Methylcellulose, a Cellulose Derivative with Original Ph Applications

Polymers 7, 777-803 DOI: 10.3390/polym7050777

Citation Report

#	Article	IF	CITATIONS
1	Block‣tructured 1,4â€ <scp>d</scp> lucans by Transglycosidation of Cellulose Ethers. Macromolecular Chemistry and Physics, 2016, 217, 889-900.	1.1	5
2	3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds. Scientific Reports, 2016, 6, 29408.	1.6	7
3	Transparent Porous Polysaccharide Cryogels Provide Biochemically Defined, Biomimetic Matrices for Tunable 3D Cell Culture. Chemistry of Materials, 2016, 28, 3762-3770.	3.2	47
4	High Conductivity, High Strength Solid Electrolytes Formed by in Situ Encapsulation of Ionic Liquids in Nanofibrillar Methyl Cellulose Networks. ACS Applied Materials & Interfaces, 2016, 8, 13426-13436.	4.0	67
5	Evaluation of efficiency and trapping capacity of restricted access media trap columns for the online trapping of small molecules. Journal of Separation Science, 2016, 39, 4183-4191.	1.3	9
6	Self-healing of thermally-induced, biocompatible and biodegradable protein hydrogel. RSC Advances, 2016, 6, 56183-56192.	1.7	43
7	Ion dynamics in methylcellulose–LiBOB solid polymer electrolytes. Ionics, 2016, 22, 2113-2121.	1.2	14
8	Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis. Biomacromolecules, 2016, 17, 454-465.	2.6	30
9	Gliding Direction of Mycoplasma mobile. Journal of Bacteriology, 2016, 198, 283-290.	1.0	20
10	Effect of antimicrobial coatings on microbiological, sensorial and physico-chemical properties of pre-cut cauliflowers. Postharvest Biology and Technology, 2016, 116, 1-7.	2.9	14
11	Generation of Homogenous Three-Dimensional Pancreatic Cancer Cell Spheroids Using an Improved Hanging Drop Technique. Tissue Engineering - Part C: Methods, 2016, 22, 312-321.	1.1	116
12	Fabrication and characterization of cell sheets using methylcellulose and PNIPAAm thermoresponsive polymers: A comparison Study. Journal of Biomedical Materials Research - Part A, 2017, 105, 1346-1354.	2.1	18
13	A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. European Polymer Journal, 2017, 88, 373-392.	2.6	327
14	Self-assembled cellulose particles for agrochemical applications. European Polymer Journal, 2017, 93, 706-716.	2.6	18
15	Enhanced imaging of lipid rich nanoparticles embedded in methylcellulose films for transmission electron microscopy using mixtures of heavy metals. Micron, 2017, 99, 40-48.	1.1	28
16	Supramolecular structure of methyl cellulose and lambda- and kappa-carrageenan in water: SAXS study using the string-of-beads model. Carbohydrate Polymers, 2017, 172, 184-196.	5.1	7
17	Functional properties of cellulose derivatives to tailor a model sponge cake using rheology and cellular structure analysis. Food Hydrocolloids, 2017, 70, 304-312.	5.6	15
18	Methylcellulose stabilized multi-walled carbon nanotubes dispersion for sustainable cement composites. Construction and Building Materials, 2017, 146, 76-85.	3.2	47

#	Article	IF	CITATIONS
19	Chemically Functionalized Natural Cellulose Materials for Effective Triboelectric Nanogenerator Development. Advanced Functional Materials, 2017, 27, 1700794.	7.8	223
20	Static and Dynamic Large Strain Properties of Methyl Cellulose Hydrogels. Macromolecules, 2017, 50, 4817-4826.	2.2	14
21	Synthesis and characterization of alkyl cellulose ï‰-carboxyesters for amorphous solid dispersion. Cellulose, 2017, 24, 609-625.	2.4	9
23	Colony, hanging drop, and methylcellulose three dimensional hypoxic growth optimization of renal cell lines. Cytotechnology, 2017, 69, 565-578.	0.7	16
24	Rational design to develop a non-reactive model food imitative of a baked cereal product by replacing the functional properties of ingredients. Food Hydrocolloids, 2017, 63, 552-560.	5.6	6
25	Conformation of Methylcellulose as a Function of Poly(ethylene glycol) Graft Density. ACS Macro Letters, 2017, 6, 1274-1279.	2.3	28
26	An ultra melt-resistant hydrogel from food grade carbohydrates. RSC Advances, 2017, 7, 45535-45544.	1.7	17
27	The effect of HPMC and MC as pore formers on the rheology of the implant microenvironment and the drug release in vitro. Carbohydrate Polymers, 2017, 177, 433-442.	5.1	12
28	Classification of the printability of selected food for 3D printing: Development of an assessment method using hydrocolloids as reference material. Journal of Food Engineering, 2017, 215, 23-32.	2.7	128
29	Body heat responsive gelation of methylcellulose formulation containing betaine. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1829-1836.	0.6	3
30	Natural and synthetic polymers in fabric and home care applications. ChemistrySelect, 2017, 2, .	0.7	9
31	Rapid preparation of all-cellulose composites by solvent welding based on the use of aqueous solvent. European Polymer Journal, 2017, 97, 292-298.	2.6	21
32	Bio-inks for 3D bioprinting: recent advances and future prospects. Polymer Chemistry, 2017, 8, 4451-4471.	1.9	256
33	Development of a clay based bioink for 3D cell printing for skeletal application. Biofabrication, 2017, 9, 034103.	3.7	238
34	Bioprinting of Thermoresponsive Hydrogels for Next Generation Tissue Engineering: A Review. Macromolecular Materials and Engineering, 2017, 302, 1600266.	1.7	135
35	NMR characterization of methylcellulose: Chemical shift assignment and mole fraction of monomers in the polymer chains. Carbohydrate Polymers, 2017, 157, 728-738.	5.1	19
36	Cytotoxicity of methylcellulose-based films containing graphenes and curcumin on human lung fibroblasts. Process Biochemistry, 2017, 52, 243-249.	1.8	12
37	Physicochemical behaviour of semi-rigid biopolymers in aqueous medium. Food Hydrocolloids, 2017, 68, 122-127.	5.6	6

#	Article	IF	Citations
38	TEMPO-Oxidized Cellulose with High Degree of Oxidation. Polymers, 2017, 9, 421.	2.0	123
39	Antimicrobial Films Based on Chitosan and Methylcellulose Containing Natamycin for Active Packaging Applications. Coatings, 2017, 7, 177.	1.2	23
40	Influence of Hydrophilic Polymers on the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi mathvariant="bold-italic">β</mml:mi </mml:mrow>Factor in Weibull Equation Applied to the Release Kinetics of a Biologically Active Complex of<i>Aesculus hippocastanum</i>. International</mml:math 	1.2	10
41	Coefficient of Friction Between Carboxymethylated Hyaluronic Acid-Based Polymer Films and the Ocular Surface. , 2017, 58, 6166.		4
42	Gel electrolytes with lâ^'/I3â^' redox mediator based on methylcellulose for dye-sensitized solar cells. Optical Materials, 2018, 79, 381-389.	1.7	12
43	Multifaceted polymeric materials in threeâ€dimensional processing (3DP) technologies: Current progress and prospects. Polymers for Advanced Technologies, 2018, 29, 1586-1602.	1.6	8
44	Applications and Properties of Physical Gels Obtained on the Basis of Cellulose Derivatives. Lecture Notes on Multidisciplinary Industrial Engineering, 2018, , 185-200.	0.4	0
46	Advances in thermosensitive polymer-grafted platforms for biomedical applications. Materials Science and Engineering C, 2018, 92, 1016-1030.	3.8	60
47	Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Advances, 2018, 8, 825-842.	1.7	284
48	Solvent isotope effect on gelation process of methylcellulose studied by NMR and DSC. Polymer Bulletin, 2018, 75, 4245-4255.	1.7	3
49	Reprint of: Classification of the printability of selected food for 3D printing: Development of an assessment method using hydrocolloids as reference material. Journal of Food Engineering, 2018, 220, 28-37.	2.7	54
50	Properties of Composite Films of Hydroxyethyl Cellulose and Hydroxypropyl Cellulose with Poly-N-methyl-N-vinylacetamide. Polymer Science - Series A, 2018, 60, 788-795.	0.4	2
53	Effect of Poly(ethylene glycol) Grafting Density on Methylcellulose Fibril Formation. Macromolecules, 2018, 51, 9413-9421.	2.2	27
54	3D scaffolds for brain tissue regeneration: architectural challenges. Biomaterials Science, 2018, 6, 2812-2837.	2.6	62
55	Impact-induced gelation in aqueous methylcellulose solutions. Chemical Communications, 2018, 54, 12578-12581.	2.2	10
56	Immobilizing Laccase on Modified Cellulose/CF Beads to Degrade Chlorinated Biphenyl in Wastewater. Polymers, 2018, 10, 798.	2.0	17
57	A Methylcellulose Hydrogel as Support for 3D Plotting of Complex Shaped Calcium Phosphate Scaffolds. Gels, 2018, 4, 68.	2.1	44
58	Effect of vitamin derivatives on gelation rate and gel strength of methylcellulose. Carbohydrate Polymers, 2018, 196, 414-421.	5.1	14

#	Article	IF	CITATIONS
59	Layered structure graphene oxide/methylcellulose composites with enhanced mechanical and gas barrier properties. Journal of Materials Chemistry A, 2018, 6, 13203-13214.	5.2	37
60	Entrapment of essential oils in hydrogels for biomedical applications. , 2018, , 125-141.		9
61	D-cycloserine nasal formulation development for anxiety disorders by using polymeric gels. Drug Discoveries and Therapeutics, 2018, 12, 142-153.	0.6	3
62	Rheology and Its Implications on Performance of Liquid Dosage Forms. , 2018, , 549-597.		6
63	Mechanocatalytic Solvent-Free Esterification of Sugarcane Bagasse. Polymers, 2018, 10, 282.	2.0	10
64	Coolingâ€Triggered Shapeshifting Hydrogels with Multiâ€Shape Memory Performance. Advanced Materials, 2018, 30, e1707461.	11.1	51
65	Stimuli-Responsive Cellulose Based Hydrogels. Polymers and Polymeric Composites, 2018, , 1-40.	0.6	0
66	Review of 3D printable hydrogels and constructs. Materials and Design, 2018, 159, 20-38.	3.3	182
67	Pharmaceutical Applications of Cellulose Ethers and Cellulose Ether Esters. Biomacromolecules, 2018, 19, 2351-2376.	2.6	192
69	Systematic Hydrogenâ€Bond Manipulations To Establish Polysaccharide Structure–Property Correlations. Angewandte Chemie, 2019, 131, 13261-13266.	1.6	35
70	The preparation of oxidized methylcellulose crosslinked by adipic acid dihydrazide loaded with vitamin C for traumatic brain injury. Journal of Materials Chemistry B, 2019, 7, 4499-4508.	2.9	19
71	Systematic Hydrogenâ€Bond Manipulations To Establish Polysaccharide Structure–Property Correlations. Angewandte Chemie - International Edition, 2019, 58, 13127-13132.	7.2	76
72	Effect of organic anion with multiple hydrophobic sites on gelation and phase separation in aqueous methylcellulose solution: Beyond simple salting-in effect. Polymer, 2019, 178, 121574.	1.8	7
73	Synthesis of very-fine PbS nanoparticles dispersed homogeneously in MC matrix: effect of concentration on the structural and optical properties of host polymer. Materials Research Express, 2019, 6, 115332.	0.8	47
74	Properties of Chemically Cross-Linked Methylcellulose Gels. Macromolecules, 2019, 52, 7740-7748.	2.2	15
75	Development of a Mucoadhesive in Situ Gelling Formulation for the Delivery of Lactobacillus gasseri into Vaginal Cavity. Pharmaceutics, 2019, 11, 511.	2.0	21
76	Crosslinking Kinetics of Methylcellulose Aqueous Solution and Its Potential as a Scaffold for Tissue Engineering. Polymers, 2019, 11, 1772.	2.0	26
77	Emulsion Formation and Stabilization by Biomolecules: The Leading Role of Cellulose. Polymers, 2019, 11, 1570.	2.0	111

#	Article	IF	CITATIONS
78	Combining Stem Cells and Biomaterial Scaffolds for Constructing Tissues and Cell Delivery. StemJournal, 2019, 1, 1-25.	0.8	62
79	High-throughput single-cell rheology in complex samples by dynamic real-time deformability cytometry. Nature Communications, 2019, 10, 415.	5.8	88
80	Methane to Chloromethane by Mechanochemical Activation: A Selective Radical Pathway. Journal of the American Chemical Society, 2019, 141, 11212-11218.	6.6	37
81	Polysaccharide-based amorphous solid dispersions (ASDs) for improving solubility and bioavailability of drugs. , 2019, , 271-317.		3
82	Edible films made from blends of gelatin and polysaccharide-based emulsifiers - A comparative study. Food Hydrocolloids, 2019, 96, 555-567.	5.6	55
83	Water-Soluble Cellulose Derivatives as Suitable Matrices for Multifunctional Materials. Biomacromolecules, 2019, 20, 2786-2795.	2.6	38
84	Silver nanoparticles fabricated by reducing property of cellulose derivatives. Drug Discoveries and Therapeutics, 2019, 13, 70-79.	0.6	20
85	Injectable cellulose-based hydrogels as nucleus pulposus replacements: Assessment of in vitro structural stability, ex vivo herniation risk, and in vivo biocompatibility. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 96, 204-213.	1.5	32
86	Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications. International Journal of Biological Macromolecules, 2019, 133, 545-563.	3.6	98
87	Phenylboronic acid-conjugated cationic methylcellulose for hepatocellular carcinoma-targeted drug/gene co-delivery systems. Journal of Industrial and Engineering Chemistry, 2019, 75, 148-157.	2.9	5
88	Third Generation Cyclodextrin Graft with Polyurethane Embedded in Hydrogel for a Sustained Drug Release: Complete Shrinkage of Melanoma. ACS Applied Bio Materials, 2019, 2, 1762-1771.	2.3	14
89	Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues. Journal of Controlled Release, 2019, 301, 13-27.	4.8	93
90	Effect of mono- and dicationic ionic liquids on the viscosity and thermogelation of methylcellulose in the semi-diluted regime. Carbohydrate Polymers, 2019, 214, 174-185.	5.1	12
91	3D Bioprinting of Functional Islets of Langerhans in an Alginate/Methylcellulose Hydrogel Blend. Advanced Healthcare Materials, 2019, 8, e1801631.	3.9	67
92	Dietary fiber sources and human benefits: The case study of cereal and pseudocereals. Advances in Food and Nutrition Research, 2019, 90, 83-134.	1.5	79
93	Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing. Frontiers in Plant Science, 2019, 10, 176.	1.7	52
94	Cholic Acid-Conjugated Methylcellulose-Polyethylenimine Nano-Aggregates for Drug Delivery Systems. Nanomaterials, 2019, 9, 459.	1.9	10
95	Recent Advances in Engineered Stem Cell-Derived Cell Sheets for Tissue Regeneration. Polymers, 2019, 11, 209.	2.0	17

#	Article	IF	CITATIONS
96	Mechanical reinforcement of methylcellulose hydrogels by rigid particle additives. Mechanics of Materials, 2019, 132, 57-65.	1.7	10
97	Co-encapsulation of acyclovir and curcumin into microparticles improves the physicochemical characteristics and potentiates in vitro antiviral action: Influence of the polymeric composition. European Journal of Pharmaceutical Sciences, 2019, 131, 167-176.	1.9	13
98	In situ mucoadhesive hydrogel based on methylcellulose/xyloglucan for periodontitis. Journal of Sol-Gel Science and Technology, 2019, 89, 531-542.	1.1	13
99	Critical Review on Sustainable Homogeneous Cellulose Modification: Why Renewability Is Not Enough. ACS Sustainable Chemistry and Engineering, 2019, 7, 1826-1840.	3.2	121
100	Adsorption of non-ionic cellulose ethers on cement revisited. Construction and Building Materials, 2019, 195, 441-449.	3.2	14
101	Testosterone- and vitamin-grafted cellulose ethers for sustained release of camptothecin. Carbohydrate Polymers, 2019, 206, 641-652.	5.1	9
102	Stimuli-Responsive Cellulose-Based Hydrogels. Polymers and Polymeric Composites, 2019, , 269-308.	0.6	3
103	Investigating the effect of sterilisation methods on the physical properties and cytocompatibility of methyl cellulose used in combination with alginate for 3D-bioplotting of chondrocytes. Journal of Materials Science: Materials in Medicine, 2019, 30, 10.	1.7	54
104	Methyl cellulose/cellulose nanocrystal nanocomposite fibers with high ductility. European Polymer Journal, 2019, 112, 334-345.	2.6	34
105	Influence of polymer molecular weight on the properties of in situ synthesized silver–methylcellulose nanocomposite films with a CO2 laser. Journal of Materials Science, 2020, 55, 2090-2100.	1.7	3
106	Controlled release of Mitomycin C from modified cellulose based thermo-gel prevents post-operative de novo peritoneal adhesion. Carbohydrate Polymers, 2020, 229, 115552.	5.1	26
107	Revisiting very disperse macromolecule populations in hydrodynamic and light scattering studies of sodium carboxymethyl celluloses. Carbohydrate Polymers, 2020, 229, 115452.	5.1	13
108	The application of natural polymer-based hydrogels for agriculture. , 2020, , 329-356.		13
109	Innovating Generation of Nanocellulose from Industrial Hemp by Dual Asymmetric Centrifugation. ACS Sustainable Chemistry and Engineering, 2020, 8, 1850-1858.	3.2	32
110	Internal Structure of Methylcellulose Fibrils. Macromolecules, 2020, 53, 398-405.	2.2	22
111	Water-based 2D printing of magnetically active cellulose derivative nanocomposites. Carbohydrate Polymers, 2020, 233, 115855.	5.1	8
112	Interactions of bile salts with a dietary fibre, methylcellulose, and impact on lipolysis. Carbohydrate Polymers, 2020, 231, 115741.	5.1	9
113	In situ microemulsion-gel obtained from bioadhesive hydroxypropyl methylcellulose films for transdermal administration of zidovudine. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110739.	2.5	10

#	Article	IF	CITATIONS
114	Effect of very fine nanoparticle and temperature on the electric and dielectric properties of MC-PbS polymer nanocomposite films. Results in Physics, 2020, 16, 102898.	2.0	35
115	Methylcellulose fibrils: a mini review. Polymer International, 2020, 69, 125-130.	1.6	26
116	Solid state nuclear magnetic resonance studies of hydroxypropylmethylcellulose acetyl succinate polymer, a useful carrier in pharmaceutical solid dispersions. Magnetic Resonance in Chemistry, 2020, 58, 1036-1048.	1.1	9
117	Design of strong and tough methylcellulose-based hydrogels using kosmotropic Hofmeister salts. Cellulose, 2020, 27, 1113-1126.	2.4	26
118	Development, characterization and antimicrobial activity of sodium dodecyl sulfate-polysaccharides capsules containing eugenol. Carbohydrate Polymers, 2020, 230, 115562.	5.1	8
119	Polyelectrolyte cellulose gel with PEG/water: Toward fully green lubricating grease. Carbohydrate Polymers, 2020, 230, 115670.	5.1	22
120	Effects of ultrasonicated methylcellulose coating on French fries during deep frying process. Journal of Food Process Engineering, 2020, 43, e13332.	1.5	5
121	Determination of the Young's modulus for alginate-based hydrogel with magnetite-particles depending on storage conditions and particle concentration. Journal of Magnetism and Magnetic Materials, 2020, 501, 166395.	1.0	13
122	PREPARATION AND CHARACTERIZATION OF HYDROXYPROPYL METHYLCELLULOSE PRODUCED FROM $\hat{1}\pm$ -CELLULOSE BETUNG BAMBOO (DENDROCALAMUS ASPER) AND IT $\hat{a}\in$ ^{MS} EVALUATION ON GEL FORMULATION. International Journal of Pharmacy and Pharmaceutical Sciences, 0, , 156-165.	0.3	2
123	Synthesis and biological evaluation of N-Alkylamide derivatives as anti-tumor agents. Journal of Traditional Chinese Medical Sciences, 2020, 7, 393-403.	0.1	2
124	The Effect of Plasticizers towards the Characteristics of Methylcellulose Film Packaging. IOP Conference Series: Materials Science and Engineering, 2020, 845, 012017.	0.3	5
125	Homogeneous gelation leads to nanowire forests in the transition between electrospray and electrospinning. Materials Horizons, 2020, 7, 2643-2650.	6.4	17
126	Multicomponent polysaccharide alginate-based bioinks. Journal of Materials Chemistry B, 2020, 8, 8171-8188.	2.9	88
127	Cellulose and its derivatives for lithium ion battery separators: A review on the processing methods and properties. Carbohydrate Polymer Technologies and Applications, 2020, 1, 100001.	1.6	45
128	A Simplified Method of Synthesis to Obtain Zwitterionic Cellulose under Mild Conditions with Active Ionic Moieties. Molecules, 2020, 25, 3065.	1.7	8
129	Environmentally Friendly Methylcellulose-Based Binders for Active and Passive Dust Control. ACS Applied Materials & Interfaces, 2020, 12, 50860-50869.	4.0	10
130	3D Bioprinting of Lignocellulosic Biomaterials. Advanced Healthcare Materials, 2020, 9, e2001472.	3.9	42
131	Demystifying thickener classes food additives though molecular gastronomy. International Journal of Gastronomy and Food Science, 2020, 22, 100262.	1.3	8

#	Article	IF	CITATIONS
132	Thermo-Responsive Methylcellulose Hydrogels: From Design to Applications as Smart Biomaterials. Tissue Engineering - Part B: Reviews, 2021, 27, 486-513.	2.5	47
133	Evaluation of the subtle trade-off between physical stability and thermo-responsiveness in crosslinked methylcellulose hydrogels. Soft Matter, 2020, 16, 5577-5587.	1.2	12
134	MethylCellulose Solutions as Shock Absorbers. Key Engineering Materials, 0, 842, 22-27.	0.4	0
135	Particle bed 3D printing by selective cement activation – Applications, material and process technology. Cement and Concrete Research, 2020, 134, 106077.	4.6	61
136	Development of a New Coarse-Grained Model to Simulate Assembly of Cellulose Chains Due to Hydrogen Bonding. Journal of Chemical Theory and Computation, 2020, 16, 4599-4614.	2.3	14
137	Stability assessment of levofloxacin in three different suspension vehicles. Journal of Pharmacy Practice and Research, 2020, 50, 220-225.	0.5	0
139	Tuning the conformation and mechanical properties of silk fibroin hydrogels. European Polymer Journal, 2020, 134, 109842.	2.6	95
140	Effect of γ-aminopropyltriethoxysilane on the properties of cellulose acetate butyrate modified acrylic waterborne coatings. Reactive and Functional Polymers, 2020, 154, 104657.	2.0	24
141	Polymers in cosmetics. , 2020, , 545-565.		14
142	Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications. Carbohydrate Polymers, 2020, 238, 116192.	5.1	66
143	Obtaining Cancer Stem Cell Spheres from Gynecological and Breast Cancer Tumors. Journal of Visualized Experiments, 2020, , .	0.2	3
144	Water-based fabrication of garnet-based solid electrolyte separators for solid-state lithium batteries. Green Chemistry, 2020, 22, 4952-4961.	4.6	23
145	Salt-induced LCST-type thermal gelation of methylcellulose: quantifying non-specific interactions <i>via</i> fluctuation theory. Physical Chemistry Chemical Physics, 2020, 22, 15999-16006.	1.3	6
146	Stable cellular foams and oil powders derived from methylated microcrystalline cellulose stabilized pickering emulsions. Food Hydrocolloids, 2020, 104, 105742.	5.6	19
147	Mitigation of shock loading on structures using aqueous methylcellulose solution. International Journal of Impact Engineering, 2020, 140, 103547.	2.4	4
148	Methylcellulose Hydrogel with Melissa officinalis Essential Oil as a Potential Treatment for Oral Candidiasis. Microorganisms, 2020, 8, 215.	1.6	27
149	Thermal stimuli-responsive hyaluronic acid loaded cellulose based physical hydrogel for post-surgical de novo peritoneal adhesion prevention. Materials Science and Engineering C, 2020, 110, 110661.	3.8	23
150	Liver stem cells. , 2020, , 723-736.		1

#	Article	IF	CITATIONS
151	Influence of methylcellulose on the impermeability properties of carbon nanotube-based cement pastes at different water-to-cement ratios. Construction and Building Materials, 2020, 244, 118403.	3.2	11
152	Development and characterization of carbohydrate-based thermosensitive hydrogels for cartilage tissue engineering. European Polymer Journal, 2020, 129, 109637.	2.6	20
153	Manuka honey and bioactive glass impart methylcellulose foams with antibacterial effects for wound-healing applications. Biomedical Materials (Bristol), 2020, 15, 065002.	1.7	23
154	Study of the Effects Induced by Ball Milling Treatment on Different Types of Hydrocolloids in a Corn Starch–Rice Flour System. Foods, 2020, 9, 517.	1.9	2
155	Heterogeneously flagellated microswimmer behavior in viscous fluids. Biomicrofluidics, 2020, 14, 024112.	1.2	9
156	Structural characterization using SAXS and rheological behaviors of pluronic F127 and methylcellulose blends. Polymer Bulletin, 2021, 78, 1175-1187.	1.7	12
157	Production of a novel poly(É›â€caprolactone)â€methylcellulose electrospun wound dressing by incorporating bioactive glass and Manuka honey. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 180-192.	1.6	37
158	Methyl cellulose solutions and gels: fibril formation and gelation properties. Progress in Polymer Science, 2021, 112, 101324.	11.8	63
159	Dietary fibre in gastrointestinal health and disease. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 101-116.	8.2	367
160	Adhesives used in herbaria: Current practice with regard to what we know from written sources on mounting herbarium specimens and conservation. Taxon, 2021, 70, 1-15.	0.4	1
161	Synthesis and Fluorescent Thermoresponsive Properties of Tetraphenylethylene‣abeled Methylcellulose. Macromolecular Rapid Communications, 2021, 42, e2000497.	2.0	3
162	Electrochemical Properties of CMC–PVA Polymer Blend Electrolyte for Solid State Electric Double Layer Capacitors. Journal of Electronic Materials, 2021, 50, 303-313.	1.0	5
163	Development of methylcelluloseâ€based sustainedâ€release dosage by semisolid extrusion additive manufacturing in drug delivery system. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 257-268.	1.6	13
164	Interactions in N-[(2-hydroxyl)-propyl-3-trimethyl ammonium] chitosan chloride/sodium carboxymethyl cellulose based films. Journal of Dispersion Science and Technology, 2021, 42, 161-172.	1.3	6
165	Different cellulosic polymers for synthesizing silver nanoparticles with antioxidant and antibacterial activities. Scientific Reports, 2021, 11, 84.	1.6	57
166	Cellulose and its derivatives in textiles: primitive application to current trend. , 2021, , 33-63.		5
167	Effect of Parameter Variation on the Viscosity of Ethanol Gel Propellants. Journal of Aerospace Technology and Management, 0, 13, .	0.3	2
168	A Critical Review on the Synthesis of Natural Sodium Alginate Based Composite Materials: An Innovative Biological Polymer for Biomedical Delivery Applications. Processes, 2021, 9, 137.	1.3	67

#	Article	IF	CITATIONS
169	Statistical analysis on conductivity of MC-KOH-PEG membrane using central composite design. Materials Today: Proceedings, 2021, 47, 1313-1316.	0.9	1
170	Luminescent Gold Nanoclusterâ€Methylcellulose Composite Optical Fibers with Low Attenuation Coefficient and High Photostability. Small, 2021, 17, e2005205.	5.2	25
171	The role of MFC and hydrophobically modified ethyl(hydroxyethyl)cellulose in film formation and the barrier properties of methyl nanocellulose film. Nordic Pulp and Paper Research Journal, 2021, 36, 312-322.	0.3	0
172	Natural Biomaterials and Their Use as Bioinks for Printing Tissues. Bioengineering, 2021, 8, 27.	1.6	93
173	A 3D Bioprinted Material That Recapitulates the Perivascular Bone Marrow Structure for Sustained Hematopoietic and Cancer Models. Polymers, 2021, 13, 480.	2.0	14
174	Salt-Dependent Structure in Methylcellulose Fibrillar Gels. Macromolecules, 2021, 54, 2090-2100.	2.2	7
175	Amelioration of the stability of polyunsaturated fatty acids and bioactive enriched vegetable oil: blending, encapsulation, and its application. Critical Reviews in Food Science and Nutrition, 2022, 62, 6253-6276.	5.4	14
176	Nanogels with High Loading of Anesthetic Nanocrystals for Extended Duration of Sciatic Nerve Block. ACS Applied Materials & Interfaces, 2021, 13, 17220-17235.	4.0	11
177	CoFe2O4@methylcellulose synthesized as a new magnetic nanocomposite to tetracycline adsorption: modeling, analysis, and optimization by response surface methodology. Journal of Polymer Research, 2021, 28, 1.	1.2	33
178	The Recent Progress in Cellulose Paperâ€Based Triboelectric Nanogenerators. Advanced Sustainable Systems, 2021, 5, 2100034.	2.7	17
179	Synthesis of Methylcellulose Using Dimethyl Carbonate with Conventional and Green Methods. Key Engineering Materials, 0, 884, 379-386.	0.4	1
181	Hydrophilic modification of methylcellulose to obtain thermoviscosifying polymers without macro-phase separation. Carbohydrate Polymers, 2021, 260, 117792.	5.1	10
183	A Review on the Role of Polymers in Pharmaceutical Applications. Venoms and Toxins, 2021, 1, 41-55.	0.3	0
184	The effect of borate bioactive glass on the printability of methylcellulose-manuka honey hydrogels. Journal of Materials Research, 2021, 36, 3843-3850.	1.2	6
185	Temporally persistent networks of long-lived mixed wormlike micelles of zwitterionic and anionic surfactants. Journal of Molecular Liquids, 2021, 342, 116955.	2.3	17
186	Recent Advances in Extraction, Techno-functional Properties, Food and Therapeutic Applications as Well as Safety Aspects of Natural and Modified Stabilizers. Food Reviews International, 2023, 39, 2233-2276.	4.3	7
187	Recent Advancements in 3D Printing of Polysaccharide Hydrogels in Cartilage Tissue Engineering. Materials, 2021, 14, 3977.	1.3	31
188	Operational Variables on the Processing of Porous Titanium Bodies by Gelation of Slurries with an Expansive Porogen. Materials, 2021, 14, 4744.	1.3	0

#	Article	IF	CITATIONS
189	Cellulose as a Natural Emulsifier: From Nanocelluloses to Macromolecules. , 0, , .		2
190	Methylcellulose–Cellulose Nanocrystal Composites for Optomechanically Tunable Hydrogels and Fibers. Materials, 2021, 14, 5137.	1.3	10
191	Norbornene-functionalized methylcellulose as a thermo- and photo-responsive bioink. Biofabrication, 2021, 13, 045023.	3.7	13
192	Nitrogen and sulfur co-doped carbon dots: Facile synthesis and multifunctional applications for pH sensing, temperature sensing and RNA-selective imaging. Microchemical Journal, 2021, 168, 106248.	2.3	17
193	A colorimetric microfluidic paper-based analytical device for sulfonamides in cow milk using enzymatic inhibition. Food Chemistry, 2021, 356, 129692.	4.2	18
194	Hyperelastic modeling of solid methyl cellulose hydrogel under quasi-static compression. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 124, 104857.	1.5	6
195	Creaming Layers of Nanocellulose Stabilized Water-Based Polystyrene: High-Solids Emulsions for 3D Printing. Frontiers in Chemical Engineering, 2021, 3, .	1.3	4
196	Oscillatory rheology of carboxymethyl cellulose gels: Influence of concentration and pH. Carbohydrate Polymers, 2021, 267, 118117.	5.1	34
197	Characterization of κ arrageenan/methylcellulose/cellulose nanocrystal hydrogels for <scp>3D</scp> bioprinting. Polymer International, 2022, 71, 181-191.	1.6	14
198	Ultra-high gas barrier and enhanced mechanical properties of corn cellulose nanocomposite films filled with graphene oxide nanosheets. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100066.	1.6	11
199	Cellulose and its derivatives: towards biomedical applications. Cellulose, 2021, 28, 1893-1931.	2.4	386
200	Survival and reduction in foodborne bacteria using methyl cellulose film doped with europium oxide nanoparticles. Food Science and Nutrition, 2020, 8, 291-298.	1.5	9
201	In-situ Raman spectroscopy: An effective technique for the quantification of LCST transition of methylcellulose hydrogels. Materials Letters, 2020, 274, 128011.	1.3	8
202	Potential of soil-derived fungal biocontrol agents applied as a soil amendment and a seed coating to control Verticillium wilt of sugar beet. Biocontrol Science and Technology, 2017, 27, 1019-1037.	0.5	10
203	Stabilizing effect of methylcellulose on the dispersion of multi-walled carbon nanotubes in cementitious composites. Nanotechnology Reviews, 2020, 9, 93-104.	2.6	6
204	Evaluation Possibilities of Cellulose Derivatives in Food Products. Journal of Forestry Faculty of Kastamonu University, 2016, 16, .	0.1	3
205	Influence of Acetylated Annealed Starch on the Release of β-Escin from the Anionic and Non-Ionic Hydrophilic Gels. Pharmaceutics, 2020, 12, 84.	2.0	12
206	Role of cellulose family in fibril organization of collagen for forming 3D cancer spheroids: <i> In vitro</i> and <i> in silico</i> approach. BioImpacts, 2020, 11, 111-117.	0.7	7

#	Article	IF	CITATIONS
207	Dual Extrusion Patterning Drives Tissue Development Aesthetics and Shape Retention in 3D Printed Nippleâ€Areola Constructs. Advanced Healthcare Materials, 2021, 10, e2101249.	3.9	8
208	Effect of bassorin (derived from gum tragacanth) and halloysite nanotubes on physicochemical properties and the osteoconductivity of methylcellulose-based injectable hydrogels. International Journal of Biological Macromolecules, 2021, 192, 869-882.	3.6	11
209	Chemical Modification of Cellulose in Solvents for Functional Materials. , 2018, , 1-34.		1
210	Chemical Modification of Cellulose in Solvents for Functional Materials. , 2019, , 427-460.		1
211	Synthesis and Characterization of Methylcellulose-Poly(ethylenimine)2k for Gene Delivery System. International Journal of Bioscience, Biochemistry, Bioinformatics (IJBBB), 2019, 9, 134-140.	0.2	0
213	Origins of the suppression of fibril formation in grafted methylcellulose solutions. Physical Review Materials, 2020, 4, .	0.9	2
214	Plasticizer Effect and Ionic Cross-linking: the Impact of Incorporating Divalent Salts in Methylcellulose Films for Colorimetric Detection of Volatile Ammonia. Food Biophysics, 2022, 17, 59-74.	1.4	11
215	Novel solid biopolymer electrolyte based on methyl cellulose with enhanced ion transport properties. Journal of Applied Polymer Science, 2022, 139, 51826.	1.3	20
216	O-Methylation in Carbohydrates: An NMR and MD Simulation Study with Application to Methylcellulose. Journal of Physical Chemistry B, 2021, 125, 11967-11979.	1.2	7
217	Uncovering the Polydisperse Characteristics of Modification Inhomogeneity for Starch during Oxidation by Sodium Periodate. Macromolecules, 2021, 54, 10537-10546.	2.2	1
218	Use of Nanoclays and Methylcellulose to Tailor Rheology for Three-Dimensional Concrete Printing. ACI Materials Journal, 2021, , .	0.3	3
219	Linear and Nonlinear Optical Characterization of Dye–Polymer Composite Films Based on Methylcellulose Incorporated with Varying Content of Methylene Blue. Journal of Electronic Materials, 2022, 51, 675-683.	1.0	15
220	Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules, 2021, 26, 6802.	1.7	81
221	Cellulosic Polymers for Enhancing Drug Bioavailability in Ocular Drug Delivery Systems. Pharmaceuticals, 2021, 14, 1201.	1.7	36
222	The use of chitosan in the preparation of bioadhesive buccal films: Film-forming ability and sustaining ibuprofen release. Libyan International Medical University Journal, 2021, 6, 91.	0.1	0
223	Shock energy attenuation of liquid aqueous methylcellulose hydrogels. Extreme Mechanics Letters, 2022, 51, 101586.	2.0	2
224	Multiparametric Material Functionality of Microtissueâ€Based InÂVitro Models as Alternatives to Animal Testing. Advanced Science, 2022, 9, e2105319.	5.6	6
226	Macromolecular cryoprotectants for the preservation of mammalian cell culture: lessons from crowding, overview and perspectives. Journal of Materials Chemistry B, 2022, 10, 143-169.	2.9	20

#	Article	IF	CITATIONS
227	Preparation and characterization of bio-composite films obtained from coconut coir and groundnut shell for food packaging. Journal of Material Cycles and Waste Management, 2022, 24, 569-581.	1.6	9
228	Temperature Dependence of Chain Conformations and Fibril Formation in Solutions of Poly(<i>N</i> -isopropylacrylamide)-Grafted Methylcellulose. Macromolecules, 2022, 55, 550-558.	2.2	4
229	Facile method for preparation of oligo-carboxymethyl cellulose and other oligosaccharides: Physicochemical properties and bioactivity. Food Hydrocolloids, 2022, 127, 107530.	5.6	4
230	Environmentally Friendly Methylcellulose Blend Binder for Hydrophobic Dust Control. ACS Applied Polymer Materials, 2022, 4, 1512-1522.	2.0	2
231	Zoledronic acid-loaded cationic methylcellulose polyplex nanoparticles for enhanced gene delivery efficiency and breast cancer cell killing effect. Applied Nanoscience (Switzerland), 0, , 1.	1.6	0
232	HPMC Hydrogel Formation Mechanisms Unveiled by the Evaluation of the Activation Energy. Polymers, 2022, 14, 635.	2.0	8
233	Polysaccharides as wall materials in spray-dried microencapsulation of bioactive compounds: Physicochemical properties and characterization. Critical Reviews in Food Science and Nutrition, 2023, 63, 6983-7015.	5.4	20
234	Biofabrication of an Esophageal Tissue Construct from a Polymer Blend Using 3D Extrusionâ€Based Printing. Advanced Engineering Materials, 2022, 24, .	1.6	7
235	Seed coating technology: An innovative and sustainable approach for improving seed quality and crop performance. Journal of the Saudi Society of Agricultural Sciences, 2022, 21, 536-545.	1.0	10
236	Controlled and Local Delivery of Antibiotics by 3D Core/Shell Printed Hydrogel Scaffolds to Treat Soft Tissue Infections. Pharmaceutics, 2021, 13, 2151.	2.0	12
237	BEHAVIOUR OF METHYLCELLULOSE GEL AT HIGHER CONCENTRATIONS FOR CLEANING OF ACRYLIC PAINTED SURFACES. Journal of Science and Arts, 2021, 21, 1057-1068.	0.1	0
241	Hydrocolloid and water soluble polymers used in the food industry and their functional properties: a review. Polymer Bulletin, 2023, 80, 3585-3610.	1.7	7
242	Thermogelling Hydroxypropyl Methylcellulose Nanoemulsions as Templates to Formulate Poorly Water-Soluble Drugs into Oral Thin Films Containing Drug Nanoparticles. Chemistry of Materials, 2022, 34, 5194-5205.	3.2	6
243	Thermosensitive hydrogels to deliver reactive species generated by cold atmospheric plasma: a case study with methylcellulose. Biomaterials Science, 2022, 10, 3845-3855.	2.6	10
244	Advances in Cellulose-Based Hydrogels for Biomedical Engineering: A Review Summary. Gels, 2022, 8, 364.	2.1	22
245	The Self-Powered Agricultural Sensing System with 1.7 Km Wireless Multichannel Signal Transmission Using a Pulsed Triboelectric Nanogenerator of Corn Husk Composite Film. SSRN Electronic Journal, 0, , .	0.4	0
246	Heat―and shearâ€reversible networks in food: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 3405-3435.	5.9	2
247	Degradation of Cellulose Derivatives in Laboratory, Man-Made, and Natural Environments. Biomacromolecules, 2022, 23, 2713-2729.	2.6	42

#	Article	IF	CITATIONS
248	Development of Smart Colorimetric Sensing Films Carbohydrate-Based with Soybean Wax and Purple Cauliflower Anthocyanins for Visual Monitoring of Shrimp Freshness. Journal of Polymers and the Environment, 2022, 30, 4362-4376.	2.4	7
249	Leveraging the gel-to-sol transition of physically crosslinked thermoresponsive polymer hydrogels to enable reactions induced by lowering temperature. RSC Advances, 2022, 12, 21885-21891.	1.7	3
250	Enhancing the Opacity of the Modified Natural Thickening Agent with Different Metal Oxides for Covering Dark Dyed Fabrics. Fibers and Polymers, 0, , .	1.1	0
251	Three-Dimensional Bioprinting for Cartilage Tissue Engineering: Insights into Naturally-Derived Bioinks from Land and Marine Sources. Journal of Functional Biomaterials, 2022, 13, 118.	1.8	18
252	Predicting effect of fibers on thermal gelation of methylcellulose using Bayesian optimization. Carbohydrate Polymers, 2022, 298, 119921.	5.1	12
253	Preparation of methylated TEMPO-oxidized cellulose nanofibril hydrogel with high-temperature sensitivity. Cellulose, 0, , .	2.4	1
254	Injectable light-assisted thermo-responsive methylcellulose-sodium humate hydrogel proposed for photothermal ablation and localized delivery of cisplatin. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
255	Evaluation of mechanical and thermal properties of carrageenan/hydroxypropyl methyl cellulose hard capsule. Canadian Journal of Chemical Engineering, 2023, 101, 1219-1234.	0.9	6
256	The self-powered agricultural sensing system with 1.7Âkm wireless multichannel signal transmission using a pulsed triboelectric nanogenerator of corn husk composite film. Nano Energy, 2022, 102, 107699.	8.2	19
257	Smart films of carbohydrate-based/sunflower wax/purple Chinese cabbage anthocyanins: A biomarker of chicken freshness. Food Chemistry, 2023, 399, 133824.	4.2	17
258	Bioactive glass-based fibrous wound dressings. Burns and Trauma, 2022, 10, .	2.3	12
259	A methylcellulose/agarose hydrogel as an innovative scaffold for tissue engineering. RSC Advances, 2022, 12, 26882-26894.	1.7	9
260	3D Bioprinting of Islets. RSC Nanoscience and Nanotechnology, 2022, , 233-261.	0.2	0
261	Recent advances in cellulose-based polymer electrolytes. Cellulose, 2022, 29, 8997-9034.	2.4	9
262	Homogeneous cyanoethylation of cellulose with acrylonitrile in a CO ₂ switchable solvent. Green Chemistry, 2022, 24, 8677-8684.	4.6	9
263	A Polysaccharide Isolated from the Herb Bletilla striata Combined with Methylcellulose to Form a Hydrogel via Self-Assembly as a Wound Dressing. International Journal of Molecular Sciences, 2022, 23, 12019.	1.8	10
264	Engineering of Nanocellulose Thin Films for Triboelectric Nanogenerator Development. Nanoscience and Technology, 2023, , 335-366.	1.5	0
265	Structural and functional properties of modified cellulose ingredients and their application in reduced-fat meat batters. Meat Science, 2023, 195, 109011.	2.7	7

#	Article	IF	CITATIONS
267	The influence of cinnamon and litsea cubeba essential oils on methylcellulose films. Journal of Applied Polymer Science, 0, , .	1.3	2
268	How does Poly(ethylene glycol) with varied chain length affect the thermo-responsive behavior of methyl cellulose in aqueous solutions?. Polymer, 2022, 263, 125510.	1.8	2
270	Modification of Nias' Cacao Pod Husk Cellulose through Carboxymethylation Stages by Using MAOS Method and Its Application as Liâ€ion Batteries' Biopolymer Electrolyte Membrane**. ChemistrySelect, 2022, 7, .	0.7	6
271	Machine Learning-Enhanced Computational Reverse-Engineering Analysis for Scattering Experiments (CREASE) for Analyzing Fibrillar Structures in Polymer Solutions. Macromolecules, 2022, 55, 11076-11091.	2.2	8
272	Wood Hemicelluloses as Innovative Wall Materials for Spray-Dried Microencapsulation of Berry Juice: Part 1—Effect of Homogenization Techniques on their Feed Solution Properties. Food and Bioprocess Technology, 0, , .	2.6	2
273	A Comparative Study of Cellulose Ethers as Thermotropic Materials for Self-Tracking Solar Concentrators. Molecules, 2022, 27, 8464.	1.7	0
274	Aryloxy Ionic Liquid-Catalyzed Homogenous Esterification of Cellulose with Low-Reactive Acyl Donors. Polymers, 2023, 15, 419.	2.0	3
275	High Cellulose Purity by Acid Hydrolysis Pretreatment on Kenaf Outer Bast. Applied Sciences (Switzerland), 2023, 13, 334.	1.3	0
276	Shear rheology of methyl cellulose based solutions for cell mechanical measurements at high shear rates. Soft Matter, 2023, 19, 1739-1748.	1.2	4
277	Mucoadhesive chitosan–methylcellulose oral patches for the treatment of local mouth bacterial infections. Biomaterials Science, 2023, 11, 2699-2710.	2.6	4
278	Highly efficient mRNA delivery with nonlinear microfluidic cell stretching for cellular engineering. Lab on A Chip, 2023, 23, 1758-1767.	3.1	7
279	Microbial Stabilizers in Food Processing. Microorganisms for Sustainability, 2022, , 113-145.	0.4	1
280	Microfluidic techniques for mechanical measurements of biological samples. Biophysics Reviews, 2023, 4, .	1.0	4
281	Heterogeneous Epoxidation of Microcrystalline Cellulose and the Toughening Effect toward Epoxy Resin. Industrial & Engineering Chemistry Research, 2023, 62, 2671-2686.	1.8	3
282	Design of a novel bioink suitable for the 3D printing of lymphoid cells. , 0, 2, .		5
283	Synthesis of methylcellulose-polyvinyl alcohol composite, biopolymer film and thermostable enzymes from sugarcane bagasse. International Journal of Biological Macromolecules, 2023, 235, 123903.	3.6	4
284	An insight into the suitability of magnesium ion-conducting biodegradable methyl cellulose solid polymer electrolyte film in energy storage devices. Journal of Materials Science, 2023, 58, 5389-5412.	1.7	6
285	Enriched Pea Protein Texturing: Physicochemical Characteristics and Application as a Substitute for Meat in Hamburgers. Foods, 2023, 12, 1303.	1.9	3

	CITATION	Report		
#	ARTICLE	IF	CITATIONS	
286	Preparation of Higher Purity Cellulose from Kenaf Core by Acid Hydrolysis. Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2023, 55, 13-19.	0.1	0	
287	HYBRID NANOCOMPOSITES OF METHYLCELLULOSE: PHYSICO-CHEMICAL AND ANTIMICROBIAL PROPERTIES. Cellulose Chemistry and Technology, 2023, 57, 155-165.	0.5	0	
288	Characteristics of O/W emulsion gels stabilized by soy proteinâ€xanthan gum complex for plantâ€based processed meat products. Journal of Texture Studies, 2023, 54, 428-439.	1.1	3	
302	Soluble Dietary Fibers as Antihyperlipidemic Agents: A Comprehensive Review to Maximize Their Health Benefits. ACS Omega, 2023, 8, 24680-24694.	1.6	3	
308	Cellulose and cellulose derivatives in drug delivery. , 2023, , 77-100.		0	
310	Emerging Applications of Hydroxypropyl Methylcellulose Acetate Succinate: Different Aspects in Drug Delivery and Its Commercial Potential. AAPS PharmSciTech, 2023, 24, .	1.5	2	
311	Utilizing cellulose-based conducting hydrogels in iontronics. , 2023, 1, 1369-1385.		2	
322	Crosslinking strategies in modulating methylcellulose hydrogel properties. Soft Matter, 2023, 19, 7869-7884.	1.2	1	
325	Hydrophobic Modification of Agro-Based Polymers: A Selected Review. ACS Symposium Series, 0, , 249-258.	0.5	1	
334	Hydrocolloids as Texture Modifiers. , 2024, , 421-435.		0	