The nanoparticle biomolecule corona: lessons learned â

Chemical Society Reviews 44, 6094-6121 DOI: 10.1039/c5cs00217f

Citation Report

#	Article	IF	CITATIONS
2	Microfluidic Impedimetric Cell Regeneration Assay to Monitor the Enhanced Cytotoxic Effect of Nanomaterial Perfusion. Biosensors, 2015, 5, 736-749.	2.3	40
3	Single Nanoparticle Plasmonic Sensors. Sensors, 2015, 15, 25774-25792.	2.1	71
4	Understanding and exploiting nanoparticles' intimacy with the blood vessel and blood. Chemical Society Reviews, 2015, 44, 8174-8199.	18.7	268
5	Temperature-Triggered Protein Adsorption on Polymer-Coated Nanoparticles in Serum. Langmuir, 2015, 31, 8873-8881.	1.6	50
6	Real-Time Monitoring Surface Chemistry-Dependent <i>In Vivo</i> Behaviors of Protein Nanocages via Encapsulating an NIR-II Ag ₂ S Quantum Dot. ACS Nano, 2015, 9, 12255-12263.	7.3	155
7	Of drug administration, war and o \tilde{A} kos: mediating cancer with nanomedicines. Nanomedicine, 2015, 10, 3261-3274.	1.7	7
8	Tuning the Surface of Nanoparticles: Impact of Poly(2â€ethylâ€2â€oxazoline) on Protein Adsorption in Serum and Cellular Uptake. Macromolecular Bioscience, 2016, 16, 1287-1300.	2.1	43
9	Understanding and Designing the Gold–Bio Interface: Insights from Simulations. Small, 2016, 12, 2395-2418.	5.2	58
10	Tackling chondrocyte hypertrophy with multifunctional nanoparticles. Gene Therapy, 2016, 23, 560-564.	2.3	7
12	Protein corona-induced modification of silver nanoparticle aggregation in simulated gastric fluid. Environmental Science: Nano, 2016, 3, 1510-1520.	2.2	59
13	Emerging Physicochemical Phenomena along with New Opportunities at the Biomolecular–Nanoparticle Interface. Journal of Physical Chemistry Letters, 2016, 7, 2139-2150.	2.1	41
14	Systematic elucidation of interactive unfolding and corona formation of bovine serum albumin with cobalt ferrite nanoparticles. RSC Advances, 2016, 6, 35719-35730.	1.7	52
15	Reducible Micelleplexes are Stable Systems for Anti-miRNA Delivery in Cerebrospinal Fluid. Molecular Pharmaceutics, 2016, 13, 1791-1799.	2.3	24
16	The Nature of a Hard Protein Corona Forming on Quantum Dots Exposed to Human Blood Serum. Small, 2016, 12, 5836-5844.	5.2	77
17	Residue-Specific Interactions of an Intrinsically Disordered Protein with Silica Nanoparticles and Their Quantitative Prediction. Journal of Physical Chemistry C, 2016, 120, 24463-24468.	1.5	28
18	Kinetics of the formation of a protein corona around nanoparticles. Mathematical Biosciences, 2016, 282, 82-90.	0.9	39
19	Coâ€precipitation of DEAEâ€dextran coated SPIONs: how synthesis conditions affect particle properties, stem cell labelling and MR contrast. Contrast Media and Molecular Imaging, 2016, 11, 362-370.	0.4	24
20	Consideration of interaction between nanoparticles and food components for the safety assessment of nanoparticles following oral exposure: A review. Environmental Toxicology and Pharmacology, 2016, 46, 206-210	2.0	83

#	Article	IF	CITATIONS
21	Neurodegenerative and neurological disorders by small inhaled particles. NeuroToxicology, 2016, 56, 94-106.	1.4	246
22	Silver nanoparticles in complex biological media: assessment of colloidal stability and protein corona formation. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	19
23	Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro. Nature Communications, 2016, 7, 11770.	5.8	136
24	Nanoparticle-protein complexes mimicking corona formation in ocular environment. Biomaterials, 2016, 109, 23-31.	5.7	25
25	Nanomedicine. , 2016, , 251-274.		3
26	Combined effects of low levels of palmitate on toxicity of ZnO nanoparticles to THP-1 macrophages. Environmental Toxicology and Pharmacology, 2016, 48, 103-109.	2.0	47
27	Small is Smarter: Nano MRI Contrast Agents – Advantages and Recent Achievements. Small, 2016, 12, 556-576.	5.2	147
28	Beyond the passive interactions at the nano-bio interface: evidence of Cu metalloprotein-driven oxidative dissolution of silver nanoparticles. Journal of Nanobiotechnology, 2016, 14, 7.	4.2	14
29	Fatty acids and small organic compounds bind to mineralo-organic nanoparticles derived from human body fluids as revealed by metabolomic analysis. Nanoscale, 2016, 8, 5537-5545.	2.8	34
30	Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk. Toxicology and Applied Pharmacology, 2016, 299, 101-111.	1.3	117
31	Short- and Long-Term Tracking of Anionic Ultrasmall Nanoparticles in Kidney. ACS Nano, 2016, 10, 387-395.	7.3	95
32	Lipid-Mediated Targeting with Membrane-Wrapped Nanoparticles in the Presence of Corona Formation. ACS Nano, 2016, 10, 1189-1200.	7.3	62
33	Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 333-351.	1.7	322
34	The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine, 2016, 11, 81-100.	1.7	499
35	Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1663-1701.	1.7	238
36	Effect of protein corona magnetite nanoparticles derived from bread in vitro digestion on Caco-2 cells morphology and uptake. International Journal of Biochemistry and Cell Biology, 2016, 75, 212-222.	1.2	60
37	Influence of Solution Chemistry and Soft Protein Coronas on the Interactions of Silver Nanoparticles with Model Biological Membranes. Environmental Science & Technology, 2016, 50, 2301-2309.	4.6	37
38	In vivo degeneration and the fate of inorganic nanoparticles. Chemical Society Reviews, 2016, 45, 2440-2457.	18.7	355

#	Article	IF	CITATIONS
39	Synthesis, Characterization of ZnO Nanorods and its Interaction with Albumin Protein. Materials Today: Proceedings, 2016, 3, 592-597.	0.9	4
40	The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM). Toxicology and Applied Pharmacology, 2016, 299, 53-57.	1.3	61
41	Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications. Toxicology and Applied Pharmacology, 2016, 299, 58-69.	1.3	89
42	Dissociation coefficients of protein adsorption to nanoparticles as quantitative metrics for description of the protein corona: A comparison of experimental techniques and methodological relevance. International Journal of Biochemistry and Cell Biology, 2016, 75, 148-161.	1.2	46
43	Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials. Toxicology and Applied Pharmacology, 2016, 299, 96-100.	1.3	67
44	Protein corona as a proteome fingerprint: The example of hidden biomarkers for cow mastitis. Colloids and Surfaces B: Biointerfaces, 2016, 140, 40-49.	2.5	37
45	Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chemical Reviews, 2017, 117, 536-711.	23.0	575
46	Research Update: Interfacing ultrasmall metal nanoclusters with biological systems. APL Materials, 2017, 5, 053101.	2.2	15
47	In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy. Accounts of Chemical Research, 2017, 50, 387-395.	7.6	139
48	Real-time <i>in situ</i> analysis of biocorona formation and evolution on silica nanoparticles in defined and complex biological environments. Nanoscale, 2017, 9, 3620-3628.	2.8	41
49	In vivo testing of gold nanoparticles using the Caenorhabditis elegans model organism. Acta Biomaterialia, 2017, 53, 598-609.	4.1	46
50	Probing the binding behavior and kinetics of silver nanoparticles with bovine serum albumin. RSC Advances, 2017, 7, 9393-9401.	1.7	62
51	Influence of phytochemicals on the biocompatibility of inorganic nanoparticles: a state-of-the-art review. Phytochemistry Reviews, 2017, 16, 555-563.	3.1	21
52	Bio–Nano Interactions. , 2017, , 1-12.		17
53	Computational Approaches. , 2017, , 83-102.		0
54	Female versus male biological identities of nanoparticles determine the interaction with immune cells in fish. Environmental Science: Nano, 2017, 4, 895-906.	2.2	31
55	Influence of dynamic flow environment on nanoparticle-protein corona: From protein patterns to uptake in cancer cells. Colloids and Surfaces B: Biointerfaces, 2017, 153, 263-271.	2.5	86
56	Tumor Acidity/NIR Controlled Interaction of Transformable Nanoparticle with Biological Systems for Cancer Therapy. Nano Letters, 2017, 17, 2871-2878.	4.5	111

#	Article	IF	CITATIONS
57	Surface chemistry of gold nanoparticles determines the biocorona composition impacting cellular uptake, toxicity and gene expression profiles in human endothelial cells. Nanotoxicology, 2017, 11, 507-519.	1.6	102
58	Photocatalytic Fe-doped n-TiO 2 : From synthesis to utilization of in vitro cell models for screening human and environmental nanosafety. Resource-efficient Technologies, 2017, 3, 158-165.	0.1	4
59	Protein Corona Formation on Colloidal Polymeric Nanoparticles and Polymeric Nanogels: Impact on Cellular Uptake, Toxicity, Immunogenicity, and Drug Release Properties. Biomacromolecules, 2017, 18, 1762-1771.	2.6	98
60	Interactions of organic nanoparticles with proteins in physiological conditions. Journal of Materials Chemistry B, 2017, 5, 4393-4405.	2.9	28
61	Anionic Polymer and Quantum Dot Excipients to Facilitate siRNA Release and Self-Reporting of Disassembly in Stimuli-Responsive Nanocarrier Formulations. Biomacromolecules, 2017, 18, 1814-1824.	2.6	11
62	Clinically approved PEGylated nanoparticles are covered by a protein corona that boosts the uptake by cancer cells. Nanoscale, 2017, 9, 10327-10334.	2.8	74
63	The use of human umbilical vein endothelial cells (HUVECs) as an <i>in vitro</i> model to assess the toxicity of nanoparticles to endothelium: a review. Journal of Applied Toxicology, 2017, 37, 1359-1369.	1.4	209
64	Colloidal characterization of CuO nanoparticles in biological and environmental media. Environmental Science: Nano, 2017, 4, 1264-1272.	2.2	30
65	Evolution of the nanoparticle corona. Nature Nanotechnology, 2017, 12, 288-290.	15.6	243
66	Protein corona and nanoparticles: how can we investigate on?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1467.	3.3	93
67	Extinction, emission, and scattering spectroscopy of 5–50 nm citrate-coated gold nanoparticles: An argument for curvature effects on aggregation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 175, 100-109.	2.0	25
67 68	Extinction, emission, and scattering spectroscopy of 5–50 nm citrate-coated gold nanoparticles: An argument for curvature effects on aggregation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 175, 100-109. Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics. ACS Sensors, 2017, 2, 16-30.	2.0 4.0	25 489
	argument for curvature effects on aggregation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 175, 100-109.		
68	argument for curvature effects on aggregation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 175, 100-109. Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics. ACS Sensors, 2017, 2, 16-30. Evaluation of inÂvitro toxicity of polymeric micelles to human endothelial cells under different	4.0	489
68 69	argument for curvature effects on aggregation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 175, 100-109. Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics. ACS Sensors, 2017, 2, 16-30. Evaluation of inÂvitro toxicity of polymeric micelles to human endothelial cells under different conditions. Chemico-Biological Interactions, 2017, 263, 46-54.	4.0 1.7	489 26
68 69 70	 argument for curvature effects on aggregation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 175, 100-109. Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics. ACS Sensors, 2017, 2, 16-30. Evaluation of inÂvitro toxicity of polymeric micelles to human endothelial cells under different conditions. Chemico-Biological Interactions, 2017, 263, 46-54. Pharmacokinetic aspects of retinal drug delivery. Progress in Retinal and Eye Research, 2017, 57, 134-185. Aggregation Reverses the Carrier Effects of TiO₂ Nanoparticles on Cadmium Accumulation in the Waterflea <i>Daphnia magna</i>. Environmental Science & amp; Technology, 2017, 	4.0 1.7 7.3	489 26 454
68 69 70 71	 argument for curvature effects on aggregation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 175, 100-109. Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics. ACS Sensors, 2017, 2, 16-30. Evaluation of inÂvitro toxicity of polymeric micelles to human endothelial cells under different conditions. Chemico-Biological Interactions, 2017, 263, 46-54. Pharmacokinetic aspects of retinal drug delivery. Progress in Retinal and Eye Research, 2017, 57, 134-185. Aggregation Reverses the Carrier Effects of TiO₂ Nanoparticles on Cadmium Accumulation in the Waterflea <i>Daphnia magna</i>. Environmental Science & Camp; Technology, 2017, 51, 932-939. Improving the prediction of environmental fate of engineered nanomaterials by fractal modelling. 	4.0 1.7 7.3 4.6	489 26 454 37

#	Article	IF	CITATIONS
75	The presence of palmitate affected the colloidal stability of ZnO NPs but not the toxicity to Caco-2 cells. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	14
76	Chemodynamics and bioavailability of metal ion complexes with nanoparticles in aqueous media. Environmental Science: Nano, 2017, 4, 2108-2133.	2.2	25
77	Toxicity of ZnO nanoparticles (NPs) to A549 cells and A549 epithelium in vitro: Interactions with dipalmitoyl phosphatidylcholine (DPPC). Environmental Toxicology and Pharmacology, 2017, 56, 233-240.	2.0	32
78	An apolipoprotein-enriched biomolecular corona switches the cellular uptake mechanism and trafficking pathway of lipid nanoparticles. Nanoscale, 2017, 9, 17254-17262.	2.8	73
79	Monitoring characteristics and genotoxic effects of engineered nanoparticle–protein corona. Mutagenesis, 2017, 32, 479-490.	1.0	12
80	Biomolecular corona formation: nature and bactericidal impact on surface-modified silica nanoparticles. Journal of Materials Chemistry B, 2017, 5, 8052-8059.	2.9	13
81	Superâ€Resolution Microscopy Unveils Dynamic Heterogeneities in Nanoparticle Protein Corona. Small, 2017, 13, 1701631.	5.2	109
82	The Effects of Physicochemical Properties of Nanomaterials on Their Cellular Uptake In Vitro and In Vivo. Small, 2017, 13, 1701815.	5.2	48
83	In vitro approaches to assess the hazard of nanomaterials. NanoImpact, 2017, 8, 99-116.	2.4	171
84	Biomolecular coronas in invertebrate species: Implications in the environmental impact of nanoparticles. NanoImpact, 2017, 8, 89-98.	2.4	69
85	Influence of surface coating on the intracellular behaviour of gold nanoparticles: a fluorescence correlation spectroscopy study. Nanoscale, 2017, 9, 14730-14739.	2.8	30
86	Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives. European Biophysics Journal, 2017, 46, 749-771.	1.2	64
87	Plasma protein adsorption and biological identity of systemically administered nanoparticles. Nanomedicine, 2017, 12, 2113-2135.	1.7	76
88	Toxic effects and biodistribution of ultrasmall gold nanoparticles. Archives of Toxicology, 2017, 91, 3011-3037.	1.9	87
89	Rotational diffusion of magnetic nanoparticles in protein solutions. Journal of Colloid and Interface Science, 2017, 506, 393-402.	5.0	10
90	Characterization and antibacterial activity of the nanocomposite of half-fin anchovy (Setipinna taty) hydrolysates/zinc oxide nanoparticles. Process Biochemistry, 2017, 62, 223-230.	1.8	8
91	Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines. Scientific Reports, 2017, 7, 16049.	1.6	38
92	Concurrent Detection of Protein Adsorption on Mixed Nanoparticles by Differential Centrifugal Sedimentation. Particle and Particle Systems Characterization, 2017, 34, 1700134.	1.2	8

#	Article	IF	CITATIONS
93	Examining Binding to Nanoparticle Surfaces Using Saturation Transfer Difference (STD)-NMR Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 24678-24686.	1.5	18
94	Role of the Protein Corona Derived from Human Plasma in Cellular Interactions between Nanoporous Human Serum Albumin Particles and Endothelial Cells. Bioconjugate Chemistry, 2017, 28, 2062-2068.	1.8	32
95	Nanoparticles in a nanochannel: Van der Waals interaction and diffusion. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2832-2836.	0.9	9
96	Protein Adsorption to Charged Gold Nanospheres as a Function of Protein Deformability. Langmuir, 2017, 33, 7751-7761.	1.6	45
97	Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media: The stability depends on solution pH and protein properties. Journal of Colloid and Interface Science, 2017, 505, 1165-1171.	5.0	29
98	Exploring the interaction of silver nanoparticles with lysozyme: Binding behaviors and kinetics. Colloids and Surfaces B: Biointerfaces, 2017, 157, 138-145.	2.5	60
99	Nanomaterials and their Classification. Advanced Structured Materials, 2017, , 3-45.	0.3	32
100	Cytotoxicity, oxidative stress and inflammation induced by ZnO nanoparticles in endothelial cells: interaction with palmitate or lipopolysaccharide. Journal of Applied Toxicology, 2017, 37, 895-901.	1.4	53
101	Multi-parametric surface plasmon resonance platform for studying liposome-serum interactions and protein corona formation. Drug Delivery and Translational Research, 2017, 7, 228-240.	3.0	37
102	Assessment of the <i>in vitro</i> dermal irritation potential of cerium, silver, and titanium nanoparticles in a human skin equivalent model. Cutaneous and Ocular Toxicology, 2017, 36, 145-151.	0.5	27
103	Protein corona modulation of hepatocyte uptake and molecular mechanisms of gold nanoparticle toxicity. Nanotoxicology, 2017, 11, 64-75.	1.6	101
104	Biological Identity of Nanoparticles In Vivo : Clinical Implications of the Protein Corona. Trends in Biotechnology, 2017, 35, 257-264.	4.9	313
105	How protein coronas determine the fate of engineered nanoparticles in biological environment. Arhiv Za Higijenu Rada I Toksikologiju, 2017, 68, 245-253.	0.4	28
108	Immunoassay for Human IgG Using Antibody-functionalized Silver Nanoparticles. Analytical Sciences, 2017, 33, 1111-1114.	0.8	13
109	A Decade of the Protein Corona. ACS Nano, 2017, 11, 11773-11776.	7.3	477
111	Probing the Interaction of Dielectric Nanoparticles with Supported Lipid Membrane Coatings on Nanoplasmonic Arrays. Sensors, 2017, 17, 1484.	2.1	16
112	Specific and Efficient Uptake of Surfactant-Free Poly(Lactic Acid) Nanovaccine Vehicles by Mucosal Dendritic Cells in Adult Zebrafish after Bath Immersion. Frontiers in Immunology, 2017, 8, 190.	2.2	34
113	Interactions between Food Additive Silica Nanoparticles and Food Matrices. Frontiers in Microbiology, 2017, 8, 1013.	1.5	66

#	Article	IF	CITATIONS
114	Gold nanoparticles partition to and increase the activity of glucose-6-phosphatase in a synthetic phospholipid membrane system. PLoS ONE, 2017, 12, e0183274.	1.1	5
115	The Interactions between ZnO Nanoparticles (NPs) and α-Linolenic Acid (LNA) Complexed to BSA Did Not Influence the Toxicity of ZnO NPs on HepG2 Cells. Nanomaterials, 2017, 7, 91.	1.9	35
116	Nanoparticle–cell interactions induced apoptosis: a case study with nanoconjugated epidermal growth factor. Nanoscale, 2018, 10, 6712-6723.	2.8	14
117	Facile preparation of multifunctionalisable â€~stealth' upconverting nanoparticles for biomedical applications. Dalton Transactions, 2018, 47, 8595-8604.	1.6	26
118	Detailed investigation on how the protein corona modulates the physicochemical properties and gene delivery of polyethylenimine (PEI) polyplexes. Biomaterials Science, 2018, 6, 1800-1817.	2.6	50
119	3â€Hydroxyflavone enhances the toxicity of ZnO nanoparticles in vitro. Journal of Applied Toxicology, 2018, 38, 1206-1214.	1.4	14
120	Cytotoxicity and ER stress–apoptosis gene expression in ZnO nanoparticle exposed THP-1 macrophages: influence of pre-incubation with BSA or palmitic acids complexed to BSA. RSC Advances, 2018, 8, 15380-15388.	1.7	14
121	Microfluidic Examination of the "Hard―Biomolecular Corona Formed on Engineered Particles in Different Biological Milieu. Biomacromolecules, 2018, 19, 2580-2594.	2.6	31
122	A Comparative In Vivo Study of Albumin oated Paclitaxel Nanocrystals and Abraxane. Small, 2018, 14, e1703670.	5.2	47
123	Nanomaterial interactions with biomembranes: Bridging the gap between soft matter models and biological context. Biointerphases, 2018, 13, 028501.	0.6	23
124	Internalization, cytotoxicity, oxidative stress and inflammation of multi-walled carbon nanotubes in human endothelial cells: influence of pre-incubation with bovine serum albumin. RSC Advances, 2018, 8, 9253-9260.	1.7	20
125	Clinically approved liposomal nanomedicines: lessons learned from the biomolecular corona. Nanoscale, 2018, 10, 4167-4172.	2.8	77
126	Cytotoxicity and Physiological Effects of Silver Nanoparticles on Marine Invertebrates. Advances in Experimental Medicine and Biology, 2018, 1048, 285-309.	0.8	19
127	Dendritic polyglycerol nanoparticles show charge dependent bio-distribution in early human placental explants and reduce hCG secretion. Nanotoxicology, 2018, 12, 90-103.	1.6	24
128	Qualitative and semiquantitative analysis of the protein coronas associated to different functionalized nanoparticles. Nanomedicine, 2018, 13, 407-422.	1.7	11
129	Ring-shaped corona proteins influence the toxicity of engineered nanoparticles to yeast. Environmental Science: Nano, 2018, 5, 1428-1440.	2.2	18
130	Nanoparticles in the environment: where do we come from, where do we go to?. Environmental Sciences Europe, 2018, 30, 6.	2.6	595
131	Toxicity of ZnO nanoparticles (NPs) with or without hydrophobic surface coating to THP-1 macrophages: interactions with BSA or oleate-BSA. Toxicology Mechanisms and Methods, 2018, 28, 520-528.	1.3	7

#	Article	IF	CITATIONS
132	Colloidal Nanobioconjugate with Complementary Surface Chemistry for Cellular and Subcellular Targeting. Langmuir, 2018, 34, 13461-13471.	1.6	28
133	Translating Current Bioanalytical Techniques for Studying Corona Activity. Trends in Biotechnology, 2018, 36, 661-672.	4.9	10
134	Lipid composition dictates serum stability of reconstituted high-density lipoproteins: implications for in vivo applications. Nanoscale, 2018, 10, 7420-7430.	2.8	12
135	Human exposure to nanoparticles through trophic transfer and the biosafety concerns that nanoparticle-contaminated foods pose to consumers. Trends in Food Science and Technology, 2018, 75, 129-145.	7.8	55
136	Interactions of natural organic matter on the surface of PVP-capped silver nanoparticle under different aqueous environment. Water Research, 2018, 138, 224-233.	5.3	34
137	Machine learning provides predictive analysis into silver nanoparticle protein corona formation from physicochemical properties. Environmental Science: Nano, 2018, 5, 64-71.	2.2	75
138	The biological challenges and pharmacological opportunities of orally administered nanomedicine delivery. Expert Review of Gastroenterology and Hepatology, 2018, 12, 223-236.	1.4	37
139	The protein corona on nanoparticles as viewed from a nanoparticleâ€sizing perspective. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1500.	3.3	47
140	Computational approaches to cell–nanomaterial interactions: keeping balance between therapeutic efficiency and cytotoxicity. Nanoscale Horizons, 2018, 3, 6-27.	4.1	44
141	The effects of baicalein or baicalin on the colloidal stability of ZnO nanoparticles (NPs) and toxicity of NPs to Caco-2 cells. Toxicology Mechanisms and Methods, 2018, 28, 167-176.	1.3	31
142	A new preparation strategy for surface modified PLA nanoparticles to enhance uptake by endothelial cells. International Journal of Pharmaceutics, 2018, 536, 211-221.	2.6	19
143	Bacterial Adhesion to Ultrafiltration Membranes: Role of Hydrophilicity, Natural Organic Matter, and Cell-Surface Macromolecules. Environmental Science & Technology, 2018, 52, 162-172.	4.6	57
144	Nanoparticle binding attenuates the pathobiology of gastric cancer-associated <i>Helicobacter pylori</i> . Nanoscale, 2018, 10, 1453-1463.	2.8	45
145	<i>In vivo</i> formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale, 2018, 10, 1256-1264.	2.8	286
146	Stability of plant virus-based nanocarriers in gastrointestinal fluids. Nanoscale, 2018, 10, 1667-1679.	2.8	40
147	The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles. Advanced Drug Delivery Reviews, 2018, 124, 107-124.	6.6	85
148	Simultaneous size characterization and mass quantification of the in vivo core-biocorona structure and dissolved species of silver nanoparticles. Journal of Environmental Sciences, 2018, 63, 227-235.	3.2	24
149	Nanotoxicity of Lipid-Based Nanomedicines. , 2018, , 133-165.		1

#	Article	IF	CITATIONS
150	Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: a simulated gastrointestinal study. Npj Science of Food, 2018, 2, 22.	2.5	37
151	Quantification of Lipid Corona Formation on Colloidal Nanoparticles from Lipid Vesicles. Analytical Chemistry, 2018, 90, 14387-14394.	3.2	41
152	A plug and play approach for the decoration of nanoparticles with recombinant proteins. Nanomedicine, 2018, 13, 2547-2550.	1.7	2
153	Assessment of in vitro particle dosimetry models at the single cell and particle level by scanning electron microscopy. Journal of Nanobiotechnology, 2018, 16, 100.	4.2	13
154	Interference of engineered nanomaterials in flow cytometry: A case study. Colloids and Surfaces B: Biointerfaces, 2018, 172, 635-645.	2.5	23
155	Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano, 2018, 12, 10582-10620.	7.3	438
156	Towards Utilising Photocrosslinking of Polydiacetylenes for the Preparation of "Stealth― Upconverting Nanoparticles. Angewandte Chemie - International Edition, 2018, 57, 16036-16040.	7.2	21
157	Towards Utilising Photocrosslinking of Polydiacetylenes for the Preparation of "Stealth― Upconverting Nanoparticles. Angewandte Chemie, 2018, 130, 16268-16272.	1.6	5
158	The Immunotoxicology of Nanotechnology-Derived Materials and Therapeutics. , 2018, , 873-885.		0
159	Lipid Corona Formation from Nanoparticle Interactions with Bilayers. CheM, 2018, 4, 2709-2723.	5.8	46
160	Computational Investigations of the Interaction between the Cell Membrane and Nanoparticles Coated with a Pulmonary Surfactant. ACS Applied Materials & Interfaces, 2018, 10, 20368-20376.	4.0	40
161	A review of cardiovascular toxicity of TiO2, ZnO and Ag nanoparticles (NPs). BioMetals, 2018, 31, 457-476.	1.8	55
162	Nanomaterial–microbe cross-talk: physicochemical principles and (patho)biological consequences. Chemical Society Reviews, 2018, 47, 5312-5337.	18.7	44
163	Mechanistic approach to study conjugation of nanoparticles for biomedical applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 202, 238-243.	2.0	8
164	Influence of bovine serum albumin pre-incubation on toxicity and ER stress-apoptosis gene expression in THP-1 macrophages exposed to ZnO nanoparticles. Toxicology Mechanisms and Methods, 2018, 28, 587-598.	1.3	11
165	Polyethylene Glycolation (PEGylation) and the Similar. Biological and Medical Physics Series, 2018, , 331-345.	0.3	0
166	Profiling the Serum Protein Corona of Fibrillar Human Islet Amyloid Polypeptide. ACS Nano, 2018, 12, 6066-6078.	7.3	39
167	Coprecipitation Method of Synthesis, Characterization, and Cytotoxicity of Pr3+:LaF3 (CPr = 3, 7, 12, 2	0,) _{1.5} ETQ	1 1 0.784 <u>31 1</u> 17

#	Article	IF	CITATIONS
168	Nanoparticle Uptake by Plants: Beneficial or Detrimental?. , 2018, , 1-61.		12
169	Considerations for the Uptake Characteristic of Inorganic Nanoparticles into Mammalian Cells—Insights Gained by TEM Investigations. Advanced Biology, 2018, 2, 1700254.	3.0	5
170	Advanced Optical Microscopy Techniques for the Investigation of Cell-Nanoparticle Interactions. , 2018, , 219-236.		7
171	Nanoparticle decoration impacts airborne fungal pathobiology. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7087-7092.	3.3	15
172	Interaction of Nanoparticles with Blood Components and Associated Pathophysiological Effects. , 0, , .		27
173	Physiologically based pharmacokinetic modeling of nanoceria systemic distribution in rats suggests dose- and route-dependent biokinetics. International Journal of Nanomedicine, 2018, Volume 13, 2631-2646.	3.3	29
174	Nanocomposite of Half-Fin Anchovy Hydrolysates/Zinc Oxide Nanoparticles Exhibits Actual Non-Toxicity and Regulates Intestinal Microbiota, Short-Chain Fatty Acids Production and Oxidative Status in Mice. Marine Drugs, 2018, 16, 23.	2.2	24
175	Nanoparticle-Assisted Metabolomics. Metabolites, 2018, 8, 21.	1.3	15
176	Small Meets Smaller: Effects of Nanomaterials on Microbial Biology, Pathology, and Ecology. ACS Nano, 2018, 12, 6351-6359.	7.3	66
177	Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC) Tj ETQq1 1 0.7843	314 rgBT / 0.9	Overlock 10
178	Changing environments and biomolecule coronas: consequences and challenges for the design of environmentally acceptable engineered nanoparticles. Green Chemistry, 2018, 20, 4133-4168.	4.6	81
179	Beyond Unpredictability: The Importance of Reproducibility in Understanding the Protein Corona of Nanoparticles. Bioconjugate Chemistry, 2018, 29, 3385-3393.	1.8	26
180	Proteomic investigation on bio-corona of functionalized multiÂwalled carbon nanotubes. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2293-2303.	1.1	11
181	Formation of a protein corona influences the biological identity of nanomaterials. Reports of Practical Oncology and Radiotherapy, 2018, 23, 300-308.	0.3	60
182	Improving the accuracy of pancreatic cancer clinical staging by exploitation of nanoparticle-blood interactions: A pilot study. Pancreatology, 2018, 18, 661-665.	0.5	18
183	Effective lock-in strategy for proteomic analysis of corona complexes bound to amino-free ligands of gold nanoparticles. Nanoscale, 2018, 10, 12413-12423.	2.8	8
184	Impact of ConcanavalinA affinity in the intracellular fate of Protein Corona on Glucosamine Au nanoparticles. Scientific Reports, 2018, 8, 9046.	1.6	10
185	Gold nanoparticles in ophthalmology. Medicinal Research Reviews, 2019, 39, 302-327.	5.0	71

#	Article	IF	CITATIONS
186	Nanoparticle–Biofilm Interactions: The Role of the EPS Matrix. Trends in Microbiology, 2019, 27, 915-926.	3.5	307
187	The Effect of Gold Nanoparticle Surface Modification with Polyethylene Glycol on the Absorbed Dose Distribution upon Irradiation with 137Cs and 60Co Photons. Biophysics (Russian Federation), 2019, 64, 23-30.	0.2	3
188	Virus-Sized Gold Nanorods: Plasmonic Particles for Biology. Accounts of Chemical Research, 2019, 52, 2124-2135.	7.6	54
189	Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm titanium dioxide nanoparticle aerosols in healthy adult rats after a single two-hour inhalation exposure. Particle and Fibre Toxicology, 2019, 16, 29.	2.8	27
190	Protein at liquid solid interfaces: Toward a new paradigm to change the approach to design hybrid protein/solid-state materials. Advances in Colloid and Interface Science, 2019, 270, 278-292.	7.0	39
191	Multiscale Molecular Dynamics Simulation of Multiple Protein Adsorption on Gold Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 3539.	1.8	36
192	Magnetic Nanomaterials for Magnetically-Aided Drug Delivery and Hyperthermia. Applied Sciences (Switzerland), 2019, 9, 2927.	1.3	27
193	Updating traditional regulatory tests for use with novel materials: Nanomaterial toxicity testing with Daphnia magna. Safety Science, 2019, 118, 497-504.	2.6	34
194	Assembly and Degradation of Inorganic Nanoparticles in Biological Environments. Bioconjugate Chemistry, 2019, 30, 2751-2762.	1.8	30
195	Physical and chemical profiles of nanoparticles for lymphatic targeting. Advanced Drug Delivery Reviews, 2019, 151-152, 72-93.	6.6	79
196	Release of Ag/ZnO Nanomaterials and Associated Risks of a Novel Water Sterilization Technology. Water (Switzerland), 2019, 11, 2276.	1.2	3
197	Elucidating the Role of Surface Coating in the Promotion or Prevention of Protein Corona around Quantum Dots. Bioconjugate Chemistry, 2019, 30, 2469-2480.	1.8	28
198	Nanoparticles without and with protein corona: van der Waals and hydration interaction. Journal of Biological Physics, 2019, 45, 307-316.	0.7	15
199	Proteomic profile of the hard corona of charged polystyrene nanoparticles exposed to sea urchin <i>Paracentrotus lividus</i> coelomic fluid highlights potential drivers of toxicity. Environmental Science: Nano, 2019, 6, 2937-2947.	2.2	24
200	Soybean Interaction with Engineered Nanomaterials: A Literature Review of Recent Data. Nanomaterials, 2019, 9, 1248.	1.9	30
201	The Lord of the Lungs: The essential role of pulmonary surfactant upon inhalation of nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 230-243.	2.0	78
202	Label-free plasmonic nanostar probes to illuminate <i>in vitro</i> membrane receptor recognition. Chemical Science, 2019, 10, 1807-1815.	3.7	27
203	Nanoparticles and Nanomaterials as Plant Biostimulants. International Journal of Molecular Sciences, 2019, 20, 162.	1.8	143

#	Article	IF	CITATIONS
204	Nanoparticle administration method in cell culture alters particle-cell interaction. Scientific Reports, 2019, 9, 900.	1.6	65
205	Protein Corona Fingerprints of Liposomes: New Opportunities for Targeted Drug Delivery and Early Detection in Pancreatic Cancer. Pharmaceutics, 2019, 11, 31.	2.0	39
206	Rational Design of Cancer Nanomedicine for Simultaneous Stealth Surface and Enhanced Cellular Uptake. ACS Nano, 2019, 13, 954-977.	7.3	156
207	Towards a molecular-level understanding of the protein corona around nanoparticles – Recent advances and persisting challenges. Current Opinion in Biomedical Engineering, 2019, 10, 11-22.	1.8	31
208	Transportation and Biointeraction Properties in Nanomaterials Across Biological Systems. , 2019, , 343-368.		5
209	Emerging investigator series: protein adsorption and transformation on catalytic and food-grade TiO ₂ nanoparticles in the presence of dissolved organic carbon. Environmental Science: Nano, 2019, 6, 1688-1703.	2.2	14
210	Protein Corona Modulates Distribution and Toxicological Effects of Silver Nanoparticles In Vivo. Particle and Particle Systems Characterization, 2019, 36, 1900174.	1.2	18
211	Injectable peptide hydrogel as intraperitoneal triptolide depot for the treatment of orthotopic hepatocellular carcinoma. Acta Pharmaceutica Sinica B, 2019, 9, 1050-1060.	5.7	23
212	Understanding the Chemical Nature of Nanoparticle–Protein Interactions. Bioconjugate Chemistry, 2019, 30, 1923-1937.	1.8	109
213	<p>Is small smarter? Nanomaterial-based detection and elimination of circulating tumor cells: current knowledge and perspectives</p> . International Journal of Nanomedicine, 2019, Volume 14, 4187-4209.	3.3	22
214	Mathematical and computational modeling of nano-engineered drug delivery systems. Journal of Controlled Release, 2019, 307, 150-165.	4.8	56
216	Effects of organic matter on uptake and intracellular trafficking of nanoparticles in <i>Tetrahymena thermophila</i> . Environmental Science: Nano, 2019, 6, 2116-2128.	2.2	16
217	Designing inorganic nanomaterials for vaccines and immunotherapies. Nano Today, 2019, 27, 73-98.	6.2	102
218	Probing the interaction of nanoparticles with small molecules in real time via quartz crystal microbalance monitoring. Nanoscale, 2019, 11, 11107-11113.	2.8	4
219	The hard protein corona of stealth liposomes is sparse. Journal of Controlled Release, 2019, 307, 1-15.	4.8	51
220	Toxicology assessment of engineered nanomaterials: innovation and tradition. , 2019, , 209-234.		2
221	Click reactions and intramolecular condensation reactions on azido-adamantyl-functionalized tin sulfide clusters. Inorganic Chemistry Frontiers, 2019, 6, 1973-1976.	3.0	6
222	Sub-cytotoxic doses of pharmaceutical silica nanoparticles show significant impact on the proteome of HepG2 cells. Journal of Controlled Release, 2019, 306, 1-14.	4.8	3

#	Article	IF	CITATIONS
223	Serum type and concentration both affect the protein-corona composition of PLGA nanoparticles. Beilstein Journal of Nanotechnology, 2019, 10, 1002-1015.	1.5	79
224	Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 141, 70-80.	2.0	99
225	Fate and Translocation of (Nano)Particulate Matter in the Gastrointestinal Tract. Nanoscience and Technology, 2019, , 281-327.	1.5	4
226	Formation of a Monolayer Protein Corona around Polystyrene Nanoparticles and Implications for Nanoparticle Agglomeration. Small, 2019, 15, e1900974.	5.2	54
227	Biological Responses to Nanoscale Particles. Nanoscience and Technology, 2019, , .	1.5	9
228	Nanoparticle Behaviour in Complex Media: Methods for Characterizing Physicochemical Properties, Evaluating Protein Corona Formation, and Implications for Biological Studies. Nanoscience and Technology, 2019, , 101-150.	1.5	8
229	Link between Low-Fouling and Stealth: A Whole Blood Biomolecular Corona and Cellular Association Analysis on Nanoengineered Particles. ACS Nano, 2019, 13, 4980-4991.	7.3	53
230	Influence of surface chemistry on the formation of a protein corona on nanodiamonds. Journal of Materials Chemistry B, 2019, 7, 3383-3389.	2.9	15
231	Oral delivery of nanoparticles - let's not forget about the protein corona. Expert Opinion on Drug Delivery, 2019, 16, 563-566.	2.4	43
232	Nanoparticle-Cell Interactions: Overview of Uptake, Intracellular Fate and Induction of Cell Responses. Nanoscience and Technology, 2019, , 153-170.	1.5	6
233	Differential physiological and biochemical impacts of nano vs micron Cu at two phenological growth stages in bell pepper (Capsicum annuum) plant. NanoImpact, 2019, 14, 100161.	2.4	18
234	Aggregation morphology is a key factor determining protein adsorption on graphene oxide and reduced graphene oxide nanomaterials. Environmental Science: Nano, 2019, 6, 1303-1309.	2.2	38
235	Nanomedical detection and downstream analysis of circulating tumor cells in head and neck patients. Biological Chemistry, 2019, 400, 1465-1479.	1.2	10
236	The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chemical Reviews, 2019, 119, 4819-4880.	23.0	709
237	Thermodynamics of adsorption of lysozyme on gold nanoparticles from second harmonic light scattering. Physical Chemistry Chemical Physics, 2019, 21, 7675-7684.	1.3	20
238	Targeted Therapeutic Genome Engineering: Opportunities and Bottlenecks in Medical Translation. ACS Symposium Series, 2019, , 1-34.	0.5	0
240	Protein corona variation in nanoparticles revisited: A dynamic grouping strategy. Colloids and Surfaces B: Biointerfaces, 2019, 179, 505-516.	2.5	14
241	Protein corona formed on silver nanoparticles in blood plasma is highly selective and resistant to physicochemical changes of the solution. Environmental Science: Nano, 2019, 6, 1089-1098.	2.2	52

C	тлт	Repo	рт
	IIAI	NEPU	IC I

#	Article	IF	CITATIONS
242	Hydrophobic silver nanoparticles interacting with phospholipids and stratum corneum mimic membranes in Langmuir monolayers. Journal of Colloid and Interface Science, 2019, 543, 247-255.	5.0	16
243	A Safeâ€byâ€Design Strategy towards Safer Nanomaterials in Nanomedicines. Advanced Materials, 2019, 31, e1805391.	11.1	109
244	Transducing Protease Activity into DNA Output for Developing Smart Bionanosensors. Small, 2019, 15, 1805384.	5.2	16
245	Role of surface charges on interaction of rod-shaped magnetic hydroxyapatite nanoparticles with protein. Colloids and Surfaces B: Biointerfaces, 2019, 177, 362-369.	2.5	16
246	Polycarboxylated Dextran as a Multivalent Linker: Synthesis and Target Recognition of the Antibody–Nanoparticle Bioconjugates in PBS and Serum. Langmuir, 2019, 35, 4909-4917.	1.6	6
247	Liposome protein corona characterization as a new approach in nanomedicine. Analytical and Bioanalytical Chemistry, 2019, 411, 4313-4326.	1.9	30
248	Deep Analytics based Patterns Evaluation from Nano-Particle Datasets. Journal of Physics: Conference Series, 2019, 1362, 012120.	0.3	0
249	Mechanistic Understanding of the Engineered Nanomaterial-Induced Toxicity on Kidney. Journal of Nanomaterials, 2019, 2019, 1-12.	1.5	7
250	Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope. Cancers, 2019, 11, 1855.	1.7	135
251	Nanoparticle modification in biological media: implications for oral nanomedicines. RSC Advances, 2019, 9, 40487-40497.	1.7	9
252	Preclinical hazard evaluation strategy for nanomedicines. Nanotoxicology, 2019, 13, 73-99.	1.6	43
253	Formation of a protein corona around nanoparticles. Current Opinion in Colloid and Interface Science, 2019, 41, 95-103.	3.4	45
254	Resistance to Nano-Based Antifungals Is Mediated by Biomolecule Coronas. ACS Applied Materials & Interfaces, 2019, 11, 104-114.	4.0	8
255	In Situ Characterization of Protein Corona Formation on Silica Microparticles Using Confocal Laser Scanning Microscopy Combined with Microfluidics. ACS Applied Materials & Interfaces, 2019, 11, 2459-2469.	4.0	51
256	Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics. Biomaterials, 2019, 192, 551-559.	5.7	48
257	Combined effect of titanium dioxide nanoparticles and glucose on the cardiovascular system in young rats after oral administration. Journal of Applied Toxicology, 2019, 39, 590-602.	1.4	10
258	Targeting the mTOR Signaling Pathway Utilizing Nanoparticles: A Critical Overview. Cancers, 2019, 11, 82.	1.7	34
259	Photonic Nanoparticles for Cellular and Tissular Labeling. , 2019, , 147-170.		0

ARTICLE IF CITATIONS # Profiling of nanoparticleâ€"protein interactions by electrophoresis techniques. Analytical and 260 1.9 22 Bioanalytical Chemistry, 2019, 411, 79-96. A novel scavenging tool for cancer biomarker discovery based on the blood-circulating nanoparticle 5.7 protein corona. Biomaterials, 2019, 188, 118-129. Toxicity of ZnO nanoparticles (NPs) to THP-1 macrophages: interactions with saturated or 262 13 1.3 unsaturated free fatty acids. Toxicology Mechanisms and Methods, 2019, 29, 291-299. Adsorption of Human Serum Albumin on Graphene Oxide: Implications for Protein Corona Formation and Conformation. Environmental Science & amp; Technology, 2019, 53, 8631-8639. The Human In Vivo Biomolecule Corona onto PEGylated Liposomes: A Proofâ€ofâ€Concept Clinical Study. 264 11.1 116 Advanced Materials, 2019, 31, e1803335. REMOVED: Breaking resistance to nanoantibiotics by overriding corona-dependent inhibition using a 8.3 pH-switch. Materials Today, 2019, 26, 19-29. Adsorption of proteins on gold nanoparticles: One or more layers?. Colloids and Surfaces B: 266 2.5 67 Biointerfaces, 2019, 173, 557-563. Functionalisation of Fullerenes for Biomedical Applications., 2019, , 109-122. 267 Efficient management of nanomaterial hazards in a large number of research laboratories in an 268 2.6 6 academic environment. Safety Science, 2020, 121, 158-164. The Biomolecular Corona in 2D and Reverse: Patterning Metal–Phenolic Networks on Proteins, Lipids, Nucleic Acids, Polysaccharides, and Fingerprints. Advanced Functional Materials, 2020, 30, 1905805. <i>In situ</i>analysis of liposome hard and soft protein corona structure and composition in a single 270 2.8 46 label-free workflow. Nanoscale, 2020, 12, 1728-1741. Isolation methods for particle protein corona complexes from protein-rich matrices. Nanoscale 271 2.2 Advances, 2020, 2, 56'3-582. Zwitterionic Stealth Dye-Loaded Polymer Nanoparticles for Intracellular Imaging. ACS Applied 272 4.0 18 Materials & amp; Interfaces, 2020, 12, 117-125. Biocoronaâ€induced modifications in engineered nanomaterial–cellular interactions impacting biomedical applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 3.3 12, e1608. Live-Cell Surface-Enhanced Raman Spectroscopy Imaging of Intracellular pH: From Two Dimensions to 274 32 4.0 Three Dimensions. ACS Sensors, 2020, 5, 3194-3206. Modeling the interaction of amphiphilic polymer nanoparticles with biomembranes to Guide rational design of drug delivery systems. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111366. Ultrasound and Magnetic Responsive Drug Delivery Systems for Cardiovascular Application. Journal 276 0.8 11 of Cardiovascular Pharmacology, 2020, 76, 414-426. Identification of a Profile of Neutrophil-Derived Granule Proteins in the Surface of Gold 277 Nanoparticles after Their Interaction with Human Breast Cancer Sera. Nanomaterials, 2020, 10, 1223.

~				
(ПТ	ΔTIC	JNI I	2 F D	ORT
	$\pi \Pi \Lambda$		VLI -	

#	Article	IF	CITATIONS
278	Protein Corona Gold Nanoparticles Fingerprinting Reveals a Profile of Blood Coagulation Proteins in the Serum of HER2-Overexpressing Breast Cancer Patients. International Journal of Molecular Sciences, 2020, 21, 8449.	1.8	15
279	The Biomolecular Corona of Lipid Nanoparticles for Gene Therapy. Bioconjugate Chemistry, 2020, 31, 2046-2059.	1.8	120
280	Protein Corona of Nanoparticles and Its Application in Drug Delivery. , 2020, , 389-419.		0
281	Amyloidosis inhibition, a new frontier of the protein corona. Nano Today, 2020, 35, 100937.	6.2	32
282	Biomolecular Corona Affects Controlled Release of Drug Payloads from Nanocarriers. Trends in Pharmacological Sciences, 2020, 41, 641-652.	4.0	38
283	The type of dietary nanoparticles influences salivary protein corona composition. NanoImpact, 2020, 19, 100238.	2.4	10
284	The Crucial Role of Environmental Coronas in Determining the Biological Effects of Engineered Nanomaterials. Small, 2020, 16, e2003691.	5.2	66
285	Person-Specific Biomolecular Coronas Modulate Nanoparticle Interactions with Immune Cells in Human Blood. ACS Nano, 2020, 14, 15723-15737.	7.3	55
286	Mechanisms of nanotoxicity – biomolecule coronas protect pathological fungi against nanoparticle-based eradication. Nanotoxicology, 2020, 14, 1157-1174.	1.6	8
287	The protein corona determines the cytotoxicity of nanodiamonds: implications of corona formation and its remodelling on nanodiamond applications in biomedical imaging and drug delivery. Nanoscale Advances, 2020, 2, 4798-4812.	2.2	17
289	The biomolecule corona of lipid nanoparticles contains circulating cell-free DNA. Nanoscale Horizons, 2020, 5, 1476-1486.	4.1	19
290	Plasma proteins facilitates placental transfer of polystyrene particles. Journal of Nanobiotechnology, 2020, 18, 128.	4.2	38
291	Boosting nanotoxicity to combat multidrug-resistant bacteria in pathophysiological environments. Nanoscale Advances, 2020, 2, 5428-5440.	2.2	9
292	Surface Modification of Spider Silk Particles to Direct Biomolecular Corona Formation. ACS Applied Materials & Interfaces, 2020, 12, 24635-24643.	4.0	21
294	Combined effect of titanium dioxide nanoparticles and glucose on the blood glucose homeostasis in young rats after oral administration. Journal of Applied Toxicology, 2020, 40, 1284-1296.	1.4	8
295	Delivery of RNAi-Based Therapeutics for Bone Regeneration. Current Osteoporosis Reports, 2020, 18, 312-324.	1.5	17
296	The ecology of nanomaterials in agroecosystems. , 2020, , 313-355.		3
297	Competing Interactions of Fatty Acids and Monoglycerides Trigger Synergistic Phospholipid Membrane Remodeling. Journal of Physical Chemistry Letters, 2020, 11, 4951-4957.	2.1	22

#	Article	IF	CITATIONS
298	Eco-Corona vs Protein Corona: Effects of Humic Substances on Corona Formation and Nanoplastic Particle Toxicity in <i>Daphnia magna</i> . Environmental Science & Technology, 2020, 54, 8001-8009.	4.6	111
299	Why have nanotechnologies been underutilized in the global uprising against the coronavirus pandemic?. Nanomedicine, 2020, 15, 1719-1734.	1.7	42
300	Behavior and Bio-Interactions of Anthropogenic Particles in Marine Environment for a More Realistic Ecological Risk Assessment. Frontiers in Environmental Science, 2020, 8, .	1.5	60
301	Endogenous Fluorescence Carbon Dots Derived from Food Items. Innovation(China), 2020, 1, 100009.	5.2	37
302	Molecular and cellular cues governing nanomaterial–mucosae interactions: from nanomedicine to nanotoxicology. Chemical Society Reviews, 2020, 49, 5058-5100.	18.7	39
303	Transformation of Nanomaterials and Its Implications in Gut Nanotoxicology. Small, 2020, 16, e2001246.	5.2	28
304	Toxicity of copper oxide nanoparticles: a review study. IET Nanobiotechnology, 2020, 14, 1-13.	1.9	176
305	Blood circulation of soft nanomaterials is governed by dynamic remodeling of protein opsonins at nano-biointerface. Nature Communications, 2020, 11, 3048.	5.8	59
306	A moisturizing chitosan-silk fibroin dressing with silver nanoparticles-adsorbed exosomes for repairing infected wounds. Journal of Materials Chemistry B, 2020, 8, 7197-7212.	2.9	58
307	Subâ€10â€nm Radiolabeled Barium Sulfate Nanoparticles as Carriers for Theranostic Applications and Targeted Alpha Therapy. ChemistryOpen, 2020, 9, 797-805.	0.9	16
308	α-Linolenic Acid-Rich Diet Influences Microbiota Composition and Villus Morphology of the Mouse Small Intestine. Nutrients, 2020, 12, 732.	1.7	21
309	Nanoscale <i>in silico</i> classification of ligand functionalised surfaces for protein adsorption resistance. Nanoscale, 2020, 12, 7240-7255.	2.8	6
310	Analysing the nanoparticle-protein corona for potential molecular target identification. Journal of Controlled Release, 2020, 322, 122-136.	4.8	33
311	In Situ Investigation on the Protein Corona Formation of Quantum Dots by Using Fluorescence Resonance Energy Transfer. Small, 2020, 16, e1907633.	5.2	46
312	Energy Landscape Mapping and Replica Exchange Molecular Dynamics of an Adsorbed Peptide. Journal of Physical Chemistry B, 2020, 124, 2527-2538.	1.2	2
313	<p>In vivo Comparison of the Biodistribution and Toxicity of InP/ZnS Quantum Dots with Different Surface Modifications</p> . International Journal of Nanomedicine, 2020, Volume 15, 1951-1965.	3.3	24
314	Energy Landscapes of a Pair of Adsorbed Peptides. Journal of Physical Chemistry B, 2020, 124, 2401-2409.	1.2	1
315	Enhancing the targeting ability of nanoparticles <i>via</i> protected copolymers. Nanoscale, 2020, 12, 7804-7813.	2.8	12

#	Article	IF	CITATIONS
316	The other side of the corona: nanoparticles inhibit the protease taspase1 in a size-dependent manner. Nanoscale, 2020, 12, 19093-19103.	2.8	7
317	From Protein Corona to Colloidal Self-Assembly: The Importance of Protein Size in Protein–Nanoparticle Interactions. Langmuir, 2020, 36, 8218-8230.	1.6	26
318	Quantitative regularities of protein immobilization on the surfaces of gold nanoparticles. AIP Conference Proceedings, 2020, , .	0.3	1
319	Toxicity Alleviation of Carbon Dots from Roast Beef after the Formation of Protein Coronas with Human Serum Albumin. Journal of Agricultural and Food Chemistry, 2020, 68, 9789-9795.	2.4	24
320	Current Approaches and Techniques in Physiologically Based Pharmacokinetic (PBPK) Modelling of Nanomaterials. Nanomaterials, 2020, 10, 1267.	1.9	32
322	Mimicking the transit of nanoparticles through the body: when the path determines properties at the destination. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	5
323	Nano Meets Micro-Translational Nanotechnology in Medicine: Nano-Based Applications for Early Tumor Detection and Therapy. Nanomaterials, 2020, 10, 383.	1.9	30
324	Protein Binding Affinity of Polymeric Nanoparticles as a Direct Indicator of Their Pharmacokinetics. ACS Nano, 2020, 14, 3563-3575.	7.3	52
325	Biological Behavior Regulation of Gold Nanoparticles via the Protein Corona. Advanced Healthcare Materials, 2020, 9, e1901448.	3.9	29
326	Optimization of the interaction of graphene quantum dots with lipase for biological applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2471-2483.	1.6	8
327	Carbon nanotubes functionalized with sodium hyaluronate: Sterilization, osteogenic capacity and renal function analysis. Life Sciences, 2020, 248, 117460.	2.0	5
328	Magnetic Nanoheterostructures. Nanomedicine and Nanotoxicology, 2020, , .	0.1	3
329	Effect of a protein corona on the fibrinogen induced cellular oxidative stress of gold nanoparticles. Nanoscale, 2020, 12, 5898-5905.	2.8	17
330	Hydrolyzed Ce(IV) salts limit sucrose-dependent biofilm formation by Streptococcus mutans. Journal of Inorganic Biochemistry, 2020, 206, 110997.	1.5	7
331	How Corona Formation Impacts Nanomaterials as Drug Carriers. Molecular Pharmaceutics, 2020, 17, 725-737.	2.3	36
332	NOM mitigates the phytotoxicity of AgNPs by regulating rice physiology, root cell wall components and root morphology. Environmental Pollution, 2020, 260, 113942.	3.7	15
333	Polyglycidol-Stabilized Nanoparticles as a Promising Alternative to Nanoparticle PEGylation: Polymer Synthesis and Protein Fouling Considerations. Langmuir, 2020, 36, 1266-1278.	1.6	12
334	Nanoparticles for biomedical applications: exploring and exploiting molecular interactions at the nano-bio interface. Materials Today Advances, 2020, 5, 100036.	2.5	60

#	Article	IF	CITATIONS
335	Toxicology data of graphene-family nanomaterials: an update. Archives of Toxicology, 2020, 94, 1915-1939.	1.9	55
336	Iron Oxide Nanoparticle-Induced Autophagic Flux Is Regulated by Interplay between p53-mTOR Axis and Bcl-2 Signaling in Hepatic Cells. Cells, 2020, 9, 1015.	1.8	25
337	Physics in nanomedicine: Phenomena governing the <i>in vivo</i> performance of nanoparticles. Applied Physics Reviews, 2020, 7, .	5.5	36
338	Outstanding protein-repellent feature of soft nanoparticles based on poly(N-(2-hydroxypropyl)) Tj ETQq1 1 0.784	314 rgBT 5.0	/Overlock 1 14
339	An Analysis of the Binding Function and Structural Organization of the Protein Corona. Journal of the American Chemical Society, 2020, 142, 8827-8836.	6.6	96
340	Onâ€Chip Electrical Monitoring of Realâ€Time "Soft―and "Hard―Protein Corona Formation on Carbon Nanoparticles. Small Methods, 2020, 4, 2000099.	4.6	17
341	Safety Assessment of Nanomaterials for Antimicrobial Applications. Chemical Research in Toxicology, 2020, 33, 1082-1109.	1.7	33
342	Unbiased Identification of the Liposome Protein Corona using Photoaffinity-based Chemoproteomics. ACS Central Science, 2020, 6, 535-545.	5.3	41
343	Therapeutic Potential of Targeted Nanoparticles and Perspective on Nanotherapies. ACS Medicinal Chemistry Letters, 2020, 11, 1069-1073.	1.3	49
344	Effects of carbon-based nanomaterials on vascular endothelia under physiological and pathological conditions: interactions, mechanisms and potential therapeutic applications. Journal of Controlled Release, 2021, 330, 945-962.	4.8	19
345	Protein-based nanomaterials and nanosystems for biomedical applications: A review. Materials Today, 2021, 43, 166-184.	8.3	57
346	Characterization of a nitric oxide (NO) donor molecule and cerium oxide nanoparticle (CNP) interactions and their synergistic antimicrobial potential for biomedical applications. Journal of Colloid and Interface Science, 2021, 586, 163-177.	5.0	33
347	Biomolecular corona formation on CuO nanoparticles in plant xylem fluid. Environmental Science: Nano, 2021, 8, 1067-1080.	2.2	18
348	Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chemical Society Reviews, 2021, 50, 5397-5434.	18.7	398
349	Evidence of protein coronas around soft nanoparticles regardless of the chemical nature of the outer surface: structural features and biological consequences. Journal of Materials Chemistry B, 2021, 9, 2073-2083.	2.9	5
350	Challenge and perspectives for inorganic green synthesis pathways. , 2021, , 93-107.		Ο
351	Interplay between nanomedicine and protein corona. Journal of Materials Chemistry B, 2021, 9, 6713-6727.	2.9	21
352	Photocrosslinked Bioreducible Polymeric Nanoparticles for Enhanced Systemic siRNA Delivery as Cancer Therapy. Advanced Functional Materials, 2021, 31, 2009768.	7.8	29

щ		15	CITATIONS
#	ARTICLE Graphene oxide-silver nanoparticle hybrid material: an integrated nanosafety study in zebrafish	IF	CITATIONS
353	embryos. Ecotoxicology and Environmental Safety, 2021, 209, 111776.	2.9	36
354	Physicochemical and biochemical properties of the Keplerate-type nanocluster polyoxomolybdates as promising components for biomedical use. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12, 81-112.	0.2	8
355	Biological and Medical Applications of Calcium Phosphate Nanoparticles. Chemistry - A European Journal, 2021, 27, 7471-7488.	1.7	57
356	In vivo Protein Corona Formation: Characterizations, Effects on Engineered Nanoparticles' Biobehaviors, and Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 646708.	2.0	46
358	Serum Lowers Bioactivity and Uptake of Synthetic Amorphous Silica by Alveolar Macrophages in a Particle Specific Manner. Nanomaterials, 2021, 11, 628.	1.9	7
359	Does the nanoparticle morphology influence interaction with protein: A case study with hydroxyapatite nanoparticles. Materials Today Communications, 2021, 26, 102172.	0.9	7
360	Hard and Soft Protein Corona of Nanomaterials: Analysis and Relevance. Nanomaterials, 2021, 11, 888.	1.9	69
361	Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects. Frontiers in Nanotechnology, 2021, 3, .	2.4	81
362	Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomaterials Research, 2021, 25, 12.	3.2	71
363	Biosafety risk assessment of nanoparticles: Evidence from food case studies. Environmental Pollution, 2021, 275, 116662.	3.7	22
364	Placing nanoplastics in the context of global plastic pollution. Nature Nanotechnology, 2021, 16, 491-500.	15.6	252
365	Machine Learning Boosts the Design and Discovery of Nanomaterials. ACS Sustainable Chemistry and Engineering, 2021, 9, 6130-6147.	3.2	44
366	Engineering the Interface between Inorganic Nanoparticles and Biological Systems through Ligand Design. Nanomaterials, 2021, 11, 1001.	1.9	13
367	Microbial Fabrication of Nanomaterial and Its Role in Disintegration of Exopolymeric Matrices of Biofilm. Frontiers in Chemistry, 2021, 9, 690590.	1.8	30
368	Unmasking CSF protein corona: Effect on targeting capacity of nanoparticles. Journal of Controlled Release, 2021, 333, 352-361.	4.8	23
369	Time-Resolved and Label-Free Evanescent Light-Scattering Microscopy for Mass Quantification of Protein Binding to Single Lipid Vesicles. Nano Letters, 2021, 21, 4622-4628.	4.5	9
370	Nonspecific Binding—Fundamental Concepts and Consequences for Biosensing Applications. Chemical Reviews, 2021, 121, 8095-8160.	23.0	113
371	Colloidal silver combating pathogenic Pseudomonas aeruginosa and MRSA in chronic rhinosinusitis. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111675.	2.5	17

#	Article	IF	CITATIONS
372	Effect of Protein Corona on Mitochondrial Targeting Ability and Cytotoxicity of Triphenylphosphonium Conjugated with Polyglycerol-Functionalized Nanodiamond. Molecular Pharmaceutics, 2021, 18, 2823-2832.	2.3	14
373	Biostimulation and toxicity: The magnitude of the impact of nanomaterials in microorganisms and plants. Journal of Advanced Research, 2021, 31, 113-126.	4.4	69
374	Factors affecting the biological response of Graphene. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111767.	2.5	7
375	<i>In Planta</i> Nanosensors: Understanding Biocorona Formation for Functional Design. ACS Sensors, 2021, 6, 2802-2814.	4.0	22
376	Eco-Interactions of Engineered Nanomaterials in the Marine Environment: Towards an Eco-Design Framework. Nanomaterials, 2021, 11, 1903.	1.9	36
377	Fate and transformation of silver nanoparticles in different biological conditions. Beilstein Journal of Nanotechnology, 2021, 12, 665-679.	1.5	11
378	Internalisation and Biological Activity of Nucleic Acids Delivering Cell-Penetrating Peptide Nanoparticles Is Controlled by the Biomolecular Corona. Pharmaceuticals, 2021, 14, 667.	1.7	6
379	The protein corona hampers the transcytosis of transferrin-modified nanoparticles through blood–brain barrier and attenuates their targeting ability to brain tumor. Biomaterials, 2021, 274, 120888.	5.7	90
380	Uptake of Upconverting Nanoparticles by Breast Cancer Cells: Surface Coating versus the Protein Corona. ACS Applied Materials & Interfaces, 2021, 13, 39076-39087.	4.0	23
381	Nanotoxicology and nanomedicine: The Yin and Yang of nano-bio interactions for the new decade. Nano Today, 2021, 39, 101184.	6.2	67
382	Isolation methods commonly used to study the liposomal protein corona suffer from contamination issues. Acta Biomaterialia, 2021, 130, 460-472.	4.1	17
383	Bioremediation of copper polluted wastewater-like nutrient media and simultaneous synthesis of stable copper nanoparticles by a viable green alga. Journal of Water Process Engineering, 2021, 42, 102123.	2.6	8
385	Interaction of nanoplastics with extracellular polymeric substances (EPS) in the aquatic environment: A special reference to eco-corona formation and associated impacts. Water Research, 2021, 201, 117319.	5.3	103
386	Safety assessment of nanoparticles in food: Current status and prospective. Nano Today, 2021, 39, 101169.	6.2	21
387	Study of Membrane Protein Monolayers Using Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS): Critical Dependence of Nanostructured Gold Surface Morphology. ACS Sensors, 2021, 6, 2875-2882.	4.0	10
388	Detection of Circulating Serum Protein Biomarkers of Non-Muscle Invasive Bladder Cancer after Protein Corona-Silver Nanoparticles Analysis by SWATH-MS. Nanomaterials, 2021, 11, 2384.	1.9	12
389	Gold Nanostars with Reduced Fouling Facilitate Small Molecule Detection in the Presence of Protein. Nanomaterials, 2021, 11, 2565.	1.9	13
390	Bio-dissolution process and mechanism of copper phosphate hybrid nanoflowers by Pseudomonas aeruginosa and its bacteria-toxicity in life cycle. Journal of Hazardous Materials, 2021, 419, 126494.	6.5	12

#	Article	IF	CITATIONS
391	Evolution of the protein corona affects macrophage polarization. International Journal of Biological Macromolecules, 2021, 191, 192-200.	3.6	9
392	Blood–nanomaterials interactions. , 2022, , 1-40.		Ο
393	Modelling the adsorption of proteins to nanoparticles at the solid-liquid interface. Journal of Colloid and Interface Science, 2022, 605, 286-295.	5.0	9
394	CHAPTER 5. Inorganic Nanocrystals and Biointerfaces. RSC Nanoscience and Nanotechnology, 2021, , 161-208.	0.2	0
395	Albumin protein coronas render nanoparticles surface active: consonant interactions at air–water and at lipid monolayer interfaces. Environmental Science: Nano, 2021, 8, 160-173.	2.2	6
396	The differences of the impact of a lipid and protein corona on the colloidal stability, toxicity, and degradation behavior of iron oxide nanoparticles. Nanoscale, 2021, 13, 9415-9435.	2.8	16
397	QSAR and machine learning modeling of toxicity of nanomaterials: a risk assessment approach. , 2021, , 417-441.		2
398	Application of Localized Surface Plasmon Resonance Spectroscopy to Investigate a Nano–Bio Interface. Langmuir, 2021, 37, 1991-2000.	1.6	12
399	Impact of the protein corona on nanomaterial immune response and targeting ability. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1615.	3.3	44
400	Targeted delivery of nanoparticles. Frontiers of Nanoscience, 2020, 16, 253-264.	0.3	2
401	CHAPTER 1. Nanoparticle–Protein Corona Complex: Composition, Kinetics, Physico–Chemical Characterization, and Impact on Biomedical Applications. Issues in Toxicology, 2019, , 1-30.	0.2	5
403	A review of the current understanding of nanoparticles protein corona composition. Medicine and Pharmacy Reports, 2020, 93, 342-350.	0.2	12
404	Colloid Stability Influences on the Biological Organization and Functions. , 0, , .		1
405	Impact of Protein Corona on the Biological Identity of Nanomedicine: Understanding the Fate of Nanomaterials in the Biological Milieu. Biomedicines, 2021, 9, 1496.	1.4	26
406	NanoSafe III: A User Friendly Safety Management System for Nanomaterials in Laboratories and Small Facilities. Nanomaterials, 2021, 11, 2768.	1.9	3
407	Detection of Pancreatic Ductal Adenocarcinoma by Ex Vivo Magnetic Levitation of Plasma Protein-Coated Nanoparticles. Cancers, 2021, 13, 5155.	1.7	11
408	Environmental Toxicity of Nanopesticides Against Non-Target Organisms: The State of the Art. , 2020, , 227-279.		11
409	Persistence, Toxicity, and Biodegradation of Gold- and Iron Oxide-Based Nanoparticles in the Living Systems. Nanomedicine and Nanotoxicology, 2020, , 447-478.	0.1	Ο

#	Article	IF	CITATIONS
412	Role of proteins in the biosynthesis and functioning of metallic nanoparticles. Critical Reviews in Biotechnology, 2022, 42, 1045-1060.	5.1	3
413	Food grade silica nanoparticles cause nonâ€competitive type inhibition of human salivary αâ€amylase because of surface interaction. Nano Select, 2021, 2, 632-641.	1.9	3
414	Nanotechnology in the Discovery of New Antimicrobial Drugs: Is a New Scientific Revolution Possible?. Nanotechnology in the Life Sciences, 2020, , 89-102.	0.4	0
415	Brownian motion-based nanoparticle sizing—A powerful approach for <i>in situ</i> analysis of nanoparticle-protein interactions. Biointerphases, 2020, 15, 061201.	0.6	5
416	Serum proteins on nanoparticles: early stages of the "protein corona― Nanoscale, 2021, 13, 20550-20563.	2.8	5
417	A review on the toxicity of silver nanoparticles against different biosystems. Chemosphere, 2022, 292, 133397.	4.2	17
418	On the growth of the soft and hard protein corona of mesoporous silica particles with varying morphology. Journal of Colloid and Interface Science, 2022, 612, 467-478.	5.0	6
419	Toxicity of metal and metal oxide nanoparticles. , 2022, , 87-126.		5
420	Silver Nanoparticles (AgNPs) in Urea Solution in Laboratory Tests and Field Experiments with Crops and Vegetables. Materials, 2022, 15, 870.	1.3	23
421	Probing the Role of Charged Functional Groups on Nanoparticles Grafted with Polyglycerol in Protein Adsorption and Cellular Uptake. Advanced Functional Materials, 2022, 32, .	7.8	12
422	Interphase Protein Layers Formed on Self-Assembled Monolayers in Crowded Biological Environments: Analysis by Surface Force and Quartz Crystal Microbalance Measurements. Langmuir, 2022, 38, 1324-1333.	1.6	9
424	Late stage of the formation of a protein corona around nanoparticles in biofluids. Physical Review E, 2022, 105, 014402.	0.8	3
425	Recent Advances in Understanding the Facets of Eco-corona on Engineered Nanomaterials. Journal of the Indian Institute of Science, 2022, 102, 621-637.	0.9	5
426	Investigation of interaction between MXene nanosheets and human plasma and protein corona composition. Nanoscale, 2022, 14, 3777-3787.	2.8	15
427	Machine Learning at the Interface of Polymer Science and Biology: How Far Can We Go?. Biomacromolecules, 2022, 23, 576-591.	2.6	10
428	Scratching the Surface of the Protein Corona: Challenging Measurements and Controversies. ACS Nano, 2022, 16, 1689-1707.	7.3	35
429	Reduced cytotoxicity of nanomaterials driven by nano-bio interactions: Case study of single protein coronas enveloping polymersomes. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112387.	2.5	7
430	Immunosafe(r)-by-design nanoparticles: Molecular targets and cell signaling pathways in a next-generation model proxy for humans. Advances in Protein Chemistry and Structural Biology, 2022, 130, 325-350.	1.0	1

#	Article	IF	CITATIONS
431	Application of nanomaterials in proteomics-driven precision medicine. Theranostics, 2022, 12, 2674-2686.	4.6	16
432	Environmental Risk Assessment of Emerging Contaminants—The Case of Nanomaterials. , 2022, , 349-371.		1
433	Re-establishing the comprehension of phytomedicine and nanomedicine in inflammation-mediated cancer signaling. Seminars in Cancer Biology, 2022, 86, 1086-1104.	4.3	25
434	Influence of surface chemistry and morphology of nanoparticles on protein corona formation. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1788.	3.3	39
435	Merging data curation and machine learning to improve nanomedicines. Advanced Drug Delivery Reviews, 2022, 183, 114172.	6.6	34
436	Aggregation kinetics of biochar nanoparticles in aqueous environment: Interplays of anion type and bovine serum albumin. Science of the Total Environment, 2022, 833, 155148.	3.9	10
437	Toxicity/risk assessment of nanomaterials when used in the automotive industry. , 2022, , 653-674.		0
440	Brain Accumulation and Toxicity Profiles of Silica Nanoparticles: The Influence of Size and Exposure Route. Environmental Science & Technology, 2022, 56, 8319-8325.	4.6	16
441	Current Methods and Prospects for Analysis and Characterization of Nanomaterials in the Environment. Environmental Science & amp; Technology, 2022, 56, 7426-7447.	4.6	19
442	Impact of Heat Treatment on the Structure and Properties of the Plant Protein Corona Formed around TiO ₂ Nanoparticles. Journal of Agricultural and Food Chemistry, 2022, 70, 6540-6551.	2.4	10
443	Cytotoxicity of nanomixture: Combined action of silver and plastic nanoparticles on immortalized human lymphocytes. Journal of Trace Elements in Medicine and Biology, 2022, 73, 127004.	1.5	3
444	Dynamic intracellular exchange of nanomaterials' protein corona perturbs proteostasis and remodels cell metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	56
445	Protein precoating modulates biomolecular coronas and nanocapsule–immune cell interactions in human blood. Journal of Materials Chemistry B, 2022, 10, 7607-7621.	2.9	9
446	Understanding the Role and Impact of Poly (Ethylene Glycol) (PEC) on Nanoparticle Formulation: Implications for COVID-19 Vaccines. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	30
447	Squaric Esterâ€Based Nanogels Induce No Distinct Protein Corona but Entrap Plasma Proteins into their Porous Hydrogel Network. Macromolecular Rapid Communications, 2022, 43, .	2.0	2
448	Functionalization of carbon nanotubes with bovine plasma biowaste by forming a protein corona enhances copper removal from water and ecotoxicity mitigation. Environmental Science: Nano, 2022, 9, 2887-2905.	2.2	5
449	Anti-PEG Antibodies Boosted in Humans by SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine. ACS Nano, 2022, 16, 11769-11780.	7.3	108
450	Iron Oxide Nanoparticles: The precise strategy for targeted delivery of genes, oligonucleotides and peptides in cancer therapy. Journal of Drug Delivery Science and Technology, 2022, 74, 103585.	1.4	7

ARTICLE IF CITATIONS # Protein corona formation on silver nanoparticles under different conditions. Colloids and Surfaces 451 2.3 9 A: Physicochemical and Engineering Aspects, 2022, 651, 129666. Nano-engineered biomaterials: Safety matters and toxicity evaluation. Materials Today Advances, 2022, 2.5 15, 100260. Investigation of the interactions between food plant carbohydrates and titanium dioxide 453 2.9 8 nanoparticles. Food Research International, 2022, 159, 111574. A critical review on the biological impact of natural organic matter on nanomaterials in the aquatic 454 Label-free dynamic light scattering assay for C-reactive protein detection using magnetic 455 2.6 4 nanoparticles. Analytica Chimica Acta, 2022, 1222, 340169. In Situ Characterization of the Protein Corona of Nanoparticles In Vitro and In Vivo. Advanced 11.1 Materials, 2022, 34, . Highly Luminescent Positively Charged Quantum Dots Interacting with Proteins and 457 2.6 2 Cells (sup>†(sup>. Chinese Journal of Chemistry, 2022, 40, 2685-2693. Multicolor Super-Resolution Microscopy of Protein Corona on Single Nanoparticles. ACS Applied Materials & amp; Interfaces, 2022, 14, 37345-37355. 458 4.0 Aquatic organisms modulate the bioreactivity of engineered nanoparticles: focus on biomolecular 459 1.6 5 corona. Frontiers in Toxicology, 0, 4, . Contribution of sedimentary organic matter to arsenic mobilization along a potential natural 4.2 reactive barrier (NRB) near a river: The Meghna river, Bangladesh. Chemosphere, 2022, 308, 136289. Dynamics of Proteinâ€"Nanoparticle Interactions Using NMR. New Developments in NMR, 2022, , 236-253. 461 0 0.1 Thermodynamics of multilayer protein adsorption on a gold nanoparticle surface. Physical Chemistry 1.3 Chemical Physics, 2022, 24, 22464-22476. Bioinspired Screening of Anti-Adhesion Peptides against Blood Proteins for Intravenous Delivery of 463 4.5 4 Nanomaterials. Nano Letters, 2022, 22, 8076-8085. Proteomic evaluation of nanotoxicity in aquatic organisms: A review. Proteomics, 2022, 22, . 464 1.3 Potential of βC-Loaded Silica Nanoparticles in the Management of L-NAME –Induced Hypertension in 465 1.5 0 Experimental Rats. BioNanoScience, 0, , . Tailor-Made Protein Corona Formation on Polystyrene Microparticles and its Effect on Epithelial Cell 466 Uptake. ACS Applied Materials & amp; Interfaces, 2022, 14, 47277-47287. The Interaction Between Cholesterol-Modified Amino-Pullulan Nanoparticles and Human Serum 467 Albumin: Importance of Nanoparticle Positive Surface Charge. Journal of Biomedical Nanotechnology, 0.5 0 2022, 18, 1692-1701. Quantitative Multistate Binding Model of Silica Nanoparticle–Protein Interactions Obtained from 1.2 Multinuclear Spin Relaxation. Journal of Physical Chemistry B, O, , .

#	Article	IF	CITATIONS
469	Insights into the mapping of green synthesis conditions for ZnO nanoparticles and their toxicokinetics. Nanomedicine, 2022, 17, 1281-1303.	1.7	4
470	Toxicity of ceria nanoparticles to the regeneration of freshwater planarian Dugesia japonica: The role of biotransformation. Science of the Total Environment, 2023, 857, 159590.	3.9	1
471	Chapter 17. Study on the Behaviour and Toxicology of Nanomaterials by Synchrotron Radiation Technology. Chemistry in the Environment, 2022, , 414-449.	0.2	0
472	Penetration and translocation of functional inorganic nanomaterials into biological barriers. Advanced Drug Delivery Reviews, 2022, 191, 114615.	6.6	20
473	Nanoparticle Protein Corona: Understanding NP Biomolecule Interactions for Safe and Informed Nanotechnological Applications Including Stress Alleviation in Plants. Journal of Plant Growth Regulation, 0, , .	2.8	0
474	Experimental human placental models for studying uptake, transport and toxicity of micro- and nanoplastics. Science of the Total Environment, 2023, 860, 160403.	3.9	12
475	Nanoplastic detection with surface enhanced Raman spectroscopy: Present and future. TrAC - Trends in Analytical Chemistry, 2023, 158, 116885.	5.8	12
476	Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	3.3	6
477	Toxicokinetics, dose–response, and risk assessment of nanomaterials: Methodology, challenges, and future perspectives. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	3.3	10
478	Nanomaterials targeting macrophages in sepsis: A promising approach for sepsis management. Frontiers in Immunology, 0, 13, .	2.2	8
479	Interaction between Nanoparticles, Membranes and Proteins: A Surface Plasmon Resonance Study. International Journal of Molecular Sciences, 2023, 24, 591.	1.8	6
480	Assessing the <i>in vitro</i> toxicity of airborne (nano)particles to the human respiratory system: from basic to advanced models. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2023, 26, 67-96.	2.9	6
481	Peptide valence-induced breaks in plasmonic coupling. Chemical Science, 2023, 14, 2659-2668.	3.7	6
482	Synchrotron radiation circular dichroism spectroscopy reveals that gold and silver nanoparticles modify the secondary structure of a lung surfactant protein B analogue. Nanoscale, 2023, 15, 4591-4603.	2.8	6
483	Silver Nanoparticle Surface Chemistry Determines Interactions with Human Serum Albumin and Cytotoxic Responses in Human Liver Cells. ACS Omega, 2023, 8, 3310-3318.	1.6	7
484	Biotransformation, multifunctional recycling mechanism of nanostructures, and evaluation of the safety of nanoscale materials. Particuology, 2023, 82, 76-86.	2.0	0
485	Gadolinium (III) helated Deformable Mesoporous Organosilica Nanoparticles as Magnetic Resonance Imaging Contrast Agent. Advanced Materials, 2023, 35, .	11.1	7
486	Facile fabrication of zinc oxide nanoparticles for enhanced buffalo sperm parameters during cryopreservation. , 2023, 4, 100058.		2

#	Article	IF	CITATIONS
487	Assessment of core-shell nanoparticles surface structure heterogeneity by SAXS contrast variation and ab initio modeling. Colloids and Surfaces B: Biointerfaces, 2023, 224, 113183.	2.5	2
488	Peptide Selfâ€Assembly into Amyloid Fibrils at Hard and Soft Interfaces—From Corona Formation to Membrane Activity. Macromolecular Bioscience, 2023, 23, .	2.1	4
489	Quantum Dots Meet Enzymes: Hydrophobicity of Surface Ligands and Size Do Matter. Langmuir, 2023, 39, 3967-3978.	1.6	4
490	Impact of Nanoparticle Physicochemical Properties on Protein Corona and Macrophage Polarization. ACS Applied Materials & Interfaces, 0, , .	4.0	4
491	The Effects of Carbon Dots from Hordei Fructus Germinatus Carbonisatus on Glycometabolism and <i>α</i> -Glycosidase Activity. Journal of Biomedical Nanotechnology, 2022, 18, 2750-2758.	0.5	0
492	Mechanistic Understanding of Protein Corona Formation around Nanoparticles: Old Puzzles and New Insights. Small, 2023, 19, .	5.2	13
493	Protein corona and exosomes: new challenges and prospects. Cell Communication and Signaling, 2023, 21, .	2.7	12
494	Nanobioconjugates: Plants and microbes assisted synthesis, mechanistics of surface functionalization and their applications. Comprehensive Analytical Chemistry, 2023, , .	0.7	0
495	Insights into the abiotic fragmentation of biodegradable mulches under accelerated weathering conditions. Journal of Hazardous Materials, 2023, 454, 131477.	6.5	2
507	Ecotoxicological significance of bio-corona formation on micro/nanoplastics in aquatic organisms. RSC Advances, 2023, 13, 22905-22917.	1.7	1
517	Exogenous application of nanomaterials as biostimulants for heavy metal stress tolerance. , 2023, , 423-448.		0
521	Therapeutic applications of carbon nanomaterials in renal cancer. Biotechnology Letters, 2023, 45, 1395-1416.	1.1	1
531	Detection of COVID-19 Using Convolutional Neural Networks. , 2023, , .		0
534	Carbonaceous Nanofillers in Medicine Technology. , 2024, , 1-22.		0