhanced Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2018, 122, 3786-3793.	1.5	55
264	VISIBLE-LIGHT-DRIVEN PHOTOCATALYSIS., 2018, , 109-173.		0
265	Engineering oxygen-containing and amino groups into two-dimensional atomically-thin porous polymeric carbon nitrogen for enhanced photocatalytic hydrogen production. Energy and Environmental Science, 2018, 11, 566-571.	15.6	304
266	Graphitic Carbon Nitride as a Distinct Solid Stabilizer for Emulsion Polymerization. Chemistry - A European Journal, 2018, 24, 2286-2291.	1.7	36
267	Coupling cobalt sulfide nanosheets with cadmium sulfide nanoparticles for highly efficient visible-light-driven photocatalysis. Applied Catalysis B: Environmental, 2018, 226, 103-110.	10.8	64
268	Construction of an all-solid-state Z-scheme photocatalyst based on graphite carbon nitride and its enhancement to catalytic activity. Environmental Science: Nano, 2018, 5, 599-615.	2.2	174
269	Coexistence of Co doping and strain on arsenene and antimonene: tunable magnetism and half-metallic behavior. RSC Advances, 2018, 8, 1320-1327.	1.7	24
270	Two-dimensional nickel hydroxide/sulfides nanosheet as an efficient cocatalyst for photocatalytic H2 evolution over CdS nanospheres. Journal of Colloid and Interface Science, 2018, 514, 634-641.	5.0	37
271	Mesoporous g-C3N4 nanosheets prepared by calcining a novel supramolecular precursor for high-efficiency photocatalytic hydrogen evolution. Applied Surface Science, 2018, 450, 46-56.	3.1	91

#	Article	IF	CITATIONS
272	Polycyclic aromatic compounds-modified graphitic carbon nitride for efficient visible-light-driven hydrogen evolution. Carbon, 2018, 134, 134-144.	5.4	126
273	Microwave assisted <i>in situ</i> decoration of a g-C ₃ N ₄ surface with CdCO ₃ nanoparticles for visible light driven photocatalysis. New Journal of Chemistry, 2018, 42, 6322-6331.	1.4	38
274	Functionalizing carbon nitride with heavy atom-free spin converters for enhanced 1O2 generation. Journal of Catalysis, 2018, 361, 222-229.	3.1	26
275	Ag2MoO4 nanoparticles encapsulated in g-C3N4 for sunlight photodegradation of pollutants. Catalysis Today, 2018, 315, 205-212.	2.2	66
276	Improving the photocatalytic activity of graphitic carbon nitride by thermal treatment in a high-pressure hydrogen atmosphere. Progress in Natural Science: Materials International, 2018, 28, 183-188.	1.8	31
277	Adsorption of H 2 O, H 2 , O 2 , CO, NO, and CO 2 on graphene/g-C 3 N 4 nanocomposite investigated by density functional theory. Applied Surface Science, 2018, 430, 125-136.	3.1	56
278	Improved solar light stimulated charge separation of g-C 3 N 4 through self-altering acidic treatment. Applied Surface Science, 2018, 430, 355-361.	3.1	30
279	Low cost hydrogen production by anion exchange membrane electrolysis: A review. Renewable and Sustainable Energy Reviews, 2018, 81, 1690-1704.	8.2	507
280	Voltammetric simultaneous ion flux measurements platform for Cu2+, Pb2+ and Hg2+ near rice root surface: Utilizing carbon nitride heterojunction film modified carbon fiber microelectrode. Sensors and Actuators B: Chemical, 2018, 256, 98-106.	4.0	21
281	Construction of RGO/CdIn 2 S 4 /g-C 3 N 4 ternary hybrid with enhanced photocatalytic activity for the degradation of tetracycline hydrochloride. Applied Surface Science, 2018, 433, 388-397.	3.1	91
282	Nitrogen photofixation by ultrathin amine-functionalized graphitic carbon nitride nanosheets as a gaseous product from thermal polymerization of urea. Applied Catalysis B: Environmental, 2018, 224, 222-229.	10.8	135
283	Aromatic heterocycle-grafted NH2-MIL-125(Ti) via conjugated linker with enhanced photocatalytic activity for selective oxidation of alcohols under visible light. Applied Catalysis B: Environmental, 2018, 224, 479-487.	10.8	126
284	Photocatalytic reduction of CO2 to CO over copper decorated g-C3N4 nanosheets with enhanced yield and selectivity. Applied Surface Science, 2018, 427, 1165-1173.	3.1	136
285	Solution-based processing of carbon nitride composite for boosted photocatalytic activities. Chinese Chemical Letters, 2018, 29, 437-440.	4.8	24
286	g ₃ N ₄ â€Based Heterostructured Photocatalysts. Advanced Energy Materials, 2018, 8, 1701503.	10.2	1,870
287	Synthesis of Large Surfaceâ€Area g ₃ N ₄ Comodified with MnO <i>_x</i> and Auâ€TiO ₂ as Efficient Visible‣ight Photocatalysts for Fuel Production. Advanced Energy Materials, 2018, 8, 1701580.	10.2	157
288	Covalent organic nanosheets with large lateral size and high aspect ratio synthesized by Langmuir-Blodgett method. Chinese Chemical Letters, 2018, 29, 869-872.	4.8	14
289	Photocatalytic Oxygen Evolution from Functional Triazineâ€Based Polymers with Tunable Band Structures. Angewandte Chemie, 2018, 130, 479-483.	1.6	75

щ		IF	CITATIONS
#	ARTICLE	IF	CITATIONS
290	composites. Journal of Colloid and Interface Science, 2018, 513, 866-876.	5.0	178
291	Constructing 2D graphitic carbon nitride nanosheets/layered MoS2/graphene ternary nanojunction with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2018, 225, 468-476.	10.8	208
292	KOH etching graphitic carbon nitride for simulated sunlight photocatalytic nitrogen fixation with cyano groups as defects. Journal of the Taiwan Institute of Chemical Engineers, 2018, 83, 99-106.	2.7	50
293	<i>In situ</i> g-C ₃ N ₄ self-sacrificial synthesis of a g-C ₃ N ₄ /LaCO ₃ OH heterostructure with strong interfacial charge transfer and separation for photocatalytic NO removal. Journal of Materials Chemistry A, 2018, 6, 972-981.	5.2	54
294	Fragmented phosphorus-doped graphitic carbon nitride nanoflakes with broad sub-bandgap absorption for highly efficient visible-light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 225, 397-405.	10.8	154
295	2D/2D g-C ₃ N ₄ /MnO ₂ Nanocomposite as a Direct Z-Scheme Photocatalyst for Enhanced Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 965-973.	3.2	519
296	Design of a Unique Energy-Band Structure and Morphology in a Carbon Nitride Photocatalyst for Improved Charge Separation and Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 519-530.	3.2	60
297	Ruthenium Ionâ€Complexed Graphitic Carbon Nitride Nanosheets Supported on Reduced Graphene Oxide as Highâ€Performance Catalysts for Electrochemical Hydrogen Evolution. ChemSusChem, 2018, 11, 130-136.	3.6	76
298	Photocatalytic Oxygen Evolution from Functional Triazineâ€Based Polymers with Tunable Band Structures. Angewandte Chemie - International Edition, 2018, 57, 470-474.	7.2	278
299	Metallic MoN ultrathin nanosheets boosting high performance photocatalytic H ₂ production. Journal of Materials Chemistry A, 2018, 6, 23278-23282.	5.2	37
300	Theory-Driven Heterojunction Photocatalyst Design with Continuously Adjustable Band Gap Materials. Journal of Physical Chemistry C, 2018, 122, 28065-28074.	1.5	20
301	2D Nanocomposite of g ₃ N ₄ and TiN Embedded Nâ€Doped Graphene for Photoelectrochemical Reduction of Water Using Sunlight. Advanced Materials Interfaces, 2018, 5, 1801488.	1.9	34
302	Metal-Cluster-Directed Surface Charge Manipulation of Two-Dimensional Nanomaterials for Efficient Urea Electrocatalytic Conversion. ACS Applied Nano Materials, 2018, 1, 6649-6655.	2.4	11
303	Porous Organic Polymers: An Emerged Platform for Photocatalytic Water Splitting. Frontiers in Chemistry, 2018, 6, 592.	1.8	51
304	Facile Synthesis of Carbon/g ₃ N ₄ ÂNanocomposites as Metalâ€Free PhotocatalystÂwith Enhanced Visibleâ€Lightâ€Responsive Photocatalytic Properties. ChemistrySelect, 2018, 3, 12530-12536.	0.7	3
305	Tuning Nitrogen Content in Graphitic Carbon Nitride by Isonicotinic acid for Highly Efficient Photocatalytic Hydrogen Evolution. ChemCatChem, 2018, 11, 1045.	1.8	9
306	Largely enhanced photocatalytic hydrogen production rate of CdS/(Au–ReS ₂) nanospheres by the dielectric–plasmon hybrid antenna effect. Nanoscale, 2018, 10, 19586-19594.	2.8	21
307	Molecular Engineering of Donor–Acceptor Conjugated Polymer/gâ€C ₃ N ₄ Heterostructures for Significantly Enhanced Hydrogen Evolution Under Visibleâ€Light Irradiation. Advanced Functional Materials, 2018, 28, 1804512.	7.8	196

#	Article	IF	Citations
308	Graphitic Carbon Nitride for Electrochemical Energy Conversion and Storage. ACS Energy Letters, 2018, 3, 2796-2815.	8.8	149
309	Theoretical Studies on the Electronic and Optical Properties of Honeycomb BC ₃ monolayer: A Promising Candidate for Metal-free Photocatalysts. ACS Omega, 2018, 3, 10517-10525.	1.6	50
310	Strategies to improve metal organic frameworks photocatalyst's performance for degradation of organic pollutants. Coordination Chemistry Reviews, 2018, 376, 449-466.	9.5	139
311	WS ₂ and Câ€TiO ₂ Nanorods Acting as Effective Charge Separators on gâ€C ₃ N ₄ to Boost Visibleâ€Light Activated Hydrogen Production from Seawater. ChemSusChem, 2018, 11, 4077-4085.	3.6	77
312	Mass Production of Largeâ€Sized, Nonlayered 2D Nanosheets: Their Directed Synthesis by a Rapid "Gelâ€Blowing―Strategy, and Applications in Li/Na Storage and Catalysis. Advanced Materials, 2018, 30, e1803569.	11.1	74
313	Nanocarbons as platforms for developing novel catalytic composites: overview and prospects. Applied Catalysis A: General, 2018, 562, 94-105.	2.2	40
314	Construction of novel Sr0.4H1.2Nb2O6·H2O/g-C3N4 heterojunction with enhanced visible light photocatalytic activity for hydrogen evolution. Journal of Colloid and Interface Science, 2018, 526, 451-458.	5.0	26
315	Facile preparation of porous carbon nitride for visible light photocatalytic reduction and oxidation applications. Journal of Materials Science, 2018, 53, 11315-11328.	1.7	13
316	Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. Journal of Materials Chemistry A, 2018, 6, 12876-12931.	5.2	215
317	One-Step Nickel Foam Assisted Synthesis of Holey G-Carbon Nitride Nanosheets for Efficient Visible-Light Photocatalytic H ₂ Evolution. ACS Applied Materials & Interfaces, 2018, 10, 20521-20529.	4.0	81
318	Manipulation structure of carbon nitride via trace level iron with improved interfacial redox activity and charge separation for synthetic enhancing photocatalytic hydrogen evolution. Applied Surface Science, 2018, 456, 609-614.	3.1	13
319	Constructing ultrathin g-C3N4 nanosheets with hierarchical pores by NaClO induced wet etching for efficient photocatalytic Cr(VI) detoxification under visible light irradiation. Diamond and Related Materials, 2018, 88, 51-59.	1.8	21
320	New two-dimensional porous graphitic carbon nitride nanosheets for highly efficient photocatalytic hydrogen evolution under visible-light irradiation. Catalysis Science and Technology, 2018, 8, 3846-3852.	2.1	32
321	Efficiently enhancing the photocatalytic activity of g 3 N 4 by a simple advanced successive activation method. Micro and Nano Letters, 2018, 13, 403-406.	0.6	6
322	Visible Light-Responsive Photocatalysts—From TiO2 to Carbon Nitrides and Boron Carbon Nitride. Advances in Inorganic Chemistry, 2018, 72, 49-92.	0.4	9
323	Two-dimensional metal–organic framework nanosheets: synthesis and applications. Chemical Society Reviews, 2018, 47, 6267-6295.	18.7	978
324	Graphene-like Metal-Free 2D Nanosheets for Cancer Imaging and Theranostics. Trends in Biotechnology, 2018, 36, 1145-1156.	4.9	54
325	Metal-doped graphitic carbon nitride (g-C3N4) as selective NO2 sensors: A first-principles study. Applied Surface Science, 2018, 455, 1116-1122.	3.1	71

#	Article	IF	CITATIONS
326	Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications. Chemical Reviews, 2018, 118, 6409-6455.	23.0	711
327	Neighboring Pt Atom Sites in an Ultrathin FePt Nanosheet for the Efficient and Highly CO-Tolerant Oxygen Reduction Reaction. Nano Letters, 2018, 18, 5905-5912.	4.5	84
328	The effect of molecular structure and fluorination on the properties of pyrene-benzothiadiazole-based conjugated polymers for visible-light-driven hydrogen evolution. Polymer Chemistry, 2018, 9, 4468-4475.	1.9	56
329	In-Plane Axially Enhanced Photocatalysis by Re ₄ Diamond Chains in Layered ReS ₂ . Journal of Physical Chemistry C, 2018, 122, 18776-18784.	1.5	14
330	Facile synthesis of Ag3PO4 modified with GQDs composites with enhanced visible-light photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2018, 29, 16691-16701.	1.1	21
331	Unique physicochemical properties of two-dimensional light absorbers facilitating photocatalysis. Chemical Society Reviews, 2018, 47, 6410-6444.	18.7	178
332	Covalent Functionalization of Carbon Nitride Frameworks through Cross oupling Reactions. Chemistry - A European Journal, 2018, 24, 14921-14927.	1.7	39
333	Facile urea-assisted precursor pre-treatment to fabricate porous g-C3N4 nanosheets for remarkably enhanced visible-light-driven hydrogen evolution. Journal of Colloid and Interface Science, 2018, 532, 280-286.	5.0	37
334	Graphitic carbon nitride prepared from urea as a photocatalyst for visible-light carbon dioxide reduction with the aid of a mononuclear ruthenium(II) complex. Beilstein Journal of Organic Chemistry, 2018, 14, 1806-1812.	1.3	38
335	Cellulose nanofibrils anchored Ag on graphitic carbon nitride for efficient photocatalysis under visible light. Environmental Science: Nano, 2018, 5, 2129-2143.	2.2	27
336	Two-dimensional polymeric carbon nitride: structural engineering for optimizing photocatalysis. Science China Chemistry, 2018, 61, 1205-1213.	4.2	50
337	g-C3N4-Based Nanomaterials for Visible Light-Driven Photocatalysis. Catalysts, 2018, 8, 74.	1.6	188
338	Fe ₂ O ₃ /C–C ₃ N ₄ -Based Tight Heterojunction for Boosting Visible-Light-Driven Photocatalytic Water Oxidation. ACS Sustainable Chemistry and Engineering, 2018, 6, 10436-10444.	3.2	61
339	Rational design of atomically dispersed nickel active sites in β-Mo ₂ C for the hydrogen evolution reaction at all pH values. Chemical Communications, 2018, 54, 9901-9904.	2.2	110
340	Graphitic carbon nitride nanosheets anchored with BiOBr and carbon dots: Exceptional visible-light-driven photocatalytic performances for oxidation and reduction reactions. Journal of Colloid and Interface Science, 2018, 530, 642-657.	5.0	65
341	High-Performance and Lightweight Thermal Management Devices by 3D Printing and Assembly of Continuous Carbon Nanotube Sheets. ACS Applied Materials & Interfaces, 2018, 10, 27171-27177.	4.0	23
342	Redoxâ€Responsive and Thermoresponsive Supramolecular Nanosheet Gels with High Young's Moduli. Macromolecular Rapid Communications, 2018, 39, e1800282.	2.0	8
343	Noble metal-free modified ultrathin carbon nitride with promoted molecular oxygen activation for photocatalytic formaldehyde oxidization and DFT study. Applied Surface Science, 2018, 458, 59-69.	3.1	62

#	Article	IF	CITATIONS
344	Layered Heterostructures of Ultrathin Polymeric Carbon Nitride and ZnIn ₂ S ₄ Nanosheets for Photocatalytic CO ₂ Reduction. Chemistry - A European Journal, 2018, 24, 18529-18534.	1.7	116
345	Two-Dimensional Nanosheets by Rapid and Efficient Microwave Exfoliation of Layered Materials. Chemistry of Materials, 2018, 30, 5932-5940.	3.2	76
346	Integrating MoS2 on sulfur-doped porous g-C3N4 iostype heterojunction hybrids enhances visible-light photocatalytic performance. Journal of Alloys and Compounds, 2018, 768, 766-774.	2.8	54
347	Stable H-Terminated Edges, Variable Semiconducting Properties, and Solar Cell Applications of C ₃ N Nanoribbons: A First-Principles Study. ACS Omega, 2018, 3, 8777-8786.	1.6	9
348	Defective Bi4MoO9/Bi metal core/shell heterostructure: Enhanced visible light photocatalysis and reaction mechanism. Applied Catalysis B: Environmental, 2018, 239, 619-627.	10.8	139
349	Tuning the Intrinsic Properties of Carbon Nitride for High Quantum Yield Photocatalytic Hydrogen Production. Advanced Science, 2018, 5, 1800820.	5.6	92
350	Electronic and Optical Properties of 2D Materials Constructed from Light Atoms. Advanced Materials, 2018, 30, e1801600.	11.1	36
351	Fast Exfoliation and Functionalisation of Twoâ€Dimensional Crystalline Carbon Nitride by Framework Charging. Angewandte Chemie, 2018, 130, 12838-12842.	1.6	14
352	Fast Exfoliation and Functionalisation of Twoâ€Dimensional Crystalline Carbon Nitride by Framework Charging. Angewandte Chemie - International Edition, 2018, 57, 12656-12660.	7.2	35
353	Efficient and stable photocatalytic NO removal on C self-doped g-C ₃ N ₄ : electronic structure and reaction mechanism. Catalysis Science and Technology, 2018, 8, 3387-3394.	2.1	60
354	Natural Sunlight Driven Oxidative Homocoupling of Amines by a Truxene-Based Conjugated Microporous Polymer. ACS Catalysis, 2018, 8, 6751-6759.	5.5	106
355	A two-dimensional cationic covalent organic framework membrane for selective molecular sieving. Journal of Materials Chemistry A, 2018, 6, 13331-13339.	5.2	241
356	Reduced graphene oxide coupled with g-C3N4 nanodots as 2D/0D nanocomposites for enhanced photocatalytic activity. Journal of Physics and Chemistry of Solids, 2018, 122, 104-108.	1.9	27
357	Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews, 2018, 118, 6189-6235.	23.0	505
358	Synthesis of S-Doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au-TiO2 for exceptional cocatalyst-free visible-light catalytic activities. Applied Catalysis B: Environmental, 2018, 237, 1082-1090.	10.8	151
359	Assembling n-Bi ₂ MoO ₆ Nanosheets on Electrospun p-CuAl ₂ O ₄ Hollow Nanofibers: Enhanced Photocatalytic Activity Based on Highly Efficient Charge Separation and Transfer. ACS Sustainable Chemistry and Engineering, 2018, 6, 10714-10723.	3.2	59
360	Ultrasensitive detection of heparin by exploiting the silver nanoparticle-enhanced fluorescence of graphitic carbon nitride (g-C3N4) quantum dots. Mikrochimica Acta, 2018, 185, 332.	2.5	39
361	Ultrathin two-dimensional metallic nanocrystals for renewable energy electrocatalysis. Materials Today, 2019, 23, 45-56.	8.3	64

#	Article	IF	CITATIONS
362	Photoresponsive polymeric carbon nitride-based materials: Design and application. Materials Today, 2019, 23, 72-86.	8.3	82
363	Engineering 2D Architectures toward Highâ€Performance Microâ€&upercapacitors. Advanced Materials, 2019, 31, e1802793.	11.1	202
364	Facile one-step synthesis of onion-like carbon modified ultrathin g-C3N4 2D nanosheets with enhanced visible-light photocatalytic performance. Journal of Colloid and Interface Science, 2019, 533, 47-58.	5.0	50
365	LiCl as Phaseâ€Transfer Catalysts to Synthesize Thin Co ₂ P Nanosheets for Oxygen Evolution Reaction. ChemSusChem, 2019, 12, 1911-1915.	3.6	22
366	Kohlenstoffnitridmaterialien für photochemische Zellen zur Wasserspaltung. Angewandte Chemie, 2019, 131, 6198-6211.	1.6	19
367	Carbon Nitride Materials for Water Splitting Photoelectrochemical Cells. Angewandte Chemie - International Edition, 2019, 58, 6138-6151.	7.2	205
368	Efficient piezo-catalytic hydrogen peroxide production from water and oxygen over graphitic carbon nitride. Journal of Materials Chemistry A, 2019, 7, 20383-20389.	5.2	99
369	A Novel Route to Manufacture 2D Layer MoS2 and g-C3N4 by Atmospheric Plasma with Enhanced Visible-Light-Driven Photocatalysis. Nanomaterials, 2019, 9, 1139.	1.9	19
370	2D Metal–Organic Frameworks as Multifunctional Materials in Heterogeneous Catalysis and Electro/Photocatalysis. Advanced Materials, 2019, 31, e1900617.	11.1	309
371	Photocatalytic Selective Oxidation of Organic Compounds in Graphitic Carbon Nitride Systems: A Review. Theoretical and Experimental Chemistry, 2019, 55, 147-172.	0.2	20
372	Fabrication of novel g-C3N4 nanosheet/carbon dots/Ag6Si2O7 nanocomposites with high stability and enhanced visible-light photocatalytic activity. Journal of the Taiwan Institute of Chemical Engineers, 2019, 103, 94-109.	2.7	68
373	Dual-active-sites design of CoSx anchored on nitrogen-doped carbon with tunable mesopore enables efficient Bi-Functional oxygen catalysis for ultra-stable zinc-air batteries. Journal of Power Sources, 2019, 438, 226953.	4.0	24
374	Facile Exfoliation of 3D Pillared Metal–Organic Frameworks (MOFs) to Produce MOF Nanosheets with Functionalized Surfaces. Inorganic Chemistry, 2019, 58, 11020-11027.	1.9	51
375	A multifunctional platform by controlling of carbon nitride in the core-shell structure: From design to construction, and catalysis applications. Applied Catalysis B: Environmental, 2019, 258, 117957.	10.8	126
377	DNA Cascade Reaction with High-Efficiency Target Conversion for Ultrasensitive Electrochemiluminescence microRNA Detection. Analytical Chemistry, 2019, 91, 10258-10265.	3.2	25
378	Versatile Functional Porous Cobalt–Nickel Phosphide–Carbon Cocatalyst Derived from a Metal–Organic Framework for Boosting the Photocatalytic Activity of Graphitic Carbon Nitride. ACS Applied Materials & Interfaces, 2019, 11, 28918-28927.	4.0	69
379	Amino-functionalised conjugated porous polymers for improved photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 19087-19093.	5.2	41
380	Transport gap engineering in zigzag graphene nanoribbons through topological design of deposited oxygen atoms: a new way to control the quantum transport in graphene-like materials. Materials Research Express, 2019, 6, 0950b6.	0.8	0

#	Article	IF	CITATIONS
381	Facile synthesis of Fe-doped g-C3N4 for enhanced visible-light photocatalytic activity. Inorganic Chemistry Communication, 2019, 107, 107451.	1.8	42
382	Green recovery of lithium from water by a smart imprinted adsorbent with photo-controlled and selective properties. Chemical Engineering Journal, 2019, 378, 122084.	6.6	34
383	Magnetic and Photocatalytic Curcumin Bound Carbon Nitride Nanohybrids for Enhanced Glioma Cell Death. ACS Biomaterials Science and Engineering, 2019, 5, 6590-6601.	2.6	18
384	Electrochemical CO ₂ Reduction to C ₁ Products on Single Nickel/Cobalt/Ironâ€Doped Graphitic Carbon Nitride: A DFT Study. ChemSusChem, 2019, 12, 5126-5132.	3.6	81
385	Highly Selective CO2 Capture and Its Direct Photochemical Conversion on Ordered 2D/1D Heterojunctions. Joule, 2019, 3, 2792-2805.	11.7	189
386	Magnetic Fe3C@C nanoparticles as a novel cocatalyst for boosting visible-light-driven photocatalytic performance of g-C3N4. International Journal of Hydrogen Energy, 2019, 44, 26970-26981.	3.8	29
387	Two-dimensional nanomaterials: fascinating materials in biomedical field. Science Bulletin, 2019, 64, 1707-1727.	4.3	171
388	Photocatalytic Hydrogen Production by Boron Modified TiO ₂ /Carbon Nitride Heterojunctions. ChemCatChem, 2019, 11, 6408-6416.	1.8	35
389	Advances in Spectroscopy: Molecules to Materials. Springer Proceedings in Physics, 2019, , .	0.1	4
390	Atomic Fe hetero-layered coordination between g-C ₃ N ₄ and graphene nanomeshes enhances the ORR electrocatalytic performance of zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 1451-1458.	5.2	70
391	Stabilities, and electronic and piezoelectric properties of two-dimensional tin dichalcogenide derived Janus monolayers. Journal of Materials Chemistry C, 2019, 7, 13203-13210.	2.7	72
392	Two-dimensional carbon nitride-based composites for photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 30935-30948.	3.8	25
393	Functionalized Truxene Scaffold: A Promising Advanced Organic Material for Digital Era. ChemistrySelect, 2019, 4, 12272-12288.	0.7	23
394	Exfoliation and Sensitization of 2D Carbon Nitride for Photoelectrochemical Biosensing under Red Light. Chemistry - A European Journal, 2019, 25, 15680-15686.	1.7	36
395	Carbonâ€Intercalated 0D/2D Hybrid of Hematite Quantum Dots/Graphitic Carbon Nitride Nanosheets as Superior Catalyst for Advanced Oxidation. Small, 2019, 15, e1902744.	5.2	79
396	Construction of CoP/B doped g-C3N4 nanodots/g-C3N4 nanosheets ternary catalysts for enhanced photocatalytic hydrogen production performance. Applied Surface Science, 2019, 496, 143738.	3.1	44
397	Powerful combination of g-C3N4 and LDHs for enhanced photocatalytic performance: A review of strategy, synthesis, and applications. Advances in Colloid and Interface Science, 2019, 272, 101999.	7.0	127
398	Purposefully designing novel hydroxylated and carbonylated melamine towards the synthesis of targeted porous oxygen-doped g-C ₃ N ₄ nanosheets for highly enhanced photocatalytic hydrogen production. Catalysis Science and Technology, 2019, 9, 5150-5159.	2.1	25

#	Article	IF	CITATIONS
399	C–H activation derived CPPs for photocatalytic hydrogen production excellently accelerated by a DMF cosolvent. Journal of Materials Chemistry A, 2019, 7, 24222-24230.	5.2	73
400	Structure Tuning of Polymeric Carbon Nitride for Solar Energy Conversion: From Nano to Molecular Scale. CheM, 2019, 5, 2775-2813.	5.8	78
401	Solar-driven conversion of arylboronic acids to phenols using metal-free heterogeneous photocatalysts. Journal of Catalysis, 2019, 378, 63-67.	3.1	15
402	Graphitic Carbon Nitride Materials for Photocatalytic Hydrogen Production via Water Splitting: A Short Review. Catalysts, 2019, 9, 805.	1.6	54
403	Two-dimensional TiO2-g-C3N4 with both Ti N and C O bridges with excellent conductivity for synergistic photoelectrocatalytic degradation of bisphenol A. Journal of Colloid and Interface Science, 2019, 557, 227-235.	5.0	51
404	Combining iodic acid and nitric acid to fabricate carbon nitride tubes for enhanced hydrogen evolution under visible light. Catalysis Science and Technology, 2019, 9, 266-270.	2.1	19
405	Hybrid VS ₂ cocatalyst and phosphorus dopant towards both surface and bulk modification of ZnCdS/CdS heterostructures. Catalysis Science and Technology, 2019, 9, 583-587.	2.1	27
406	VC ₂ and V _{1/2} Mn _{1/2} C ₂ nanosheets with robust mechanical and thermal properties as promising materials for Li-ion batteries. Physical Chemistry Chemical Physics, 2019, 21, 1606-1613.	1.3	8
407	Enhanced charge separation in g-C ₃ N ₄ –BiOI heterostructures for visible light driven photoelectrochemical water splitting. Nanoscale Advances, 2019, 1, 1460-1471.	2.2	115
408	A gas bubble exfoliation method to prepare g-C3N4 nanosheets with enhanced photocatalytic activities. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 372, 147-155.	2.0	21
409	Crafting Musselâ€Inspired Metal Nanoparticleâ€Decorated Ultrathin Graphitic Carbon Nitride for the Degradation of Chemical Pollutants and Production of Chemical Resources. Advanced Materials, 2019, 31, e1806314.	11.1	239
410	Mesoporous graphitic carbon nitride (g-C ₃ N ₄) nanosheets synthesized from carbonated beverage-reformed commercial melamine for enhanced photocatalytic hydrogen evolution. Materials Chemistry Frontiers, 2019, 3, 597-605.	3.2	44
411	Processing and Industrial Applications of Sustainable Nanocomposites Containing Nanofillers. , 2019, , 451-478.		1
412	Tunability and Scalability of Single-Atom Catalysts Based on Carbon Nitride. ACS Sustainable Chemistry and Engineering, 2019, 7, 5223-5230.	3.2	31
413	2D Black Phosphorus–Based Biomedical Applications. Advanced Functional Materials, 2019, 29, 1808306.	7.8	438
414	Comparison of TiO2 and g-C3N4 2D/2D nanocomposites from three synthesis protocols for visible-light induced hydrogen evolution. Catalysis Science and Technology, 2019, 9, 75-85.	2.1	43
415	Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy and Environmental Science, 2019, 12, 59-95.	15.6	373
416	g-C3N4 foam/Cu2O QDs with excellent CO2 adsorption and synergistic catalytic effect for photocatalytic CO2 reduction. Environment International, 2019, 130, 104898.	4.8	86

#	Article	IF	CITATIONS
417	Solvent Effect on the Photocatalytic Activity of g-C3N4/BiOBr and its Effect on Degradation of Acetochlor. Russian Journal of Physical Chemistry A, 2019, 93, 1182-1191.	0.1	4
418	Oxygenâ€Doped Ta ₃ N ₅ Nanoparticles for Enhanced Zâ€Scheme Carbon Dioxide Reduction with a Binuclear Ruthenium(II) Complex under Visible Light. ChemPhotoChem, 2019, 3, 1027-1033.	1.5	10
419	Enhanced photocatalytic performance of boron and phosphorous co-doped graphitic carbon nitride nanosheets for removal of organic pollutants. Separation and Purification Technology, 2019, 226, 128-137.	3.9	83
420	Porous Palladium Nanomeshes with Enhanced Electrochemical CO ₂ â€into‣yngas Conversion over a Wider Applied Potential. ChemSusChem, 2019, 12, 3304-3311.	3.6	12
421	Organic motif's functionalization via covalent linkage in carbon nitride: An exemplification in photocatalysis. Carbon, 2019, 152, 40-58.	5.4	54
422	Unlocking the door to highly efficient Ag-based nanoparticles catalysts for NaBH4-assisted nitrophenol reduction. Nano Research, 2019, 12, 2407-2436.	5.8	113
423	High yield synthesis of homogeneous boron doping C3N4 nanocrystals with enhanced photocatalytic property. Applied Surface Science, 2019, 489, 631-638.	3.1	30
424	Hemin-porous g-C3N4 hybrid nanosheets as an efficient peroxidase mimic for colorimetric and visual determination of glucose. Mikrochimica Acta, 2019, 186, 446.	2.5	15
425	Two-dimensional bimetallic phosphide ultrathin nanosheets as non-noble electrocatalysts for a highly efficient oxygen evolution reaction. Nanoscale, 2019, 11, 9654-9660.	2.8	53
426	Targeted Exfoliation and Reassembly of Polymeric Carbon Nitride for Efficient Photocatalysis. Advanced Functional Materials, 2019, 29, 1901024.	7.8	44
427	Facile oneâ€step synthesis of broken caseâ€like carbonâ€doped gâ€C ₃ N ₄ for photocatalytic degradation of benzene. Applied Organometallic Chemistry, 2019, 33, e4966.	1.7	6
428	Green synthesis of ultrathin edge-activated foam-like carbon nitride nanosheets for enhanced photocatalytic performance under visible light irradiation. Sustainable Energy and Fuels, 2019, 3, 1764-1775.	2.5	18
429	Boosting ORR/OER Activity of Graphdiyne by Simple Heteroatom Doping. Small Methods, 2019, 3, 1800550.	4.6	149
430	Ultrafast spectroscopic study of plasmon-induced hot electron transfer under NIR excitation in Au triangular nanoprism/g-C ₃ N ₄ for photocatalytic H ₂ production. Chemical Communications, 2019, 55, 6014-6017.	2.2	45
431	<i>In situ</i> synthesis of BiOCl nanosheets on three-dimensional hierarchical structures for efficient photocatalysis under visible light. Nanoscale, 2019, 11, 10203-10208.	2.8	32
432	Dimensional transformation and morphological control of graphitic carbon nitride from water-based supramolecular assembly for photocatalytic hydrogen evolution: from 3D to 2D and 1D nanostructures. Applied Catalysis B: Environmental, 2019, 254, 321-328.	10.8	134
433	Homogeneous, Heterogeneous, and Biological Catalysts for Electrochemical N ₂ Reduction toward NH ₃ under Ambient Conditions. ACS Catalysis, 2019, 9, 5245-5267.	5.5	145
434	Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: A review. Carbon, 2019, 149, 693-721.	5.4	618

#	Article	IF	CITATIONS
435	Enhancement of visible-light-driven photocatalytic activity of carbon plane/g-C3N4/TiO2 nanocomposite by improving heterojunction contact. Chemical Engineering Journal, 2019, 371, 706-718.	6.6	100
436	Copper Phosphide-Enhanced Lower Charge Trapping Occurrence in Graphitic-C ₃ N ₄ for Efficient Noble-Metal-Free Photocatalytic H ₂ Evolution. ACS Applied Materials & Interfaces, 2019, 11, 16527-16537.	4.0	83
437	Synthetic strategies of two-dimensional porous materials towards highly effective catalysts. FlatChem, 2019, 15, 100109.	2.8	21
438	Two-dimensional amorphous nanomaterials: synthesis and applications. 2D Materials, 2019, 6, 032002.	2.0	69
439	Intrinsic self-healing and biocompatibility of carbon nitride coatings via inhibiting or degrading ethylene for fruit preservation. Journal of Materials Science, 2019, 54, 9282-9290.	1.7	4
440	Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. Nano Research, 2019, 12, 2385-2389.	5.8	192
441	Novel NiPt alloy nanoparticle decorated 2D layered g-C ₃ N ₄ nanosheets: a highly efficient catalyst for hydrogen generation from hydrous hydrazine. Journal of Materials Chemistry A, 2019, 7, 8798-8804.	5.2	68
442	Reconstructing Dualâ€Induced {0 0 1} Facets Bismuth Oxychloride Nanosheets Heterostructures: An Effective Strategy to Promote Photocatalytic Oxygen Evolution. Solar Rrl, 2019, 3, 1900059.	3.1	44
443	Synergistic catalysis for light-driven proton reduction using a polyoxometalate-based Cu–Ni heterometallic–organic framework. Chemical Communications, 2019, 55, 3805-3808.	2.2	40
444	Effect of the intra- and inter-triazine N-vacancies on the photocatalytic hydrogen evolution of graphitic carbon nitride. Chemical Engineering Journal, 2019, 369, 263-271.	6.6	55
445	First-principles prediction of three new graphitic C3N4 allotropes with potentials for application in sun-light-driven water splitting. Physica B: Condensed Matter, 2019, 562, 131-134.	1.3	12
446	Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nature Communications, 2019, 10, 1611.	5.8	168
447	Porous oxygen vacancy-rich V ₂ O ₅ nanosheets as superior semiconducting supports of nonprecious metal nanoparticles for efficient on-demand H ₂ evolution from ammonia borane under visible light irradiation. Journal of Materials Chemistry A, 2019, 7, 10543-10551.	5.2	34
448	In-situ growth of Ag3PO4 on calcined Zn-Al layered double hydroxides for enhanced photocatalytic degradation of tetracycline under simulated solar light irradiation and toxicity assessment. Applied Catalysis B: Environmental, 2019, 252, 47-54.	10.8	106
449	MnB ₂ nanosheet and nanotube: stability, electronic structures, novel functionalization and application for Li-ion batteries. Nanoscale, 2019, 11, 7857-7865.	2.8	18
450	A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2019, 44, 7194-7204.	3.8	164
451	Efficient Fe2O3/C-g-C3N4 Z-scheme heterojunction photocatalyst prepared by facile one-step carbonizing process. Journal of Physics and Chemistry of Solids, 2019, 130, 93-99.	1.9	38
452	One-pot fabrication of Fe-doped carbon nitride nanoparticles as peroxidase mimetics for H2O2 and glucose detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 215, 218-224.	2.0	26

#	Article	IF	CITATIONS
453	A one-step deep eutectic solvent assisted synthesis of carbon nitride/metal oxide composites for photocatalytic nitrogen fixation. Journal of Materials Chemistry A, 2019, 7, 5719-5725.	5.2	105
454	Edge-Functionalized g-C3N4 Nanosheets as a Highly Efficient Metal-free Photocatalyst for Safe Drinking Water. CheM, 2019, 5, 664-680.	5.8	219
455	Strategy for improving the visible photocatalytic H2 evolution activity of 2D graphitic carbon nitride nanosheets through the modification with metal and metal oxide nanocomponents. Applied Catalysis B: Environmental, 2019, 248, 538-551.	10.8	64
456	Template-Free One-Step Synthesis of g-C ₃ N ₄ Nanosheets with Simultaneous Porous Network and S-Doping for Remarkable Visible-Light-Driven Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 5801-5807.	3.2	127
457	A general strategy <i>via</i> chemically covalent combination for constructing heterostructured catalysts with enhanced photocatalytic hydrogen evolution. Chemical Communications, 2019, 55, 4150-4153.	2.2	45
458	Developing a Novel Layered Boron Nitride–Carbon Nitride Composite with High Efficiency and Selectivity To Remove Protonated Dyes from Water. ACS Sustainable Chemistry and Engineering, 2019, 7, 5727-5741.	3.2	45
459	Fully Conjugated Twoâ€Dimensional sp ² arbon Covalent Organic Frameworks as Artificial Photosystemâ€l with High Efficiency. Angewandte Chemie - International Edition, 2019, 58, 5376-5381.	7.2	230
460	Fully Conjugated Twoâ€Dimensional sp ² arbon Covalent Organic Frameworks as Artificial Photosystemâ€I with High Efficiency. Angewandte Chemie, 2019, 131, 5430-5435.	1.6	59
461	Bottom-up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution. Nano Research, 2019, 12, 3109-3115.	5.8	44
462	Two-dimensional ZrB ₂ C ₂ with multiple tunable Dirac states. Physical Chemistry Chemical Physics, 2019, 21, 24212-24217.	1.3	10
463	Salt-template-assisted construction of honeycomb-like structured g-C3N4 with tunable band structure for enhanced photocatalytic H2 production. Applied Catalysis B: Environmental, 2019, 240, 64-71.	10.8	143
464	Megamerger in photocatalytic field: 2D g-C3N4 nanosheets serve as support of OD nanomaterials for improving photocatalytic performance. Applied Catalysis B: Environmental, 2019, 240, 153-173.	10.8	310
465	Novel conjugated organic polymers as candidates for visible-light-driven photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2019, 241, 461-470.	10.8	77
466	Atomic-level insight into the mechanism of 0D/2D black phosphorus quantum dot/graphitic carbon nitride (BPQD/GCN) metal-free heterojunction for photocatalysis. Applied Surface Science, 2019, 463, 1148-1153.	3.1	64
467	Protonated g-C3N4/Ti3+ self-doped TiO2 nanocomposite films: Room-temperature preparation, hydrophilicity, and application for photocatalytic NO removal. Applied Catalysis B: Environmental, 2019, 240, 122-131.	10.8	122
468	MOFs-derived ultrathin holey Co3O4 nanosheets for enhanced visible light CO2 reduction. Applied Catalysis B: Environmental, 2019, 244, 996-1003.	10.8	207
469	Single-layer planar penta-X2N4 (X = Ni, Pd and Pt) as direct-bandgap semiconductors from first principle calculations. Applied Surface Science, 2019, 469, 456-462.	3.1	48
470	Recent advances in emerging single atom confined two-dimensional materials for water splitting applications. Materials Today Energy, 2019, 11, 1-23.	2.5	189

#	Article	IF	CITATIONS
471	Two-dimensional-related catalytic materials for solar-driven conversion of CO _x into valuable chemical feedstocks. Chemical Society Reviews, 2019, 48, 1972-2010.	18.7	350
472	Sub-5 nm Ultra-Fine FeP Nanodots as Efficient Co-Catalysts Modified Porous g-C ₃ N ₄ for Precious-Metal-Free Photocatalytic Hydrogen Evolution under Visible Light. ACS Applied Materials & Interfaces, 2019, 11, 5651-5660.	4.0	208
473	Synthesis of g-C3N4/N-doped CeO2 composite for photocatalytic degradation of an herbicide. Journal of Materials Research and Technology, 2019, 8, 1628-1635.	2.6	77
474	Crystalline Carbon Nitride Semiconductors for Photocatalytic Water Splitting. Angewandte Chemie, 2019, 131, 6225-6236.	1.6	378
475	Crystalline Carbon Nitride Semiconductors for Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 6164-6175.	7.2	481
476	Facile and Scalable Fabrication of Porous gâ€C 3 N 4 Nanosheets with Nitrogen Defects and Oxygenâ€Doping for Synergistically Promoted Visible Light Photocatalytic H 2 Evolution. Energy Technology, 2019, 7, 1800886.	1.8	16
477	Construction of Pt/graphitic C3N4/MoS2 heterostructures on photo-enhanced electrocatalytic oxidation of small organic molecules. Applied Catalysis B: Environmental, 2019, 243, 283-293.	10.8	117
478	In situ decoration of Au nanoparticles on carbon nitride using a single-source precursor and its application for the detection of tetracycline. Journal of Colloid and Interface Science, 2019, 536, 646-654.	5.0	39
479	Ag nanoparticles decorated WO3/g-C3N4 2D/2D heterostructure with enhanced photocatalytic activity for organic pollutants degradation. Applied Surface Science, 2019, 467-468, 1000-1010.	3.1	41
480	All-solid-state Z-scheme Co9S8/graphitic carbon nitride photocatalysts for simultaneous reduction of Cr(VI) and oxidation of 2,4-dichlorophenoxyacetic acid under simulated solar irradiation. Chemical Engineering Journal, 2019, 360, 1188-1198.	6.6	63
481	Tuning the Porosity and Photocatalytic Performance of Triazineâ€Based Graphdiyne Polymers through Polymorphism. ChemSusChem, 2019, 12, 194-199.	3.6	39
482	Colorimetric determination of glucose in solution and via the use of a paper strip by exploiting the peroxidase and oxidase mimicking activity of bimetallic Cu-Pd nanoparticles deposited on reduced graphene oxide, graphitic carbon nitride, or MoS2 nanosheets. Mikrochimica Acta, 2019, 186, 13.	2.5	37
483	Computational Screening of Efficient Singleâ€Atom Catalysts Based on Graphitic Carbon Nitride (g ₃ N ₄) for Nitrogen Electroreduction. Small Methods, 2019, 3, 1800368.	4.6	347
484	Simultaneously engineering K-doping and exfoliation into graphitic carbon nitride (g-C3N4) for enhanced photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 778-787.	3.8	71
485	Dramatically enhanced photoelectrochemical properties and transformed p/n type of g-C3N4 caused by K and I co-doping. Electrochimica Acta, 2019, 297, 488-496.	2.6	34
486	Enhanced photocatalytic H2 evolution and phenol degradation over sulfur doped meso/macroporous g-C3N4 spheres with continuous channels. International Journal of Hydrogen Energy, 2019, 44, 707-719.	3.8	38
487	Black phosphorus supported Ni2P co-catalyst on graphitic carbon nitride enabling simultaneous boosting charge separation and surface reaction. Applied Catalysis B: Environmental, 2019, 242, 422-430.	10.8	120
488	Cyano group modified carbon nitride with enhanced photoactivity for selective oxidation of benzylamine. Applied Catalysis B: Environmental, 2019, 242, 67-75.	10.8	87

	CITATION R	EPORT	
#	ARTICLE	IF	CITATIONS
489	Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review. Catalysis Today, 2019, 335, 65-77.	2.2	351
490	Recent progress on graphene-analogous 2D nanomaterials: Properties, modeling and applications. Progress in Materials Science, 2019, 100, 99-169.	16.0	235
491	Improved visible-light photoactivity of Pt/g-C3N4 nanosheets for solar fuel production via pretreated boric acid modification. Research on Chemical Intermediates, 2019, 45, 249-259.	1.3	16
492	Ultrathin 2D Rareâ€Earth Nanomaterials: Compositions, Syntheses, and Applications. Advanced Materials, 2020, 32, e1806461.	11.1	92
493	Confined Synthesis of 2D Nanostructured Materials toward Electrocatalysis. Advanced Energy Materials, 2020, 10, 1900486.	10.2	123
494	Porous graphitic carbon nitride nanoplates obtained by a combined exfoliation strategy for enhanced visible light photocatalytic activity. Applied Surface Science, 2020, 499, 143901.	3.1	28
495	The Photocatalytic Oxidation of As(III) Enhanced by Surface Alkalinized g-C3N4. Transactions of Tianjin University, 2020, 26, 40-48.	3.3	10
496	Honeycomb-like porous carbon with N and S dual-doping as metal-free catalyst for the oxygen reduction reaction. Carbon, 2020, 156, 514-522.	5.4	80
497	Adsorption enhanced photocatalytic degradation sulfadiazine antibiotic using porous carbon nitride nanosheets with carbon vacancies. Chemical Engineering Journal, 2020, 382, 123017.	6.6	83
498	Emerging surface strategies on graphitic carbon nitride for solar driven water splitting. Chemical Engineering Journal, 2020, 382, 122812.	6.6	155
499	Poly(dibenzothiophene-S,S-dioxide) with visible light-induced hydrogen evolution rate up to 44.2â€ ⁻ mmol hâ^'1 gâ ''1 promoted by K2HPO4. Applied Catalysis B: Environmental, 2020, 261, 118230.	10.8	40
500	Heterojunctions of halogen-doped carbon nitride nanosheets and BiOI for sunlight-driven water-splitting. Nanotechnology, 2020, 31, 084001.	1.3	23
501	Molecular engineering of polymeric carbon nitride based Donor-Acceptor conjugated copolymers for enhanced photocatalytic full water splitting. Journal of Colloid and Interface Science, 2020, 560, 743-754.	5.0	70
502	Construction of MIL-125(Ti)/ZnIn2S4 composites with accelerated interfacial charge transfer for boosting visible light photoreactivity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124078.	2.3	34
503	A first-principles investigation of double transition metal atoms embedded C2N monolayer as a promising SF6 gas adsorbent and scavenger. Materials Chemistry and Physics, 2020, 240, 122184.	2.0	17
504	Modifying Crystallinity, Morphology, and Photophysical Properties of Carbon Nitride by Using Crystals as Reactants. Israel Journal of Chemistry, 2020, 60, 544-549.	1.0	4
505	Carbon quantum dots modified tubular g-C3N4 with enhanced photocatalytic activity for carbamazepine elimination: Mechanisms, degradation pathway and DFT calculation. Journal of Hazardous Materials, 2020, 381, 120957.	6.5	134
506	Emerging Photocatalysts for Hydrogen Evolution. Trends in Chemistry, 2020, 2, 57-70.	4.4	131

#	Article	IF	CITATIONS
507	Highly durable isotypic heterojunction generated by covalent cross-linking with organic linkers for improving visible-light-driven photocatalytic performance. Applied Catalysis B: Environmental, 2020, 260, 118182.	10.8	20
508	Black Phosphorusâ€Based Semiconductor Heterojunctions for Photocatalytic Water Splitting. Chemistry - A European Journal, 2020, 26, 4449-4460.	1.7	33
509	A Firstâ€Principles Study of C ₃ N Nanostructures: Control and Engineering of the Electronic and Magnetic Properties of Nanosheets, Tubes and Ribbons. ChemPhysChem, 2020, 21, 164-174.	1.0	34
510	Graphitic Carbon Nitride Nanorods Modified TiO2 Nanotube Arrays with Enhanced Photocatalytic Activity for Phenol Degradation. Environmental Engineering Science, 2020, 37, 13-21.	0.8	2
511	Rational design of cocatalyst system for improving the photocatalytic hydrogen evolution activity of graphite carbon nitride. Applied Catalysis B: Environmental, 2020, 268, 118402.	10.8	82
512	2D Materials in Light: Excited tate Dynamics and Applications. Chemical Record, 2020, 20, 413-428.	2.9	10
513	Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews, 2020, 120, 851-918.	23.0	1,767
514	Adsorption behaviors of HCN, SO2, H2S and NO molecules on graphitic carbon nitride with Mo atom decoration. Applied Surface Science, 2020, 501, 144199.	3.1	38
515	Direct Observation of Dynamic Bond Evolution in Singleâ€Atom Pt/C ₃ N ₄ Catalysts. Angewandte Chemie - International Edition, 2020, 59, 6224-6229.	7.2	256
516	Recent Advances in Two-dimensional Materials for Electrochemical Energy Storage and Conversion. Chemical Research in Chinese Universities, 2020, 36, 10-23.	1.3	41
517	Conjugated polymers for visible-light-driven photocatalysis. Energy and Environmental Science, 2020, 13, 24-52.	15.6	452
518	Review—Recent Advances in Nanostructured Graphitic Carbon Nitride as a Sensing Material for Heavy Metal Ions. Journal of the Electrochemical Society, 2020, 167, 037519.	1.3	57
519	Direct Observation of Dynamic Bond Evolution in Singleâ€Atom Pt/C ₃ N ₄ Catalysts. Angewandte Chemie, 2020, 132, 6283-6288.	1.6	34
520	Facile one-pot synthesis of mesoporous g-C ₃ N ₄ nanosheets with simultaneous iodine doping and N-vacancies for efficient visible-light-driven H ₂ evolution performance. Catalysis Science and Technology, 2020, 10, 549-559.	2.1	39
521	Band-gap engineering of layered covalent organic frameworks via controllable exfoliation for enhanced visible-light-driven hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 2689-2698.	3.8	32
522	Graphitic Carbon Nitrideâ€Based Lowâ€Dimensional Heterostructures for Photocatalytic Applications. Solar Rrl, 2020, 4, 1900435.	3.1	65
523	Photocatalysis: an overview of recent developments and technological advancements. Science China Chemistry, 2020, 63, 149-181.	4.2	107
524	Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications. Energy and Environmental Science, 2020, 13, 1326-1346.	15.6	115

#	Article	IF	CITATIONS
525	1,3,5-Triazine and dibenzo[<i>b</i> , <i>d</i>]thiophene sulfone based conjugated porous polymers for highly efficient photocatalytic hydrogen evolution. Chemical Communications, 2020, 56, 1601-1604.	2.2	43
526	In-situ intercalation of MoO3-x in g-C3N4 for the enhancement of photocatalytic and antibacterial activities. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 390, 112297.	2.0	36
527	Carbon Dots–Implanted Graphitic Carbon Nitride Nanosheets for Photocatalysis: Simultaneously Manipulating Carrier Transport in Inter―and Intralayers. Solar Rrl, 2020, 4, 1900517.	3.1	35
528	Ultrathin Co-Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction. Chemical Engineering Journal, 2020, 391, 123519.	6.6	142
529	Interfaces of graphitic carbon nitride-based composite photocatalysts. Inorganic Chemistry Frontiers, 2020, 7, 4754-4793.	3.0	41
530	Conductive polymer supported and confined iron phosphide nanocrystals for boosting the photocatalytic hydrogen production of graphitic carbon nitride. Journal of Materials Chemistry C, 2020, 8, 14540-14547.	2.7	15
531	Multidimensional (0D-3D) functional nanocarbon: Promising material to strengthen the photocatalytic activity of graphitic carbon nitride. Green Energy and Environment, 2021, 6, 823-845.	4.7	40
532	Facile synthesis of porous C-doped C ₃ N ₄ : fast charge separation and enhanced photocatalytic hydrogen evolution. New Journal of Chemistry, 2020, 44, 17891-17898.	1.4	27
533	A defective g-C ₃ N ₄ /RGO/TiO ₂ composite from hydrogen treatment for enhanced visible-light photocatalytic H ₂ production. Nanoscale, 2020, 12, 22030-22035.	2.8	31
534	Two-dimensional Noble Metal Nanomaterials for Electrocatalysis. Chemical Research in Chinese Universities, 2020, 36, 597-610.	1.3	11
535	Designing a New Efficient Photocatalyst Based on Functionalization of Zn-Infinite Coordination Polymer with Ru(acac) ₃ Complex for Dye Degradation in Aqueous Solutions: Charge Separation Effect. Langmuir, 2020, 36, 14224-14233.	1.6	16
536	Carbon nitride nanotube-based materials for energy and environmental applications: a review of recent progresses. Journal of Materials Chemistry A, 2020, 8, 25626-25648.	5.2	66
537	Structures and optoelectronic properties of two-dimensional MC6 (M = Ti and Hf) predicted by computational approaches. Materials Today Communications, 2020, 25, 101606.	0.9	0
538	Hierarchical porous structure carbon nanosheets derived from sodium lignosulfonate for high-performance supercapacitors. New Journal of Chemistry, 2020, 44, 21271-21278.	1.4	9
539	Light-driven, heterogeneous organocatalysts for C–C bond formation toward valuable perfluoroalkylated intermediates. Science Advances, 2020, 6, .	4.7	75
540	Superlubricity achieved with two-dimensional nano-additives to liquid lubricants. Friction, 2020, 8, 1007-1024.	3.4	67
541	Molecular engineering of CxNy: Topologies, electronic structures and multidisciplinary applications. Chinese Chemical Letters, 2020, 31, 3047-3054.	4.8	54
542	Microplasma electrochemistry (MIPEC) methods for improving the photocatalytic performance of g-C3N4 in degradation of RhB. Applied Surface Science, 2020, 531, 147307.	3.1	20

#	Article	IF	CITATIONS
543	Antibacterial nanomaterials for environmental and consumer product applications. NanoImpact, 2020, 20, 100268.	2.4	37
544	Novel ternary g-C3N4 nanosheet/Ag2MoO4/AgI photocatalysts: Impressive photocatalysts for removal of various contaminants. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 403, 112871.	2.0	22
545	Two-Dimensional Platinum Diselenide: Synthesis, Emerging Applications, and Future Challenges. Nano-Micro Letters, 2020, 12, 174.	14.4	50
546	Functionalized Fe/Ni@g-C ₃ N ₄ nanostructures for enhanced trichloroethylene dechlorination and successive oxygen reduction reaction activity. Environmental Science: Nano, 2020, 7, 3469-3481.	2.2	9
547	Palladium nanoparticles supported on nanosheet-like graphitic carbon nitride for catalytic transfer hydrogenation reaction. Catalysis Science and Technology, 2020, 10, 7883-7893.	2.1	12
549	Graphitic carbon nitride nanotubes: a new material for emerging applications. RSC Advances, 2020, 10, 34059-34087.	1.7	35
550	Highly Efficient Photo-/Electrocatalytic Reduction of Nitrogen into Ammonia by Dual-Metal Sites. ACS Central Science, 2020, 6, 1762-1771.	5.3	135
551	Photocatalytic Hydrogen Evolution Based on Nitrogen-Containing Donor–Acceptor (D–A) Organic Conjugated Small Molecules. ACS Sustainable Chemistry and Engineering, 2020, 8, 14253-14261.	3.2	18
553	Experimental Investigation with DFT Analysis Towards a Promising Recyclable Photocatalyst from g ₃ N ₄ /ZnS Nanocomposite. ChemistrySelect, 2020, 5, 9736-9744.	0.7	6
554	g-C3N4 Modified by meso-Tetrahydroxyphenylchlorin for Photocatalytic Hydrogen Evolution Under Visible/Near-Infrared Light. Frontiers in Chemistry, 2020, 8, 605343.	1.8	11
555	Construction of the 1D Covalent Organic Framework/2D g-C ₃ N ₄ Heterojunction with High Apparent Quantum Efficiency at 500 nm. ACS Applied Materials & Interfaces, 2020, 12, 51555-51562.	4.0	50
556	Excitonic effects on photophysical processes of polymeric carbon nitride. Journal of Applied Physics, 2020, 127, .	1.1	14
557	One-pot fabrication of mesoporous g-C3N4/NiS co-catalyst counter electrodes for quantum-dot-sensitized solar cells. Journal of Materials Science, 2020, 55, 10712-10724.	1.7	34
558	Trifunctional Electrocatalysts with High Efficiency for the Oxygen Reduction Reaction, Oxygen Evolution Reaction, and Na–O ₂ Battery in Heteroatom-Doped Janus Monolayer MoSSe. ACS Applied Materials & Interfaces, 2020, 12, 24066-24073.	4.0	37
559	Single-sites Rh-phosphide modified carbon nitride photocatalyst for boosting hydrogen evolution under visible light. Applied Catalysis B: Environmental, 2020, 274, 119117.	10.8	51
560	Tuning of the Oxygen Species Linker on the Surface of Polymeric Carbon Nitride to Promote the Photocatalytic Hydrogen Evolution Performance. ChemSusChem, 2020, 13, 3605-3613.	3.6	9
561	Ultrathin 2D nanosheet based 3D hierarchical hollow polyhedral CoM/C (MÂ=ÂNi, Cu, Mn) phosphide nanocages as superior electrocatalysts toward oxygen evolution reaction. Chemical Engineering Journal, 2020, 398, 125467.	6.6	27
562	The effect of single atom substitution (O, S or Se) on photocatalytic hydrogen evolution for triazine-based conjugated porous polymers. Journal of Materials Chemistry C, 2020, 8, 8887-8895.	2.7	25

#	Article	IF	CITATIONS
563	Synergistic oxygen substitution and heterostructure construction in polymeric semiconductors for efficient water splitting. Nanoscale, 2020, 12, 13484-13490.	2.8	28
564	Polymeric carbon nitrides and related metal-free materials for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 11075-11116.	5.2	142
565	Visible-Light-Induced Photocatalytic Activity of Stacked MXene Sheets of Y ₂ CF ₂ . Journal of Physical Chemistry C, 2020, 124, 14640-14645.	1.5	22
566	Photocatalytic H2 evolution and CO2 reduction over phosphorus-doped g-C3N4 nanostructures: Electronic, Optical, and Surface properties. Renewable and Sustainable Energy Reviews, 2020, 130, 109957.	8.2	59
567	g-C3N4 nanosheets with tunable affinity and sieving effect endowing polymeric membranes with enhanced CO2 capture property. Separation and Purification Technology, 2020, 250, 117200.	3.9	41
568	Multifunctional Lateral Transitionâ€Metal Disulfides Heterojunctions. Advanced Functional Materials, 2020, 30, 2002939.	7.8	86
569	Adsorption behavior of CO, CO2, H2, H2O, NO, and O2 on pristine and defective 2D monolayer ferromagnetic Fe3GeTe2. Applied Surface Science, 2020, 527, 146894.	3.1	20
570	Interconnected Na2Ti3O7 nanotube/g-C3N4/graphene network as high performance anode materials for sodium storage. International Journal of Hydrogen Energy, 2020, 45, 19611-19619.	3.8	16
571	Pressure tuned photoluminescence and band gap in two-dimensional layered g-C ₃ N ₄ : the effect of interlayer interactions. Nanoscale, 2020, 12, 12300-12307.	2.8	25
572	Cyano group modified g-C3N4: Molten salt method achievement and promoted photocatalytic nitrogen fixation activity. Applied Surface Science, 2020, 515, 146009.	3.1	63
573	Supramolecular preorganization effect to access single cobalt sites for enhanced photocatalytic hydrogen evolution and nitrogen fixation. Chemical Engineering Journal, 2020, 394, 124822.	6.6	27
574	Synthesis of graphitic carbon nitride—Nanostructured photocatalyst. , 2020, , 279-304.		1
575	Recent Advances in Self-Supported Layered Double Hydroxides for Oxygen Evolution Reaction. Research, 2020, 2020, 3976278.	2.8	57
576	Anchoring Bi4O5I2 and AgI nanoparticles over g-C3N4 nanosheets: Impressive visible-light-induced photocatalysts in elimination of hazardous contaminates by a cascade mechanism. Advanced Powder Technology, 2020, 31, 2618-2628.	2.0	36
577	Tailoring aromatic ring-terminated edges of g-C ₃ N ₄ nanosheets for efficient photocatalytic hydrogen evolution with simultaneous antibiotic removal. Catalysis Science and Technology, 2020, 10, 5470-5479.	2.1	16
578	Electrophoretic deposition of antimonene for photoelectrochemical applications. Applied Materials Today, 2020, 20, 100714.	2.3	11
579	Harnessing biological applications of quantum materials: opportunities and precautions. Journal of Materials Chemistry C, 2020, 8, 10498-10525.	2.7	4
580	Porous Aromatic Frameworks (PAFs). Chemical Reviews, 2020, 120, 8934-8986.	23.0	389

#	Article	IF	CITATIONS
581	Evaluating the exfoliation of two-dimensional materials with a Green's function surface model. Physical Review B, 2020, 101, .	1.1	32
582	Powerful combination of 2D g-C3N4 and 2D nanomaterials for photocatalysis: Recent advances. Chemical Engineering Journal, 2020, 390, 124475.	6.6	205
583	Multifunctional Edge-Activated Carbon Nitride Nanosheet-Wrapped Polydimethylsiloxane Sponge Skeleton for Selective Oil Absorption and Photocatalysis. ACS Omega, 2020, 5, 4181-4190.	1.6	30
584	Pegylated carbon nitride nanosheets for enhanced reactive oxygen species generation and photodynamic therapy under hypoxic conditions. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 25, 102167.	1.7	10
585	Unique nitrogen-deficient carbon nitride homojunction prepared by a facile inserting-removing strategy as an efficient photocatalyst for visible light-driven hydrogen evolution. Applied Catalysis B: Environmental, 2020, 269, 118778.	10.8	56
586	Heterogeneous photocatalysis by organic materials: from fundamental to applications. , 2020, , 457-473.		6
587	Porous graphitic carbon nitride for solar photocatalytic applications. Nanoscale Horizons, 2020, 5, 765-786.	4.1	152
588	Post-annealed graphite carbon nitride nanoplates obtained by sugar-assisted exfoliation with improved visible-light photocatalytic performance. Journal of Colloid and Interface Science, 2020, 567, 369-378.	5.0	14
589	Peculiar piezoelectricity of atomically thin planar structures. Nanoscale, 2020, 12, 2875-2901.	2.8	44
590	Sugar-assisted mechanochemical exfoliation of graphitic carbon nitride for enhanced visible-light photocatalytic performance. International Journal of Hydrogen Energy, 2020, 45, 8444-8455.	3.8	14
591	Iron-Cluster-Directed Synthesis of 2D/2D Fe–N–C/MXene Superlattice-like Heterostructure with Enhanced Oxygen Reduction Electrocatalysis. ACS Nano, 2020, 14, 2436-2444.	7.3	130
592	Ionic Liquid-Assisted Exfoliation of Two-Dimensional Metal–Organic Frameworks for Luminescent Sensing. ACS Sustainable Chemistry and Engineering, 2020, 8, 2167-2175.	3.2	27
593	Be3BN3 monolayer with ultrawide band gap and promising stability for deep ultraviolet applications. Computational Materials Science, 2020, 177, 109552.	1.4	1
594	Preparation of heterostructure g-C3N4/ZnO nanorods for high photocatalytic activity on different pollutants (MB, RhB, Cr(VI) and eosin). Ceramics International, 2020, 46, 12192-12199.	2.3	121
595	Boosting visible-light-driven hydrogen evolution from formic acid over AgPd/2D g-C3N4 nanosheets Mott-Schottky photocatalyst. Chemical Engineering Journal, 2020, 396, 125229.	6.6	141
596	Ionic liquid induced mechanochemical synthesis of BiOBr ultrathin nanosheets at ambient temperature with superior visible-light-driven photocatalysis. Journal of Colloid and Interface Science, 2020, 574, 131-139.	5.0	32
597	Facile assembly of a graphitic carbon nitride film at an air/water interface for photoelectrochemical NADH regeneration. Inorganic Chemistry Frontiers, 2020, 7, 2434-2442.	3.0	23
598	Partially hydroxylated ultrathin iridium nanosheets as efficient electrocatalysts for water splitting. National Science Review, 2020, 7, 1340-1348.	4.6	56

#	Article	IF	CITATIONS
600	Research Progress in Covalent Organic Frameworks for Photoluminescent Materials. Chemistry - A European Journal, 2020, 26, 16568-16581.	1.7	31
601	Efficient Photocatalytic Hydrogen Evolution and CO ₂ Reduction: Enhanced Light Absorption, Charge Separation, and Hydrophilicity by Tailoring Terminal and Linker Units in g-C ₃ N ₄ . ACS Applied Materials & Interfaces, 2020, 12, 19607-19615.	4.0	40
602	An overview on g-C3N4 as a robust photocatalyst towards the sustainable generation of H2 energy. Materials Today: Proceedings, 2021, 35, 175-178.	0.9	11
603	Diyne-linked and fully ï€-conjugated polymetalloporphyrin nanosheets for outstanding heterogeneous catalysis. Science Bulletin, 2021, 66, 354-361.	4.3	7
604	DFT-Guided Design and Fabrication of Carbon-Nitride-Based Materials for Energy Storage Devices: A Review. Nano-Micro Letters, 2021, 13, 13.	14.4	91
606	Liquid superlubricity with 2D material additives. , 2021, , 167-187.		1
607	Defective ultra-thin two-dimensional g-C3N4 photocatalyst for enhanced photocatalytic H2 evolution activity. Journal of Colloid and Interface Science, 2021, 581, 159-166.	5.0	125
608	An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. Journal of Molecular Structure, 2021, 1224, 129195.	1.8	283
609	Large-scale production of ultrathin carbon nitride-based photocatalysts for high-yield hydrogen evolution. Applied Catalysis B: Environmental, 2021, 281, 119475.	10.8	84
610	Improving g-C3N4:WO3 Z-scheme photocatalytic performance under visible light by multivariate optimization of g-C3N4 synthesis. Applied Surface Science, 2021, 537, 147904.	3.1	37
611	One-step synthesis of nitrogen-defective graphitic carbon nitride for improving photocatalytic hydrogen evolution. Journal of Hazardous Materials, 2021, 410, 124594.	6.5	27
612	A π-π stacking perylene imide/Bi2WO6 hybrid with dual transfer approach for enhanced photocatalytic degradation. Journal of Colloid and Interface Science, 2021, 582, 1021-1032.	5.0	18
613	Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review. Environment International, 2021, 146, 106273.	4.8	117
614	A simple approach for controlling the morphology of g-C3N4 nanosheets with enhanced photocatalytic properties. Diamond and Related Materials, 2021, 111, 108214.	1.8	37
615	Transforming g-C3N4 from amphoteric to n-type semiconductor: The important role of p/n type on photoelectrochemical cathodic protection. Journal of Alloys and Compounds, 2021, 851, 156820.	2.8	36
616	Promoting Photocatalytic Hydrogen Evolution Activity of Graphitic Carbon Nitride with Holeâ€Transfer Agents. ChemSusChem, 2021, 14, 306-312.	3.6	17
617	Noble-metal-free ultrathin MXene coupled with In2S3 nanoflakes for ultrafast photocatalytic reduction of hexavalent chromium. Applied Catalysis B: Environmental, 2021, 284, 119754.	10.8	76
618	Improved photocatalyst: Elimination of triazine herbicides by novel phosphorus and boron co-doping graphite carbon nitride. Science of the Total Environment, 2021, 757, 143810.	3.9	17

#	Article	IF	CITATIONS
619	Intrinsic defect engineering in graphitic carbon nitride for photocatalytic environmental purification: A review to fill existing knowledge gaps. Chemical Engineering Journal, 2021, 421, 127729.	6.6	67
620	Designing highly potential photocatalytic comprising silver deposited ZnO NPs with sulfurized graphitic carbon nitride (Ag/ZnO/S-g-C3N4) ternary composite. Journal of Environmental Chemical Engineering, 2021, 9, 104919.	3.3	55
621	High surface area Nanoflakes of P-gC3N4 photocatalyst loaded with Ag nanoparticle with intraplanar and interplanar charge separation for environmental remediation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 408, 113098.	2.0	4
622	Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy, 2021, 81, 105671.	8.2	517
623	Critical role of the heterojunction interface of silver decorated ZnO nanocomposite with sulfurized graphitic carbon nitride heterostructure materials for photocatalytic applications. Journal of Alloys and Compounds, 2021, 858, 158338.	2.8	59
624	In-situ evolution of microstructural transformation from crystalline to amorphous in PtPb/Pt nanoplates induced by Kr ion irradiation. Applied Surface Science, 2021, 538, 148028.	3.1	3
625	Utilizing spent Li-ion batteries to regulate the π-conjugated structure of g-C ₃ N ₄ : a win–win approach for waste recycling and highly active photocatalyst construction. Journal of Materials Chemistry A, 2021, 9, 472-481.	5.2	21
626	Recent Advances in Graphitic Carbon Nitride Supported Singleâ€Atom Catalysts for Energy Conversion. ChemCatChem, 2021, 13, 1250-1270.	1.8	46
627	Metal-organic layers as a platform for developing single-atom catalysts for photochemical CO2 reduction. Nano Energy, 2021, 80, 105542.	8.2	77
628	Facile one-step synthesis of porous graphene-like g-C3N4 rich in nitrogen vacancies for enhanced H2 production from photocatalytic aqueous-phase reforming of methanol. International Journal of Hydrogen Energy, 2021, 46, 197-208.	3.8	25
629	Synergetic Subnano Ni―and Mnâ€Oxo Clusters Anchored by Chitosan Oligomers on 2D g 3 N 4 Boost Photocatalytic CO 2 Reduction. Solar Rrl, 2021, 5, 2000472.	3.1	20
630	A review of the current status of graphitic carbon nitride. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 189-217.	6.8	160
631	CHAPTER 6. Atomic and Molecular Functionalization of Graphitic Carbon Nitride for Solar Cell Applications. RSC Nanoscience and Nanotechnology, 2021, , 221-261.	0.2	2
632	Graphitic Carbon Nitride-based Chemiluminescent and Electrochemiluminescent Sensors. RSC Nanoscience and Nanotechnology, 2021, , 38-79.	0.2	0
633	Structural, Topological, and Superconducting Properties of Twoâ€Dimensional Tellurium Allotropes from Ab Initio Predictions. Advanced Theory and Simulations, 2021, 4, 2000265.	1.3	4
634	Utilizing E-Waste for Construction of Magnetic and Core–Shell Z-Scheme Photocatalysts: An Effective Approach to E-Waste Recycling. Environmental Science & Technology, 2021, 55, 1279-1289.	4.6	22
635	Combination of Carbon Nitride and Semiconductors for the Enhancement of the Photocatalytic Degradation of Organic Pollutants and Hydrogen Production. RSC Nanoscience and Nanotechnology, 2021, , 318-370.	0.2	0
636	Pyrene-containing conjugated organic microporous polymers for photocatalytic hydrogen evolution from water. Catalysis Science and Technology, 2021, 11, 2229-2241.	2.1	87

#	Article	IF	CITATIONS
637	Novel graphitic carbon nitride g-C ₉ N ₁₀ as a promising platform to design efficient photocatalysts for dinitrogen reduction to ammonia: the first-principles investigation. Journal of Materials Chemistry A, 2021, 9, 20615-20625.	5.2	21
638	Ï€-deficient pyridine ring-incorporated carbon nitride polymers for photocatalytic H2 evolution and CO2 fixation. Research on Chemical Intermediates, 2021, 47, 15-27.	1.3	31
639	Effective enhancement of capacitive performance by the facile exfoliation of bulk metal–organic frameworks into 2D-functionalized nanosheets. Nanoscale, 2021, 13, 13273-13284.	2.8	10
640	Application of polyoxometalates in photocatalytic degradation of organic pollutants. Nanoscale Advances, 2021, 3, 4646-4658.	2.2	67
641	Two-dimensional Ti ₃ C ₂ MXene-based nanostructures for emerging optoelectronic applications. Materials Horizons, 2021, 8, 2929-2963.	6.4	37
642	Single-layer carbon nitride: synthesis, structure, photophysical/photochemical properties, and applications. Physical Chemistry Chemical Physics, 2021, 23, 20745-20764.	1.3	5
643	Fine tuning of phosphorus active sites on g-C ₃ N ₄ nanosheets for enhanced photocatalytic decontamination. Journal of Materials Chemistry A, 2021, 9, 10933-10944.	5.2	26
644	Tailored amorphization of graphitic carbon nitride triggers superior photocatalytic C–C coupling towards the synthesis of perfluoroalkyl derivatives. Materials Chemistry Frontiers, 2021, 5, 7267-7275.	3.2	21
645	Engineering 2D Photocatalysts toward Carbon Dioxide Reduction. Advanced Energy Materials, 2021, 11, 2003159.	10.2	130
646	Recent advances in 2D MXenes: preparation, intercalation and applications in flexible devices. Journal of Materials Chemistry A, 2021, 9, 14147-14171.	5.2	90
648	3D macropore carbon-vacancy g-C3N4 constructed using polymethylmethacrylate spheres for enhanced photocatalytic H2 evolution and CO2 reduction. Journal of Energy Chemistry, 2021, 53, 139-146.	7.1	99
649	Graphitic Carbon Nitride as a Sustainable Catalyst for Selective Ethanol Oxidation. ACS Sustainable Chemistry and Engineering, 2021, 9, 5128-5137.	3.2	13
650	Amorphous Carbon Nitride with Three Coordinate Nitrogen (N3 _C) Vacancies for Exceptional NO <i>_x</i> Abatement in Visible Light. Advanced Energy Materials, 2021, 11, 2004001.	10.2	91
651	Organic fluorescent nanoparticles using fluorophores synthesized from low-temperature calcination process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126096.	2.3	3
652	Prediction of two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cu</mml:mi><mml:m mathvariant="normal">C</mml:m </mml:msub></mml:mrow> with polyacetylene-like motifs and Dirac nodal line. Physical Review Materials, 2021, 5, .</mml:math 	inչ20 . 9	l:m̥n>
653	Metal-Free Photocatalysis: Two-Dimensional Nanomaterial Connection toward Advanced Organic Synthesis. ACS Nano, 2021, 15, 3621-3630.	7.3	81
654	Facile Exfoliation for High-Quality Molybdenum Disulfide Nanoflakes and Relevant Field-Effect Transistors Developed With Thermal Treatment. Frontiers in Chemistry, 2021, 9, 650901.	1.8	8
655	VS ₂ nanosheet as a promising candidate of recycle and reuse NO ₂ gas sensor and capturer: a DFT study. Journal of Physics Condensed Matter, 2021, 33, 165501.	0.7	10

#	Article	IF	CITATIONS
656	New structure candidates for the experimentally synthesized heptazine-based and triazine-based two dimensional graphitic carbon nitride. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128, 114535.	1.3	2
657	Visible-light-driven photocatalytic performance of a Z-scheme based TiO2/WO3/g-C3N4 ternary heterojunctions. Molecular Catalysis, 2021, 505, 111494.	1.0	14
658	Ratiometric Antifouling Electrochemical Biosensors Based on Multifunctional Peptides and MXene Loaded with Au Nanoparticles and Methylene Blue. ACS Applied Materials & Interfaces, 2021, 13, 20388-20396.	4.0	86
659	Enhanced photocatalytic degradation efficiency of graphitic carbon nitride-loaded CeO2 nanoparticles. Chemical Physics Letters, 2021, 769, 138441.	1.2	14
661	Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, computer simulations, and applications. Progress in Polymer Science, 2021, 115, 101374.	11.8	117
662	Ruthenium nanoparticles supported on carbon-based nanoallotropes as co-catalyst to enhance the photocatalytic hydrogen evolution activity of carbon nitride. Renewable Energy, 2021, 168, 668-675.	4.3	11
663	N, F and S doped carbon nanofibers generated from electrospun polymerized ionic liquids for metal-free bifunctional oxygen electrocatalysis. Electrochimica Acta, 2021, 377, 138089.	2.6	29
664	Sub-level engineering strategy of nitrogen-induced Bi2O3/g-C3N4: a versatile photocatalyst for oxidation and reduction. Environmental Science and Pollution Research, 2021, 28, 50747-50766.	2.7	11
665	Photo-electro-Fenton-like process for rapid ciprofloxacin removal: The indispensable role of polyvalent manganese in Fe-free system. Science of the Total Environment, 2021, 768, 144368.	3.9	30
666	2D Metalâ€Free Nanomaterials Beyond Graphene and Its Analogues toward Electrocatalysis Applications. Advanced Energy Materials, 2021, 11, 2101202.	10.2	24
667	Influence of laser photoactivated graphitic carbon nitride nanosheets and nickel nanoparticles on purple non-sulfur bacteria for biohydrogen production from biomass. Journal of Cleaner Production, 2021, 299, 126898.	4.6	36
668	Facile synthesis of highly crystalline g-C3N4 nanosheets with remarkable visible light photocatalytic activity for antibiotics removal. Chemosphere, 2021, 271, 129503.	4.2	29
669	Gd2O3 nanoparticles modified g-C3N4 with enhanced photocatalysis activity for degradation of organic pollutants. Journal of Rare Earths, 2021, 39, 1353-1361.	2.5	17
670	Two-dimensional graphitic carbon nitride-based membranes for filtration process: Progresses and challenges. Chemical Engineering Journal, 2022, 427, 130955.	6.6	23
671	Photocatalytic overall water splitting by graphitic carbon nitride. InformaÄnÃ-Materiály, 2021, 3, 931-961.	8.5	74
672	Photodynamic and Photoelectrochemical Properties of Few-Layered Bismuthene Film on SnO ₂ Electrode and Its Hybridization with C ₆₀ . Journal of Physical Chemistry C, 2021, 125, 13954-13962.	1.5	4
673	Co-implanting of TiO2 and liquid-phase-delaminated g-C3N4 on multi-functional graphene nanobridges for enhancing photocatalytic degradation of acetaminophen. Chemical Engineering Journal, 2021, 414, 128618.	6.6	81
674	Ultra-Robust Thermoconductive Films Made from Aramid Nanofiber and Boron Nitride Nanosheet for Thermal Management Application. Polymers, 2021, 13, 2028.	2.0	6

#	Article	IF	Citations
675	Linear and nonlinear optical response of g-C3N4-based quantum dots*. Chinese Physics B, 2021, 30, 077802.	0.7	0
676	Imide modification coupling with NH2-MIL-53(Fe) boosts the photocatalytic performance of graphitic carbon nitride for efficient water remediation. Journal of Catalysis, 2021, 399, 192-200.	3.1	26
677	K–Na co-doping in crystalline polymeric carbon nitride for highly improved photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 26318-26328.	3.8	21
678	Photoinduced Selfâ€Assembly of Carbon Nitride Quantum Dots. Angewandte Chemie - International Edition, 2021, 60, 19413-19418.	7.2	39
679	Strategies to extend near-infrared light harvest of polymer carbon nitride photocatalysts. Coordination Chemistry Reviews, 2021, 439, 213947.	9.5	94
680	Photoinduced Selfâ€Assembly of Carbon Nitride Quantum Dots. Angewandte Chemie, 2021, 133, 19562-19567.	1.6	4
681	Rational design of kaolinite-based photocatalytic materials for environment decontamination. Applied Clay Science, 2021, 208, 106098.	2.6	30
682	Graphitic carbon nitride-based materials for photocatalytic antibacterial application. Materials Science and Engineering Reports, 2021, 145, 100610.	14.8	145
683	Fabricating intramolecular donor-acceptor system via covalent bonding of carbazole to carbon nitride for excellent photocatalytic performance towards CO2 conversion. Journal of Colloid and Interface Science, 2021, 594, 550-560.	5.0	18
684	Preparation Strategies and Applications of MXeneâ€Polymer Composites: A Review. Macromolecular Rapid Communications, 2021, 42, e2100324.	2.0	40
685	Enhanced mechanical and photocatalytic performances of epoxy nanocomposites filled with potassiumâ€modified graphitic carbon nitride nanosheets. Journal of Applied Polymer Science, 2021, 138, 51328.	1.3	2
686	Application of Nanotechnology in Analysis and Removal of Heavy Metals in Food and Water Resources. Nanomaterials, 2021, 11, 1792.	1.9	18
687	Emerging graphitic carbon nitride-based membranes for water purification. Water Research, 2021, 200, 117207.	5.3	53
688	Unconventional, Gram-Scale Synthesis of a Molecular Dimer Organic Luminogen with Aggregation-Induced Emission. ACS Applied Materials & Interfaces, 2021, 13, 40441-40450.	4.0	9
689	Facile Fabrication of Novel SrMoO ₄ /g ₃ N ₄ Hybrid Composite for Highâ€Performance Photocatalytic Degradation of Dye Pollutant under Sunlight. ChemistrySelect, 2021, 6, 7711-7721.	0.7	4
690	Electronic structure of 2D quaternary materials and of their van der Waals heterostructures. Journal of Applied Physics, 2021, 130, 064304.	1.1	0
691	In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Applied Catalysis B: Environmental, 2021, 291, 120104.	10.8	258
692	Ultrathin Crystalline Covalentâ€Triazineâ€Framework Nanosheets with Electron Donor Groups for Synergistically Enhanced Photocatalytic Water Splitting. Angewandte Chemie, 2021, 133, 25585-25594.	1.6	8

#	Article	IF	Citations
693	Onâ€Surface Polymerization of Inâ€Plane Highly Ordered Carbon Nitride Nanosheets toward Photocatalytic Mineralization of Mercaptan Gas. Advanced Materials, 2021, 33, e2101466.	11.1	130
694	Iodideâ€Induced Fragmentation of Polymerized Hydrophilic Carbon Nitride for Highâ€Performance Quasiâ€Homogeneous Photocatalytic H ₂ O ₂ Production. Angewandte Chemie - International Edition, 2021, 60, 25546-25550.	7.2	251
695	Molecular interpretation of the carbon nitride performance as a template for the transport of anti-cancer drug into the biological membrane. Scientific Reports, 2021, 11, 18981.	1.6	8
696	Ultrathin Crystalline Covalentâ€Triazineâ€Framework Nanosheets with Electron Donor Groups for Synergistically Enhanced Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 25381-25390.	7.2	104
697	Ammonia Reduction System for the Diversity of Cathode Processing of Li-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 12091-12099.	3.2	7
698	Iodideâ€Induced Fragmentation of Polymerized Hydrophilic Carbon Nitride for High Performance Quasiâ€Homogeneous Photocatalytic H2O2 Production. Angewandte Chemie, 0, , .	1.6	7
699	Nitrogen vacancy enhanced photocatalytic selective oxidation of benzyl alcohol in g-C3N4. International Journal of Hydrogen Energy, 2021, 46, 37782-37791.	3.8	23
700	A Case Study on a Soluble Dibenzothiophene- <i>S</i> , <i>S</i> -dioxide-Based Conjugated Polyelectrolyte for Photocatalytic Hydrogen Production: The Film versus the Bulk Material. ACS Applied Materials & Interfaces, 2021, 13, 42753-42762.	4.0	14
701	Nanocellulose-derived carbon/g-C3N4 heterojunction with a hybrid electron transfer pathway for highly photocatalytic hydrogen peroxide production. Journal of Colloid and Interface Science, 2021, 599, 507-518.	5.0	31
702	Design Ag-doped ZnO heterostructure photocatalyst with sulfurized graphitic C3N4 showing enhanced photocatalytic activity. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 272, 115320.	1.7	62
703	Ascorbic acid-assisted hydrothermal route to create mesopores in polymeric carbon nitride for increased photocatalytic hydrogen generation. International Journal of Hydrogen Energy, 2021, 46, 38310-38318.	3.8	14
704	Promoted photocatalytic degradation and detoxication performance for norfloxacin on Z-scheme phosphate-doped BiVO4/graphene quantum dots/P-doped g-C3N4. Separation and Purification Technology, 2021, 274, 118692.	3.9	38
705	Synergetic performance of systematically designed g-C3N4/rGO/SnO2 nanocomposite for photodegradation of Rhodamine-B dye. Applied Surface Science, 2021, 570, 151140.	3.1	40
706	2D bimetallic RuNi alloy Co-catalysts remarkably enhanced the photocatalytic H2 evolution performance of g-C3N4 nanosheets. Chemical Engineering Journal, 2021, 426, 130824.	6.6	49
707	Facile and green one-step synthesis of Ni ₃ S ₂ @CN carbon nanosheets from sodium lignosulfonate for a supercapacitor electrode. Sustainable Energy and Fuels, 2021, 5, 4895-4903.	2.5	3
708	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	15.6	198
709	Photocatalytic hydroxylation of benzene to phenol over organosilane-functionalized FeVO ₄ nanorods. Catalysis Science and Technology, 2021, 11, 5931-5937.	2.1	25
710	Recent advancements and opportunities of decorated graphitic carbon nitride toward solar fuel production and beyond. Sustainable Energy and Fuels, 2021, 5, 4457-4511.	2.5	25

#	Article	IF	CITATIONS
711	Interface chemistry of two-dimensional heterostructures – fundamentals to applications. Chemical Society Reviews, 2021, 50, 4684-4729.	18.7	152
712	Thickness-induced band-gap engineering in lead-free double perovskite Cs ₂ AgBiBr ₆ for highly efficient photocatalysis. Physical Chemistry Chemical Physics, 2021, 23, 12439-12448.	1.3	14
713	Ultrathin 2D Photocatalysts: Electronicâ€Structure Tailoring, Hybridization, and Applications. Advanced Materials, 2018, 30, 1704548.	11.1	409
714	Zâ€Schemaâ€Photokatalysesysteme für die Kohlendioxidreduktion: Wo stehen wir heute?. Angewandte Chemie, 2020, 132, 23092-23115.	1.6	30
715	Zâ€Scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now?. Angewandte Chemie - International Edition, 2020, 59, 22894-22915.	7.2	435
716	Emerging triâ€sâ€triazineâ€based graphitic carbon nitride: A potential signalâ€transducing nanostructured material for sensor applications. Nano Select, 2021, 2, 712-743.	1.9	27
717	Realization of Switching Mechanism of CO2 by Alkaline Adatoms on g-B4N3 Surface. Springer Proceedings in Physics, 2019, , 423-440.	0.1	3
718	Synthesis of flower-like Ta3N5-Au heterojunction with enhanced visible light photocatalytic activity. Journal of Alloys and Compounds, 2017, 695, 1137-1144.	2.8	26
719	Low-temperature separation of helium-helion mixture. Reviews on Advanced Materials Science, 2020, 59, 361-370.	1.4	2
720	Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chemical Society Reviews, 2021, 50, 12744-12787.	18.7	75
721	Organic semiconductor nanostructures: optoelectronic properties, modification strategies, and photocatalytic applications. Journal of Materials Science and Technology, 2022, 113, 175-198.	5.6	15
722	Single Metal Atom Catalyst Supported on g-C ₃ N ₄ for Formic Acid Dehydrogenation: A Combining Density Functional Theory and Machine Learning Study. Journal of Physical Chemistry C, 2021, 125, 22513-22521.	1.5	28
723	Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. Advanced Science, 2021, 8, e2102376.	5.6	24
724	One-step synthesis of highly reactive g-C3N4. Journal of Materials Science: Materials in Electronics, 2022, 33, 9116-9125.	1.1	7
725	Multiple Dirac states in two-dimensional topological half-metallic CrB2C2. Applied Physics Letters, 2021, 119, .	1.5	3
726	Multi-dimensional applications of graphitic carbon nitride nanomaterials – A review. Journal of Molecular Liquids, 2021, 344, 117820.	2.3	46
727	Elemental 2D Materials: Solutionâ€Processed Synthesis and Applications in Electrochemical Ammonia Production. Advanced Functional Materials, 2022, 32, 2107280.	7.8	20
728	Photocatalysts based on polymeric carbon nitride for solar-to-fuel conversion. Interface Science and Technology, 2020, 31, 475-507.	1.6	2

#	Article	IF	CITATIONS
730	Two-dimensional covalent organic framework nanosheets: Synthesis and energy-related applications. Chinese Chemical Letters, 2022, 33, 2867-2882.	4.8	17
731	All-optical devices based on two-dimensional materials. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 184216.	0.2	6
732	Insights into the light-driven hydrogen evolution reaction of mesoporous graphitic carbon nitride decorated with Pt or Ru nanoparticles. Dalton Transactions, 2022, 51, 731-740.	1.6	3
733	Recent advancements in microbial bioremediation of industrial effluents: challenges and future outlook. , 2022, , 293-303.		2
734	Efficient strategies for boosting the performance of 2D graphitic carbon nitride nanomaterials during photoreduction of carbon dioxide to energy-rich chemicals. Materials Today Chemistry, 2022, 23, 100605.	1.7	13
735	Ionic surfactants as assembly crosslinkers triggered supramolecular membrane with 2D↔3D conversion under multiple stimulus. Journal of Colloid and Interface Science, 2022, 609, 627-636.	5.0	2
736	Recycling Spent LiCoO ₂ Battery as a Highâ€efficient Lithiumâ€doped Graphitic Carbon Nitride/Co ₃ O ₄ Composite Photocatalyst and Its Synergistic Photocatalytic Mechanism. Energy and Environmental Materials, 2023, 6, .	7.3	16
737	Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waals Heterojunctions. Chemistry of Materials, 2021, 33, 9012-9092.	3.2	88
738	Gas sensing behavior and adsorption mechanism on χ3 borophene surface. Chemical Engineering Journal, 2022, 431, 133947.	6.6	13
739	Cobalt Sulfide Nanosheets as Peroxidase Mimics for Colorimetric Detection of <scp>l</scp> -Cysteine. ACS Applied Nano Materials, 2021, 4, 13352-13362.	2.4	24
740	Structure modulation of g-C ₃ N ₄ in TiO ₂ {001}/g-C ₃ N ₄ hetero-structures for boosting photocatalytic hydrogen evolution. RSC Advances, 2021, 11, 37089-37102.	1.7	11
741	Fluoride-incorporated cobalt-based electrocatalyst towards enhanced hydrogen evolution reaction. Chemical Communications, 2022, 58, 2746-2749.	2.2	4
742	Indium-Based Metal–Organic Framework for Efficient Photocatalytic Hydrogen Evolution. Inorganic Chemistry, 2022, 61, 2587-2594.	1.9	20
743	Removal of tetracycline hydrochloride using S–g-C3N4/PTFE membrane under visible light irradiation. Water Cycle, 2022, 3, 8-17.	2.1	16
744	Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination. Chemical Reviews, 2022, 122, 4204-4256.	23.0	180
745	Synthesis and electrocatalytic performance of ultrathin noble metal nanosheets. CrystEngComm, 2022, 24, 1319-1333.	1.3	5
747	Dynamic Interface with Enhanced Visible-Light Absorption and Electron Transfer for Direct Photoreduction of Flue Gas to Syngas. ACS Applied Materials & Interfaces, 2022, 14, 6476-6483.	4.0	9
748	Ultrathin <scp>2D g ₃N₄</scp> nanosheets for visibleâ€light photocatalytic reforming of cellulose into <scp>H₂</scp> under neutral conditions. Journal of Chemical Technology and Biotechnology, 2022, 97, 1717-1725.	1.6	19

#	Article	IF	CITATIONS
749	Multienzyme mimetic activities of holey CuPd@H–C3N4 for visual colorimetric and ultrasensitive fluorometric discriminative detection of glutathione and glucose in physiological fluids. Talanta, 2022, 241, 123221.	2.9	13
750	Dibenzothiophene-S,S-dioxide-containing conjugated polymer with hydrogen evolution rate up to 147ÂmmolÂgâ^'1 hâ^'1. Applied Catalysis B: Environmental, 2022, 307, 121144.	10.8	40
751	Chapter 1. Recent Developments and Perspectives on Solar-driven Fine Chemicals Synthesis: From the Reaction System to 2D Photocatalysts. Inorganic Materials Series, 2022, , 1-64.	0.5	1
752	Electrospun Semiconductorâ€Based Nanoâ€Heterostructures for Photocatalytic Energy Conversion and Environmental Remediation: Opportunities and Challenges. Energy and Environmental Materials, 2023, 6, .	7.3	37
753	The Role of Structured Carbon in Downsized Transition Metal-Based Electrocatalysts toward a Green Nitrogen Fixation. Catalysts, 2021, 11, 1529.	1.6	2
754	Heterojunction and Ferroelectric Polarization Co-Promoting Photocatalytic Activity. SSRN Electronic Journal, 0, , .	0.4	0
755	Electrochemical "Signal On/Off―Paper-Based Aptasensor for Ochratoxin a Detection Based on Mxene-Au and Pt@Nico-Ldh-Catalyzed Signal Amplification. SSRN Electronic Journal, 0, , .	0.4	0
756	2D material based heterostructures for solar light driven photocatalytic H ₂ production. Materials Advances, 2022, 3, 3389-3417.	2.6	20
757	Classification of nanomaterials and their physical and chemical nature. , 2022, , 7-34.		1
758	Photocatalytic Water‧plitting by Organic Conjugated Polymers: Opportunities and Challenges. Chemical Record, 2022, 22, e202100336.	2.9	24
759	<scp> In ₂ S ₃ </scp> nanosheets growing on sheetâ€like <scp> g ₃ N ₄ </scp> as highâ€performance photocatalyst for <scp> H ₂ </scp> evolution under visible light. International Journal of Energy Research, 2022, 46, 9138-9149.	2.2	6
760	The interaction of H2O, O2 and H2OÂ+ÂO2 molecules with g-C3N4 surface:A first-principle study. Diamond and Related Materials, 2022, 125, 108995.	1.8	3
761	Heterojunction and ferroelectric polarization co-promoting photocatalytic activity. Applied Surface Science, 2022, 587, 152852.	3.1	16
762	Bimetallic nanoparticles meet polymeric carbon nitride: Fabrications, catalytic applications and perspectives. Coordination Chemistry Reviews, 2022, 462, 214500.	9.5	41
763	Air- and water-stable halide perovskite nanocrystals protected with nearly-monolayer carbon nitride for CO2 photoreduction and water splitting. Applied Surface Science, 2022, 592, 153276.	3.1	31
764	N-Rich 2D Heptazine Covalent Organic Frameworks as Efficient Metal-Free Photocatalysts. ACS Catalysis, 2022, 12, 616-623.	5.5	65
765	Influence of Hydrogenation on Morphology, Chemical Structure and Photocatalytic Efficiency of Graphitic Carbon Nitride. International Journal of Molecular Sciences, 2021, 22, 13096.	1.8	18
766	A two-dimensional perovskite oxyfluoride Pb ₃ Fe ₂ O ₅ F ₂ as a catalyst for electrochemical oxidation of water to oxygen. Sustainable Energy and Fuels. 2022. 6. 2423-2427.	2.5	2

ARTICLE IF CITATIONS # Z-scheme P-doped-g-C3N4/Fe2P/red-P ternary composite enables efficient two-electron photocatalytic 769 2.2 9 pure water splitting. Catalysis Today, 2023, 409, 119-127. Elementâ€Doped Mxenes: Mechanism, Synthesis, and Applications. Small, 2022, 18, e2201740. 770 5.2 Fabrication of S-scheme heterojunction g-C3N4-nanosheet/ZnMoO4 nanocomposite with high efficiency in photocatalytic N2 fixation and Cr(VI) detoxification. Journal of Materials Science, 2022, 771 17 1.7 57,9145-9163. Promoting photocatalytic degradation of tetracycline over in-situ grown single manganese atoms on 3.1 polymeric carbon nitride. Applied Surface Science, 2022, 593, 153458. Electronic structure modulation of g-C3N4 by Hydroxyl-grafting for enhanced photocatalytic peroxymonosulfate Activation: Combined experimental and theoretical analysis. Separation and 773 3.9 8 Purification Technology, 2022, 294, 121246. Phenyl-incorporated carbon nitride photocatalyst with extended visible-light-absorption for enhanced hydrogen production from water splitting. Journal of Colloid and Interface Science, 2022, 774 5.0 622, 494-502. Functional graphitic carbon (IV) nitride: A versatile sensing material. Coordination Chemistry 775 9.5 22 Reviews, 2022, 466, 214611. Activating the neutral pH photozymatic activity of g-C₃N₄ nanosheets through post-synthetic incorporation of Pt. Chemical Communications, 2022, 58, 6930-6933. Recent progress in g–C3N4–Based materials for remarkable photocatalytic sustainable energy. 777 3.8 35 International Journal of Hydrogen Energy, 2022, 47, 21067-21118. Unraveling the Synergy between Anion Doping and Metal Embedding in G-C3n4 Towards Enhanced Photocatalytic Rates. SSRN Electronic Journal, 0, , . 778 0.4 Two-dimensional material inks. Nature Reviews Materials, 2022, 7, 717-735. 779 23.3 71 Conjugated microporous polymers incorporating Thiazolo[5,4-d]thiazole moieties for 6.6 Sunlight-Driven hydrogen próduction from water. Chemical Éngineering Journal, 2022, 446, 137158. Sulfur Doping Triggering Enhanced Pt–N Coordination in Graphitic Carbon Nitride-Supported Pt 781 5.5 40 Electrocatalysts toward Efficient Oxygen Reduction Reaction. ACS Catalysis, 2022, 12, 7406-7414. Graphitic carbon nitride-based upconversion photocatalyst for hydrogen production and water 1.1 purification. Nanofabrication, 0, 7, . Donor-acceptor carbazole-based conjugated microporous polymers as photocatalysts for visible-light-driven H2 and O2 evolution from water splitting. Applied Catalysis B: Énvironmental, 783 10.8 46 2022, 316, 121624. Electrochemical "signal on/off―paper-based aptasensor for ochratoxin A detection based on MXene-Au and Pt@NiCo-LDH-catalyzed signal amplification. Sensors and Actuators B: Chemical, 2022, 784 368, 132161. 2D/2D Interface Engineering Promotes Charge Separation of Mo₂C/g-C₃N₄ Nanojunction Photocatalysts for Efficient 785 4.0 30 Photocatalytic Hydrogen Evolution. ACS Applied Materials & amp; Interfaces, 2022, 14, 31782-31791. Insight into the adsorption and photocatalytic properties of in-situ synthesized g-C3N4/SnS2 2.3 nanocomposite. Ceramics International, 2022, 48, 30294-30306.

#	Article	IF	CITATIONS
787	In-situ Fabrication of Ru/C3N4 Nanosheets Mott-Schottky Photocatalyst for Enhanced Photocatalytic H2 Evolution. International Journal of Electrochemical Science, 2022, 17, 220855.	0.5	2
788	Nanostructured materials based on g-C3N4 for enhanced photocatalytic activity and potentials application: A review. Arabian Journal of Chemistry, 2022, 15, 104070.	2.3	27
789	Emerging Two-Dimensional-Based Nanostructured Catalysts: Applications in Sustainable Organic Transformations. Langmuir, 2022, 38, 9064-9072.	1.6	22
790	CHAPTER 3. Synthesis of Two-dimensional Hybrid Materials, Unique Properties, and Challenges. , 2022, , 64-125.		Ο
791	2D Metalâ€Organic Framework Based on the Functionalized Anthracene Derivative as A Dualâ€Functional Luminescent Probe for Fe ³⁺ and Ascorbic Acid. ChemistrySelect, 2022, 7, .	0.7	0
792	A Novel Visible-Light-Driven Photo-Fenton System Composed of Fe-Doped CdIn ₂ S ₄ /g-C ₃ N ₄ Heterojunction and H ₂ O ₂ to Remove Methyl Orange. Industrial & amp; Engineering Chemistry Research, 2022, 61, 12905-12917.	1.8	11
793	Visible-light-driven nonsacrificial hydrogen evolution by modified carbon nitride photocatalysts. Chinese Journal of Catalysis, 2022, 43, 2316-2320.	6.9	10
794	Unraveling the synergy between oxygen doping and embedding Fe nanoparticles in gC3N4 towards enhanced photocatalytic rates. Applied Surface Science, 2022, 603, 154404.	3.1	7
795	Heterostructure based on exfoliated graphitic carbon nitride coated by porous carbon for photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2022, 47, 35666-35679.	3.8	10
796	Segmented Structure Design of Carbon Ring Inâ€Plane Embedded in g ₃ N ₄ Nanotubes for Ultraâ€High Hydrogen Production. ChemSusChem, 2022, 15, .	3.6	3
797	Conductive polymer mediated earth abundant Z-scheme g-C ₃ N ₄ /Fe ₂ O ₃ heterostructure with excellent photocatalytic activity. CrystEngComm, 2022, 24, 6558-6563.	1.3	1
798	A review on recent advances in selective and sensitive detection of heavy toxic metal ions in water using g-C ₃ N ₄ -based heterostructured composites. Materials Chemistry Frontiers, 2022, 6, 2610-2650.	3.2	13
799	Radical defects modulate the photocatalytic response in 2D-graphitic carbon nitride. Chemical Science, 2022, 13, 9927-9939.	3.7	20
800	Self-assembly of colloidal single-layer carbon nitride. Nanoscale, 2022, 14, 12347-12357.	2.8	2
801	Edge effect-modulated exciton dissociation and charge transfer in porous ultrathin tubular graphitic carbon nitride for boosting photoredox activity. Journal of Materials Chemistry A, 2022, 10, 18333-18342.	5.2	24
802	Design and application of g-C3N4-based materials for fuels photosynthesis from CO2 or H2O based on reaction pathway insights. Journal of Colloid and Interface Science, 2023, 629, 825-846.	5.0	6
803	Coupling In-plane π-Electrons with Oxygen-Heteroatom in Ultrathin g-C ₃ N ₄ Nanosheets for Markedly Improved Photodegradation Activity. , 2023, 1, 216-228.		3
804	An electrochemiluminescence biosensor based on Graphitic carbon nitride luminescence quenching for detection of AFB1. Food Chemistry, 2023, 404, 134183.	4.2	21

#	Article	IF	CITATIONS
805	Recent Advances in Graphitic Carbon Nitrides (g ₃ N ₄) as Photoluminescence Sensing Probe: A Review. ChemistrySelect, 2022, 7, .	0.7	6
806	Few-layered MoS2 anchored on 2D porous C3N4 nanosheets for Pt-free photocatalytic hydrogen evolution. Nano Research, 2023, 16, 3524-3535.	5.8	19
807	Tunable reverse rectification of layed Janus MSeS (M = Hf, Zr) and SnS2 heterojunctions. Journal of Computational Electronics, 0, , .	1.3	0
808	Boosting the photo-induced charge transfer in melon by lengthening the melon chains through a facile regrowth approach. Nano Research, 0, , .	5.8	1
809	CuO Nanosheets Prepared by Dielectric Barrier Discharge Microplasma as Catalysts for the Oxygen Evolution Reaction. ACS Applied Nano Materials, 2022, 5, 14689-14696.	2.4	4
810	Electron flux at the Schottky junction of Bi NPs and WO3-supported g-C3N4: an efficient ternary S-scheme catalyst for removal of fluoroquinolone-type antibiotics from water. Environmental Science and Pollution Research, 2023, 30, 18461-18479.	2.7	4
811	A Targeted Review of Current Progress, Challenges and Future Perspective of g ₃ N ₄ based Hybrid Photocatalyst Toward Multidimensional Applications. Chemical Record, 2023, 23, .	2.9	19
812	Insights into photoinduced carrier dynamics and hydrogen evolution reaction of organic PM6/PCBM heterojunctions. Journal of Materials Chemistry A, 2022, 10, 24529-24537.	5.2	3
813	Two-dimensional heterostructures for photocatalytic CO2 reduction. Environmental Research, 2023, 216, 114699.	3.7	7
814	Versatile heterojunction of gold nanoparticles modified phosphorus doped carbon nitride for enhanced photo-electrocatalytic sensing and degradation of 4-chlorophenol. Journal of Colloid and Interface Science, 2023, 632, 117-128.	5.0	6
815	Enhanced pre-sensitization in metal-free covalent organic frameworks promoting hydrogen peroxide photosynthesis. Chemical Engineering Journal, 2023, 455, 140124.	6.6	17
816	A ZIF-67-derived lamellar CoP@C cocatalyst for promoting photocatalytic hydrogen evolution from water. International Journal of Hydrogen Energy, 2022, , .	3.8	2
817	Twoâ€Dimensional Ultrathin Graphic Carbon Nitrides with Extended π onjugation as Extraordinary Efficient Hydrogen Evolution Photocatalyst. Small, 2023, 19, .	5.2	16
818	Synthesis and modification of ultrathin g-C3N4 for photocatalytic energy and environmental applications. Renewable and Sustainable Energy Reviews, 2023, 173, 113110.	8.2	43
819	Framework structure engineering of polymeric carbon nitrides and its recent applications. Progress in Materials Science, 2023, 133, 101056.	16.0	23
820	A Unique Chemo-photodynamic Antitumor Approach to Suppress Hypoxia via Ultrathin Graphitic Carbon Nitride Nanosheets Supported a Platinum(IV) Prodrug. Inorganic Chemistry, 2022, 61, 20346-20357.	1.9	3
821	Non-Metal-Doped Porous Carbon Nitride Nanostructures for Photocatalytic Green Hydrogen Production. International Journal of Molecular Sciences, 2022, 23, 15129.	1.8	22
822	Applications of Spent Lithium Battery Electrode Materials in Catalytic Decontamination: A Review. Catalysts, 2023, 13, 189.	1.6	1

		CITATION REPORT		
#	Article		IF	CITATIONS
823	2D Zinc Oxide – Synthesis, Methodologies, Reaction Mechanism, and Applications. S	mall, 2023, 19, .	5.2	22
824	Metal-organic layers: Preparation and applications. Science China Materials, 2023, 66, 8	39-858.	3.5	3
825	A perspective on two pathways of photocatalytic water splitting and their practical app systems. Physical Chemistry Chemical Physics, 2023, 25, 6586-6601.	lication	1.3	14
826	Advances in the understanding of the structure–performance relationships of 2D mat based on electron microscopy. Materials Chemistry Frontiers, 2023, 7, 2764-2778.	terial catalysts	3.2	6
827	Ultrasensitive Determination of L-Cysteine with g-C3N4@CdS-Based Photoelectrochem Symmetry, 2023, 15, 896.	ical Platform.	1.1	2
828	A post-synthetic modified NH2-MIL-125 (Ti) catalyst for boosting photochemical Cr (VI) Chemical Engineering Research and Design, 2023, 172, 778-786.	reduction.	2.7	2
829	Improved charge transfer in polymeric carbon nitride synergistically induced by the aron modification and Schottky junctions for efficient photocatalytic CO2 reduction. Chemic Engineering Journal, 2023, 463, 142395.	natic rings cal	6.6	9
830	A theoretical exploration of different π-π stacking dimers of coronenes and its substitu analogues. Journal of Molecular Structure, 2023, 1282, 135198.	ted	1.8	2
831	Alkali metal ion-doped heptazine-based g-C3N4 quantum dots for efficient adsorption c DFT perspective. Surfaces and Interfaces, 2023, 38, 102852.	of methyl blue: A	1.5	2
832	Magnetic template-assisted construction of 2D PCN/TiO2 heterostructures for efficient photocatalytic hydrogen generation. Applied Surface Science, 2023, 623, 157131.		3.1	9
833	Formation of ReS2/ReO3 semiconductor-metal heterostructure boosts electrocatalytic of pristine ReS2 nanoparticles in hydrogen evolution reaction. Applied Materials Today, 101781.	performance 2023, 32,	2.3	4
834	Nitrogen-doped carbon dot impregnated g-C3N4/SnS2 nanocomposite as an efficient n co-catalyst for enhanced photocatalytic degradation and water splitting. Journal of Alloy Compounds, 2023, 947, 169594.	nediator and ys and	2.8	18
835	Remarkable formaldehyde photo-oxidation efficiency of Zn2SnO4 co-modified by Mo do oxygen vacancies. Separation and Purification Technology, 2023, 310, 123202.	oping and	3.9	10
836	Humidity tuning CO oxidation on Ti decorated V2CO2 monolayer (MXene) catalyst: A d functional calculation study. Applied Surface Science, 2023, 616, 156497.	ensity	3.1	2
838	3D-crumpled graphitic carbon nitride achieving promoted visible-light-driven molecular activation for phenol degradation. Chemosphere, 2023, 321, 138107.	oxygen	4.2	2
839	A Review of Phosphorus Structures as CO ₂ Reduction Photocatalysts. Sma	all, 2023, 19, .	5.2	22
840	Progressive Review of Functional Nanomaterials-Based Polymer Nanocomposites for Eff Shielding. Journal of Composites Science, 2023, 7, 77.	icient EMI	1.4	6
841	Photocatalytic Activities of g-C3N4 (CN) Treated with Nitric Acid Vapor for the Degrada Pollutants in Wastewater. Materials, 2023, 16, 2177.	tion of	1.3	4

#	Article	IF	CITATIONS
842	Anchored Cu single atoms on porous g-C ₃ N ₄ for superior photocatalytic H ₂ evolution from water splitting. RSC Advances, 2023, 13, 8915-8922.	1.7	5
843	Potassium Poly(heptazine imide) Coupled with Ti ₃ C ₂ MXene-Derived TiO ₂ as a Composite Photocatalyst for Efficient Pollutant Degradation. ACS Omega, 2023, 8, 11397-11405.	1.6	3
844	Dual Defective K-Doping and Cyano Group Sites on Carbon Nitride Nanotubes for Improved Hydrogen Photo-Production. Energy & Fuels, 2023, 37, 5448-5456.	2.5	1
845	Recent advances in two-dimensional nanomaterials for bone tissue engineering. Journal of Materiomics, 2023, 9, 930-958.	2.8	3
846	Interlayer modification and single-layer exfoliation of the Ruddlesden–Popper perovskite oxynitride K ₂ LaTa ₂ O ₆ N to improve photocatalytic H ₂ evolution activity. Journal of Materials Chemistry A, 2023, 11, 9485-9492.	5.2	3
847	Comparative life cycle assessment of graphitic carbon nitride synthesis routes. Journal of Industrial Ecology, 2023, 27, 1008-1020.	2.8	0
848	Bioconjugated 2D-nanomaterials for environmental monitoring. Comprehensive Analytical Chemistry, 2023, , 163-201.	0.7	0
865	Multifunctional carbon nitride nanoarchitectures for catalysis. Chemical Society Reviews, 2023, 52, 7602-7664.	18.7	9
882	Recent developments, advances and strategies in heterogeneous photocatalysts for water splitting. Nanoscale Advances, 2024, 6, 1286-1330.	2.2	0