Deubiquitinases (DUBs) and DUB inhibitors: a patent re

Expert Opinion on Therapeutic Patents 25, 1191-1208 DOI: 10.1517/13543776.2015.1056737

Citation Report

#	Article	IF	CITATIONS
1	Deubiquitinases: Novel Therapeutic Targets in Immune Surveillance?. Mediators of Inflammation, 2016, 2016, 1-13.	1.4	29
2	Regulation of the TGF-β pathway by deubiquitinases in cancer. International Journal of Biochemistry and Cell Biology, 2016, 76, 135-145.	1.2	29
3	Regulation of pluripotency and differentiation by deubiquitinating enzymes. Cell Death and Differentiation, 2016, 23, 1257-1264.	5.0	59
4	Recent Advances in the Discovery of Deubiquitinating Enzyme Inhibitors. Progress in Medicinal Chemistry, 2016, 55, 149-192.	4.1	65
5	Deubiquitinase USP18 Loss Mislocalizes and Destabilizes KRAS in Lung Cancer. Molecular Cancer Research, 2017, 15, 905-914.	1.5	28
6	The Emerging Role of Non-traditional Ubiquitination in Oncogenic Pathways. Journal of Biological Chemistry, 2017, 292, 3543-3551.	1.6	41
7	Activityâ€based probes for the ubiquitin conjugation–deconjugation machinery: new chemistries, new tools, and new insights. FEBS Journal, 2017, 284, 1555-1576.	2.2	109
8	The bad seed gardener: Deubiquitinases in the cancer stem-cell signaling network and therapeutic resistance. , 2017, 172, 127-138.		34
9	The preclinical discovery and development of bortezomib for the treatment of mantle cell lymphoma. Expert Opinion on Drug Discovery, 2017, 12, 225-235.	2.5	26
10	Inhibition of deubiquitinases alters gamete ubiquitination states and sperm-oocyte binding ability in pigs. Animal Reproduction Science, 2017, 187, 64-73.	0.5	2
11	The deubiquitinase USP10 regulates integrin beta1 and beta5 and fibrotic wound healing. Journal of Cell Science, 2017, 130, 3481-3495.	1.2	12
12	Breast cancer metastasis suppressor OTUD1 deubiquitinates SMAD7. Nature Communications, 2017, 8, 2116.	5.8	90
13	The proteasome and proteasome inhibitors in multiple myeloma. Cancer and Metastasis Reviews, 2017, 36, 561-584.	2.7	229
14	The testis-specific USP26 is a deubiquitinating enzyme of the ubiquitin ligase Mdm2. Biochemical and Biophysical Research Communications, 2017, 482, 106-111.	1.0	18
15	Evidence for the ISG15-Specific Deubiquitinase USP18 as an Antineoplastic Target. Cancer Research, 2018, 78, 587-592.	0.4	43
16	Deubiquitylating enzymes as cancer stem cell therapeutics. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1869, 1-10.	3.3	15
17	Knockdown of RNF6 inhibits gastric cancer cell growth by suppressing STAT3 signaling. OncoTargets and Therapy, 2018, Volume 11, 6579-6587.	1.0	25
18	USP17 mediates macrophage-promoted inflammation and stemness in lung cancer cells by regulating TRAF2/TRAF3 complex formation. Oncogene, 2018, 37, 6327-6340.	2.6	53

#	Article	IF	CITATIONS
19	Computational and biochemical studies of isothiocyanates as inhibitors of proteasomal cysteine deubiquitinases in human cancer cells. Journal of Cellular Biochemistry, 2018, 119, 9006-9016.	1.2	9
20	USP49 participates in the DNA damage response by forming a positive feedback loop with p53. Cell Death and Disease, 2018, 9, 553.	2.7	33
21	The role of K63â€linked polyubiquitination in cardiac hypertrophy. Journal of Cellular and Molecular Medicine, 2018, 22, 4558-4567.	1.6	17
22	Deubiquitinating enzymes in cancer stem cells: functions and targeted inhibition for cancer therapy. Drug Discovery Today, 2018, 23, 1974-1982.	3.2	38
23	The Role of Deubiquitinases in Oncovirus and Host Interactions. Journal of Oncology, 2019, 2019, 1-9.	0.6	11
24	Proteasome Activation to Combat Proteotoxicity. Molecules, 2019, 24, 2841.	1.7	29
25	The role of proteases in epithelial-to-mesenchymal cell transitions in cancer. Cancer and Metastasis Reviews, 2019, 38, 431-444.	2.7	28
26	Breaking the Fourth Wall: Modulating Quaternary Associations for Protein Regulation and Drug Discovery. ChemBioChem, 2019, 20, 1091-1104.	1.3	5
27	Ubiquitin specific peptidase 49 inhibits nonâ€small cell lung cancer cell growth by suppressing PI3K/AKT signaling. Kaohsiung Journal of Medical Sciences, 2019, 35, 401-407.	0.8	14
28	Structurally-defined deubiquitinase inhibitors provide opportunities to investigate disease mechanisms. Drug Discovery Today: Technologies, 2019, 31, 109-123.	4.0	40
29	Yeast Two-Hybrid Analysis for Ubiquitin Variant Inhibitors of Human Deubiquitinases. Journal of Molecular Biology, 2019, 431, 1160-1171.	2.0	6
30	Inhibition of Ubiquitin Specific Protease 1 Sensitizes Colorectal Cancer Cells to DNA-Damaging Chemotherapeutics. Frontiers in Oncology, 2019, 9, 1406.	1.3	31
31	An Eimeria acervulina OTU protease exhibits linkage-specific deubiquitinase activity. Parasitology Research, 2019, 118, 47-55.	0.6	8
32	The roles of ubiquitination in extrinsic cell death pathways and its implications for therapeutics. Biochemical Pharmacology, 2019, 162, 21-40.	2.0	30
33	IU1 suppresses proliferation of cervical cancer cells through MDM2 degradation. International Journal of Biological Sciences, 2020, 16, 2951-2963.	2.6	20
34	Ubiquitin and Ubiquitin-Like Proteins Are Essential Regulators of DNA Damage Bypass. Cancers, 2020, 12, 2848.	1.7	3
35	Deubiquitinating Enzyme-Mediated Signaling Networks in Cancer Stem Cells. Cancers, 2020, 12, 3253.	1.7	7
36	The Role of Deubiquitinating Enzymes in Hematopoiesis and Hematological Malignancies. Cancers, 2020, 12, 1103	1.7	11

#	Article	IF	CITATIONS
37	Regulation of Wnt Signaling through Ubiquitination and Deubiquitination in Cancers. International Journal of Molecular Sciences, 2020, 21, 3904.	1.8	68
38	The role of deubiquitinating enzymes in cancer drug resistance. Cancer Chemotherapy and Pharmacology, 2020, 85, 627-639.	1.1	32
39	MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers, 2020, 12, 1760.	1.7	213
40	Ubiquitin-specific protease 14 regulates ovarian cancer cisplatin-resistance by stabilizing BCL6 oncoprotein. Biochemical and Biophysical Research Communications, 2020, 524, 683-688.	1.0	14
41	Hypoxia-induced USP22-BMI1 axis promotes the stemness and malignancy of glioma stem cells via regulation of HIF-1α. Life Sciences, 2020, 247, 117438.	2.0	13
42	Ubiquitin-specific proteases as targets for anticancer drug therapies. , 2020, , 73-120.		2
43	Ciliary Genes in Renal Cystic Diseases. Cells, 2020, 9, 907.	1.8	20
44	Autophagy Induced by Proteasomal DUB Inhibitor NiPT Restricts NiPT-Mediated Cancer Cell Death. Frontiers in Oncology, 2020, 10, 348.	1.3	8
45	BAP1 suppresses prostate cancer progression by deubiquitinating and stabilizing PTEN. Molecular Oncology, 2021, 15, 279-298.	2.1	16
46	Characterization of PMI-5011 on the regulation of deubiquitinating enzyme activity in multiple myeloma cell extracts. Biochemical Engineering Journal, 2021, 166, 107834.	1.8	1
47	The potential mechanisms of piRNA to induce hepatocellular carcinoma in human. Medical Hypotheses, 2021, 146, 110400.	0.8	3
48	Inhibition of deubiquitination by PRâ€619 induces apoptosis and autophagy via ubiâ€protein aggregationâ€activated ER stress in oesophageal squamous cell carcinoma. Cell Proliferation, 2021, 54, e12919.	2.4	18
49	USP21 promotes cell proliferation by maintaining the EZH2 level in diffuse large Bâ€cell lymphoma. Journal of Clinical Laboratory Analysis, 2021, 35, e23693.	0.9	11
50	Ubiquitin Carboxyl-Terminal Hydrolases and Human Malignancies: The Novel Prognostic and Therapeutic Implications for Head and Neck Cancer. Frontiers in Oncology, 2020, 10, 592501.	1.3	8
51	Role of deubiquitinating enzymes in DNA double-strand break repair. Journal of Zhejiang University: Science B, 2021, 22, 63-72.	1.3	11
52	Targeting the signaling in Epstein–Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduction and Targeted Therapy, 2021, 6, 15.	7.1	39
53	The Deubiquitinating Enzyme UCHL1 Induces Resistance to Doxorubicin in HER2+ Breast Cancer by Promoting Free Fatty Acid Synthesis. Frontiers in Oncology, 2021, 11, 629640.	1.3	5
54	The post translational modification of key regulators of ATR signaling in DNA replication. Genome Instability & Disease, 2021, 2, 92-101.	0.5	3

#	Article	IF	CITATIONS
55	USP24 promotes drug resistance during cancer therapy. Cell Death and Differentiation, 2021, 28, 2690-2707.	5.0	12
56	Identification and validation of selective deubiquitinase inhibitors. Cell Chemical Biology, 2021, 28, 1758-1771.e13.	2.5	17
57	Perspectives on the development of first-in-class protein degraders. Future Medicinal Chemistry, 2021, 13, 1203-1226.	1.1	7
58	Regulation of Ferroptosis Pathway by Ubiquitination. Frontiers in Cell and Developmental Biology, 2021, 9, 699304.	1.8	9
59	Roles and Mechanisms of Deubiquitinases (DUBs) in Breast Cancer Progression and Targeted Drug Discovery. Life, 2021, 11, 965.	1.1	6
60	Design and synthesis of new 4-(2-nitrophenoxy)benzamide derivatives as potential antiviral agents: molecular modeling and <i>in vitro</i> antiviral screening. New Journal of Chemistry, 2021, 45, 16557-16571.	1.4	46
61	Deubiquitylating Enzymes. , 2020, , 1-8.		1
62	Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. Advances in Experimental Medicine and Biology, 2020, 1233, 29-54.	0.8	11
63	Ubiquitin-specific protease 5 was involved in the interferon response to RGNNV in sea perch (Lateolabrax japonicus). Fish and Shellfish Immunology, 2020, 103, 239-247.	1.6	7
64	Chemically Induced Cellular Proteolysis: An Emerging Therapeutic Strategy for Undruggable Targets. Molecules and Cells, 2018, 41, 933-942.	1.0	30
65	Two clinical drugs deubiquitinase inhibitor auranofin and aldehyde dehydrogenase inhibitor disulfiram trigger synergistic anti-tumor effects <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2016, 7, 2796-2808.	0.8	57
66	Repurposing Disulfiram as An Anti-Cancer Agent: Updated Review on Literature and Patents. Recent Patents on Anti-Cancer Drug Discovery, 2019, 14, 113-132.	0.8	85
68	Deubiquitinase Inhibitors: An Emerging Therapeutic Class. RSC Drug Discovery Series, 2020, , 234-253.	0.2	0
69	Ubiquitin-Specific Proteases as Druggable Targets. Drug Target Review, 2015, 2, 60-64.	1.0	11
70	Viral deubiquitinases and innate antiviral immune response in livestock and poultry. Journal of Veterinary Medical Science, 2022, 84, 102-113.	0.3	0
71	Inhibition of USP14 influences alphaherpesvirus proliferation by degrading viral VP16 protein via ER stress-triggered selective autophagy. Autophagy, 2022, 18, 1801-1821.	4.3	22
72	Deubiquitylating Enzymes. , 2021, , 523-530.		0
73	The Gene Expression Analysis of Peripheral Blood Monocytes From Psoriasis Vulgaris Patients With Different Traditional Chinese Medicine Syndromes. Frontiers in Pharmacology, 2021, 12, 759741.	1.6	2

#	Article	IF	Citations
74	Repurposing the Pathogen Box compounds for identification of potent anti-malarials against blood stages of Plasmodium falciparum with PfUCHL3 inhibitory activity. Scientific Reports, 2022, 12, 918.	1.6	4
75	Ubiquitin and Legionella: From bench to bedside. Seminars in Cell and Developmental Biology, 2022, 132, 230-241.	2.3	14
76	RBM47/SNHG5/FOXO3 axis activates autophagy and inhibits cell proliferation in papillary thyroid carcinoma. Cell Death and Disease, 2022, 13, 270.	2.7	30
77	HAUSP Is a Key Epigenetic Regulator of the Chromatin Effector Proteins. Genes, 2022, 13, 42.	1.0	2
79	Hepatitis B Virus X Protein Is Stabilized by the Deubiquitinating Enzyme VCPIP1 in a Ubiquitin-Independent Manner by Recruiting the 26S Proteasome Subunit PSMC3. Journal of Virology, 0, , .	1.5	2
80	The emerging role of Deubiquitinases (DUBs) in parasites: A foresight review. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	5
81	Role of circRNA in E3 Modification under Human Disease. Biomolecules, 2022, 12, 1320.	1.8	2
82	Design and Synthesis of Ubiquitin-Based Chemical Tools with Unnatural Amino Acids for Selective Detection of Deubiquitinases. Methods in Molecular Biology, 2023, , 59-78.	0.4	0
83	RNAi-Based Screening for the Identification of Specific Substrate-Deubiquitinase Pairs. Methods in Molecular Biology, 2023, , 95-105.	0.4	0
84	The significance of the crosstalk between ubiquitination or deubiquitination and ncRNAs in non-small cell lung cancer. Frontiers in Oncology, 0, 12, .	1.3	2
85	UCHL1 regulated by Sp1 ameliorates cochlear hair cell senescence and oxidative damage. Experimental and Therapeutic Medicine, 2023, 25, .	0.8	0
86	The Role of Deubiquitinating Enzyme in Head and Neck Squamous Cell Carcinoma. International Journal of Molecular Sciences, 2023, 24, 552.	1.8	6
87	The deubiquitinating enzyme UCHL3 promotes anaplastic thyroid cancer progression and metastasis through Hippo signaling pathway. Cell Death and Differentiation, 2023, 30, 1247-1259.	5.0	10
88	USP8 inhibition regulates autophagy flux and controls Salmonella infection. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	0