A complete bacterial genome assembled de novo using

Nature Methods 12, 733-735 DOI: 10.1038/nmeth.3444

Citation Report

#	Article	IF	CITATIONS
1	Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Medicine, 2015, 7, 99.	3.6	456
2	Scaffolding of a bacterial genome using MinION nanopore sequencing. Scientific Reports, 2015, 5, 11996.	1.6	70
3	MinIONâ,"¢: New, Long Read, Portable Nucleic Acid Sequencing Device. Journal of Bacteriology and Virology, 2015, 45, 285.	0.0	6
4	MinION Analysis and Reference Consortium: Phase 1 data release and analysis. F1000Research, 2015, 4, 1075.	0.8	270
5	Transposable element detection from whole genome sequence data. Mobile DNA, 2015, 6, 24.	1.3	139
6	A single chromosome assembly of Bacteroides fragilis strain BE1 from Illumina and MinION nanopore sequencing data. GigaScience, 2015, 4, 60.	3.3	64
7	Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biology, 2015, 16, 294.	3.8	910
8	Error correction and DeNovo genome Assembly for the MinIon sequencing reads mixing Illumina short reads. , 2015, , .		3
9	Gating-like Motions and Wall Porosity in a DNA Nanopore Scaffold Revealed by Molecular Simulations. ACS Nano, 2015, 9, 11209-11217.	7.3	51
10	LINKS: Scalable, alignment-free scaffolding of draft genomes with long reads. GigaScience, 2015, 4, 35.	3.3	196
11	Genetic variation and the de novo assembly of human genomes. Nature Reviews Genetics, 2015, 16, 627-640.	7.7	310
13	De novo sequencing and variant calling with nanopores using PoreSeq. Nature Biotechnology, 2015, 33, 1087-1091.	9.4	85
14	Twenty years of bacterial genome sequencing. Nature Reviews Microbiology, 2015, 13, 787-794.	13.6	246
15	Strategies for Sequence Assembly of Plant Genomes. , 2016, , .		3
16	Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes. Beilstein Journal of Nanotechnology, 2016, 7, 881-892.	1.5	12
17	Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota. Frontiers in Microbiology, 2016, 7, 1475.	1.5	117
18	Mash: fast genome and metagenome distance estimation using MinHash. Genome Biology, 2016, 17, 132.	3.8	2,099
19	MinION: A Novel Tool for Predicting Drug Hypersensitivity?. Frontiers in Pharmacology, 2016, 7, 156.	1.6	5

#	Article	IF	Citations
20	Mass spectrometry methods for predicting antibiotic resistance. Proteomics - Clinical Applications, 2016, 10, 964-981.	0.8	37
21	The E. histolytica Genome Structure and Virulence. Current Tropical Medicine Reports, 2016, 3, 158-163.	1.6	2
22	New insights into the generation and role of de novo mutations in health and disease. Genome Biology, 2016, 17, 241.	3.8	339
23	Fast and sensitive mapping of nanopore sequencing reads with GraphMap. Nature Communications, 2016, 7, 11307.	5.8	331
24	DNAâ€basierte Nanoporensensorik. Angewandte Chemie, 2016, 128, 15440-15446.	1.6	14
25	Innovations and challenges in detecting long read overlaps: an evaluation of the state-of-the-art. Bioinformatics, 2017, 33, 1261-1270.	1.8	28
26	Assembly of long error-prone reads using de Bruijn graphs. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8396-E8405.	3.3	230
27	<i>In Silico</i> Whole Genome Sequencer and Analyzer (iWGS): a Computational Pipeline to Guide the Design and Analysis of <i>de novo</i> Genome Sequencing Studies. G3: Genes, Genomes, Genetics, 2016, 6, 3655-3662.	0.8	39
28	Hybrid error correction approach and de novo assembly for minion sequencing long reads. , 2016, , .		0
29	Efficient Hybrid De Novo Error Correction and Assembly for Long Reads. , 2016, , .		2
30	Three decades of nanopore sequencing. Nature Biotechnology, 2016, 34, 518-524.	9.4	825
31	Evaluation of hybrid and non-hybrid methods for <i>de novo</i> assembly of nanopore reads. Bioinformatics, 2016, 32, 2582-2589.	1.8	53
32	A Primer on Infectious Disease Bacterial Genomics. Clinical Microbiology Reviews, 2016, 29, 881-913.	5.7	42
33	Characterization of Two Multidrug-Resistant IncA/C Plasmids from the 1960s by Using the MinION Sequencer Device. Antimicrobial Agents and Chemotherapy, 2016, 60, 6780-6786.	1.4	19
34	TP53 gene mutation analysis in chronic lymphocytic leukemia by nanopore MinION sequencing. Diagnostic Pathology, 2016, 11, 96.	0.9	51
35	DNAâ€Based Nanopore Sensing. Angewandte Chemie - International Edition, 2016, 55, 15216-15222.	7.2	89
36	Oxford Nanopore MinION Sequencing and Genome Assembly. Genomics, Proteomics and Bioinformatics, 2016, 14, 265-279.	3.0	638
37	Microbial bioinformatics 2020. Microbial Biotechnology, 2016, 9, 681-686.	2.0	16

		CITATION REPORT		
#	Article	IF		Citations
38	Advances in genomics for adapting crops to climate change. Current Plant Biology, 2016, 6, 2	-10. 2.3	3	82
39	Improved assembly of noisy long reads by <i>k</i> -mer validation. Genome Research, 2016, 20	5, 1710-1720. 2.4	1	39
40	LongISLND: <i>in silico</i> sequencing of lengthy and noisy datatypes. Bioinformatics, 2016, 3 3829-3832.	32, 1.8	3	18
41	On the study of microbial transcriptomes using second- and third-generation sequencing technologies. Journal of Microbiology, 2016, 54, 527-536.	1.3	3	12
42	Third generation sequencing technologies applied to diagnostic microbiology: benefits and challenges in applications and data analysis. Expert Review of Molecular Diagnostics, 2016, 16 1011-1023.	o, 1.5	5	33
43	Next-Generation Sequencing: Advantages, Disadvantages, and Future. , 2016, , 109-135.			28
44	Characterization of MinION nanopore data for resequencing analyses. Briefings in Bioinformat 2017, 18, bbw077.	ics, 3.2	2	55
45	The Age of Effectors: Genome-Based Discovery and Applications. Phytopathology, 2016, 106,	1206-1212. 1.1		40
46	The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Biology, 2016, 17, 239.	Genome 3.8	3	985
47	Real-time selective sequencing using nanopore technology. Nature Methods, 2016, 13, 751-7	54. 9.0	D	266
48	Analysis of the mouse gut microbiome using full-length 16S rRNA amplicon sequencing. Scien Reports, 2016, 6, 29681.	tific 1.6	5	178
49	Computational pan-genomics: status, promises and challenges. Briefings in Bioinformatics, 20 bbw089.	18, 19, _{3.2}	2	207
50	Next Generation Sequencing in Clinical and Public Health Microbiology. Clinical Microbiology Newsletter, 2016, 38, 169-176.	0.4	4	24
51	Characterization, correction and de novo assembly of an Oxford Nanopore genomic dataset fr Agrobacterium tumefaciens. Scientific Reports, 2016, 6, 28625.	om 1.6		35
52	INC-Seq: accurate single molecule reads using nanopore sequencing. GigaScience, 2016, 5, 34	ł. 3.3	3	133
53	Sequence assembly from corrupted shotgun reads. , 2016, , .			10
54	Whole-Genome Sequencing Recommendations. , 2016, , 13-41.			2
55	A comparison of tools for the simulation of genomic next-generation sequencing data. Nature Reviews Genetics, 2016, 17, 459-469.	7.7	7	163

#	Article	IF	CITATIONS
56	HPG pore: an efficient and scalable framework for nanopore sequencing data. BMC Bioinformatics, 2016, 17, 107.	1.2	9
57	Identifying the effect of patient sharing on between-hospital genetic differentiation of methicillin-resistant Staphylococcus aureus. Genome Medicine, 2016, 8, 18.	3.6	20
58	An accurate clone-based haplotyping method by overlapping pool sequencing. Nucleic Acids Research, 2016, 44, e112-e112.	6.5	1
59	Analysis of single nucleic acid molecules in micro- and nano-fluidics. Lab on A Chip, 2016, 16, 790-811.	3.1	29
60	Nanopore sequencing detects structural variants in cancer. Cancer Biology and Therapy, 2016, 17, 246-253.	1.5	130
61	The sequence of sequencers: The history of sequencing DNA. Genomics, 2016, 107, 1-8.	1.3	828
62	Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics, 2016, 32, 2103-2110.	1.8	1,082
63	Real-time, portable genome sequencing for Ebola surveillance. Nature, 2016, 530, 228-232.	13.7	1,179
64	Making sense of genomes of parasitic worms: Tackling bioinformatic challenges. Biotechnology Advances, 2016, 34, 663-686.	6.0	30
65	Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Systematics and Biodiversity, 2016, 14, 1-8.	0.5	148
66	<scp>hybrid</scp> SPA <scp>des</scp> : an algorithm for hybrid assembly of short and long reads. Bioinformatics, 2016, 32, 1009-1015.	1.8	463
67	CSSSCL: a python package that uses combined sequence similarity scores for accurate taxonomic classification of long and short sequence reads. Bioinformatics, 2016, 32, 453-455.	1.8	4
68	Fast and accurate de novo genome assembly from long uncorrected reads. Genome Research, 2017, 27, 737-746.	2.4	2,071
69	Invasions Toolkit. Advances in Ecological Research, 2017, , 85-182.	1.4	41
70	Rapid resistome mapping using nanopore sequencing. Nucleic Acids Research, 2017, 45, gkw1328.	6.5	62
71	Challenges and opportunities for wholeâ€genome sequencing–based surveillance of antibiotic resistance. Annals of the New York Academy of Sciences, 2017, 1388, 108-120.	1.8	87
72	Forensic SNP Genotyping using Nanopore MinION Sequencing. Scientific Reports, 2017, 7, 41759.	1.6	54
73	Building and Improving Reference Genome Assemblies. Proceedings of the IEEE, 2017, , 1-14.	16.4	6

#	Article	IF	CITATIONS
74	Scaffolding and completing genome assemblies in real-time with nanopore sequencing. Nature Communications, 2017, 8, 14515.	5.8	104
75	A vast genomic deletion in the C56BL/6 genome affects different genes within the Ifi200 cluster on chromosome 1 and mediates obesity and insulin resistance. BMC Genomics, 2017, 18, 172.	1.2	6
76	Detecting DNA cytosine methylation using nanopore sequencing. Nature Methods, 2017, 14, 407-410.	9.0	820
77	Improvements in Genomic Technologies: Application to Crop Genomics. Trends in Biotechnology, 2017, 35, 547-558.	4.9	72
78	The impact of third generation genomic technologies on plant genome assembly. Current Opinion in Plant Biology, 2017, 36, 64-70.	3.5	201
79	Genomic and transcriptomic approaches to study immunology in cyprinids: What is next?. Developmental and Comparative Immunology, 2017, 75, 48-62.	1.0	31
80	Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnology Advances, 2017, 35, 905-932.	6.0	48
81	NanoSim: nanopore sequence read simulator based on statistical characterization. GigaScience, 2017, 6, 1-6.	3.3	149
82	Critical points for an accurate human genome analysis. Human Mutation, 2017, 38, 912-921.	1.1	5
83	BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and annotation. Nucleic Acids Research, 2017, 45, W171-W179.	6.5	84
84	Nanopore sequencing data analysis: state of the art, applications and challenges. Briefings in Bioinformatics, 2018, 19, 1256-1272.	3.2	91
85	De novo yeast genome assemblies from MinION, PacBio and MiSeq platforms. Scientific Reports, 2017, 7, 3935.	1.6	146
86	A spectral algorithm for fast <i>de novo</i> layout of uncorrected long nanopore reads. Bioinformatics, 2017, 33, 3188-3194.	1.8	7
87	Multi-locus and long amplicon sequencing approach to study microbial diversity at species level using the MinIONâ"¢ portable nanopore sequencer. GigaScience, 2017, 6, 1-12.	3.3	83
88	Genomic innovation for crop improvement. Nature, 2017, 543, 346-354.	13.7	301
89	Canu: scalable and accurate long-read assembly via adaptive <i>k</i> -mer weighting and repeat separation. Genome Research, 2017, 27, 722-736.	2.4	5,620
90	Stability and dynamics of membrane-spanning DNA nanopores. Nature Communications, 2017, 8, 14784.	5.8	61
91	Identification of a novel species of papillomavirus in giraffe lesions using nanopore sequencing. Veterinary Microbiology, 2017, 201, 26-31.	0.8	13

#	Article	IF	CITATIONS
92	Covalent Modification of Silicon Nitride Nanopore by Amphoteric Polylysine for Short DNA Detection. ACS Omega, 2017, 2, 7127-7135.	1.6	20
93	Exploring the Plant Microbiome Through Multi-omics Approaches. , 2017, , 233-268.		11
94	Quantum Point Contact Single-Nucleotide Conductance for DNA and RNA Sequence Identification. ACS Nano, 2017, 11, 11169-11181.	7.3	18
95	The potential impact of nanopore sequencing on human genetics. Human Molecular Genetics, 2017, 26, R202-R207.	1.4	24
96	Conformational Smear Characterization and Binning of Single-Molecule Conductance Measurements for Enhanced Molecular Recognition. Journal of the American Chemical Society, 2017, 139, 15420-15428.	6.6	12
97	Rapid Nanopore Sequencing of Plasmids and Resistance Gene Detection in Clinical Isolates. Journal of Clinical Microbiology, 2017, 55, 3530-3543.	1.8	100
98	A Human Bi-specific Antibody against Zika Virus with High Therapeutic Potential. Cell, 2017, 171, 229-241.e15.	13.5	118
99	De Novo Assembly of a New <i>Solanum pennellii</i> Accession Using Nanopore Sequencing. Plant Cell, 2017, 29, 2336-2348.	3.1	192
100	Untranslated Parts of Genes Interpreted: Making Heads or Tails of Highâ€Throughput Transcriptomic Data via Computational Methods. BioEssays, 2017, 39, 1700090.	1.2	14
101	Nanopore sequencing enables near-complete de novo assembly of Saccharomyces cerevisiae reference strain CEN.PK113-7D. FEMS Yeast Research, 2017, 17, .	1.1	84
102	A world of opportunities with nanopore sequencing. Journal of Experimental Botany, 2017, 68, 5419-5429.	2.4	158
103	Whole-Genome Sequencing of Bacterial Pathogens: the Future of Nosocomial Outbreak Analysis. Clinical Microbiology Reviews, 2017, 30, 1015-1063.	5.7	310
104	The RNA modification landscape in human disease. Rna, 2017, 23, 1754-1769.	1.6	427
105	Metagenomic arbovirus detection using MinION nanopore sequencing. Journal of Virological Methods, 2017, 249, 79-84.	1.0	60
106	MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nature Methods, 2017, 14, 1072-1074.	9.0	357
107	Profiling bacterial communities by MinION sequencing of ribosomal operons. Microbiome, 2017, 5, 116.	4.9	105
108	Shotgun metagenomics, from sampling to analysis. Nature Biotechnology, 2017, 35, 833-844.	9.4	1,196
109	1D Genome Sequencing on the Oxford Nanopore MinION. Current Protocols in Human Genetics, 2017, 94, 18.11.1-18.11.14.	3.5	7

#	Article	IF	CITATIONS
110	Rapid de novo assembly of the European eel genome from nanopore sequencing reads. Scientific Reports, 2017, 7, 7213.	1.6	104
111	MinIONâ"¢ nanopore sequencing of environmental metagenomes: a synthetic approach. GigaScience, 2017, 6, 1-10.	3.3	111
112	Porphyrin-Assisted Docking of a Thermophage Portal Protein into Lipid Bilayers: Nanopore Engineering and Characterization. ACS Nano, 2017, 11, 11931-11945.	7.3	23
113	Detection of subclonal L1 transductions in colorectal cancer by long-distance inverse-PCR and Nanopore sequencing. Scientific Reports, 2017, 7, 14521.	1.6	24
114	Nanopore sequencing of complex genomic rearrangements in yeast reveals mechanisms of repeat-mediated double-strand break repair. Genome Research, 2017, 27, 2072-2082.	2.4	36
115	Haplotype phasing of whole human genomes using bead-based barcode partitioning in a single tube. Nature Biotechnology, 2017, 35, 852-857.	9.4	42
116	poRe GUIs for parallel and real-time processing of MinION sequence data. Bioinformatics, 2017, 33, 2207-2208.	1.8	7
117	Genotypingâ€byâ€sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnology Journal, 2017, 15, 149-161.	4.1	240
118	Bioinspired integrated nanosystems based on solid-state nanopores: "iontronic―transduction of biological, chemical and physical stimuli. Chemical Science, 2017, 8, 890-913.	3.7	136
119	Nanocall: an open source basecaller for Oxford Nanopore sequencing data. Bioinformatics, 2017, 33, 49-55.	1.8	116
120	The use of Oxford Nanopore native barcoding for complete genome assembly. GigaScience, 2017, 6, 1-6.	3.3	19
121	Nanopore DNA Sequencing for Metagenomic Soil Analysis. Journal of Visualized Experiments, 2017, , .	0.2	4
122	de novo assembly and population genomic survey of natural yeast isolates with the Oxford Nanopore MinION sequencer. GigaScience, 2017, 6, 1-13.	3.3	123
123	Precision medicine and FPGA technology: Challenges and opportunities. , 2017, , .		5
124	Complete Genome Sequence of Kluyvera intestini sp. nov., Isolated from the Stomach of a Patient with Gastric Cancer. Genome Announcements, 2017, 5, .	0.8	26
125	Plasmid Classification in an Era of Whole-Genome Sequencing: Application in Studies of Antibiotic Resistance Epidemiology. Frontiers in Microbiology, 2017, 8, 182.	1.5	191
126	High Throughput Sequencing for Detection of Foodborne Pathogens. Frontiers in Microbiology, 2017, 8, 2029.	1.5	88
127	MinION Nanopore Sequencing Enables Correlation between Resistome Phenotype and Genotype of Coliform Bacteria in Municipal Sewage. Frontiers in Microbiology, 2017, 8, 2105.	1.5	39

# 129	ARTICLE Completing bacterial genome assemblies with multiplex MinION sequencing. Microbial Genomics, 2017, 3, e000132.	IF 1.0	Citations
130	The long reads ahead: de novo genome assembly using the MinION. F1000Research, 2017, 6, 1083.	0.8	54
131	DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads. PLoS ONE, 2017, 12, e0178751.	1.1	186
132	Transcriptomics technologies. PLoS Computational Biology, 2017, 13, e1005457.	1.5	677
133	DESMAN: a new tool for de novo extraction of strains from metagenomes. Genome Biology, 2017, 18, 181.	3.8	152
134	Comparative analysis of targeted long read sequencing approaches for characterization of a plant's immune receptor repertoire. BMC Genomics, 2017, 18, 564.	1.2	51
135	Annotated mitochondrial genome with Nanopore R9 signal for Nippostrongylus brasiliensis. F1000Research, 2017, 6, 56.	0.8	14
136	High Accuracy Base Calls in Nanopore Sequencing. , 2017, , .		0
137	Resolving plasmid structures in Enterobacteriaceae using the MinION nanopore sequencer: assessment of MinION and MinION/Illumina hybrid data assembly approaches. Microbial Genomics, 2017, 3, e000118.	1.0	74
138	A Min <scp>ION</scp> â,,¢â€based pipeline for fast and costâ€effective <scp>DNA</scp> barcoding. Molecular Ecology Resources, 2018, 18, 1035-1049.	2.2	96
139	Accurate Typing of Human Leukocyte Antigen Class I Genes by Oxford Nanopore Sequencing. Journal of Molecular Diagnostics, 2018, 20, 428-435.	1.2	25
140	Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. GigaScience, 2018, 7, .	3.3	176
141	Exploration and exploitation of the environment for novel specialized metabolites. Current Opinion in Biotechnology, 2018, 50, 206-213.	3.3	32
142	Getting Momentum: From Biocatalysis to Advanced Synthetic Biology. Trends in Biochemical Sciences, 2018, 43, 180-198.	3.7	70
143	Nanopore sequencing and assembly of a human genome with ultra-long reads. Nature Biotechnology, 2018, 36, 338-345.	9.4	1,443
144	MinION-based long-read sequencing and assembly extends the <i>Caenorhabditis elegans</i> reference genome. Genome Research, 2018, 28, 266-274.	2.4	132
145	Genome Sequence of Australian Indigenous Wine Yeast Torulaspora delbrueckii COFT1 Using Nanopore Sequencing. Genome Announcements, 2018, 6, .	0.8	9
146	Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nature Reviews Genetics, 2018, 19, 329-346.	7.7	395

#	Article	IF	CITATIONS
147	Tagmentation on Microbeads: Restore Long-Range DNA Sequence Information Using Next Generation Sequencing with Library Prepared by Surface-Immobilized Transposomes. ACS Applied Materials & Interfaces, 2018, 10, 11539-11545.	4.0	8
148	Advances and challenges in barcoding pathogenic and environmental <i>Leptospira</i> . Parasitology, 2018, 145, 595-607.	0.7	38
149	Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clinical Microbiology and Infection, 2018, 24, 335-341.	2.8	371
150	WaveNano: a signalâ€level nanopore baseâ€caller via simultaneous prediction of nucleotide labels and move labels through biâ€directional WaveNets. Quantitative Biology, 2018, 6, 359-368.	0.3	13
151	Bio-Stamp: Simple Tool for Routine Biological Data Analysis. Annals of Clinical and Laboratory Research, 2018, 06, .	0.1	1
152	Assessment of metagenomic Nanopore and Illumina sequencing for recovering whole genome sequences of chikungunya and dengue viruses directly from clinical samples. Eurosurveillance, 2018, 23, .	3.9	85
153	NanoAmpli-Seq: a workflow for amplicon sequencing for mixed microbial communities on the nanopore sequencing platform. GigaScience, 2018, 7, .	3.3	85
154	Rapid virulence prediction and identification of Newcastle disease virus genotypes using third-generation sequencing. Virology Journal, 2018, 15, 179.	1.4	25
155	A chromosome-scale assembly of the sorghum genome using nanopore sequencing and optical mapping. Nature Communications, 2018, 9, 4844.	5.8	130
156	Deepbinner: Demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks. PLoS Computational Biology, 2018, 14, e1006583.	1.5	171
157	Thermostable virus portal proteins as reprogrammable adapters for solid-state nanopore sensors. Nature Communications, 2018, 9, 4652.	5.8	39
158	Complete Sequence of the Intronless Mitochondrial Genome of the Saccharomyces cerevisiae Strain CW252. Genome Announcements, 2018, 6, .	0.8	4
159	Assembly of chloroplast genomes with long- and short-read data: a comparison of approaches using Eucalyptus pauciflora as a test case. BMC Genomics, 2018, 19, 977.	1.2	50
160	Antimicrobial resistance prediction and phylogenetic analysis of Neisseria gonorrhoeae isolates using the Oxford Nanopore MinION sequencer. Scientific Reports, 2018, 8, 17596.	1.6	59
161	Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics, 2018, 19, 460.	1.2	706
162	Genetic repertoires of anaerobic microbiomes driving generation of biogas. Biotechnology for Biofuels, 2018, 11, 255.	6.2	8
163	Ten steps to get started in Genome Assembly and Annotation. F1000Research, 2018, 7, 148.	0.8	85
164	Transcriptional and Functional Analysis of Bifidobacterium animalis subsp. lactis Exposure to Tetracycline, Applied and Environmental Microbiology, 2018, 84	1.4	22

ARTICLE IF CITATIONS # High-quality genome sequences of uncultured microbes by assembly of read clouds. Nature 165 9.4 103 Biotechnology, 2018, 36, 1067-1075. Next-Generation Sequencing: Technology, Advancements, and Applications., 2018, , 15-46. De novo assembly of haplotype-resolved genomes with trio binning. Nature Biotechnology, 2018, 36, 167 9.4 352 1174-1182. Approximate, simultaneous comparison of microbial genome architectures via syntenic anchoring of 168 1.8 quiver representations. Bioinformatics, 2018, 34, i732-i742. Pushing the limits of de novo genome assembly for complex prokaryotic genomes harboring very long, 169 6.5 104 near identical repeats. Nucleic Acids Research, 2018, 46, 8953-8965. RIFRAF: a frame-resolving consensus algorithm. Bioinformatics, 2018, 34, 3817-3824. 1.8 Current and Future Methods for mRNA Analysis: A Drive Toward Single Molecule Sequencing. 171 0.4 46 Methods in Molecular Biology, 2018, 1783, 209-241. Gene Expression Analysis. Methods in Molecular Biology, 2018, , . 0.4 Rapid resolution of multi-drug resistance bacterial genome harbouring mcr-1 and blaCMY-2 using 173 1.1 0 MinION sequencing platform. International Journal of Antimicrobial Agents, 2018, 52, 303-304. QuipuNet: Convolutional Neural Network for Single-Molecule Nanopore Sensing. Nano Letters, 2018, 174 4.5 18, 4040-4045. Nanopore sequencing of drug-resistance-associated genes in malaria parasites, Plasmodium 175 1.6 45 falciparum. Scientific Reports, 2018, 8, 8286. HLA Typing. Methods in Molecular Biology, 2018, , . 0.4 Full-Length HLA Class I Genotyping with theÂMinION Nanopore Sequencer. Methods in Molecular 177 0.4 19 Biology, 2018, 1802, 155-162. Complete Genome Sequence of Buffalopox Virus. Genome Announcements, 2018, 6, . 179 0.8 180 Algorithms for Computational Biology. Lecture Notes in Computer Science, 2018, , . 1.0 0 Population genomics of bacterial host adaptation. Nature Reviews Genetics, 2018, 19, 549-565. 186 183 The Third Revolution in Sequencing Technology. Trends in Genetics, 2018, 34, 666-681. 2.9 759 Optimization of single strand DNA incorporation reaction by Moloney murine leukaemia virus reverse 184 1.5 transcriptase. DNA Research, 2018, 25, 477-487.

#	Article	IF	CITATIONS
185	Synthetic microbe communities provide internal reference standards for metagenome sequencing and analysis. Nature Communications, 2018, 9, 3096.	5.8	81
186	The Challenge of Analyzing the Sugarcane Genome. Frontiers in Plant Science, 2018, 9, 616.	1.7	80
187	Experimental Design, Population Dynamics, and Diversity in Microbial Experimental Evolution. Microbiology and Molecular Biology Reviews, 2018, 82, .	2.9	132
188	Venomics: A Mini-Review. High-Throughput, 2018, 7, 19.	4.4	40
189	Multiplexed Nanopore Sequencing of HLA-B Locus in MÄori and Pacific Island Samples. Frontiers in Genetics, 2018, 9, 152.	1.1	17
190	From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biology, 2018, 19, 90.	3.8	485
191	Genome Sequencing and Assembly by Long Reads in Plants. Genes, 2018, 9, 6.	1.0	97
192	Genomic Diversity in the Endosymbiotic Bacterium Rhizobium leguminosarum. Genes, 2018, 9, 60.	1.0	22
193	Rapid Low-Cost Assembly of the <i>Drosophila melanogaster</i> Reference Genome Using Low-Coverage, Long-Read Sequencing. G3: Genes, Genomes, Genetics, 2018, 8, 3143-3154.	0.8	77
194	Evaluation of Oxford Nanopore's MinION Sequencing Device for Microbial Whole Genome Sequencing Applications. Scientific Reports, 2018, 8, 10931.	1.6	195
195	FMLRC: Hybrid long read error correction using an FM-index. BMC Bioinformatics, 2018, 19, 50.	1.2	94
196	De novo assembly of the complex genome of Nippostrongylus brasiliensis using MinION long reads. BMC Biology, 2018, 16, 6.	1.7	35
197	Finding the Needle: Targeted Nanopore Sequencing and CRISPR-Cas9. CRISPR Journal, 2018, 1, 265-267.	1.4	4
198	Long-Range Polymerase Chain Reaction Method for Sequencing the Ebola Virus Genome From Ecological and Clinical Samples. Journal of Infectious Diseases, 2018, 218, S301-S304.	1.9	8
199	Design and MinION testing of a nanopore targeted gene sequencing panel for chronic lymphocytic leukemia. Scientific Reports, 2018, 8, 11798.	1.6	34
200	Draft Genome Sequence of Enterobacter sp. Strain EA-1, an Electrochemically Active Microorganism Isolated from Tropical Sediment. Genome Announcements, 2018, 6, .	0.8	3
201	Early MinIONâ,,¢ nanopore single-molecule sequencing technology enables the characterization of hepatitis B virus genetic complexity in clinical samples. PLoS ONE, 2018, 13, e0194366.	1.1	31
202	Network Properties. , 2019, , 928-932.		1

#	Article	IF	CITATIONS
203	lordFAST: sensitive and Fast Alignment Search Tool for LOng noisy Read sequencing Data. Bioinformatics, 2019, 35, 20-27.	1.8	23
204	Comparison of single-nucleotide variants identified by Illumina and Oxford Nanopore technologies in the context of a potential outbreak of Shiga toxin–producing Escherichia coli. GigaScience, 2019, 8, .	3.3	42
205	Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Research, 2019, 29, 1545-1554.	2.4	178
206	Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nature Biotechnology, 2019, 37, 953-961.	9.4	353
207	Genomic characterization of mumps viruses from a large-scale mumps outbreak in Arkansas, 2016. Infection, Genetics and Evolution, 2019, 75, 103965.	1.0	11
208	High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nature Communications, 2019, 10, 3120.	5.8	202
209	Long reads reveal the diversification and dynamics of CRISPR reservoir in microbiomes. BMC Genomics, 2019, 20, 567.	1.2	9
210	SMURF-seq: efficient copy number profiling on long-read sequencers. Genome Biology, 2019, 20, 134.	3.8	9
211	De novo assembly of a chromosomeâ€level reference genome of redâ€spotted grouper (<i>Epinephelus) Tj ETQq</i>	0 0 0 rgBT 2.2	Qyerlock 1
212	Pseudomonas poae–Associated Fatal Septic Transfusion Reaction, Peoria, Illinois, USA, 2017. Emerging Infectious Diseases, 2019, 25, 1445-1451.	2.0	7
213	Pan-Genomic and Polymorphic Driven Prediction of Antibiotic Resistance in Elizabethkingia. Frontiers	1.5	14

210	in Microbiology, 2019, 10, 1446.	1.0	14
214	Rapid metagenomics analysis of EMS vehicles for monitoring pathogen load using nanopore DNA sequencing. PLoS ONE, 2019, 14, e0219961.	1.1	9
215	Next Generation DNA-Seq and Differential RNA-Seq Allow Re-annotation of the Pyrococcus furiosus DSM 3638 Genome and Provide Insights Into Archaeal Antisense Transcription. Frontiers in Microbiology, 2019, 10, 1603.	1.5	15
216	Nanopore sequencing for fast determination of plasmids, phages, virulence markers, and antimicrobial resistance genes in Shiga toxin-producing Escherichia coli. PLoS ONE, 2019, 14, e0220494.	1.1	86
217	Enabling Measurement of Darwinian Evolution in Space. , 2019, , .		1
218	Post-transplant lymphoproliferative disorder: risk factors and management. Nephrology Dialysis Transplantation, 2021, 36, 1177-1179.	0.4	4
219	MIRUReader: MIRU-VNTR typing directly from long sequencing reads. Bioinformatics, 2019, 36, 1625-1626.	1.8	10
220	Longshot enables accurate variant calling in diploid genomes from single-molecule long read	5.8	156

ARTICLE IF CITATIONS # Rootstock determines the drought resistance of poplar grafting combinations. Tree Physiology, 2019, 221 1.4 23 39, 1855-1866. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biology, 2019, 20, 3.8 469 224. Rapid, multiplexed, whole genome and plasmid sequencing of foodborne pathogens using long-read 223 49 1.6 nanopore technology. Scientific Reports, 2019, 9, 16350. Biological and Bio-inspired Nanomaterials. Advances in Experimental Medicine and Biology, 2019, , . 224 Genetic Biomonitoring and Biodiversity Assessment Using Portable Sequencing Technologies: Current 225 1.0 69 Uses and Future Directions. Genes, 2019, 10, 858. Twenty-Five Years of Propagation in Suspension Cell Culture Results in Substantial Alterations of the 1.0 Arabidopsis Thaliana Genome. Genes, 2019, 10, 671. Current and Promising Approaches to Identify Horizontal Gene Transfer Events in Metagenomes. 227 1.1 70 Genome Biology and Evolution, 2019, 11, 2750-2766. Rapid and Cost-Efficient Enterovirus Genotyping from Clinical Samples Using Flongle Flow Cells. 1.0 37 Genes, 2019, 10, 659. Completing Circular Bacterial Genomes With Assembly Complexity by Using a Sampling Strategy From a 229 1.5 21 Single MinION Run With Barcoding. Frontiers in Microbiology, 2019, 10, 2068. Realizing the potential of full-length transcriptome sequencing. Philosophical Transactions of the 1.8 Royal Society B: Biological Sciences, 2019, 374, 20190097. Rapid Detection of Genetic Engineering, Structural Variation, and Antimicrobial Resistance Markers in 231 1.6 23 Bacterial Biothreat Pathogens by Nanopore Sequencing. Scientific Reports, 2019, 9, 13501. Using Genomics to Adapt Crops to Climate Change., 2019, , 91-109. A Look to the Future. , 2019, , 271-288. 233 0 Errors in long-read assemblies can critically affect protein prediction. Nature Biotechnology, 2019, 37, 234 9.4 124-126. 235 NanoPipeâ€"a web server for nanopore MinION sequencing data analysis. GigaScience, 2019, 8, . 3.3 30 The bioinformatics tools for the genome assembly and analysis based on third-generation sequencing. Briefings in Functional Genomics, 2019, 18, 1-12. Discovery and Characterization of Cas9 Inhibitors Disseminated across Seven Bacterial Phyla. Cell 237 5.163 Host and Microbe, 2019, 25, 233-241.e5. Recompleting the <i>Caenorhabditis elegans</i> genome. Genome Research, 2019, 29, 1009-1022. 2.4 108

#	Article	IF	CITATIONS
239	Assessment of low-coverage nanopore long read sequencing for SNP genotyping in doubled haploid canola (Brassica napus L.). Scientific Reports, 2019, 9, 8688.	1.6	22
240	NanoARC: a web service for detecting and contextualizing antimicrobial resistance genes from nanopore-derived metagenomes. Microbiome, 2019, 7, 88.	4.9	72
241	Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biology, 2019, 20, 129.	3.8	1,971
242	Complete Genome Sequence of Halomonas sulfidaeris Strain Esulfide1 Isolated from a Metal Sulfide Rock at a Depth of 2,200 Meters, Obtained Using Nanopore Sequencing. Microbiology Resource Announcements, 2019, 8, .	0.3	1
243	Structural variants identified by Oxford Nanopore PromethION sequencing of the human genome. Genome Research, 2019, 29, 1178-1187.	2.4	143
244	Tools and Strategies for Long-Read Sequencing and De Novo Assembly of Plant Genomes. Trends in Plant Science, 2019, 24, 700-724.	4.3	80
245	Next Generation Sequencing for the Detection of Foodborne Microbial Pathogens. , 2019, , 311-337.		0
246	Illumina and Nanopore methods for whole genome sequencing of hepatitis B virus (HBV). Scientific Reports, 2019, 9, 7081.	1.6	75
247	OMGS: Optical Map-Based Genome Scaffolding. Lecture Notes in Computer Science, 2019, , 190-207.	1.0	1
248	Complete Genome Sequence of Halomonas olivaria, a Moderately Halophilic Bacterium Isolated from Olive Processing Effluents, Obtained by Nanopore Sequencing. Microbiology Resource Announcements, 2019, 8, .	0.3	3
249	Nonlinear sequence similarity between the <i>Xist</i> and <i>Rsx</i> long noncoding RNAs suggests shared functions of tandem repeat domains. Rna, 2019, 25, 1004-1019.	1.6	21
250	Complete Genome Sequence of Psychrobacter sp. Strain KH172YL61, Isolated from Deep-Sea Sediments in the Nankai Trough, Japan. Microbiology Resource Announcements, 2019, 8, .	0.3	4
251	Increasing the accuracy of nanopore DNA sequencing using a time-varying cross membrane voltage. Nature Biotechnology, 2019, 37, 651-656.	9.4	84
252	Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads. Nature Methods, 2019, 16, 429-436.	9.0	82
253	Nanopore sequencing: Review of potential applications in functional genomics. Development Growth and Differentiation, 2019, 61, 316-326.	0.6	246
254	Defense Against Biological Attacks. , 2019, , .		2
255	Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing. Microbiome, 2019, 7, 44.	4.9	236
256	Complex Microbiome in Brain Abscess Revealed by Whole-Genome Culture-Independent and Culture-Based Sequencing. Journal of Clinical Medicine, 2019, 8, 351.	1.0	6

#	Article	IF	Citations
	Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity		
257	assessments with high phylogenetic resolution across broad taxonomic scale. GigaScience, 2019, 8, .	3.3	126
258	Nasal Resistome Development in Infants With Cystic Fibrosis in the First Year of Life. Frontiers in Microbiology, 2019, 10, 212.	1.5	10
259	Nanopore sequencing reads improve assembly and gene annotation of the Parochlus steinenii genome. Scientific Reports, 2019, 9, 5095.	1.6	19
260	Graph analysis of fragmented long-read bacterial genome assemblies. Bioinformatics, 2019, 35, 4239-4246.	1.8	6
261	A unique methylation pattern by a type I HsdM methyltransferase prepares for DpnI rare cutting sites in the <i>Pseudomonas aeruginosa</i> PAO1 genome. FEMS Microbiology Letters, 2019, 366, .	0.7	2
262	Nanopore sequencing of a novel bipartite New World begomovirus infecting cowpea. Archives of Virology, 2019, 164, 1907-1910.	0.9	22
263	Near-Complete Genome Assembly of <i>Alternaria brassicae</i> —A Necrotrophic Pathogen of <i>Brassica</i> Crops. Molecular Plant-Microbe Interactions, 2019, 32, 928-930.	1.4	21
264	Two reads to rule them all: Nanopore long read-guided assembly of the iconic Christmas Island red crab, Gecarcoidea natalis (Pocock, 1888), mitochondrial genome and the challenges of AT-rich mitogenomes. Marine Genomics, 2019, 45, 64-71.	0.4	14
265	Using long-read sequencing to detect imprinted DNA methylation. Nucleic Acids Research, 2019, 47, e46-e46.	6.5	88
266	Single-molecule sequencing detection of N6-methyladenine in microbial reference materials. Nature Communications, 2019, 10, 579.	5.8	131
267	High contiguity genome sequence of a multidrug-resistant hospital isolate of Enterobacter hormaechei. Gut Pathogens, 2019, 11, 3.	1.6	26
268	Aerolysin, a Powerful Protein Sensor for Fundamental Studies and Development of Upcoming Applications. ACS Sensors, 2019, 4, 530-548.	4.0	47
269	Hybridization is a recurrent evolutionary stimulus in wild yeast speciation. Nature Communications, 2019, 10, 923.	5.8	62
270	A multi-task convolutional deep neural network for variant calling in single molecule sequencing. Nature Communications, 2019, 10, 998.	5.8	102
271	Composition and Diversity of CRISPR-Cas13a Systems in the Genus Leptotrichia. Frontiers in Microbiology, 2019, 10, 2838.	1.5	25
272	Metagenomic Nanopore Sequencing of Influenza Virus Direct from Clinical Respiratory Samples. Journal of Clinical Microbiology, 2019, 58, .	1.8	121
273	Polyphasic taxonomic analysis of <i>Parasedimentitalea marina</i> gen. nov., sp. nov., a psychrotolerant bacterium isolated from deep sea water of the New Britain Trench. FEMS Microbiology Letters, 2019, 366, .	0.7	11
274	A New Lineage of Cryptococcus gattii (VGV) Discovered in the Central Zambezian Miombo Woodlands. MBio, 2019, 10, .	1.8	66

#	Article	IF	CITATIONS
275	Promising prospects of nanopore sequencing for algal hologenomics and structural variation discovery. BMC Genomics, 2019, 20, 850.	1.2	15
276	NanoSatellite: accurate characterization of expanded tandem repeat length and sequence through whole genome long-read sequencing on PromethION. Genome Biology, 2019, 20, 239.	3.8	47
277	Simultaneous detection and comprehensive analysis of HPV and microbiome status of a cervical liquid-based cytology sample using Nanopore MinION sequencing. Scientific Reports, 2019, 9, 19337.	1.6	20
278	De novo Assembly of the Brugia malayi Genome Using Long Reads from a Single MinION Flowcell. Scientific Reports, 2019, 9, 19521.	1.6	9
279	Shotgun metagenome data of a defined mock community using Oxford Nanopore, PacBio and Illumina technologies. Scientific Data, 2019, 6, 285.	2.4	75
280	Nanopore sequencing improves the draft genome of the human pathogenic amoeba Naegleria fowleri. Scientific Reports, 2019, 9, 16040.	1.6	24
281	Characterization of a Novel Conjugative Plasmid in Edwardsiella piscicida Strain MS-18-199. Frontiers in Cellular and Infection Microbiology, 2019, 9, 404.	1.8	20
282	High throughput barcoding method for genome-scale phasing. Scientific Reports, 2019, 9, 18116.	1.6	13
283	Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science, 2019, 363, 74-77.	6.0	201
284	Long-Read Annotation: Automated Eukaryotic Genome Annotation Based on Long-Read cDNA Sequencing. Plant Physiology, 2019, 179, 38-54.	2.3	45
285	Forensic tri-allelic SNP genotyping using nanopore sequencing. Forensic Science International: Genetics, 2019, 38, 204-210.	1.6	35
286	Pan-genomic analysis provides novel insights into the association of <i>E.coli</i> with human host and its minimal genome. Bioinformatics, 2019, 35, 1987-1991.	1.8	22
287	Novel thermostable enzymes from Geobacillus thermoglucosidasius W-2 for high-efficient nitroalkane removal under aerobic and anaerobic conditions. Bioresource Technology, 2019, 278, 73-81.	4.8	16
288	Evaluation of the detection of <i>GBA</i> missense mutations and other variants using the Oxford Nanopore MinION. Molecular Genetics & amp; Genomic Medicine, 2019, 7, e564.	0.6	65
289	Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing. BMC Genomics, 2019, 20, 23.	1.2	110
290	Highâ€ŧhroughput identification and diagnostics of pathogens and pests: Overview and practical recommendations. Molecular Ecology Resources, 2019, 19, 47-76.	2.2	91
291	Applying Rapid Whole-Genome Sequencing To Predict Phenotypic Antimicrobial Susceptibility Testing Results among Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	62
292	Porous Zero-Mode Waveguides for Picogram-Level DNA Capture. Nano Letters, 2019, 19, 921-929.	4.5	22

ARTICLE IF CITATIONS # New Approaches for Genome Assembly and Scaffolding. Annual Review of Animal Biosciences, 2019, 7, 293 3.6 79 17-40. Nanopore sequencing: An enrichmentâ€free alternative to mitochondrial DNA sequencing. Electrophoresis, 2019, 40, 272-280. 294 1.3 34 Nanopore sequencing technology and tools for genome assembly: computational analysis of the 295 3.2 137 current state, bottlenecks and future directions. Briefings in Bioinformatics, 2019, 20, 1542-1559. Toward perfect reads: self-correction of short reads via mapping on de Bruijn graphs. Bioinformatics, 1.8 24 2020, 36, 1374-1381. Comparative assessment of long-read error correction software applied to Nanopore RNA-sequencing 297 3.2 33 data. Briefings in Bioinformatics, 2020, 21, 1164-1181. Portable sequencer in the fight against infectious disease. Journal of Human Genetics, 2020, 65, 35-40. 1.1 Whole-genome sequencing and analysis of the Chinese herbal plant Gelsemium elegans. Acta 299 5.7 29 Pharmaceutica Sinica B, 2020, 10, 374-382. A new era of long-read sequencing for cancer genomics. Journal of Human Genetics, 2020, 65, 3-10. 1.1 300 68 Infection of Blueberry Cultivar â€~Emerald' with a California Pierce's Disease Strain of <i>Xylella 301 0.7 4 fastidiosa </i> and Acquisition by Glassy-Winged Sharpshooter. Plant Disease, 2020, 104, 154-160. Is the availability of open public spaces associated with leisure-time physical activity in Brazilian adults?. Health Promotion International, 2020, 35, e51-e58. Whole genome sequencing of Borrelia miyamotoi isolate Izh-4: reference for a complex bacterial 303 1.2 26 genome. BMC Genomics, 2020, 21, 16. MinION sequencing of Streptococcus suis allows for functional characterization of bacteria by multilocus sequence typing and antimicrobial resistance profiling. Journal of Microbiological Methods, 2020, 169, 105817. Genome reconstruction and haplotype phasing using chromosome conformation capture 305 1.3 10 methodologies. Briefings in Functional Genomics, 2020, 19, 139-150. Targeting the 16S rRNA Gene for Bacterial Identification in Complex Mixed Samples: Comparative Evaluation of Second (Illumina) and Third (Oxford Nanopore Technologies) Generation Sequencing Technologies. International Journal of Molecular Sciences, 2020, 21, 298. 306 1.8 Rapid MinION profiling of preterm microbiota and antimicrobial-resistant pathogens. Nature 307 5.9 113 Microbiology, 2020, 5, 430-442. Nanopore sequencing of the glucocerebrosidase (GBA) gene in a New Zealand Parkinson's disease 308 1.1 cohort. Parkinsonism and Related Disorders, 2020, 70, 36-41. Splicing Kinetics and Coordination Revealed by Direct Nascent RNA Sequencing through Nanopores. 309 4.5 149 Molecular Cell, 2020, 77, 985-998.e8. Solid-state nanopore fabrication by automated controlled breakdown. Nature Protocols, 2020, 15, 5.5 116 122-143.

#	Article	IF	CITATIONS
311	Determining antimicrobial resistance profiles and identifying novel mutations of Neisseria gonorrhoeae genomes obtained by multiplexed MinION sequencing. Science China Life Sciences, 2020, 63, 1063-1070.	2.3	13
312	Evaluation of NCS-based approaches for SARS-CoV-2Âwhole genome characterisation. Virus Evolution, 2020, 6, veaa075.	2.2	124
313	Characterization of mating type genes in heterothallic <i>Neonectria</i> species, with emphasis on <i>N. coccinea, N. ditissima</i> , and <i>N. faginata</i> . Mycologia, 2020, 112, 880-894.	0.8	7
314	Construction of a chromosome-scale long-read reference genome assembly for potato. GigaScience, 2020, 9, .	3.3	150
315	Viral gene drive in herpesviruses. Nature Communications, 2020, 11, 4884.	5.8	17
316	NanoGalaxy: Nanopore long-read sequencing data analysis in Galaxy. GigaScience, 2020, 9, .	3.3	23
317	Evaluation of assembly methods combining long-reads and short-reads to obtain Paenibacillus sp. R4 high-quality complete genome. 3 Biotech, 2020, 10, 480.	1.1	1
318	The Evolving Role of the Clinical Microbiology Laboratory in Identifying Resistance in Gram-Negative Bacteria. Infectious Disease Clinics of North America, 2020, 34, 659-676.	1.9	10
319	Factorial estimating assembly base errors using k-mer abundance difference (KAD) between short reads and genome assembled sequences. NAR Genomics and Bioinformatics, 2020, 2, Iqaa075.	1.5	8
320	Characteristics and Epidemiology of Extended-Spectrum β-Lactamase-Producing Multidrug-Resistant Klebsiella pneumoniae From Red Kangaroo, China. Frontiers in Microbiology, 2020, 11, 560474.	1.5	8
321	TandemTools: mapping long reads and assessing/improving assembly quality in extra-long tandem repeats. Bioinformatics, 2020, 36, i75-i83.	1.8	40
322	CONNET: Accurate Genome Consensus in Assembling Nanopore Sequencing Data via Deep Learning. IScience, 2020, 23, 101128.	1.9	5
323	Analysis Shiga Toxin-Encoding Bacteriophage in a Rare Strain of Shiga Toxin-Producing Escherichia coli O157:H7 stx2a/stx2c. Frontiers in Microbiology, 2020, 11, 577658.	1.5	5
324	UMI-linked consensus sequencing enables phylogenetic analysis of directed evolution. Nature Communications, 2020, 11, 6023.	5.8	25
325	Use of Oxford Nanopore MinION to generate full-length sequences of the Blastocystis small subunit (SSU) rRNA gene. Parasites and Vectors, 2020, 13, 595.	1.0	18
326	Recent developments of tools for genome and metabolome studies in basidiomycete fungi and their application to natural product research. Biology Open, 2020, 9, .	0.6	16
327	A clade of SARS-CoV-2 viruses associated with lower viral loads in patient upper airways. EBioMedicine, 2020, 62, 103112.	2.7	77
328	Complete Genome Sequence of a Gram-Positive Bacterium, Leifsonia sp. Strain PS1209, a Potato Endophyte. Microbiology Resource Announcements, 2020, 9, .	0.3	2

#	Article	IF	CITATIONS
329	Genomic Surveillance of Yellow Fever Virus Epizootic in São Paulo, Brazil, 2016 – 2018. PLoS Pathogens, 2020, 16, e1008699.	2.1	39
330	Novel Bayesian Networks for Genomic Prediction of Developmental Traits in Biomass Sorghum. G3: Genes, Genomes, Genetics, 2020, 10, 769-781.	0.8	25
331	Completion of draft bacterial genomes by long-read sequencing of synthetic genomic pools. BMC Genomics, 2020, 21, 519.	1.2	11
332	Tenuifilum thalassicum gen. nov., sp. nov., a novel moderate thermophilic anaerobic bacterium from a Kunashir Island shallow hot spring representing a new family Tenuifilaceae fam. nov. in the class Bacteroidia. Systematic and Applied Microbiology, 2020, 43, 126126.	1.2	22
333	Genome Sequences of SARS-CoV-2 Strains Detected in Hong Kong. Microbiology Resource Announcements, 2020, 9, .	0.3	5
334	Draft Genome Assembly of Rhodobacter sphaeroides 2.4.1 Substrain H2 from Nanopore Data. Microbiology Resource Announcements, 2020, 9, .	0.3	2
335	Assembly methods for nanopore-based metagenomic sequencing: a comparative study. Scientific Reports, 2020, 10, 13588.	1.6	53
336	A survey on <i>de novo</i> assembly methods for singleâ€molecular sequencing. Quantitative Biology, 2020, 8, 203-215.	0.3	0
337	Repeated Coronavirus Disease 2019 Molecular Testing: Correlation of Severe Acute Respiratory Syndrome Coronavirus 2 Culture With Molecular Assays and Cycle Thresholds. Clinical Infectious Diseases, 2021, 73, e860-e869.	2.9	163
338	CRISPR-Cas9 enrichment and long read sequencing for fine mapping in plants. Plant Methods, 2020, 16, 121.	1.9	31
339	Reconstruction of Strings from their Substrings Spectrum. , 2020, , .		4
340	Telomere-to-telomere assembly of a complete human X chromosome. Nature, 2020, 585, 79-84.	13.7	549
341	NanoReviser: An Error-Correction Tool for Nanopore Sequencing Based on a Deep Learning Algorithm. Frontiers in Genetics, 2020, 11, 900.	1.1	16
342	Updates on defining and detecting diarrheagenic Escherichia coli pathotypes. Current Opinion in Infectious Diseases, 2020, 33, 372-380.	1.3	28
343	Long-read sequencing for non-small-cell lung cancer genomes. Genome Research, 2020, 30, 1243-1257.	2.4	28
344	Draft Genome Sequence of an Environmental Vibrio cholerae Strain, 2012Env-25, Obtained Using Nanopore Sequencing Technology. Microbiology Resource Announcements, 2020, 9, .	0.3	2
345	GPU accelerated adaptive banded event alignment for rapid comparative nanopore signal analysis. BMC Bioinformatics, 2020, 21, 343.	1.2	53
346	Hybrid transcriptome sequencing approach improved assembly and gene annotation in Cynara cardunculus (L.). BMC Genomics, 2020, 21, 317.	1.2	18

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
347	A comprehensive evaluation of long read error correction methods. BMC Genomics, 2020, 21, 889.	1.2	58
348	Simulation of Nanopore Sequencing Signals Based on BiGRU. Sensors, 2020, 20, 7244.	2.1	7
349	SACall: A Neural Network Basecaller for Oxford Nanopore Sequencing Data Based on Self-Attention Mechanism. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 614-623.	1.9	14
350	Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore. GigaScience, 2020, 9, .	3.3	90
351	Multidrugâ€resistant Proteus mirabilis isolates carrying bla OXAâ€1 and bla NDMâ€1 from wildlife in China: increasing public health risk. Integrative Zoology, 2020, 16, 798-809.	1.3	13
352	Data Sanitization to Reduce Private Information Leakage from Functional Genomics. Cell, 2020, 183, 905-917.e16.	13.5	28
353	Portable Rabies Virus Sequencing in Canine Rabies Endemic Countries Using the Oxford Nanopore MinION. Viruses, 2020, 12, 1255.	1.5	24
354	Detection of coinfection of a divergent subgroup of genotype I Japanese encephalitis virus in multiple classical swine fever virus outbreaks in pigs of Assam, India. Transboundary and Emerging Diseases, 2021, 68, 2622-2627.	1.3	5
355	Characterisation of mobile genetic elements in Mycoplasma hominis with the description of ICEHo-II, a variant mycoplasma integrative and conjugative element. Mobile DNA, 2020, 11, 30.	1.3	4
356	Complete Genome Sequence of the Deep-Sea Bacterium Moritella marina MP-1 (ATCC 15381). Microbiology Resource Announcements, 2020, 9, .	0.3	1
357	A long road/read to rapid high-resolution HLA typing: The nanopore perspective. Human Immunology, 2021, 82, 488-495.	1.2	25
358	Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Nature Biotechnology, 2020, 38, 1044-1053.	9.4	344
359	Coast-to-Coast Spread of SARS-CoV-2 during the Early Epidemic in the United States. Cell, 2020, 181, 990-996.e5.	13.5	321
360	Genetic Underpinnings of Host Manipulation by <i>Ophiocordyceps</i> as Revealed by Comparative Transcriptomics. G3: Genes, Genomes, Genetics, 2020, 10, 2275-2296.	0.8	33
361	Mitochondrial DNA alterations may influence the cisplatin responsiveness of oral squamous cell carcinoma. Scientific Reports, 2020, 10, 7885.	1.6	37
362	Chromosome-Scale Assembly of Winter Oilseed Rape Brassica napus. Frontiers in Plant Science, 2020, 11, 496.	1.7	60
363	Massive parallel sequencing in forensics: advantages, issues, technicalities, and prospects. International Journal of Legal Medicine, 2020, 134, 1291-1303.	1.2	77
364	Oxford Nanopore sequencing: new opportunities for plant genomics?. Journal of Experimental Botany, 2020, 71, 5313-5322.	2.4	46

#	Article	IF	CITATIONS
365	Nanopore sequencing reveals genomic map of CTX-M-type extended-spectrum β-lactamases carried by Escherichia coli strains isolated from blue mussels (Mytilus edulis) in Norway. BMC Microbiology, 2020, 20, 134.	1.3	13
366	Trans-NanoSim characterizes and simulates nanopore RNA-sequencing data. GigaScience, 2020, 9, .	3.3	20
367	Ultralow-input single-tube linked-read library method enables short-read second-generation sequencing systems to routinely generate highly accurate and economical long-range sequencing information. Genome Research, 2020, 30, 898-909.	2.4	68
368	Enabling nanopore technology for sensing individual amino acids by a derivatization strategy. Journal of Materials Chemistry B, 2020, 8, 6792-6797.	2.9	20
369	Long-read human genome sequencing and its applications. Nature Reviews Genetics, 2020, 21, 597-614.	7.7	542
370	Nanopore sequencing from extraction-free direct PCR of dried serum spots for portable hepatitis B virus drug-resistance typing. Journal of Clinical Virology, 2020, 129, 104483.	1.6	9
371	Role of NGS and SNP genotyping methods in sugarcane improvement programs. Critical Reviews in Biotechnology, 2020, 40, 865-880.	5.1	14
372	Tracing Back the Evolutionary Route of Enteroinvasive Escherichia coli (EIEC) and Shigella Through the Example of the Highly Pathogenic O96:H19 EIEC Clone. Frontiers in Cellular and Infection Microbiology, 2020, 10, 260.	1.8	7
373	Complete Genome of Lactobacillus iners KY Using Flongle Provides Insight Into the Genetic Background of Optimal Adaption to Vaginal Econiche. Frontiers in Microbiology, 2020, 11, 1048.	1.5	16
374	A Chromosome-Scale Assembly of the Garden Orach (Atriplex hortensis L.) Genome Using Oxford Nanopore Sequencing. Frontiers in Plant Science, 2020, 11, 624.	1.7	11
375	Whole Genome Sequence of Xylella fastidiosa ATCC 35879T and Detection of Genome Rearrangements Within Subsp. fastidiosa. Current Microbiology, 2020, 77, 1858-1863.	1.0	4
376	Apollo: a sequencing-technology-independent, scalable and accurate assembly polishing algorithm. Bioinformatics, 2020, 36, 3669-3679.	1.8	26
377	A Staphylococcus pro-apoptotic peptide induces acute exacerbation of pulmonary fibrosis. Nature Communications, 2020, 11, 1539.	5.8	43
378	Can we use it? On the utility of de novo and reference-based assembly of Nanopore data for plant plastome sequencing. PLoS ONE, 2020, 15, e0226234.	1.1	33
379	Precise and Cost-Effective Nanopore Sequencing for Post-GWAS Fine-Mapping and Causal Variant Identification. IScience, 2020, 23, 100971.	1.9	7
380	New genome assemblies reveal patterns of domestication and adaptation across Brettanomyces (Dekkera) species. BMC Genomics, 2020, 21, 194.	1.2	21
381	Benchmarking hybrid assemblies of Giardia and prediction of widespread intra-isolate structural variation. Parasites and Vectors, 2020, 13, 108.	1.0	8
382	Gaussian mixture model-based unsupervised nucleotide modification number detection using nanopore-sequencing readouts. Bioinformatics, 2020, 36, 4928-4934.	1.8	21

#	Article	IF	CITATIONS
383	The Genome Sequence of the Jean-Talon Strain, an Archeological Beer Yeast from Québec, Reveals Traces of Adaptation to Specific Brewing Conditions. G3: Genes, Genomes, Genetics, 2020, 10, 3087-3097.	0.8	3
384	Revealing antimicrobial resistance in stormwater with MinION. Chemosphere, 2020, 258, 127392.	4.2	15
385	Polymorphic centromere locations in the pathogenic yeast <i>Candida parapsilosis</i> . Genome Research, 2020, 30, 684-696.	2.4	22
386	The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Computational Biology, 2020, 16, e1007981.	1.5	172
387	Is Lactobacillus Gram-Positive? A Case Study of Lactobacillus iners. Microorganisms, 2020, 8, 969.	1.6	12
388	An educational guide for nanopore sequencing in the classroom. PLoS Computational Biology, 2020, 16, e1007314.	1.5	20
389	Direct full-length RNA sequencing reveals unexpected transcriptome complexity during <i>Caenorhabditis elegans</i> development. Genome Research, 2020, 30, 287-298.	2.4	43
390	Causalcall: Nanopore Basecalling Using a Temporal Convolutional Network. Frontiers in Genetics, 2019, 10, 1332.	1.1	39
391	Chromosomal-level assembly of Juglans sigillata genome using Nanopore, BioNano, and Hi-C analysis. GigaScience, 2020, 9, .	3.3	33
392	Assessment of a multiplex PCR and Nanopore-based method for dengue virus sequencing in Indonesia. Virology Journal, 2020, 17, 24.	1.4	26
393	A Guide to Carrying Out a Phylogenomic Target Sequence Capture Project. Frontiers in Genetics, 2019, 10, 1407.	1.1	76
394	Unorthodox features in two venerid bivalves with doubly uniparental inheritance of mitochondria. Scientific Reports, 2020, 10, 1087.	1.6	23
395	Molecular profiling of beer wort fermentation diversity across natural <i>Saccharomyces eubayanus</i> isolates. Microbial Biotechnology, 2020, 13, 1012-1025.	2.0	21
396	Genomics Evolutionary History and Diagnostics of the Alternaria alternata Species Group Including Apple and Asian Pear Pathotypes. Frontiers in Microbiology, 2019, 10, 3124.	1.5	41
397	Insertion of channel of phi29 DNA packaging motor into polymer membrane for high-throughput sensing. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 25, 102170.	1.7	9
398	Improved Measurement of Proteins Using a Solid-State Nanopore Coupled with a Hydrogel. ACS Sensors, 2020, 5, 370-376.	4.0	21
399	Building near-complete plant genomes. Current Opinion in Plant Biology, 2020, 54, 26-33.	3.5	135
400	Pathogenomes of Atypical Non-shigatoxigenic Escherichia coli NSF/SF O157:H7/NM: Comprehensive Phylogenomic Analysis Using Closed Genomes. Frontiers in Microbiology, 2020, 11, 619.	1.5	11

#	Article	IF	CITATIONS
401	Complete Genome Sequences of Four Isolates of Vancomycin-Resistant Enterococcus faecium with the <i>vanA</i> Gene and Two Daptomycin Resistance Mutations, Obtained from Two Inpatients with Prolonged Bacteremia. Microbiology Resource Announcements, 2020, 9, .	0.3	6
402	First Identification of Human Adenovirus Subtype 21a in China With MinION and Illumina Sequencers. Frontiers in Genetics, 2020, 11, 285.	1.1	3
403	Complete Genome Sequence of <i>Campylobacter armoricus</i> CA639, Which Carries Two Plasmids, Compiled Using Oxford Nanopore and Illumina Sequencing Technologies. Microbiology Resource Announcements, 2020, 9, .	0.3	1
404	Rapid mitochondrial genome sequencing based on Oxford Nanopore Sequencing and a proxy for vertebrate species identification. Ecology and Evolution, 2020, 10, 3544-3560.	0.8	20
405	De novo assembly of the olive fruit fly (Bactrocera oleae) genome with linked-reads and long-read technologies minimizes gaps and provides exceptional Y chromosome assembly. BMC Genomics, 2020, 21, 259.	1.2	21
406	Next Generation Sequencing Methods: Pushing the Boundaries. , 2021, , 19-46.		0
407	QAlign: aligning nanopore reads accurately using current-level modeling. Bioinformatics, 2021, 37, 625-633.	1.8	7
408	Draft genomes of Perkinsus olseni and Perkinsus chesapeaki reveal polyploidy and regional differences in heterozygosity. Genomics, 2021, 113, 677-688.	1.3	11
409	Comparative Genomic Analyses Reveal Functional Insights Into Key Determinants of the Pathogenesis of Pectobacterium actinidiae in Kiwifruit. Phytopathology, 2021, 111, PHYTO-07-20-028.	1.1	3
410	Chromosome-level de novo assembly of Coprinopsis cinerea A43mut B43mut pab1-1 #326 and genetic variant identification of mutants using Nanopore MinION sequencing. Fungal Genetics and Biology, 2021, 146, 103485.	0.9	7
411	The Human Adenovirus 2 Transcriptome: an Amazing Complexity of Alternatively Spliced mRNAs. Journal of Virology, 2021, 95, .	1.5	15
412	Efficient hybrid de novo assembly of human genomes with WENGAN. Nature Biotechnology, 2021, 39, 422-430.	9.4	47
413	Robust Storage of Chinese Language in a Pool of Small Single-Stranded DNA Rings and Its Facile Reading-Out. Bulletin of the Chemical Society of Japan, 2021, 94, 53-59.	2.0	6
414	Current challenges and best-practice protocols for microbiome analysis. Briefings in Bioinformatics, 2021, 22, 178-193.	3.2	268
415	A Reference Genome Assembly of Simmental Cattle, <i>Bos taurus taurus</i> . Journal of Heredity, 2021, 112, 184-191.	1.0	25
416	long-read-tools.org: an interactive catalogue of analysis methods for long-read sequencing data. GigaScience, 2021, 10, .	3.3	34
417	Nanopore sequencing and its application to the study of microbial communities. Computational and Structural Biotechnology Journal, 2021, 19, 1497-1511.	1.9	106
418	Pair consensus decoding improves accuracy of neural network basecallers for nanopore sequencing. Genome Biology, 2021, 22, 38.	3.8	37

#	Article	IF	Citations
419	Oxford nanopore sequencing in clinical microbiology and infection diagnostics. Briefings in Bioinformatics, 2021, 22, .	3.2	28
420	Biological computation and computational biology: survey, challenges, and discussion. Artificial Intelligence Review, 2021, 54, 4169-4235.	9.7	7
421	Falco: high-speed FastQC emulation for quality control of sequencing data. F1000Research, 2019, 8, 1874.	0.8	112
423	Biological Nanopores: Engineering on Demand. Life, 2021, 11, 27.	1.1	33
424	Is Oxford Nanopore sequencing ready for analyzing complex microbiomes?. FEMS Microbiology Ecology, 2021, 97, .	1.3	31
425	EpiNano: Detection of m6A RNA Modifications Using Oxford Nanopore Direct RNA Sequencing. Methods in Molecular Biology, 2021, 2298, 31-52.	0.4	34
426	MultiNanopolish: refined grouping method for reducing redundant calculations in Nanopolish. Bioinformatics, 2021, 37, 2757-2760.	1.8	6
428	A Reference Genome Assembly of American Bison, <i>Bison bison bison</i> . Journal of Heredity, 2021, 112, 174-183.	1.0	14
429	S-conLSH: alignment-free gapped mapping of noisy long reads. BMC Bioinformatics, 2021, 22, 64.	1.2	9
430	First complete genome characterization of swinepox virus directly from a clinical sample indicates divergence of a Eurasian-lineage virus. Archives of Virology, 2021, 166, 1217-1225.	0.9	2
431	Rapid Methods for Antimicrobial Resistance Diagnostics. Antibiotics, 2021, 10, 209.	1.5	58
437	Chromosome-level genome assembly and structural variant analysis of two laboratory yeast strains from the Peterhof Genetic Collection lineage. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	7
440	A workflow for accurate metabarcoding using nanopore MinION sequencing. Methods in Ecology and Evolution, 2021, 12, 794-804.	2.2	23
442	SARS-CoV-2 Genomes From Oklahoma, United States. Frontiers in Genetics, 2020, 11, 612571.	1.1	5
443	Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Research, 2019, 8, 2138.	0.8	128
445	Clinical, Serological, Whole Genome Sequence Analyses to Confirm SARS-CoV-2 Reinfection in Patients From Mumbai, India. Frontiers in Medicine, 2021, 8, 631769.	1.2	21
447	A Persistent Giant Algal Virus, with a Unique Morphology, Encodes an Unprecedented Number of Genes Involved in Energy Metabolism. Journal of Virology, 2021, 95, .	1.5	31
450	Analysis of a small outbreak of Shiga toxin-producing Escherichia coli O157:H7 using long-read sequencing. Microbial Genomics, 2021, 7, .	1.0	9

ARTICLE

IF CITATIONS

 $_{451}$ Chromosome-length genome assembly and structural variations of the primal Basenji dog (Canis lupus) Tj ETQq0 0.0 rgBT /Oyerlock 10

452	Light–Nucleotide versus Ion–Nucleotide Interactions for Single-Nucleotide Resolution. Journal of Physical Chemistry B, 2021, 125, 2863-2870.	1.2	0
453	Characteristic time for the end monomers of a spherically confined polymer to find a nano-pore. Journal of Chemical Physics, 2021, 154, 114901.	1.2	4
454	Genetic Polymorphism Drives Susceptibility Between Bacteria and Bacteriophages. Frontiers in Microbiology, 2021, 12, 627897.	1.5	5
455	Genomic diversity of SARS-CoV-2 during early introduction into the Baltimore–Washington metropolitan area. JCI Insight, 2021, 6, .	2.3	31
456	Recovery of complete genomes and non-chromosomal replicons from activated sludge enrichment microbial communities with long read metagenome sequencing. Npj Biofilms and Microbiomes, 2021, 7, 23.	2.9	29
457	GenomicsBench: A Benchmark Suite for Genomics. , 2021, , .		6
458	Metagenomic Data Assembly – The Way of Decoding Unknown Microorganisms. Frontiers in Microbiology, 2021, 12, 613791.	1.5	67
460	Homopolish: a method for the removal of systematic errors in nanopore sequencing by homologous polishing. Genome Biology, 2021, 22, 95.	3.8	79
461	Different kinetoplast degradation patterns in American Trypanosoma vivax strains: Multiple independent origins or fast evolution?. Genomics, 2021, 113, 843-853.	1.3	5
464	PCIP-seq: simultaneous sequencing of integrated viral genomes and their insertion sites with long reads. Genome Biology, 2021, 22, 97.	3.8	24
465	Uncertainties in synthetic DNA-based data storage. Nucleic Acids Research, 2021, 49, 5451-5469.	6.5	26
467	Identification and Expression of Secreted In Xylem Pathogenicity Genes in Fusarium oxysporum f. sp. pisi. Frontiers in Microbiology, 2021, 12, 593140.	1.5	9
468	MrHAMER yields highly accurate single molecule viral sequences enabling analysis of intra-host evolution. Nucleic Acids Research, 2021, 49, e70-e70.	6.5	15
469	Application of a strain-level shotgun metagenomics approach on food samples: resolution of the source of a Salmonella food-borne outbreak. Microbial Genomics, 2021, 7, .	1.0	16
471	High-resolution HLA typing by long reads from the R10.3 Oxford nanopore flow cells. Human Immunology, 2021, 82, 288-295.	1.2	28
472	Nanopore Sequencing and Hi-C Based De Novo Assembly of Trachidermus fasciatus Genome. Genes, 2021, 12, 692.	1.0	2
473	Long-read sequencing of 3,622 Icelanders provides insight into the role of structural variants in human diseases and other traits. Nature Genetics, 2021, 53, 779-786.	9.4	156

#	ARTICLE The identification of a transposon affecting the asexual reproduction of the wheat pathogen	IF 2.0	CITATIONS
474	<i>Zymoseptoria tritici</i> . Molecular Plant Pathology, 2021, 22, 800-816. Multiplex PCR-Based Nanopore Sequencing and Epidemiological Surveillance of Hantaan orthohantavirus in Apodemus agrarius, Republic of Korea. Viruses, 2021, 13, 847.	1.5	8
476	Re-examination of two diatom reference genomes using long-read sequencing. BMC Genomics, 2021, 22, 379.	1.2	22
477	Cancer Biomarkers Discovery of Methylation Modification With Direct High-Throughput Nanopore Sequencing. Frontiers in Genetics, 2021, 12, 672804.	1.1	9
478	Polishing the Oxford Nanopore long-read assemblies of bacterial pathogens with Illumina short reads to improve genomic analyses. Genomics, 2021, 113, 1366-1377.	1.3	33
479	Early introductions and transmission of SARS-CoV-2 variant B.1.1.7 in the United States. Cell, 2021, 184, 2595-2604.e13.	13.5	113
480	The SARS-CoV-2 subgenome landscape and its novel regulatory features. Molecular Cell, 2021, 81, 2135-2147.e5.	4.5	72
484	Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nature Biotechnology, 2021, 39, 1278-1291.	9.4	144
485	NeuralPolish: a novel Nanopore polishing method based on alignment matrix construction and orthogonal Bi-GRU Networks. Bioinformatics, 2021, 37, 3120-3127.	1.8	13
487	Human genomics of the humoral immune response against polyomaviruses. Virus Evolution, 2021, 7, veab058.	2.2	9
490	Regional sequencing collaboration reveals persistence of the T12 Vibrio cholerae O1 lineage in West Africa. ELife, 2021, 10, .	2.8	6
495	MicroPIPE: validating an end-to-end workflow for high-quality complete bacterial genome construction. BMC Genomics, 2021, 22, 474.	1.2	25
496	Nanopore Technology and Its Applications in Gene Sequencing. Biosensors, 2021, 11, 214.	2.3	79
498	An exploration of assembly strategies and quality metrics on the accuracy of the rewarewa (<i>Knightia excelsa</i>) genome. Molecular Ecology Resources, 2021, 21, 2125-2144.	2.2	9
499	Evaluation of Oxford Nanopore MinION RNA-Seq Performance for Human Primary Cells. International Journal of Molecular Sciences, 2021, 22, 6317.	1.8	8
501	FnCas9-based CRISPR diagnostic for rapid and accurate detection of major SARS-CoV-2 variants on a paper strip. ELife, 2021, 10, .	2.8	53
502	<i>Wolbachia</i> in the spittlebug <i>Prosapia ignipectus</i> : Variable infection frequencies, but no apparent effect on host reproductive isolation. Ecology and Evolution, 2021, 11, 10054-10065.	0.8	5
503	Nanopore metagenomic sequencing of influenza virus directly from respiratory samples: diagnosis, drug resistance and nosocomial transmission, United Kingdom, 2018/19 influenza season. Eurosurveillance, 2021, 26, .	3.9	17

#	Article	IF	CITATIONS
506	Nanopanel2 calls phased low-frequency variants in Nanopore panel sequencing data. Bioinformatics, 2021, 37, 4620-4625.	1.8	2
507	DNA-nanopore technology: a human perspective. Emerging Topics in Life Sciences, 2021, 5, 455-463.	1.1	1
508	Parallel evolution of trehalose production machinery in anhydrobiotic animals via recurrent gene loss and horizontal transfer. Open Biology, 2021, 11, 200413.	1.5	17
509	Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nature Biotechnology, 2021, 39, 1394-1402.	9.4	131
511	ModPhred: an integrative toolkit for the analysis and storage of nanopore sequencing DNA and RNA modification data. Bioinformatics, 2021, 38, 257-260.	1.8	11
512	Antimicrobial Resistance Profiling and Phylogenetic Analysis of Neisseria gonorrhoeae Clinical Isolates From Kenya in a Resource-Limited Setting. Frontiers in Microbiology, 2021, 12, 647565.	1.5	8
513	Reconstruction of Strings From Their Substrings Spectrum. IEEE Transactions on Information Theory, 2021, 67, 4369-4384.	1.5	6
519	Technology dictates algorithms: recent developments in read alignment. Genome Biology, 2021, 22, 249.	3.8	51
520	Streptomonospora litoralis sp. nov., a halophilic thiopeptides producer isolated from sand collected at Cuxhaven beach. Antonie Van Leeuwenhoek, 2021, 114, 1483-1496.	0.7	6
521	Tracking the introduction and spread of SARS-CoV-2 in coastal Kenya. Nature Communications, 2021, 12, 4809.	5.8	32
522	Imprecise recombinant viruses evolve via a fitness-driven, iterative process of polymerase template-switching events. PLoS Pathogens, 2021, 17, e1009676.	2.1	15
523	The optimal standard protocols for whole-genome sequencing of antibiotic-resistant pathogenic bacteria using third-generation sequencing platforms. Molecular and Cellular Toxicology, 2021, 17, 493-501.	0.8	3
524	Enhanced Recovery of Microbial Genes and Genomes From a Marine Water Column Using Long-Read Metagenomics. Frontiers in Microbiology, 2021, 12, 708782.	1.5	17
525	Clinical and Histopathologic Features of a Feline SARS-CoV-2 Infection Model Are Analogous to Acute COVID-19 in Humans. Viruses, 2021, 13, 1550.	1.5	20
526	Apicidin biosynthesis is linked to accessory chromosomes in Fusarium poae isolates. BMC Genomics, 2021, 22, 591.	1.2	7
527	Synthesis of modified nucleotide polymers by the poly(U) polymerase Cid1: application to direct RNA sequencing on nanopores. Rna, 2021, 27, 1497-1511.	1.6	12
528	Unraveling the Genome of a High Yielding Colombian Sugarcane Hybrid. Frontiers in Plant Science, 2021, 12, 694859.	1.7	13
529	Comparative Genomic Analyses of Flavobacterium psychrophilum Isolates Reveals New Putative Genetic Determinants of Virulence Traits. Microorganisms, 2021, 9, 1658.	1.6	5

ARTICLE IF CITATIONS # The chromosomeâ€scale reference genome of <i>Rubus chingii</i> Hu provides insight into the 530 2.8 26 biosynthetic pathway of hydrolyzable tannins. Plant Journal, 2021, 107, 1466-1477. Genomic selection in salmonids: new discoveries and future perspectives. Aquaculture International, 1.1 2021, 29, 2259-2289. Targeted long-read sequencing identifies missing disease-causing variation. American Journal of 533 2.6 105 Human Genetics, 2021, 108, 1436-1449. Comprehensive Wet-Bench and Bioinformatics Workflow for Complex Microbiota Using Oxford 534 Nanopore Technologies. MSystems, 2021, 6, e0075021. Perspectives and Benefits of High-Throughput Long-Read Sequencing in Microbial Ecology. Applied and 535 1.4 80 Environmental Microbiology, 2021, 87, e0062621. Recovery of small plasmid sequences via Oxford Nanopore sequencing. Microbial Genomics, 2021, 7, . 1.0 44 Genome Sequencing and Functional Characterization of Xanthomonas cucurbitae, the Causal Agent 537 1.1 2 of Bacterial Spot Disease of Cucurbits. Phytopathology, 2021, 111, PHYTO-06-20-022. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biology, 2021, 22, 266. 538 3.8 Multiple Occurrences of a 168-Nucleotide Deletion in SARS-CoV-2 ORF8, Unnoticed by Standard 539 1.5 7 Amplicon Sequencing and Variant Calling Pipelines. Viruses, 2021, 13, 1870. Nosocomial or not? A combined epidemiological and genomic investigation to understand 540 hospital-acquired COVID-19 infection on an elderly care ward. Infection Prevention in Practice, 2021, 3, 100165. Nanopore Dwell Time Analysis Permits Sequencing and Conformational Assignment of Pseudouridine 541 5.346 in SARS-CoV-2. ACS Central Science, 2021, 7, 1707-1717. Pandora: nucleotide-resolution bacterial pan-genomics with reference graphs. Genome Biology, 2021, 3.8 22, 267. Minimizer-space de Bruijn graphs: Whole-genome assembly of long reads in minutes on a personal 546 2.9 51 computer. Cell Systems, 2021, 12, 958-968.e6. Metagenomics next-generation sequencing tests take the stage in the diagnosis of lower respiratory 547 4.4 tract infections. Journal of Advanced Research, 2022, 38, 201-212. PRINCESS: comprehensive detection of haplotype resolved SNVs, SVs, and methylation. Genome Biology, 549 3.8 28 2021, 22, 268. Case Report: BMPR2-Targeted MinION Sequencing as a Tool for Genetic Analysis in Patients With 1.1 Pulmonary Arterial Hypertension. Frontiers in Cardiovascular Medicine, 2021, 8, 711694. Emergence of the E484K mutation in SARS-COV-2-infected immunocompromised patients treated with 551 3.083 bamlanivimab in Germany. Lancet Regional Health - Europe, The, 2021, 8, 100164. NanoHIV: A Bioinformatics Pipeline for Producing Accurate, Near Full-Length HIV Proviral Genomes 1.8 Sequenced Using the Oxford Nanopore Technology. Cells, 2021, 10, 2577.

#	Article	IF	CITATIONS
553	Diagnostic accuracy of loop-mediated isothermal amplification coupled to nanopore sequencing (LamPORE) for the detection of SARS-CoV-2 infection at scale in symptomatic and asymptomatic populations. Clinical Microbiology and Infection, 2021, 27, 1348.e1-1348.e7.	2.8	35
554	Emergence and Spread of a B.1.1.28-Derived P.6 Lineage with Q675H and Q677H Spike Mutations in Uruguay. Viruses, 2021, 13, 1801.	1.5	6
555	Comparison of SEM-Assisted Nanoporometric and Microporometric Morphometric Techniques Applied for the Ultramicroporous Polymer Films. Key Engineering Materials, 0, 899, 660-674.	0.4	1
556	The Genome of the CTG(Ser1) Yeast <i>Scheffersomyces stipitis</i> Is Plastic. MBio, 2021, 12, e0187121.	1.8	1
557	Genome and transcriptome analysis of the beet armyworm <i>Spodoptera exigua</i> reveals targets for pest control. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	9
559	Computational methods for RNA modification detection from nanopore direct RNA sequencing data. RNA Biology, 2021, 18, 31-40.	1.5	48
560	Characterization of antibiotic resistance and virulence genes of ocular methicillin-resistant Staphylococcus aureus strains through complete genome analysis. Experimental Eye Research, 2021, 212, 108764.	1.2	4
561	Applications and potentials of nanopore sequencing in the (epi)genome and (epi)transcriptome era. Innovation(China), 2021, 2, 100153.	5.2	15
563	<i>De novo</i> genome assembly of the tobacco hornworm moth (<i>Manduca sexta)</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	20
564	Analysis of selection in protein-coding sequences accounting for common biases. Briefings in Bioinformatics, 2021, 22, .	3.2	20
565	Comparative analysis of mitochondrial genomes of soybean cytoplasmic male-sterile lines and their maintainer lines. Functional and Integrative Genomics, 2021, 21, 43-57.	1.4	8
566	Evidence of two deeply divergent co-existing mitochondrial genomes in the Tuatara reveals an extremely complex genomic organization. Communications Biology, 2021, 4, 116.	2.0	16
568	Precision long-read metagenomics sequencing for food safety by detection and assembly of Shiga toxin-producing Escherichia coli in irrigation water. PLoS ONE, 2021, 16, e0245172.	1.1	28
569	Sequencing of the Arabidopsis NOR2 reveals its distinct organization and tissue-specific rRNA ribosomal variants. Nature Communications, 2021, 12, 387.	5.8	32
570	Sequencing Techniques. , 2017, , 43-60.		4
571	Calling Homopolymer Stretches from Raw Nanopore Reads by Analyzing k-mer Dwell Times. IFMBE Proceedings, 2018, , 241-244.	0.2	17
572	DNA Nanotechnology for Building Sensors, Nanopores and Ion-Channels. Advances in Experimental Medicine and Biology, 2019, 1174, 331-370.	0.8	6
573	Genomics and Transcriptomics Advance in Plant Sciences. Energy, Environment, and Sustainability, 2019, , 419-448.	0.6	5

#	Article	IF	CITATIONS
574	High-throughput sequencing (HTS) for the analysis of viral populations. Infection, Genetics and Evolution, 2020, 80, 104208.	1.0	35
575	Impact of lossy compression of nanopore raw signal data on basecalling and consensus accuracy. Bioinformatics, 2021, 36, 5313-5321.	1.8	5
576	NanoSPC: a scalable, portable, cloud compatible viral nanopore metagenomic data processing pipeline. Nucleic Acids Research, 2020, 48, W366-W371.	6.5	14
577	Corynebacterium endometrii sp. nov., isolated from the uterus of a cow with endometritis. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 146-152.	0.8	12
578	Corynebacterium urogenitale sp. nov. isolated from the genital tract of a cow. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 3625-3632.	0.8	9
579	Comparison of bacterial genome assembly software for MinION data and their applicability to medical microbiology. Microbial Genomics, 2016, 2, e000085.	1.0	33
580	A complete high-quality MinION nanopore assembly of an extensively drug-resistant Mycobacterium tuberculosis Beijing lineage strain identifies novel variation in repetitive PE/PPE gene regions. Microbial Genomics, 2018, 4, .	1.0	35
581	mlplasmids: a user-friendly tool to predict plasmid- and chromosome-derived sequences for single species. Microbial Genomics, 2018, 4, .	1.0	121
582	Resolving the complex Bordetella pertussis genome using barcoded nanopore sequencing. Microbial Genomics, 2018, 4, .	1.0	22
583	Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes. Microbial Genomics, 2019, 5, .	1.0	171
584	Complete hybrid genome assembly of clinical multidrug-resistant Bacteroides fragilis isolates enables comprehensive identification of antimicrobial-resistance genes and plasmids. Microbial Genomics, 2019, 5, .	1.0	16
585	Comparison of Shiga toxin-encoding bacteriophages in highly pathogenic strains of Shiga toxin-producing Escherichia coli 0157:H7 in the UK. Microbial Genomics, 2020, 6, .	1.0	25
586	nanoMLST: accurate multilocus sequence typing using Oxford Nanopore Technologies MinION with a dual-barcode approach to multiplex large numbers of samples. Microbial Genomics, 2020, 6, .	1.0	22
706	Picopore: A tool for reducing the storage size of Oxford Nanopore Technologies datasets without loss of functionality. F1000Research, 2017, 6, 227.	0.8	5
707	Picopore: A tool for reducing the storage size of Oxford Nanopore Technologies datasets without loss of functionality. F1000Research, 0, 6, 227.	0.8	1
708	Picopore: A tool for reducing the storage size of Oxford Nanopore Technologies datasets without loss of functionality. F1000Research, 2017, 6, 227.	0.8	3
709	A sequencer coming of age: De novo genome assembly using MinION reads. F1000Research, 2017, 6, 1083.	0.8	42
710	Falco: high-speed FastQC emulation for quality control of sequencing data. F1000Research, 2019, 8, 1874.	0.8	159

#	Article	IF	CITATIONS
711	Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Research, 2019, 8, 2138.	0.8	115
712	Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Research, 0, 8, 2138.	0.8	5
713	Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Research, 0, 8, 2138.	0.8	17
714	Individuality, phenotypic differentiation, dormancy and â€ ⁻ persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Research, 2015, 4, 179.	0.8	46
715	Individuality, phenotypic differentiation, dormancy and â€~persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Research, 2015, 4, 179.	0.8	49
716	Rapid in-country sequencing of whole virus genomes to inform rabies elimination programmes. Wellcome Open Research, 2020, 5, 3.	0.9	30
717	Integrated genomic view of SARS-CoV-2 in India. Wellcome Open Research, 2020, 5, 184.	0.9	36
718	3D genome evolution and reorganization in the Drosophila melanogaster species group. PLoS Genetics, 2020, 16, e1009229.	1.5	27
719	On site DNA barcoding by nanopore sequencing. PLoS ONE, 2017, 12, e0184741.	1.1	96
720	A Shiga Toxin-Encoding Prophage Recombination Event Confounds the Phylogenetic Relationship Between Two Isolates of Escherichia coli O157:H7 From the Same Patient. Frontiers in Microbiology, 2020, 11, 588769.	1.5	3
721	Biomedical diagnosis perspective of epigenetic detections using alpha-hemolysin nanopore. AIMS Materials Science, 2015, 2, 448-472.	0.7	11
722	Rapid and Accurate Sequencing of Enterovirus Genomes Using MinION Nanopore Sequencer. Biomedical and Environmental Sciences, 2017, 30, 718-726.	0.2	21
723	MinION rapid sequencing: Review of potential applications in neurosurgery. , 2018, 9, 157.		20
724	Host-Pathogen Wars: New Weapons from Biotechnology and Genomics. American Journal of Plant Sciences, 2019, 10, 402-416.	0.3	2
725	DNA Sequencing: Current State and Prospects of Development. Open Journal of Biophysics, 2019, 09, 169-197.	0.7	8
726	Oxford Nanopore MinION Sequencing Enables Rapid Whole Genome Assembly of Rickettsia typhi in a Resource-Limited Setting. American Journal of Tropical Medicine and Hygiene, 2020, 102, 408-414.	0.6	22
727	Long read sequencing reveals poxvirus evolution through rapid homogenization of gene arrays. ELife, 2018, 7, .	2.8	23
728	Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification. ELife, 2020, 9, .	2.8	312

#	Article	IF	CITATIONS
729	<i>Clostridium manihotivorum</i> sp. nov., a novel mesophilic anaerobic bacterium that produces cassava pulp-degrading enzymes. PeerJ, 2020, 8, e10343.	0.9	12
730	Assessing the utility of the Oxford Nanopore MinION for snake venom gland cDNA sequencing. PeerJ, 2015, 3, e1441.	0.9	34
731	Availability of Nanopore sequences in the genome taxonomy for <i>Vibrionaceae</i> systematics: Rumoiensis clade species as a test case. PeerJ, 2018, 6, e5018.	0.9	13
732	Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ, 2019, 7, e6800.	0.9	109
733	Nanopore Hybrid Assembly of Biscogniauxia mediterranea Isolated from Quercus cerris Affected by Charcoal Disease in an Endangered Coastal Wood. Microbiology Resource Announcements, 2021, 10, e0045021.	0.3	1
734	Multiple-Replicon Resistance Plasmids of Klebsiella Mediate Extensive Dissemination of Antimicrobial Genes. Frontiers in Microbiology, 2021, 12, 754931.	1.5	14
735	Establishment of a near-contiguous genome sequence of the citric acid producing yeast Yarrowia lipolytica DSM 3286 with resolution of rDNA clusters and telomeres. NAR Genomics and Bioinformatics, 2021, 3, lqab085.	1.5	4
737	Characterization of a pESI-like plasmid and analysis of multidrug-resistant Salmonella enterica Infantis isolates in England and Wales. Microbial Genomics, 2021, 7, .	1.0	14
738	Sequence features of retrotransposons allow for epigenetic variability. ELife, 2021, 10, .	2.8	9
739	Beyond sequencing: machine learning algorithms extract biology hidden in Nanopore signal data. Trends in Genetics, 2022, 38, 246-257.	2.9	42
746	Diverse molecular processes of chromatic acclimation in the cyanobacteria phylum. Plant Morphology, 2017, 29, 41-45.	0.1	0
766	Innovative Technologies for Advancement of WHO Risk Group 4 Pathogens Research. , 2019, , 437-469.		5
767	BioAnalyzer: Bioinformatic Software of Routinely Used Tools for Analysis of Genomic Data. Advances in Bioscience and Biotechnology (Print), 2019, 10, 33-41.	0.3	6
783	Sequencing and Assembling Genomes and Chromosomes of Cereal Crops. Methods in Molecular Biology, 2020, 2072, 27-37.	0.4	1
792	Latest Knowledge of Electromicrobiology. , 2020, , 3-12.		1
798	MinION sequencing from sea ice cryoconites leads to de novo genome reconstruction from metagenomes. Scientific Reports, 2021, 11, 21041.	1.6	9
799	A small number of early introductions seeded widespread transmission of SARS-CoV-2 in Québec, Canada. Genome Medicine, 2021, 13, 169.	3.6	19
800	First complete genome characterization of duck plague virus from India. VirusDisease, 2021, 32, 789-796.	1.0	3

#	Article	IF	CITATIONS
802	The Methods of Digging for "Gold―within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools. Genes, 2021, 12, 1756.	1.0	8
803	Genomic analysis of dibenzofuran-degrading <i>Pseudomonas veronii</i> strain Pvy reveals its biodegradative versatility. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	5
804	An End-to-end Oxford Nanopore Basecaller Using Convolution-augmented Transformer. , 2020, , .		11
805	The Applications of Nanopore Sequencing Technology in Pathogenic Microorganism Detection. Canadian Journal of Infectious Diseases and Medical Microbiology, 2020, 2020, 1-8.	0.7	16
807	Rapid in-country sequencing of whole virus genomes to inform rabies elimination programmes. Wellcome Open Research, 2020, 5, 3.	0.9	26
812	Sex without crossing over in the yeast Saccharomycodes ludwigii. Genome Biology, 2021, 22, 303.	3.8	3
813	What sequencing technologies can teach us about innate immunity*. Immunological Reviews, 2022, 305, 9-28.	2.8	3
814	Nanopore sequencing technology, bioinformatics and applications. Nature Biotechnology, 2021, 39, 1348-1365.	9.4	521
815	Towards Real-Time and Affordable Strain-Level Metagenomics-Based Foodborne Outbreak Investigations Using Oxford Nanopore Sequencing Technologies. Frontiers in Microbiology, 2021, 12, 738284.	1.5	19
824	The Efficiency of 5-Methylcytosine Identification in DNA of Escherichia coli Cells that Carry Bacterial DNA Methyltransferase Genes Using an Oxford Nanopore Device. Biophysics (Russian Federation), 2020, 65, 889-893.	0.2	2
826	Complete genome sequence of a psychrotolerant and piezotolerant bacterium Parasedimentitalea marina W43T, isolated from deep sea water of the New Britain trench. Marine Genomics, 2022, 61, 100915.	0.4	3
828	Accurate long-read de novo assembly evaluation with Inspector. Genome Biology, 2021, 22, 312.	3.8	46
829	Long-read sequencing reveals increased occurrence of genomic variants and adenosine methylation in <i>Bacillus pumilus</i> SAFR-032 after long-duration flight exposure onboard the International Space Station. International Journal of Astrobiology, 2021, 20, 435-444.	0.9	3
830	Evaluation of whole-genome sequence data analysis approaches for short- and long-read sequencing of Mycobacterium tuberculosis. Microbial Genomics, 2021, 7, .	1.0	13
831	Detection of single nucleotide and copy number variants in the Fabry disease-associated GLA gene using nanopore sequencing. Scientific Reports, 2021, 11, 22372.	1.6	6
832	Experience in genetic testing of hypertrophic cardiomyopathy using nanopore DNA sequencing. Russian Journal of Cardiology, 2021, 26, 4673.	0.4	1
833	Towards inferring nanopore sequencing ionic currents from nucleotide chemical structures. Nature Communications, 2021, 12, 6545.	5.8	3
834	High-Quality Genomes and High-Density Genetic Map Facilitate the Identification of Genes From a Weedy Rice. Frontiers in Plant Science, 2021, 12, 775051.	1.7	7

ARTICLE IF CITATIONS Sequencing SARS-CoV-2 genomes from saliva. Virus Evolution, 2022, 8, veab098. 837 2.2 4 Multi-strand Reconstruction from Substrings., 2021, , . Analysis Comparison for Rapid Identification of Pathogenic Virus from Infected Tissue Samples. 840 0 1.3 Diagnostics, 2022, 12, 196. A short plus long-amplicon based sequencing approach improves genomic coverage and variant detection in the SARS-CoV-2 genome. PLoS ONE, 2022, 17, e0261014. 841 1.1 Identification of Drug Transporter Genomic Variants and Inhibitors That Protect Against 842 1.6 46 Doxorubicin-Induced Cardiotoxicity. Circulation, 2022, 145, 279-294. High molecular weight DNA extraction strategies for longâ€read sequencing of complex metagenomes. 843 2.2 24 Molecular Ecology Resources, 2022, 22, 1786-1802. Epigenetic comparison of CHO hosts and clones reveals divergent methylation and transcription 844 1.7 6 patterns across lineages. Biotechnology and Bioengineering, 2022, 119, 1062-1076. Long-Reads-Based Metagenomics in Clinical Diagnosis With a Special Focus on Fungal Infections. 845 1.5 9 Frontiers in Microbiology, 2021, 12, 708550. FIONA1 $\hat{a} \in Mediated m < sup > 6 < /sup > A Modification Regulates the Floral Transition in <i>Arabidopsis < /i>.$ 846 5.6 34 Advanced Science, 2022, 9, e2103628. 847 Fast nanopore sequencing data analysis with SLOW5. Nature Biotechnology, 2022, 40, 1026-1029. 9.4 Whole-Genome Sequence of Entomortierella parvispora E1425, a Mucoromycotan Fungus Associated with <i>Burkholderiaceae</i> -Related Endosymbiotic Bacteria. Microbiology Resource 848 3 0.3 Announcements, 2022, 11, e0110121. An outbreak of SARSâ€CoVâ€2 on a transplant unit in the early vaccination era. Transplant Infectious 849 Disease, 2022, 24, . Application and Challenge of 3rd Generation Sequencing for Clinical Bacterial Studies. International 850 1.8 24 Journal of Molecular Sciences, 2022, 23, 1395. A phase 2 single center open label randomised control trial for convalescent plasma therapy in 5.8 39 patients with severe COVID-19. Nature Communications, 2022, 13, 383. Cytolysin A (ClyA): A Bacterial Virulence Factor with Potential Applications in Nanopore Technology, 853 1.5 7 Vaccine Development, and Tumor Therapy. Toxins, 2022, 14, 78. Precise gene models using long-read sequencing reveal a unique poly(A) signal in <i>Giardia 854 lamblia (/i>. Rna, 2022, 28, 668-682. The first complete genome sequence of Microbulbifer celer KCTC12973T, a type strain with multiple 855 0.4 0 polysaccharide degradation genes. Marine Genomics, 2022, 62, 100931. An improved ovine reference genome assembly to facilitate in-depth functional annotation of the 3.3 24 sheep genome. GigaScience, 2022, 11, .

#	Article	IF	CITATIONS
857	Candidates for Balancing Selection in Leishmania donovani Complex Parasites. Genome Biology and Evolution, 2021, 13, .	1.1	11
858	Hybrid Assembly Provides Improved Resolution of Plasmids, Antimicrobial Resistance Genes, and Virulence Factors in Escherichia coli and Klebsiella pneumoniae Clinical Isolates. Microorganisms, 2021, 9, 2560.	1.6	26

859 Đ"Đ,Đ¼Đ0°Đ¼Đ,аа Đ,аÑ€ÑжĐμĐ½Đ½N(Ñ... ŇĐ»Đ¾Đ¶Đ½Ñ(Ñ... Đ¼Đ¾Đ»ĐμĐ⁰уĐ» Đ² Đ²Đ¾ĐĐ½Đ¾Đ¼ ҀаŇŇ,Đ²Đ¾Ń

860	Use of Nanopore Sequencing to Characterise the Genomic Architecture of Mobile Genetic Elements Encoding blaCTX-M-15 in Escherichia coli Causing Travellers' Diarrhoea. Frontiers in Microbiology, 2022, 13, 862234.	1.5	4
861	Characteristics of the multiple replicon plasmid IncX1â€X1 in multidrugâ€resistant <i>Escherichia coli</i> Âfrom Malayan pangolin (<i>Manis javanica</i>). Integrative Zoology, 2022, , .	1.3	3
862	A new lineage of non-photosynthetic green algae with extreme organellar genomes. BMC Biology, 2022, 20, 66.	1.7	7
863	Clinico-Genomic Analysis Reiterates Mild Symptoms Post-vaccination Breakthrough: Should We Focus on Low-Frequency Mutations?. Frontiers in Microbiology, 2022, 13, 763169.	1.5	3
864	Amplicon_sorter: A tool for referenceâ€free amplicon sorting based on sequence similarity and for building consensus sequences. Ecology and Evolution, 2022, 12, e8603.	0.8	14
865	Genotyping of familial Mediterranean fever gene (MEFV)—Single nucleotide polymorphism—Comparison of Nanopore with conventional Sanger sequencing. PLoS ONE, 2022, 17, e0265622.	1.1	4
866	Chasing perfection: validation and polishing strategies for telomere-to-telomere genome assemblies. Nature Methods, 2022, 19, 687-695.	9.0	42
867	Rescuing low frequency variants within intra-host viral populations directly from Oxford Nanopore sequencing data. Nature Communications, 2022, 13, 1321.	5.8	11
868	Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Science Advances, 2022, 8, eabm5386.	4.7	68
869	SARS-CoV-2 Mutations and COVID-19 Clinical Outcome: Mutation Global Frequency Dynamics and Structural Modulation Hold the Key. Frontiers in Cellular and Infection Microbiology, 2022, 12, 868414.	1.8	15
870	Dynamics of Charged Complex Molecules in Aqueous Solution. Journal of Contemporary Physics, 2022, 57, 98-103.	0.1	0
871	New Insights for Biosensing: Lessons from Microbial Defense Systems. Chemical Reviews, 2022, 122, 8126-8180.	23.0	15
872	Inhibition of lung microbiota-derived proapoptotic peptides ameliorates acute exacerbation of pulmonary fibrosis. Nature Communications, 2022, 13, 1558.	5.8	16
873	Long-read sequencing reveals complex patterns of wraparound transcription in polyomaviruses. PLoS Pathogens, 2022, 18, e1010401.	2.1	8
874	Epitranscriptomics of SARS-CoV-2 Infection. Frontiers in Cell and Developmental Biology, 2022, 10, 849298.	1.8	11

	Сітат	tion Report	
#	Article	IF	Citations
875	Segmental duplications and their variation in a complete human genome. Science, 2022, 376, eabj6965.	6.0	130
877	Single-molecule analysis of DNA structures using nanopore sensors. Chinese Journal of Analytical Chemistry, 2022, 50, 100089.	0.9	4
879	Identification of bacterial antibiotic resistance genes in next-generation sequencing data (review of) Tj ET	[Qq0 0 0 rgBT /Ove 0.2	rlock 10 Tf 5 I
880	Transposable element variants and their potential adaptive impact in urban populations of the malaria vector <i>Anopheles coluzzii</i> . Genome Research, 2022, 32, 189-202.	2.4	5
881	Third-Generation Sequencing: The Spearhead towards the Radical Transformation of Modern Genomics. Life, 2022, 12, 30.	1.1	67
882	Draft Genome Sequence of a New Fusarium Isolate Belonging to Fusarium tricinctum Species Complex Collected From Hazelnut in Central Italy. Frontiers in Plant Science, 2021, 12, 788584.	1.7	6
883	A high-throughput multiplexing and selection strategy to complete bacterial genomes. GigaScience, 2021, 10, .	3.3	13
884	Review on the Development and Applications of Medicinal Plant Genomes. Frontiers in Plant Science, 2021, 12, 791219.	1.7	18
885	Application of Massive Parallel Sequencing Technology in Forensics: Comparative Analysis of Sequencing Platforms. Russian Journal of Genetics, 2021, 57, 1430-1442.	0.2	2
886	Evolution of the Ergot Alkaloid Biosynthetic Gene Cluster Results in Divergent Mycotoxin Profiles in Claviceps purpurea Sclerotia. Toxins, 2021, 13, 861.	1.5	7
887	Learning From Biological and Computational Machines: Importance of SARS-CoV-2 Genomic Surveillance, Mutations and Risk Stratification. Frontiers in Cellular and Infection Microbiology, 2021, 11, 783961.	1.8	2
888	High quality genome assembly of the amitochondriate eukaryote Monocercomonoides exilis. Microbial Genomics, 2021, 7, .	1.0	4
889	Locked Nucleic Acid Hydrolysis Probes for the Specific Identification of Probiotic Strains Bifidobacterium animalis subsp. lactis DSM 15954 and Bi-07â"¢. Frontiers in Microbiology, 2021, 12, 801795.	1.5	5
890	Nano2NGS-Muta: a framework for converting nanopore sequencing data to NGS-liked sequencing data for hotspot mutation detection. NAR Genomics and Bioinformatics, 2022, 4, lqac033.	1.5	3
891	High molecular weight DNA extraction methods lead to high quality filamentous ascomycete fungal genome assemblies using Oxford Nanopore sequencing. Microbial Genomics, 2022, 8, .	1.0	6
892	Nanopore Sequencing for Detection and Characterization of Phosphorothioate Modifications in Native DNA Sequences. Frontiers in Microbiology, 2022, 13, 871937.	1.5	2
893	Genomic and resistome analysis of Alcaligenes faecalis strain PGB1 by Nanopore MinION and Illumina Technologies. BMC Genomics, 2022, 23, 316.	1.2	8

895	Overview of structural variation calling: Simulation, identification, and visualization. Computers in Biology and Medicine, 2022, 145, 105534.	3.9	4
-----	---	-----	---

#	Article	IF	CITATIONS
959	Comparison of SARS-CoV-2 sequencing using the ONT GridION and the Illumina MiSeq. BMC Genomics, 2022, 23, 319.	1.2	19
960	Rh Blood Group D Antigen Genotyping Using a Portable Nanopore-based Sequencing Device: Proof of Principle. Clinical Chemistry, 2022, 68, 1196-1201.	1.5	3
961	High-Resolution Metagenomics of Human Gut Microbiota Generated by Nanopore and Illumina Hybrid Metagenome Assembly. Frontiers in Microbiology, 2022, 13, .	1.5	4
962	<i>Listeria monocytogenes</i> in foods—From culture identification to wholeâ€genome characteristics. Food Science and Nutrition, 2022, 10, 2825-2854.	1.5	7
964	Mutations in the SARS-CoV-2 RNA-dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms. Science Translational Medicine, 2022, 14, eabo0718.	5.8	108
965	Molecular Analysis of SARS-CoV-2 Lineages in Armenia. Viruses, 2022, 14, 1074.	1.5	7
966	Nanopore-Based Detection of Viral RNA Modifications. MBio, 2022, 13, e0370221.	1.8	12
967	Genetic Survey of <i>Psilocybe</i> Natural Products. ChemBioChem, 2022, 23, .	1.3	16
968	MAECI: A pipeline for generating consensus sequence with nanopore sequencing long-read assembly and error correction. PLoS ONE, 2022, 17, e0267066.	1.1	4
970	Innovative in Silico Approaches for Characterization of Genes and Proteins. Frontiers in Genetics, 2022, 13, .	1.1	6
971	Proof of concept for multiplex amplicon sequencing for mutation identification using the MinION nanopore sequencer. Scientific Reports, 2022, 12, .	1.6	13
972	Epigenetic Silencing of PTEN and Epi-Transcriptional Silencing of MDM2 Underlied Progression to Secondary Acute Myeloid Leukemia in Myelodysplastic Syndrome Treated with Hypomethylating Agents. International Journal of Molecular Sciences, 2022, 23, 5670.	1.8	1
974	Focus on using nanopore technology for societal health, environmental, and energy challenges. Nano Research, 2022, 15, 9906-9920.	5.8	11
976	SARS CoV-2 (Delta Variant) Infection Kinetics and Immunopathogenesis in Domestic Cats. Viruses, 2022, 14, 1207.	1.5	5
980	Native RNA sequencing in fission yeast reveals frequent alternative splicing isoforms. Genome Research, 2022, 32, 1215-1227.	2.4	5
982	Intra-Species Genomic Variation in the Pine Pathogen Fusarium circinatum. Journal of Fungi (Basel,) Tj ETQq1 1 ().784314 ı 1.5	gBŢ /Overloo
983	Mitochondrial DNA sequences and transcriptomic profiles for elucidating the genetic underpinnings of cisplatin responsiveness in oral squamous cell carcinoma. BMC Genomic Data, 2022, 23, .	0.7	0
984	PIMGAVir and Vir-MinION: Two Viral Metagenomic Pipelines for Complete Baseline Analysis of 2nd and 3rd Generation Data. Viruses, 2022, 14, 1260.	1.5	3

ARTICLE IF CITATIONS Nanopore Sequencing Technology in Oral Oncology: A Comprehensive Insight. Journal of 987 0.2 4 Contemporary Dental Practice, 2022, 23, 268-275. Direct identification of A-to-I editing sites with nanopore native RNA sequencing. Nature Methods, 2022, 19, 833-844. Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial 989 genomes from pure cultures and metagenomes without short-read or reference polishing. Nature 9.0 152 Methods, 2022, 19, 823-826. Mutational dynamics across VOCs in International travellers and Community transmission 991 2.5 underscores importance of Spike-ACE2 interaction. Microbiological Research, 2022, 262, 127099. A Computational Workflow for Estimation of Short RNA Polyadenylation using Direct RNA Nanopore 992 0 Sequencing with Polyuridylation., 2022,,. Adversarial Torn-paper Codes., 2022,,. Complete gammaproteobacterial endosymbiont genome assembly from a seep tubeworm Lamellibrachia 995 1.3 1 satsuma. Journal of Microbiology, 2022, 60, 916-927. Plant Genome Sequencing: Modern Technologies and Novel Opportunities for Breeding. Molecular 996 0.4 10 Biology, 2022, 56, 495-507. An efficient CRISPR-Cas9 enrichment sequencing strategy for characterizing complex and highly 998 duplicated genomic regions. A case study in the Prunus salicina LG3-MYB10 genes cluster. Plant 1.9 8 Methods, 2022, 18, . Nanopore Sequencing for De Novo Bacterial Genome Assembly and Search for Single-Nucleotide 999 1.8 Polymorphism. International Journal of Molecular Sciences, 2022, 23, 8569. Designing a synthetic microbial community devoted to biological control: The case study of Fusarium 1000 1.5 15 wilt of banana. Frontiers in Microbiology, Ó, 13, . Cellulomonas palmilyticum sp. nov., from earthworm soil biofertilizer with the potential to degrade oil palm empty fruit bunch. International Journal of Systematic and Evolutionary Microbiology, 2022, 0.8 Chromosome-Scale Genome Assembly of the Marine Oleaginous Diatom Fistulifera solaris. Marine 1002 1.1 3 Biotechnology, 2022, 24, 788-800. Pseudo-Chromosomal Genome Assembly in Combination with Comprehensive Transcriptome Analysis in Agaricus bisporus Strain KMCC00540 Reveals Mechanical Stimulus Responsive Genes Associated with 1.5 Browning Effect. Journal of Fungi (Basel, Switzerland), 2022, 8, 886. Using Nanopore Sequencing to Obtain Complete Bacterial Genomes from Saliva Samples. MSystems, 1004 7 1.7 2022, 7, . Whole-Genome Sequencing of Lysobacter capsici VKM B-2533 ^T and Lysobacter gummosus 0.3 10.1.1, Promising Producers of Lytic Agents. Microbiology Resource Announcements, 0, , . CulebrONT: a streamlined long reads multi-assembler pipeline for prokaryotic and eukaryotic 1006 5 genomes., 0, 2, . Functional characterization of prokaryotic dark matter: the road so far and what lies ahead. Current 1009 1.4 Research in Microbial Sciences, 2022, 3, 100159.

#	Article	IF	CITATIONS
1010	Prediction and Motif Analysis of 2'-O-methylation Using a Hybrid Deep Learning Model from RNA Primary Sequence and Nanopore Signals. Current Bioinformatics, 2022, 17, 873-882.	0.7	0
1011	Complete genome sequence, metabolic model construction, and huangjiu application of Saccharopolyspora rosea A22, a thermophilic, high amylase and glucoamylase actinomycetes. Frontiers in Microbiology, 0, 13, .	1.5	2
1012	Transcriptomics and RNA-Based Therapeutics as Potential Approaches to Manage SARS-CoV-2 Infection. International Journal of Molecular Sciences, 2022, 23, 11058.	1.8	2
1013	NanoCoV19: An analytical pipeline for rapid detection of severe acute respiratory syndrome coronavirus 2. Frontiers in Genetics, 0, 13, .	1.1	2
1014	SARS-CoV-2 VOCs, Mutational diversity and clinical outcome: Are they modulating drug efficacy by altered binding strength?. Genomics, 2022, 114, 110466.	1.3	18
1015	Nanopore Electrochemistry for Pathogen Detection. Chemistry - an Asian Journal, 2022, 17, .	1.7	6
1017	Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes. Nature, 2022, 611, 105-114.	13.7	69
1018	Advances in nanopore direct RNA sequencing. Nature Methods, 2022, 19, 1160-1164.	9.0	44
1019	Identification and characterization of two DMD pedigrees with large inversion mutations based on a long-read sequencing pipeline. European Journal of Human Genetics, 2023, 31, 504-511.	1.4	3
1021	Arthrobacter polaris sp. nov., a new cold-adapted member of the family Micrococcaceae isolated from Antarctic fellfield soil. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	0.8	1
1022	KARGAMobile: Android app for portable, real-time, easily interpretable analysis of antibiotic resistance genes via nanopore sequencing. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	1
1023	Modification mapping by nanopore sequencing. Frontiers in Genetics, 0, 13, .	1.1	9
1024	Applications of Long-Read Sequencing Technology in Clinical Genomics. Advances in Molecular Pathology, 2022, 5, 85-108.	0.2	0
1025	Human transcriptome profiling: applications in health and disease. , 2023, , 373-395.		0
1026	Accurate gene consensus at low nanopore coverage. GigaScience, 2022, 11, .	3.3	3
1027	Functional and molecular dissection of HCMV long non-coding RNAs. Scientific Reports, 2022, 12, .	1.6	5
1028	Methyl-SNP-seq reveals dual readouts of methylome and variome at molecule resolution while enabling target enrichment. Genome Research, 0, , gr.277080.122.	2.4	1
1029	Hybridization drives mitochondrial DNA degeneration and metabolic shift in a species with biparental mitochondrial inheritance. Genome Research, 2022, 32, 2043-2056.	2.4	5

#	Article	IF	CITATIONS
1031	Genome-wide mutational analysis of Chikungunya strains from 2016 to 2017 outbreak of central India: An attempt to elucidate the immunological basis for outbreak. Heliyon, 2022, 8, e11400.	1.4	0
1032	Detection of m6A from direct RNA sequencing using a multiple instance learning framework. Nature Methods, 2022, 19, 1590-1598.	9.0	54
1033	m6A modification of U6 snRNA modulates usage of two major classes of pre-mRNA 5' splice site. ELife, 0, 11, .	2.8	14
1034	Untargeted metabolomics screening reveals unique secondary metabolite production from Alternaria section Alternaria. Frontiers in Molecular Biosciences, 0, 9, .	1.6	0
1035	An <scp>NBSâ€LRR</scp> protein in the <i>Rpp1</i> locus negates the dominance of <i>Rpp1</i> â€mediated resistance against <i>Phakopsora pachyrhizi</i> in soybean. Plant Journal, 2023, 113, 915-933.	2.8	5
1038	AccuVIR: an ACCUrate VIRal genome assembly tool for third-generation sequencing data. Bioinformatics, 2023, 39, .	1.8	3
1039	Nano3P-seq: transcriptome-wide analysis of gene expression and tail dynamics using end-capture nanopore cDNA sequencing. Nature Methods, 2023, 20, 75-85.	9.0	14
1040	Simultaneous profiling of histone modifications and DNA methylation via nanopore sequencing. Nature Communications, 2022, 13, .	5.8	6
1041	The impact of sequencing depth and relatedness of the reference genome in population genomic studies: A case study with two caddisfly species (Trichoptera, Rhyacophilidae, <i>Himalopsyche</i>). Ecology and Evolution, 2022, 12, .	0.8	3
1042	Genomic epidemiology of SARS-CoV-2 in Cambodia, January 2020 to February 2021. Virus Evolution, 2023, 9, .	2.2	2
1043	Arthrobacter antioxidans sp. nov., a blue pigment-producing species isolated from Mount Everest. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	0.8	0
1044	Single-Cell DNA Methylation Analysis in Cancer. Cancers, 2022, 14, 6171.	1.7	3
1046	In-depth genetic characterization of the SARS-CoV-2 pandemic in a two-year frame in North Macedonia using second and third generation sequencing technologies. Frontiers in Virology, 0, 2, .	0.7	0
1047	Shaping the landscape of <i>N6</i> -methyladenosine RNA methylation in Arabidopsis. Plant Physiology, 2023, 191, 2045-2063.	2.3	4
1049	Long-read metagenomics paves the way toward a complete microbial tree of life. Nature Methods, 2023, 20, 30-31.	9.0	11
1050	Optimization of the " <i>inâ€silico</i> ―mateâ€pair method improves contiguity and accuracy of genome assembly. Ecology and Evolution, 2023, 13, .	0.8	1
1051	Genome-wide evaluation of the effect of short tandem repeat variation on local DNA methylation. Genome Research, 2023, 33, 184-196.	2.4	5
1052	Severe Acute Respiratory Syndrome Coronavirus-2 Delta Variant Study In Vitro and Vivo. Current Issues in Molecular Biology, 2023, 45, 249-267.	1.0	0

#	Article	IF	CITATIONS
1053	544. An approach to study the association between the blood cell methylome with feed efficiency traits. , 2022, , .		0
1054	BLEND: a fast, memory-efficientÂand accurate mechanism to find fuzzy seed matches in genome analysis. NAR Genomics and Bioinformatics, 2023, 5, .	1.5	12
1055	Sequoia: A Framework for Visual Analysis of RNA Modifications from Direct RNA Sequencing Data. Methods in Molecular Biology, 2023, , 127-138.	0.4	2
1057	Origin, Genetic Variation and Molecular Epidemiology of SARS-CoV-2 Strains Circulating in Sardinia (Italy) during the First and Second COVID-19 Epidemic Waves. Viruses, 2023, 15, 277.	1.5	0
1058	Emergence of extensively drug-resistant and multidrug-resistant Shigella flexneri serotype 2a associated with sexual transmission among gay, bisexual, and other men who have sex with men, in England: a descriptive epidemiological study. Lancet Infectious Diseases, The, 2023, 23, 732-739.	4.6	19
1059	RNA Modification Detection Using Nanopore Direct RNA Sequencing and nanoDoc2. Methods in Molecular Biology, 2023, , 299-319.	0.4	0
1060	Evolutionary analysis of a complete chicken genome. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	30
1062	Functional genome annotation and transcriptome analysis of Pseudozyma hubeiensis BOT-O, an oleaginous yeast that utilizes glucose and xylose at equal rates. Fungal Genetics and Biology, 2023, 166, 103783.	0.9	1
1063	JBrowse 2: a modular genome browser with views of synteny and structural variation. Genome Biology, 2023, 24, .	3.8	53
1064	polishCLR: A Nextflow Workflow for Polishing PacBio CLR Genome Assemblies. Genome Biology and Evolution, 2023, 15, .	1.1	2
1065	Transcriptionally active nasopharyngeal commensals and opportunistic microbial dynamics define mild symptoms in the COVID 19 vaccination breakthroughs. PLoS Pathogens, 2023, 19, e1011160.	2.1	5
1066	New algorithms for accurate and efficient de novo genome assembly from long DNA sequencing reads. Life Science Alliance, 2023, 6, e202201719.	1.3	3
1067	Genomic Characteristics and Molecular Epidemiology of Multidrug-Resistant Klebsiella pneumoniae Strains Carried by Wild Birds. Microbiology Spectrum, 2023, 11, .	1.2	0
1068	Nanopore-Based Direct RNA Sequencing of the Trypanosoma brucei Transcriptome Identifies Novel IncRNAs. Genes, 2023, 14, 610.	1.0	3
1069	Nanopore sequencing of internal 2′-PO ₄ modifications installed by RNA repair. Rna, 2023, 29, 847-861.	1.6	0
1070	Assembling the perfect bacterial genome using Oxford Nanopore and Illumina sequencing. PLoS Computational Biology, 2023, 19, e1010905.	1.5	44
1071	The terrestrial isopod symbiont â€~ <i>Candidatus</i> Hepatincola porcellionum' is a potential nutrient scavenger related to <i>Holosporales</i> symbionts of protists. ISME Communications, 2023, 3, .	1.7	2
1076	A framework for real-time monitoring, analysis and adaptive sampling of viral amplicon nanopore sequencing. Frontiers in Genetics, 0, 14, .	1.1	3

#	Article	IF	CITATIONS
1078	Flexible and efficient handling of nanopore sequencing signal data with slow5tools. Genome Biology, 2023, 24, .	3.8	9
1079	SINEUP non-coding RNA activity depends on specific N6-methyladenosine nucleotides. Molecular Therapy - Nucleic Acids, 2023, 32, 402-414.	2.3	2
1082	TUT4/7-mediated uridylation of a coronavirus subgenomic RNAs delays viral replication. Communications Biology, 2023, 6, .	2.0	2
1084	Generalized Unique Reconstruction From Substrings. IEEE Transactions on Information Theory, 2023, 69, 5648-5659.	1.5	1
1086	Crucifer's Pathogens Genome. , 2023, , 127-295.		0
1128	Research Advances and Perspectives of Conservation Genomics of Endangered Plants. , 0, , .		0
1152	Prospects of Bioinformatics and Data Acquirement Tools in Boosting the Application of Phytochemicals in Food Sciences. , 2024, , 281-302.		0
1162	Forensic relevance of SNP analysis in next-generation sequencing. , 2024, , 243-277.		0