Differential Impact of <i>In Vivo</i> CD8 ⁺ Controller versus Progressor Simian Immunodeficiency

Journal of Virology 89, 8677-8686 DOI: 10.1128/jvi.00869-15

Citation Report

#	Article	IF	CITATIONS
1	CD19xCD3 DART protein mediates human B-cell depletion in vivo in humanized BLT mice. Molecular Therapy - Oncolytics, 2016, 3, 15024.	2.0	6
2	In Situ Staining and Laser Capture Microdissection of Lymph Node Residing SIV Gag-Specific CD8+ T cells—A Tool to Interrogate a Functional Immune Response Ex Vivo. PLoS ONE, 2016, 11, e0149907.	1.1	3
3	Notwithstanding Circumstantial Alibis, Cytotoxic T Cells Can Be Major Killers of HIV-1-Infected Cells. Journal of Virology, 2016, 90, 7066-7083.	1.5	18
4	Simian Immunodeficiency Virus-Producing Cells in Follicles Are Partially Suppressed by CD8 ⁺ Cells <i>In Vivo</i> . Journal of Virology, 2016, 90, 11168-11180.	1.5	74
5	CD8 + Lymphocytes Are Required for Maintaining Viral Suppression in SIV-Infected Macaques Treated with Short-Term Antiretroviral Therapy. Immunity, 2016, 45, 656-668.	6.6	178
6	In Vivo Depletion of T Lymphocytes. Current Protocols in Immunology, 2016, 113, 4.1.1-4.1.9.	3.6	13
7	In Vivo Models of Human Immunodeficiency Virus Persistence and Cure Strategies. Journal of Infectious Diseases, 2017, 215, S142-S151.	1.9	36
8	Insights into the Impact of CD8 ⁺ Immune Modulation on Human Immunodeficiency Virus Evolutionary Dynamics in Distinct Anatomical Compartments by Using Simian Immunodeficiency Virus-Infected Macaque Models of AIDS Progression. Journal of Virology, 2017, 91, .	1.5	8
9	The Lymph Node in HIV Pathogenesis. Current HIV/AIDS Reports, 2017, 14, 133-140.	1.1	32
10	Emerging Targets for Developing T Cell-Mediated Vaccines for Human Immunodeficiency Virus (HIV)-1. Frontiers in Microbiology, 2017, 8, 2091.	1.5	11
11	Natural and cross-inducible anti-SIV antibodies in Mauritian cynomolgus macaques. PLoS ONE, 2017, 12, e0186079.	1.1	18
12	Dynamics of Simian Immunodeficiency Virus Two-Long-Terminal-Repeat Circles in the Presence and Absence of CD8 ⁺ Cells. Journal of Virology, 2018, 92, .	1.5	17
13	Mechanisms of CD8 ⁺ TÂcellâ€mediated suppression of HIV/SIV replication. European Journal of Immunology, 2018, 48, 898-914.	1.6	79
14	CD8+ lymphocyte control of SIV infection during antiretroviral therapy. PLoS Pathogens, 2018, 14, e1007350.	2.1	20
15	Tâ€cell subset differentiation and antibody responses following antiretroviral therapy during simian immunodeficiency virus infection. Immunology, 2018, 155, 458-466.	2.0	1
16	The dynamics of simian immunodeficiency virus after depletion of CD8+ cells. Immunological Reviews, 2018, 285, 26-37.	2.8	12
17	Role of IL-15 Signaling in the Pathogenesis of Simian Immunodeficiency Virus Infection in Rhesus Macaques. Journal of Immunology, 2019, 203, 2928-2943.	0.4	8
18	<i>In vivo</i> targeting of DNA vaccines to dendritic cells using functionalized gold nanoparticles. Biomaterials Science, 2019, 7, 773-788.	2.6	60

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
19	Role of Dendritic Cells in Exposing Latent HIV-1 for the Kill. Viruses, 2020, 12, 37.	1.5	11
20	Optimal Maturation of the SIV-Specific CD8+ T Cell Response after Primary Infection Is Associated with Natural Control of SIV: ANRS SIC Study. Cell Reports, 2020, 32, 108174.	2.9	12
21	Innate, non-cytolytic CD8+ T cell-mediated suppression of HIV replication by MHC-independent inhibition of virus transcription. PLoS Pathogens, 2020, 16, e1008821.	2.1	26
22	Therapeutic vaccination with IDLV-SIV-Gag results in durable viremia control in chronically SHIV-infected macaques. Npj Vaccines, 2020, 5, 36.	2.9	12
23	Vaccine Design Informed by Virus-Induced Immunity. Viral Immunology, 2020, 33, 342-350.	0.6	2
24	CD8+ T cells in HIV control, cure and prevention. Nature Reviews Immunology, 2020, 20, 471-482.	10.6	163
25	Robust and persistent reactivation of SIV and HIV by N-803 and depletion of CD8+ cells. Nature, 2020, 578, 154-159.	13.7	141
26	Shocking HIV-1 with immunomodulatory latency reversing agents. Seminars in Immunology, 2021, 51, 101478.	2.7	11
27	Challenges and Opportunities of Using Adoptive T-Cell Therapy as Part of an HIV Cure Strategy. Journal of Infectious Diseases, 2021, 223, S38-S45.	1.9	15
28	TCF-1 regulates HIV-specific CD8+ T cell expansion capacity. JCI Insight, 2021, 6, .	2.3	43
29	CD8 Lymphocyte Depletion Enhances the Latency Reversal Activity of the SMAC Mimetic AZD5582 in ART-Suppressed Simian Immunodeficiency Virus-Infected Rhesus Macaques. Journal of Virology, 2021, 95, .	1.5	17
30	Immunologic Control of HIV-1: What Have We Learned and Can We Induce It?. Current HIV/AIDS Reports, 2021, 18, 211-220.	1.1	7
31	A "Drug-Dependent―Immune System Can Compromise Protection against Infection: The Relationships between Psychostimulants and HIV. Viruses, 2021, 13, 722.	1.5	1
32	Potential Utility of Natural Killer Cells for Eliminating Cells Harboring Reactivated Latent HIV-1 Following the Removal of CD8+ T Cell-Mediated Pro-Latency Effect(s). Viruses, 2021, 13, 1451.	1.5	0
33	New Latency Reversing Agents for HIV-1 Cure: Insights from Nonhuman Primate Models. Viruses, 2021, 13, 1560.	1.5	10
34	Functional impairment of HIV-specific CD8+ TÂcells precedes aborted spontaneous control of viremia. Immunity, 2021, 54, 2372-2384.e7.	6.6	20
37	Adoptive lymphocyte transfer to an HIV-infected progressor from an elite controller. JCI Insight, 2019, 4, .	2.3	6
38	Understanding the CD8 T-cell response in natural HIV control. F1000Research, 2018, 7, 985.	0.8	14

CITATION REPORT

#	Article	IF	CITATIONS
39	Hypothetical endogenous SIV-like antigens in Mauritian cynomolgus macaques. Bioinformation, 2018, 14, 48-52.	0.2	6
41	Highly dampened HIV-specific cytolytic effector T cell responses define viremic non-progression. Immunobiology, 2022, 227, 152234.	0.8	1
42	Aging induces severe SIV infection accompanied by an increase in follicular CD8+ T cells with overactive STAT3 signaling. , 2022, 19, 1042-1053.		2
43	Challenges and Opportunities of Therapies Targeting Early Life Immunity for Pediatric HIV Cure. Frontiers in Immunology, 0, 13, .	2.2	2
44	CD8+ T-cell responses in HIV controllers: potential implications for novel HIV remission strategies. Current Opinion in HIV and AIDS, 2022, 17, 315-324.	1.5	10
45	HIV specific CD8+ TRM-like cells in tonsils express exhaustive signatures in the absence of natural HIV control. Frontiers in Immunology, 0, 13, .	2.2	3
46	Role of CXCR5+ CD8+ T cells in human immunodeficiency virus-1 infection. Frontiers in Microbiology, 0, 13, .	1.5	2
47	CD8+ lymphocytes do not impact SIV reservoir establishment under ART. Nature Microbiology, 2023, 8, 299-308.	5.9	5
48	Chronic immune activation and gut barrier dysfunction is associated with neuroinflammation in ART-suppressed SIV+ rhesus macaques. PLoS Pathogens, 2023, 19, e1011290.	2.1	3