Efficient Uranium Capture by Polysulfide/Layered Dou

Journal of the American Chemical Society 137, 3670-3677 DOI: 10.1021/jacs.5b00762

Citation Report

#	Article	IF	CITATIONS
6	In Vivo Nanodetoxication for Acute Uranium Exposure. Molecules, 2015, 20, 11017-11033.	1.7	3
7	Ultrafast high-performance extraction of uranium from seawater without pretreatment using an acylamide- and carboxyl-functionalized metal–organic framework. Journal of Materials Chemistry A, 2015, 3, 13724-13730.	5.2	161
8	Delaminated layered rare-earth hydroxide composites with ortho-coumaric acid: color-tunable luminescence and blue emission due to energy transfer. Journal of Materials Chemistry C, 2015, 3, 7143-7152.	2.7	22
9	Effect of MacroRAFT Copolymer Adsorption on the Colloidal Stability of Layered Double Hydroxide Nanoparticles. Langmuir, 2015, 31, 12609-12617.	1.6	35
10	Bifunctional polymeric microspheres for efficient uranium sorption from aqueous solution: synergistic interaction of positive charge and amidoxime group. RSC Advances, 2015, 5, 64286-64292.	1.7	38
11	An adaptive supramolecular organic framework for highly efficient separation of uranium via an in situ induced fit mechanism. Journal of Materials Chemistry A, 2015, 3, 23788-23798.	5.2	70
12	Doubleâ€&helled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as Highâ€Efficiency Polysulfide Mediator for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 3982-3986.	7.2	505
13	Intercalation of Varied Sulfonates into a Layered MOC: Confinementâ€Caused Tunable Luminescence and Novel Properties. Chemistry - A European Journal, 2016, 22, 5327-5334.	1.7	18
14	Multifunctional flexible free-standing titanate nanobelt membranes as efficient sorbents for the removal of radioactive 90Sr2+ and 137Cs+ ions and oils. Scientific Reports, 2016, 6, 20920.	1.6	52
15	Solvothermal synthesis, structure and physical properties of Cs[Cr(en) ₂ MSe ₄] (M = Ge, Sn) with [MSe ₄] ^{4â^²} tetrahedra as chelating ligand. Dalton Transactions, 2016, 45, 9097-9102.	1.6	6
16	A New Approach for Removing Anionic Organic Dyes from Wastewater Based on Electrostatically Driven Assembly. Environmental Science & Technology, 2016, 50, 6477-6484.	4.6	95
17	"Stereoscopic―2D super-microporous phosphazene-based covalent organic framework: Design, synthesis and selective sorption towards uranium at high acidic condition. Journal of Hazardous Materials, 2016, 314, 95-104.	6.5	147
18	Zeta potential-assisted sorption of uranyl tricarbonate complex from aqueous solution by polyamidoxime-functionalized colloidal particles. Physical Chemistry Chemical Physics, 2016, 18, 13026-13032.	1.3	9
19	Metal sulfide ion exchangers: superior sorbents for the capture of toxic and nuclear waste-related metal ions. Chemical Science, 2016, 7, 4804-4824.	3.7	246
20	Selective recognition of uranyl ions from bulk of thorium(iv) and lanthanide(iii) ions by tetraalkyl urea: a combined experimental and quantum chemical study. Dalton Transactions, 2016, 45, 10319-10325.	1.6	19
21	Intercalation of thiacalix[4]arene anion via calcined/restored reaction into LDH and efficient heavy metal capture. Journal of Molecular Liquids, 2016, 220, 346-353.	2.3	33
22	Synergistic nanofibrous adsorbent for uranium extraction from seawater. RSC Advances, 2016, 6, 81995-82005.	1.7	21
23	Poly(styrenesulfonate)-Modified Ni–Ti Layered Double Hydroxide Film: A Smart Drug-Eluting Platform. ACS Applied Materials & Interfaces, 2016, 8, 24491-24501.	4.0	22

ITATION REDO

#	Article	IF	CITATIONS
24	Pore-Free Matrix with Cooperative Chelating of Hyperbranched Ligands for High-Performance Separation of Uranium. ACS Applied Materials & Interfaces, 2016, 8, 28853-28861.	4.0	69
25	Facile preparation of NiCo ₂ O ₄ @rGO composites for the removal of uranium ions from aqueous solutions. Dalton Transactions, 2016, 45, 16931-16937.	1.6	17
26	Preparation of amidoximated coaxial electrospun nanofibers for uranyl uptake and their electrochemical properties. Separation and Purification Technology, 2016, 171, 44-51.	3.9	23
27	Efficient Removal and Recovery of Uranium by a Layered Organic–Inorganic Hybrid Thiostannate. Journal of the American Chemical Society, 2016, 138, 12578-12585.	6.6	307
28	A strategically designed porous magnetic N-doped Fe/Fe ₃ C@C matrix and its highly efficient uranium(<scp>vi</scp>) remediation. Inorganic Chemistry Frontiers, 2016, 3, 1227-1235.	3.0	63
29	Mechanism of adsorption affinity and capacity of Mg(OH) ₂ to uranyl revealed by molecular dynamics simulation. RSC Advances, 2016, 6, 31507-31513.	1.7	10
30	Highly Selective and Rapid Uptake of Radionuclide Cesium Based on Robust Zeolitic Chalcogenide via Stepwise Ion-Exchange Strategy. Chemistry of Materials, 2016, 28, 8774-8780.	3.2	126
31	Synthesis and characterization of amidoxime modified calix[8]arene for adsorption of U(<scp>vi</scp>) in low concentration uranium solutions. RSC Advances, 2016, 6, 101087-101097.	1.7	31
32	Mn ₂ O ₃ hollow spheres synthesized based on an ion-exchange strategy from amorphous calcium carbonate for highly efficient trace-level uranyl extraction. Environmental Science: Nano, 2016, 3, 1254-1258.	2.2	32
33	Doubleâ€Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as Highâ€Efficiency Polysulfide Mediator for Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, 4050-4054.	1.6	62
34	Guestâ€, Light―and Thermallyâ€Modulated Spin Crossover in [Fe ^{II} ₂] Supramolecular Helicates. Chemistry - A European Journal, 2016, 22, 8635-8645.	1.7	46
35	Loading Actinides in Multilayered Structures for Nuclear Waste Treatment: The First Case Study of Uranium Capture with Vanadium Carbide MXene. ACS Applied Materials & Interfaces, 2016, 8, 16396-16403.	4.0	214
36	MOF catalysis of Fe ^{II} -to-Fe ^{III} reaction for an ultrafast and one-step generation of the Fe ₂ O ₃ @MOF composite and uranium(<scp>vi</scp>) reduction by iron(<scp>ii</scp>) under ambient conditions. Chemical Communications, 2016, 52, 9538-9541.	2.2	43
37	lon specific effects on the stability of layered double hydroxide colloids. Soft Matter, 2016, 12, 4024-4033.	1.2	85
38	Layered double hydroxides: Efficient fillers for waterborne nanocomposite films. Applied Clay Science, 2016, 130, 55-61.	2.6	21
39	K _{2x} Sn _{4â^`x} S _{8â^`x} (x = 0.65–1): a new metal sulfide for rapid and selective removal of Cs ⁺ , Sr ²⁺ and UO ₂ ²⁺ ions. Chemical Science, 2016, 7, 1121-1132.	3.7	188
40	One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(VI) removal. Journal of Colloid and Interface Science, 2016, 472, 99-107.	5.0	159
41	Coumarin-modified microporous-mesoporous Zn-MOF-74 showing ultra-high uptake capacity and photo-switched storage/release of UVI ions. Journal of Hazardous Materials, 2016, 311, 30-36.	6.5	126

		CITATION REPORT	
#	Article	IF	CITATIONS
42	Nano-diamond particles functionalized with single/double-arm amide–thiourea ligands fo adsorption of metal ions. Journal of Colloid and Interface Science, 2016, 469, 109-119.	r 5.0	41
43	Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercate the MoS ₄ ^{2–} Ion. Journal of the American Chemical Society, 20 2858-2866.	alated with 16, 138, 6.6	563
44	Facile fabrication of magnetic cucurbit[6]uril/graphene oxide composite and application for removal. Chemical Engineering Journal, 2016, 286, 311-319.	r uranium 6.6	101
45	Positively charged phosphonate-functionalized mesoporous silica for efficient uranium sorp from aqueous solution. Journal of Molecular Liquids, 2016, 221, 1231-1236.	rtion 2.3	50
46	Fate of Adsorbed U(VI) during Sulfidization of Lepidocrocite and Hematite. Environmental S & Technology, 2017, 51, 2140-2150.	Science 4.6	25
47	Surface Ion-Imprinted Polypropylene Nonwoven Fabric for Potential Uranium Seawater Extr with High Selectivity over Vanadium. Industrial & Engineering Chemistry Research, 201 1860-1867.		31
48	Water–n-BuOH solvothermal synthesis of ZnAl–LDHs with different morphologies and product in efficient dyes removal. Journal of Colloid and Interface Science, 2017, 494, 215-2		50
49	One-pot synthesis of graphene oxide and Ni-Al layered double hydroxides nanocomposites f efficient removal of U(VI) from wastewater. Science China Chemistry, 2017, 60, 415-422.	for the 4.2	105
50	Conversion of supramolecular organic framework to uranyl-organic coordination complex: a "matrix-free―strategy for highly efficient capture of uranium. RSC Advances, 2017, 7, a	a new 1.7 8985-8993.	15
51	Facile preparation of S-doped magnetite hollow spheres for highly efficient sorption of uranium(<scp>vi</scp>). Dalton Transactions, 2017, 46, 3347-3352.	1.6	10
52	A half-wave rectified alternating current electrochemical method for uranium extraction fro seawater. Nature Energy, 2017, 2, .	m 19.8	3 388
53	Fe ₃ O ₄ @ZIF-8: a magnetic nanocomposite for highly efficient UO ₂ ²⁺ adsorption and selective UO ₂ ²⁺ /Ln ³⁺ separation. Chemical Communication: 4199-4202.	s, 2017, 53, 2.2	168
54	Tunable and purified luminescence via energy transfer and delamination of LRH (R = Tb, Y) of with 8-hydroxypyrene-1,3,6-trisulphonate. Journal of Colloid and Interface Science, 2017, 49	composites 5.0 96, 353-363.	10
55	Visualization of Adsorption: Luminescent Mesoporous Silica-Carbon Dots Composite for Ra Selective Removal of U(VI) and in Situ Monitoring the Adsorption Behavior. ACS Applied Ma & Interfaces, 2017, 9, 7392-7398.		96
56	Enhanced Tb3+ luminescence in layered terbium hydroxide by intercalation of benzenepoly species. Materials Research Bulletin, 2017, 88, 301-307.	carboxylic 2.7	20
57	Preparation of a polymer monolith modified with delaminated layered double hydroxides fo microextraction of β-agonists. Journal of Separation Science, 2017, 40, 1548-1555.	r the 1.3	10
58	Amidoximated poly(vinyl imidazole)-functionalized molybdenum disulfide sheets for efficier of a uranyl tricarbonate complex from aqueous solutions. RSC Advances, 2017, 7, 10791-10		18
59	Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for w remediation. Applied Clay Science, 2017, 143, 279-292.	ater 2.6	389

#	Article	IF	CITATIONS
60	Formation of Zirconium Hydrophosphate Nanoparticles and Their Effect on Sorption of Uranyl Cations. Nanoscale Research Letters, 2017, 12, 209.	3.1	25
61	Hierarchically structured layered-double-hydroxides derived by ZIF-67 for uranium recovery from simulated seawater. Journal of Hazardous Materials, 2017, 338, 167-176.	6.5	125
62	Instant synthesis of bespoke nanoscopic photocatalysts with enhanced surface area and photocatalytic activity for wastewater treatment. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 344, 121-133.	2.0	27
63	Polyoxime-functionalized magnetic nanoparticles for uranium adsorption with high selectivity over vanadium. Journal of Materials Chemistry A, 2017, 5, 12278-12284.	5.2	86
64	Cationic two-dimensional sheets for an ultralight electrostatic polysulfide trap toward high-performance lithium-sulfur batteries. Energy Storage Materials, 2017, 9, 39-46.	9.5	37
65	Efficient Removal of Anionic Radioactive Pollutant from Water Using Ordered Urea-Functionalized Mesoporous Polymeric Nanoparticle. ACS Applied Materials & Interfaces, 2017, 9, 22440-22448.	4.0	34
66	Complexation of Manganese with Glutarimidedioxime: Implication for Extraction Uranium from Seawater. Scientific Reports, 2017, 7, 43503.	1.6	13
67	Engineering Nanoscale Iron Oxides for Uranyl Sorption and Separation: Optimization of Particle Core Size and Bilayer Surface Coatings. ACS Applied Materials & Interfaces, 2017, 9, 13163-13172.	4.0	44
68	Selective and Efficient Removal of Toxic Oxoanions of As(III), As(V), and Cr(VI) by Layered Double Hydroxide Intercalated with MoS ₄ ^{2–} . Chemistry of Materials, 2017, 29, 3274-3284.	3.2	137
69	Rational design and synthesis of monodispersed hierarchical SiO 2 @layered double hydroxide nanocomposites for efficient removal of pollutants from aqueous solution. Chemical Engineering Journal, 2017, 323, 143-152.	6.6	91
70	Enhancing adsorption of U(VI) onto EDTA modified L. cylindrica using epichlorohydrin and ethylenediamine as a bridge. Scientific Reports, 2017, 7, 44156.	1.6	12
71	Glycerol-Modified Binary Layered Double Hydroxide Nanocomposites for Uranium Immobilization via Extended X-ray Absorption Fine Structure Technique and Density Functional Theory Calculation. ACS Sustainable Chemistry and Engineering, 2017, 5, 3583-3595.	3.2	122
72	Synthesis of Amidoxime-Grafted Activated Carbon Fibers for Efficient Recovery of Uranium(VI) from Aqueous Solution. Industrial & Engineering Chemistry Research, 2017, 56, 11936-11947.	1.8	77
73	Inorganic layered ion-exchangers for decontamination of toxic metal ions in aquatic systems. Journal of Materials Chemistry A, 2017, 5, 19593-19606.	5.2	68
74	Smart Photonic Crystal Hydrogel Material for Uranyl Ion Monitoring and Removal in Water. Advanced Functional Materials, 2017, 27, 1702147.	7.8	92
75	Ultrafast and Efficient Extraction of Uranium from Seawater Using an Amidoxime Appended Metal–Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 32446-32451.	4.0	260
77	Structures and photoluminescence properties of organic-inorganic hybrid materials based on layered rare-earth hydroxides. Journal of Luminescence, 2017, 192, 1211-1219.	1.5	14
78	3D self-assembly polyethyleneimine modified graphene oxide hydrogel for the extraction of uranium from aqueous solution. Applied Surface Science, 2017, 426, 1063-1074.	3.1	69

#	Article	IF	CITATIONS
79	[MoS ₄] ^{2–} Cluster Bridges in Co–Fe Layered Double Hydroxides for Mercury Uptake from S–Hg Mixed Flue Gas. Environmental Science & Technology, 2017, 51, 10109-10116.	4.6	104
80	Synergistic immobilization of UO22+ by novel graphitic carbon nitride @ layered double hydroxide nanocomposites from wastewater. Chemical Engineering Journal, 2017, 330, 573-584.	6.6	129
81	Rapid Simultaneous Removal of Toxic Anions [HSeO ₃] ^{â^'} , [SeO ₃] ^{2–} , and [SeO ₄] ^{2–} , and Metals Hg ²⁺ , Cu ²⁺ , and Cd ²⁺ by MoS ₄ ^{2–} Intercalated Layered Double Hydroxide. Journal of the American Chemical Society, 2017, 139, 12745-12757.	6.6	164
82	Melamine modified graphene hydrogels for the removal of uranium(<scp>vi</scp>) from aqueous solution. New Journal of Chemistry, 2017, 41, 10899-10907.	1.4	36
83	Superparamagnetic Adsorbent Based on Phosphonate Grafted Mesoporous Carbon for Uranium Removal. Industrial & Engineering Chemistry Research, 2017, 56, 9821-9830.	1.8	45
84	A general strategy for the synthesis of layered double hydroxide nanoscrolls on arbitrary substrates: its formation and multifunction. Journal of Materials Chemistry A, 2017, 5, 19079-19090.	5.2	23
85	Materials for the Recovery of Uranium from Seawater. Chemical Reviews, 2017, 117, 13935-14013.	23.0	639
86	Highly Efficient Separation of Trivalent Minor Actinides by a Layered Metal Sulfide (KInSn ₂ S ₆) from Acidic Radioactive Waste. Journal of the American Chemical Society, 2017, 139, 16494-16497.	6.6	81
87	Adsorbents based on crown ether functionalized composite mesoporous silica for selective extraction of trace silver. Chemical Engineering Journal, 2017, 313, 1278-1287.	6.6	31
88	One-pot synthesis of arginine modified hydroxyapatite carbon microsphere composites for efficient removal of U(VI) from aqueous solutions. Science Bulletin, 2017, 62, 1609-1618.	4.3	34
89	Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chemical Society Reviews, 2018, 47, 2322-2356.	18.7	1,438
90	Efficient and Selective Removal of Copper(II) from Aqueous Solution by a Highly Stable Hydrogen-Bonded Metal–Organic Framework. Crystal Growth and Design, 2018, 18, 3082-3088.	1.4	33
91	Bioassembly of fungal hypha/graphene oxide aerogel as high performance adsorbents for U(VI) removal. Chemical Engineering Journal, 2018, 347, 407-414.	6.6	92
92	Fabrication of Magnetic Fe/Zn Layered Double Oxide@Carbon Nanotube Composites and Their Application for U(VI) and ²⁴¹ Am(III) Removal. ACS Applied Nano Materials, 2018, 1, 2386-2396.	2.4	30
93	Remarkable Acid Stability of Polypyrroleâ€MoS ₄ : A Highly Selective and Efficient Scavenger of Heavy Metals Over a Wide pH Range. Advanced Functional Materials, 2018, 28, 1800502.	7.8	88
94	Kinetic and equilibrium of U(â¥) adsorption onto magnetic amidoxime-functionalized chitosan beads. Journal of Cleaner Production, 2018, 188, 655-661.	4.6	170
95	l-cysteine intercalated layered double hydroxide for highly efficient capture of U(VI) from aqueous solutions. Journal of Environmental Management, 2018, 217, 468-477.	3.8	40
96	Effect of Fe3O4@PDA morphology on the U(VI) entrapment from aqueous solution. Applied Surface Science, 2018, 448, 297-308.	3.1	44

#	Article	IF	CITATIONS
97	Orthogonal synthesis of a novel hybrid layered material containing three different zincous components and its photocatalytic property investigation. Journal of Hazardous Materials, 2018, 350, 144-153.	6.5	29
98	Hydrothermal carbon superstructures enriched with carboxyl groups for highly efficient uranium removal. Chemical Engineering Journal, 2018, 338, 734-744.	6.6	115
99	Guanidine and Amidoxime Cofunctionalized Polypropylene Nonwoven Fabric for Potential Uranium Seawater Extraction with Antifouling Property. Industrial & Engineering Chemistry Research, 2018, 57, 1662-1670.	1.8	62
100	High Efficiency and Fast Removal of Trace Pb(II) from Aqueous Solution by Carbomethoxy-Functionalized Metal–Organic Framework. Crystal Growth and Design, 2018, 18, 1474-1482.	1.4	50
101	Enhanced adsorption of U(VI) and 241 Am(III) from wastewater using Ca/Al layered double hydroxide@carbon nanotube composites. Journal of Hazardous Materials, 2018, 347, 67-77.	6.5	180
102	Graphene oxide@Mg3Si4O9(OH)10: A hierarchical layered silicate nanocomposite with superior adsorption capacity for enriching Eu(III). Chemical Engineering Journal, 2018, 338, 628-635.	6.6	20
103	Interaction of U(VI) with ternary layered double hydroxides by combined batch experiments and spectroscopy study. Chemical Engineering Journal, 2018, 338, 579-590.	6.6	62
104	Highly efficient capture and recovery of uranium by reusable layered double hydroxide intercalated with 2-mercaptoethanesulfonate. Chemical Engineering Journal, 2018, 337, 609-615.	6.6	51
105	Optimization of Formulations Consisting of Layered Double Hydroxide Nanoparticles and Small Interfering RNA for Efficient Knockdown of the Target Gene. ACS Omega, 2018, 3, 4871-4877.	1.6	17
106	High efficiency extraction of U(VI) from seawater by incorporation of polyethyleneimine, polyacrylic acid hydrogel and Luffa cylindrical fibers. Chemical Engineering Journal, 2018, 345, 526-535.	6.6	71
107	Highly uranium elimination by crab shells-derived porous graphitic carbon nitride: Batch, EXAFS and theoretical calculations. Chemical Engineering Journal, 2018, 346, 406-415.	6.6	64
108	Polyethyleneimine-functionalized Luffa cylindrica for efficient uranium extraction. Journal of Colloid and Interface Science, 2018, 530, 538-546.	5.0	35
109	Covalent Organic Frameworks as a Decorating Platform for Utilization and Affinity Enhancement of Chelating Sites for Radionuclide Sequestration. Advanced Materials, 2018, 30, e1705479.	11.1	398
110	Zeolitic Imidazolate Framework-67: A promising candidate for recovery of uranium (VI) from seawater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547, 73-80.	2.3	83
111	The study of C P determination of hydrotalcite intercalated with heavy metal ions. Journal of Thermal Analysis and Calorimetry, 2018, 131, 521-527.	2.0	5
112	Integration of adsorption and reduction for uranium uptake based on SrTiO3/TiO2 electrospun nanofibers. Applied Surface Science, 2018, 428, 819-824.	3.1	48
113	Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach. Journal of Hazardous Materials, 2018, 343, 255-265.	6.5	59
114	Designing a Highâ€Performance Lithium–Sulfur Batteries Based on Layered Double Hydroxides–Carbon Nanotubes Composite Cathode and a Dualâ€Functional Graphene–Polypropylene–Al ₂ O ₃ Separator. Advanced Functional Materials, 2018, 28, 1704294.	7.8	135

#	Article	IF	CITATIONS
115	In-situ growth of hierarchical layered double hydroxide on polydopamine-encapsulated hollow Fe3O4 microspheres for efficientÂremoval and recovery of U(VI). Journal of Cleaner Production, 2018, 172, 2033-2044.	4.6	88
116	Highly enhanced adsorption performance of U(VI) by non-thermal plasma modified magnetic Fe3O4 nanoparticles. Journal of Colloid and Interface Science, 2018, 513, 92-103.	5.0	128
117	Comparative Investigation of Fe ₂ O ₃ and Fe _{1–<i>x</i>} S Nanostructures for Uranium Decontamination. ACS Applied Nano Materials, 2018, 1, 5543-5552.	2.4	15
118	In Situ Anchoring of Pyrrhotite on Graphitic Carbon Nitride Nanosheet for Efficient Immobilization of Uranium. Chemistry - A European Journal, 2019, 25, 590-597.	1.7	11
119	B(C ₆ F ₅) ₃ catalyzed direct nucleophilic substitution of benzylic alcohols: an effective method of constructing C–O, C–S and C–C bonds from benzylic alcohols. RSC Advances, 2018, 8, 30946-30949.	1.7	15
120	N, P, and S Codoped Graphene‣ike Carbon Nanosheets for Ultrafast Uranium (VI) Capture with High Capacity. Advanced Science, 2018, 5, 1800235.	5.6	84
121	Functionalized layered double hydroxide with nitrogen and sulfur co-decorated carbondots for highly selective and efficient removal of soft Hg2+ and Ag+ ions. Journal of Hazardous Materials, 2018, 357, 217-225.	6.5	65
122	Highly Efficient Recovery of Uranium from Seawater Using an Electrochemical Approach. Industrial & Engineering Chemistry Research, 2018, 57, 8078-8084.	1.8	53
123	Graphene Oxide-Based Fe–Mg (Hydr)oxide Nanocomposite as Heavy Metals Adsorbent. Journal of Chemical & Engineering Data, 2018, 63, 2097-2105.	1.0	30
124	Adsorption of U(VI) from aqueous solution by magnetic core–dual shell Fe3O4@PDA@TiO2. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317, 613-624.	0.7	31
125	Metal-organic framework containing both azo and amide groups for effective U(VI) removal. Journal of Solid State Chemistry, 2018, 265, 148-154.	1.4	28
126	Graphene-synergized 2D covalent organic framework for adsorption: A mutual promotion strategy to achieve stabilization and functionalization simultaneously. Journal of Hazardous Materials, 2018, 358, 273-285.	6.5	121
128	A new azo metal-organic framework showing polycatenated 3D array and ultrahigh U(VI) removal. Journal of Solid State Chemistry, 2018, 266, 244-249.	1.4	15
129	A novel U(<scp>vi</scp>)-imprinted graphitic carbon nitride composite for the selective and efficient removal of U(<scp>vi</scp>) from simulated seawater. Inorganic Chemistry Frontiers, 2018, 5, 2218-2226.	3.0	36
130	Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environmental Pollution, 2018, 240, 493-505.	3.7	391
131	Rapid and selective uranium adsorption by glycine functionalized europium hydroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 556, 299-308.	2.3	24
132	Efficient U(VI) Reduction and Sequestration by Ti ₂ CT _{<i>x</i>} MXene. Environmental Science & Technology, 2018, 52, 10748-10756.	4.6	253
133	Efficient Removal of [UO ₂] ²⁺ , Cs ⁺ , and Sr ²⁺ lons by Radiation-Resistant Gallium Thioantimonates. Journal of the American Chemical Society, 2018, 140, 11133-11140.	6.6	147

#	Article	IF	CITATIONS
134	Superhydrophilic phosphate and amide functionalized magnetic adsorbent: a new combination of anti-biofouling and uranium extraction from seawater. Environmental Science: Nano, 2018, 5, 2346-2356.	2.2	44
135	Bis(hydroxylamino)triazines: High Selectivity and Hydrolytic Stability of Hydroxylamine-Based Ligands for Uranyl Compared to Vanadium(V) and Iron(III). Inorganic Chemistry, 2018, 57, 7631-7643.	1.9	10
136	Fast and Selective Removal of Aqueous Uranium by a K ⁺ -Activated Robust Zeolitic Sulfide with Wide pH Resistance. Inorganic Chemistry, 2019, 58, 11622-11629.	1.9	24
137	Elastomer Reinforced with Innate Sulfur-Based Cross-Links as Ligands. ACS Macro Letters, 2019, 8, 1091-1095.	2.3	11
138	Design Strategies to Enhance Amidoxime Chelators for Uranium Recovery. ACS Applied Materials & Interfaces, 2019, 11, 30919-30926.	4.0	91
139	Benzotriazole decorated graphene oxide for efficient removal of U(VI). Environmental Pollution, 2019, 253, 221-230.	3.7	23
140	Adsorption of uranium from aqueous solution as well as seawater conditions by nitrogen-enriched nanoporous polytriazine. Chemical Engineering Journal, 2019, 378, 122236.	6.6	80
141	Ultrafast and Highly Selective Uranium Extraction from Seawater by Hydrogelâ€like Spidroinâ€based Protein Fiber. Angewandte Chemie, 2019, 131, 11911-11916.	1.6	38
142	U(VI) adsorption onto covalent organic frameworks-TpPa-1. Journal of Solid State Chemistry, 2019, 277, 484-492.	1.4	76
143	Intercalation of glycine into hydroxy double salt and its adsorption performance towards Uranium(VI). Environmental Technology and Innovation, 2019, 16, 100474.	3.0	5
144	One-Pot Synthesis of Layered Disodium Zirconium Phosphate: Crystal Structure and Application in the Remediation of Heavy-Metal-Contaminated Wastewater. Inorganic Chemistry, 2019, 58, 13020-13029.	1.9	15
145	Crown ether-type organic composite adsorbents embedded in high-porous silica beads for simultaneous recovery of lithium and uranium in seawater. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 717-730.	0.7	10
146	Nonreductive biomineralization of uranium by Bacillus subtilis ATCC–6633 under aerobic conditions. Journal of Environmental Radioactivity, 2019, 208-209, 106027.	0.9	16
147	Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Progress in Materials Science, 2019, 103, 180-234.	16.0	382
148	Control of pore chemistry in metal-organic frameworks for selective uranium extraction from seawater. Microporous and Mesoporous Materials, 2019, 288, 109567.	2.2	80
149	Ultrafast and Highly Selective Uranium Extraction from Seawater by Hydrogelâ€like Spidroinâ€based Protein Fiber. Angewandte Chemie - International Edition, 2019, 58, 11785-11790.	7.2	161
151	Magnetic metal-organic frameworks/carbon dots as a multifunctional platform for detection and removal of uranium. Applied Surface Science, 2019, 491, 640-649.	3.1	49
152	A uranium capture strategy based on self-assembly in a hydroxyl-functionalized ionic liquid extraction system. Chemical Communications, 2019, 55, 6894-6897.	2.2	20

#	Article	IF	CITATIONS
153	Symbiotic Aerogel Fibers Made via In-Situ Gelation of Aramid Nanofibers with Polyamidoxime for Uranium Extraction. Molecules, 2019, 24, 1821.	1.7	43
154	Boron atalyzed Hydroamination/Hydroallylation and Hydroamination/Hydrocyanation of Unactivated Alkynes. Asian Journal of Organic Chemistry, 2019, 8, 1075-1079.	1.3	9
155	Effective capture of aqueous uranium from saline lake with magnesium-based binary and ternary layered double hydroxides. Science of the Total Environment, 2019, 677, 556-563.	3.9	51
156	Removal of toxic/radioactive metal ions by metal-organic framework-based materials. Interface Science and Technology, 2019, , 217-279.	1.6	15
157	Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks. Applied Catalysis B: Environmental, 2019, 254, 47-54.	10.8	222
158	Metal-organic frameworks (MIL-68) decorated graphene oxide for highly efficient enrichment of uranium. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99, 45-52.	2.7	33
159	Carboxymethyl cellulose supported magnetic graphene oxide composites by plasma induced technique and their highly efficient removal of uranium ions. Cellulose, 2019, 26, 4039-4060.	2.4	33
160	Adsorption of U(VI) ions from aqueous solution using nanogoethite powder. Adsorption Science and Technology, 2019, 37, 113-126.	1.5	8
161	Sorption of metal ions from aqueous solution by sulfonated calix[4]arene intercalated with layered double hydroxide. Journal of Environmental Chemical Engineering, 2019, 7, 103021.	3.3	17
162	Strong Uranium(VI) Binding onto Bovine Milk Proteins, Selected Protein Sequences, and Model Peptides. Inorganic Chemistry, 2019, 58, 4173-4189.	1.9	22
163	Fully phosphorylated 3D graphene oxide foam for the significantly enhanced U(VI) sequestration. Environmental Pollution, 2019, 249, 434-442.	3.7	50
164	Opportunities of Porous Organic Polymers for Radionuclide Sequestration. Trends in Chemistry, 2019, 1, 292-303.	4.4	93
165	Polyamine and amidoxime groups modified bifunctional polyacrylonitrile-based ion exchange fibers for highly efficient extraction of U(VI) from real uranium mine water. Chemical Engineering Journal, 2019, 367, 198-207.	6.6	138
166	Graphene Oxide and Silver Ions Coassisted Zeolitic Imidazolate Framework for Antifouling and Uranium Enrichment from Seawater. ACS Sustainable Chemistry and Engineering, 2019, 7, 6185-6195.	3.2	73
167	The influence of humic acid on U(VI) sequestration by calcium titanate. Chemical Engineering Journal, 2019, 368, 598-605.	6.6	27
168	Heterogeneous activation of hydrogen peroxide by cysteine intercalated layered double hydroxide for degradation of organic pollutants: Performance and mechanism. Journal of Colloid and Interface Science, 2019, 543, 183-191.	5.0	41
169	Linear β-Cyclodextrin Polymer Functionalized Multiwalled Carbon Nanotubes as Nanoadsorbent for Highly Effective Removal of U(VI) from Aqueous Solution Based on Inner-Sphere Surface Complexation. Industrial & Engineering Chemistry Research, 2019, 58, 4074-4083.	1.8	19
170	Diaminomaleonitrile functionalized double-shelled hollow MIL-101 (Cr) for selective removal of uranium from simulated seawater. Chemical Engineering Journal, 2019, 368, 951-958.	6.6	87

#	Article	IF	CITATIONS
171	(MoS4)2â^' intercalated CAMoS4â‹LDH material for the efficient and facile sequestration of antibiotics from aqueous solution. Chemical Engineering Journal, 2019, 355, 637-649.	6.6	40
172	Mussel-inspired antifouling magnetic activated carbon for uranium recovery from simulated seawater. Journal of Colloid and Interface Science, 2019, 534, 172-182.	5.0	52
173	Selective removal of heavy metals by hydrotalcites as adsorbents in diverse wastewater: Different intercalated anions with different mechanisms. Journal of Cleaner Production, 2019, 211, 1112-1126.	4.6	85
174	Improving Adsorptive Performance of CaO for High-Temperature CO ₂ Capture through Fe and Ga Doping. Energy & Fuels, 2019, 33, 1404-1413.	2.5	65
175	Immobilization of U(VI) on Hierarchical NiSiO@MgAl and NiSiO@NiAl Nanocomposites from Wastewater. ACS Sustainable Chemistry and Engineering, 2019, 7, 3475-3486.	3.2	23
176	Morphology-controlled synthesis and sulfur modification of 3D hierarchical layered double hydroxides for gaseous elemental mercury removal. Journal of Colloid and Interface Science, 2019, 536, 431-439.	5.0	25
177	Synthesis and catalytic activity of Mo(II) complexes of $\hat{I}\pm$ -diimines intercalated in layered double hydroxides. Inorganica Chimica Acta, 2019, 486, 274-282.	1.2	10
178	Highly U(VI) immobilization on polyvinyl pyrrolidine intercalated molybdenum disulfide: Experimental and computational studies. Chemical Engineering Journal, 2019, 359, 1563-1572.	6.6	45
179	Surface Area- and Structure-Dependent Effects of LDH for Highly Efficient Dye Removal. ACS Sustainable Chemistry and Engineering, 2019, 7, 905-915.	3.2	39
180	Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environmental Chemistry Letters, 2019, 17, 729-754.	8.3	388
181	Preparation of NiAl-LDH/Polypyrrole composites for uranium(VI) extraction from simulated seawater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562, 329-335.	2.3	21
182	Gamma-ferric oxide nanoparticles decoration onto porous layered double oxide belts for efficient removal of uranyl. Journal of Colloid and Interface Science, 2019, 535, 265-275.	5.0	49
183	Enhanced adsorption of Cd(II) using a composite of poly(acrylamide-co-sodium acrylate) incorporated LDH@MoS24â^'. Environmental Technology (United Kingdom), 2020, 41, 357-365.	1.2	3
184	A novel 3D reticular anti-fouling bio-adsorbent for uranium extraction from seawater: Polyethylenimine and guanidyl functionalized hemp fibers. Chemical Engineering Journal, 2020, 382, 122555.	6.6	82
185	Few-layered metal-organic framework nanosheets as a highly selective and efficient scavenger for heavy metal pollution treatment. Chemical Engineering Journal, 2020, 383, 123189.	6.6	38
186	Hierarchical microsphere assembled by nanoplates embedded with MoS ₂ and (NiFe)S <i>_x</i> nanoparticles as low-cost electrocatalyst for hydrogen evolution reaction. Nanotechnology, 2020, 31, 035403.	1.3	8
187	Mussel-inspired anti-biofouling and robust hybrid nanocomposite hydrogel for uranium extraction from seawater. Journal of Hazardous Materials, 2020, 381, 120984.	6.5	67
188	MoS2/Au0/N-CNT derived from Au(III) extraction by polypyrrole/MoS4 as an electrocatalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2020, 561, 298-306.	5.0	9

#	Article	IF	CITATIONS
189	Functionalized layered double hydroxides for innovative applications. Materials Horizons, 2020, 7, 715-745.	6.4	171
190	Polypyrrole–Mo ₃ S ₁₃ : An Efficient Sorbent for the Capture of Hg ²⁺ and Highly Selective Extraction of Ag ⁺ over Cu ²⁺ . Journal of the American Chemical Society, 2020, 142, 1574-1583.	6.6	55
191	Developing a novel packed inâ€ŧube solidâ€phase extraction method for determination ^{â^†} 9â€ŧetrahydrocannabinol in biological samples and cannabis leaves. Journal of Separation Science, 2020, 43, 1128-1136.	1.3	7
192	Emerging Functional Porous Polymeric and Carbonaceous Materials for Environmental Treatment and Energy Storage. Advanced Functional Materials, 2020, 30, 1907006.	7.8	176
193	Construction of oxidized millimeter-sized hierarchically porous carbon spheres for U(VI) adsorption. Chemical Engineering Journal, 2020, 386, 123944.	6.6	50
194	DFT study on MgAl-layered double hydroxides with different interlayer anions: structure, anion exchange, host–guest interaction and basic sites. Physical Chemistry Chemical Physics, 2020, 22, 2521-2529.	1.3	77
195	Interaction of U(<scp>vi</scp>) with α-MnO ₂ @layered double hydroxides by combined batch experiments and spectroscopy studies. Inorganic Chemistry Frontiers, 2020, 7, 487-497.	3.0	15
196	Efficient removal of uranium (VI) by 3D hierarchical Mg/Fe-LDH supported nanoscale hydroxyapatite: A synthetic experimental and mechanism studies. Chemical Engineering Journal, 2020, 392, 123682.	6.6	113
197	Chitosan modified molybdenum disulfide composites as adsorbents for the simultaneous removal of U(VI), Eu(III), and Cr(VI) from aqueous solutions. Cellulose, 2020, 27, 1635-1648.	2.4	28
198	Fabrication of layered double hydroxide/carbon nanomaterial for heavy metals removal. Applied Clay Science, 2020, 199, 105867.	2.6	18
199	MOF-derived LDH wrapped with rGO as an efficient sulfur host for lithium-sulfur batteries. Journal of Electroanalytical Chemistry, 2020, 876, 114545.	1.9	19
200	Synthesis and characterization of sodium laurylsulfonate modified silicon dioxide for the efficient removal of europium. Journal of Molecular Liquids, 2020, 316, 113846.	2.3	7
201	Recent innovations in functionalized layered double hydroxides: Fabrication, characterization, and industrial applications. Advances in Colloid and Interface Science, 2020, 283, 102216.	7.0	89
202	Removal of radionuclides from acidic solution by activated carbon impregnated with methyl- and carboxy-benzotriazoles. Scientific Reports, 2020, 10, 11712.	1.6	11
203	A simple and universal strategy to construct robust and anti-biofouling amidoxime aerogels for enhanced uranium extraction from seawater. Chemical Engineering Journal, 2020, 397, 125337.	6.6	91
204	Constructing an Ion Pathway for Uranium Extraction from Seawater. CheM, 2020, 6, 1683-1691.	5.8	104
205	Phosphate functionalized layered double hydroxides (phos-LDH) for ultrafast and efficient U(VI) uptake from polluted solutions. Journal of Hazardous Materials, 2020, 399, 123081.	6.5	64
206	New nearâ€infrared emissions and energy transfer in Er 3+ â€doped MgAl layered double hydroxides. Luminescence, 2020, 35, 1125-1133.	1.5	6

#	Article	IF	CITATIONS
207	Adsorption Properties of Sulfonylcalix[4] arenetetrasulfonate-loaded Resin towards Strontium(II) from Aqueous Solutions. IOP Conference Series: Materials Science and Engineering, 2020, 729, 012043.	0.3	0
208	Highly effective prussian blue-coated MXene aerogel spheres for selective removal of cesium ions. Journal of Nuclear Materials, 2020, 539, 152277.	1.3	40
209	Bifunctional Phosphorylcholine-Modified Adsorbent with Enhanced Selectivity and Antibacterial Property for Recovering Uranium from Seawater. ACS Applied Materials & Interfaces, 2020, 12, 16959-16968.	4.0	48
210	Self-sterilizing diblock polycation-enhanced polyamidoxime shape-stable blow-spun nanofibers for high-performance uranium capture from seawater. Chemical Engineering Journal, 2020, 390, 124648.	6.6	54
211	Aryl Diazonium-Assisted Amidoximation of MXene for Boosting Water Stability and Uranyl Sequestration via Electrochemical Sorption. ACS Applied Materials & Interfaces, 2020, 12, 15579-15587.	4.0	115
212	Uranium elimination and recovery from wastewater with ligand chelation-enhanced electrocoagulation. Chemical Engineering Journal, 2020, 393, 124819.	6.6	32
213	Amidoxime-based materials for uranium recovery and removal. Journal of Materials Chemistry A, 2020, 8, 7588-7625.	5.2	234
214	The Adsorption of Europium and Uranium on the Sodium Dodecyl Sulfate Modified Molybdenum Disulfide Composites. Journal of Chemical & Engineering Data, 2020, 65, 2178-2185.	1.0	11
215	Bio-inspired antibacterial cellulose paper–poly(amidoxime) composite hydrogel for highly efficient uranium(<scp>vi</scp>) capture from seawater. Chemical Communications, 2020, 56, 3935-3938.	2.2	80
216	Amorphous phosphated titanium oxide with amino and hydroxyl bifunctional groups for highly efficient heavy metal removal. Environmental Science: Nano, 2020, 7, 1266-1274.	2.2	12
217	Experimental and theoretical studies of chitosan modified titanium dioxide composites for uranium and europium removal. Cellulose, 2020, 27, 7765-7777.	2.4	11
218	Antimicrobial polymer contained adsorbent: A promising candidate with remarkable anti-biofouling ability and durability for enhanced uranium extraction from seawater. Chemical Engineering Journal, 2020, 388, 124273.	6.6	78
219	Fabrication of magnetic functionalized m-carboxyphenyl azo calix[4]arene amine oxime derivatives for highly efficient and selective adsorption of uranium (VI). Journal of Radioanalytical and Nuclear Chemistry, 2020, 323, 1145-1155.	0.7	7
220	Preparation of a 3D multi-branched chelate adsorbent for high selective adsorption of uranium(VI): Acrylic and diaminomaleonitrile functionalized waste hemp fiber. Reactive and Functional Polymers, 2020, 149, 104512.	2.0	22
221	Robust flexible poly(amidoxime) porous network membranes for highly efficient uranium extraction from seawater. Nano Energy, 2020, 71, 104629.	8.2	113
222	The uptake of uranium and europium on the polyacrylamide/titanium dioxide composites. Journal of Physics and Chemistry of Solids, 2020, 140, 109387.	1.9	7
223	Layered structure-based materials: challenges and opportunities for radionuclide sequestration. Environmental Science: Nano, 2020, 7, 724-752.	2.2	44
224	Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nature Communications, 2020, 11, 436.	5.8	383

#	Article	IF	CITATIONS
225	Facile preparation of Fe3O4/MoS4 for ultra fast and highly selective uptake towards Hg2+, Pb2+ and Ag+. Journal of Alloys and Compounds, 2020, 823, 153819.	2.8	9
226	BrÃ,nsted Acid and Hâ€Bond Activation in Boronic Acid Catalysis. Chemistry - A European Journal, 2020, 26, 9883-9888.	1.7	19
227	Thermal-responsive Ion-imprinted magnetic microspheres for selective separation and controllable release of uranium from highly saline radioactive effluents. Separation and Purification Technology, 2020, 246, 116917.	3.9	41
228	Reduced Graphene Oxide/ZIF-67 Aerogel Composite Material for Uranium Adsorption in Aqueous Solutions. ACS Omega, 2020, 5, 8012-8022.	1.6	43
229	Active biochar support nano zero-valent iron for efficient removal of U(VI) from sewage water. Journal of Alloys and Compounds, 2021, 852, 156993.	2.8	86
230	Microbial Electrochemical System: A Sustainable Approach for Mitigation of Toxic Dyes and Heavy Metals from Wastewater. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25, .	1.2	20
231	Highly efficient capture of uranium from seawater by layered double hydroxide composite with benzamidoxime. Science of the Total Environment, 2021, 759, 143483.	3.9	33
232	Efficient elimination of uranium by carboxymethyl-β-cyclodextrin nanoparticles decorated iron oxides: Water chemistry influences and mechanism researches. International Journal of Hydrogen Energy, 2021, 46, 1370-1384.	3.8	13
233	Carboxylated Graphene for Radical-Assisted Ultra-Trace-Level Water Treatment and Noble Metal Recovery. ACS Nano, 2021, 15, 3349-3358.	7.3	25
234	An anionic potassium-organic framework for selective removal of uranyl ions. Dalton Transactions, 2021, 50, 8314-8321.	1.6	4
235	Rational construction of covalent organic frameworks with multi-site functional groups for highly efficient removal of low-concentration U(<scp>vi</scp>) from water. Environmental Science: Nano, 2021, 8, 1469-1480.	2.2	23
236	Supramolecularly Poly(amidoxime)-Loaded Macroporous Resin for Fast Uranium Recovery from Seawater and Uranium-Containing Wastewater. ACS Applied Materials & Interfaces, 2021, 13, 3246-3258.	4.0	85
237	A proton-exchange poly(acrylic acid) supramolecular hydrogel for ultrahigh uranium adsorption. Journal of Materials Chemistry A, 2021, 9, 21402-21409.	5.2	30
238	Intelligent anti-corrosion and corrosion detection coatings based on layered supramolecules intercalated by fluorescent off-on probes. Journal of the Taiwan Institute of Chemical Engineers, 2021, 118, 309-324.	2.7	18
239	Amide and phosphate groups modified bifunctional luffa fiber for highly efficient removal of U(VI) from real uranium wastewater. Journal of Radioanalytical and Nuclear Chemistry, 2021, 328, 591-604.	0.7	4
241	Efficient uranium adsorption by amidoximized porous polyacrylonitrile with hierarchical pore structure prepared by freeze-extraction. Journal of Molecular Liquids, 2021, 328, 115304.	2.3	46
244	Antibiofouling Ultrathin Poly(amidoxime) Membrane for Enhanced U(VI) Recovery from Wastewater and Seawater. ACS Applied Materials & amp; Interfaces, 2021, 13, 21272-21285.	4.0	47
245	Recent Advances in Two-Dimensional MoS ₂ Nanosheets for Environmental Application. Industrial & Engineering Chemistry Research, 2021, 60, 8007-8026.	1.8	21

	CITATION	Report	
#	Article	IF	CITATIONS
246	Swollen-layer constructed with polyamine on the surface of nano-polyacrylonitrile cloth used for extract uranium from seawater. Chemosphere, 2021, 271, 129548.	4.2	24
247	Reductive and adsorptive elimination of U(VI) ions in aqueous solution by SFeS@Biochar composites. Environmental Science and Pollution Research, 2021, 28, 55176-55185.	2.7	49
248	Amidoximated polyorganophosphazene microspheres with an excellent property of U(VI) adsorption in aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 2021, 328, 1161-1172.	0.7	3
249	Ecoâ€friendly synthesis of the Li/Al in nonionic surfactantâ€based vesicles (niosomes) modified with graphene oxide quantum dot nanostructures for controlled released of chlorpheniramine maleate. Luminescence, 2021, 36, 1638-1647.	1.5	1
250	Strontium ions capturing in aqueous media using exfoliated titanium aluminum carbide (Ti2AlC MAX) Tj ETQo	10 0 0 rgBT /(Overlock 10 T
251	Enhanced uranium extraction from aqueous solution using hollow ZIF-8. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329, 1011-1017.	0.7	7
252	Selective Capture Mechanism of Radioactive Thorium from Highly Acidic Solution by a Layered Metal Sulfide. ACS Applied Materials & amp; Interfaces, 2021, 13, 37308-37315.	4.0	11
253	Adsorptive capture of perrhenate (ReO4â^) from simulated wastewater by cationic 2D-MOF BUC-17. Polyhedron, 2021, 202, 115218.	1.0	23
254	Improvement of U(VI) removal by tuning magnetic metal organic frameworks with amine ligands. Journal of Molecular Liquids, 2021, 334, 116495.	2.3	17
255	Superior selective removal of lead via sulfate doped flower like layered double oxide: An example of high value-added utilization of organic waste. Journal of Cleaner Production, 2021, 307, 127267.	4.6	14
256	Aqueous Adsorption of Heavy Metals on Metal Sulfide Nanomaterials: Synthesis and Application. Water (Switzerland), 2021, 13, 1843.	1.2	28
257	High performance task-specific ionic liquid in uranium extraction endowed with negatively charged effect. Journal of Molecular Liquids, 2021, 336, 116601.	2.3	7
258	Fabrication of novel carboxyl and amidoxime groups modified luffa fiber for highly efficient removal of uranium(VI) from uranium mine water. Journal of Environmental Chemical Engineering, 2021, 9, 105681.	3.3	32
259	Bio-inspired hydroxylation imidazole linked covalent organic polymers for uranium extraction from aqueous phases. Chemical Engineering Journal, 2021, 420, 129658.	6.6	42
260	Blow spinning of pre–acid-activated polyamidoxime nanofibers for efficient uranium adsorption from seawater. Materials Today Energy, 2021, 21, 100735.	2.5	9

261	Nanospace Decoration with Uranyl-Specific "Hooks―for Selective Uranium Extraction from Seawater with Ultrahigh Enrichment Index. ACS Central Science, 2021, 7, 1650-1656.	5.3	49
262	Nanocellulose aerogel for highly efficient adsorption of uranium (VI) from aqueous solution. Carbohydrate Polymers, 2021, 267, 118233.	5.1	68
263	Ultra-high mechanical property and multi-layer porous structure of amidoximation ethylene-acrylic acid copolymer balls for efficient and selective uranium adsorption from radioactive wastewater. Chemosphere, 2021, 280, 130722.	4.2	21

#	Article	IF	CITATIONS
264	Application of layered double hydroxide enriched with electron rich sulfide moieties (S2O42â^') for efficient and selective removal of vanadium (V) from diverse aqueous medium. Science of the Total Environment, 2021, 792, 148543.	3.9	10
265	Constructing new Fe3O4@MnO with 3D hollow structure for efficient recovery of uranium from simulated seawater. Chemosphere, 2021, 283, 131241.	4.2	60
266	High-performance removal of radionuclides by porous organic frameworks from the aquatic environment: A review. Journal of Environmental Radioactivity, 2021, 238-239, 106710.	0.9	12
267	Nanosized Cu-In spinel-type sulfides as efficient sorbents for elemental mercury removal from flue gas. Science of the Total Environment, 2021, 796, 149094.	3.9	14
268	CO2-in-Water Pickering Emulsion-Assisted Polymerization-Induced Self-Assembly of Raspberry-like sorbent microbeads for uranium adsorption. Separation and Purification Technology, 2021, 279, 119710.	3.9	21
269	Enhanced simultaneous removal of toxic (SeO4)2aˆ² and metals Cr3+ and Cu2+ using polysulfide intercalated Layered double hydroxide. Separation and Purification Technology, 2021, 279, 119649.	3.9	5
270	Purification of uranium-contaminated radioactive water by adsorption: A review on adsorbent materials. Separation and Purification Technology, 2021, 278, 119675.	3.9	81
271	In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: A case study with real life uranium alkaline leach liquor. Chemical Engineering Journal, 2022, 428, 131180.	6.6	34
272	Interlayer spacing adjusted zirconium phosphate with 2D ion channels for highly efficient removal of uranium contamination in radioactive effluent. Chemical Engineering Journal, 2022, 429, 132265.	6.6	34
273	Efficient uranium adsorbent with antimicrobial function constructed by grafting amidoxime groups on ZIF-90 via malononitrile intermediate. Journal of Hazardous Materials, 2022, 422, 126872.	6.5	54
274	Removal of lithium and uranium from seawater using fly ash and slag generated in the CFBC technology. RSC Advances, 2021, 11, 21964-21978.	1.7	8
275	Ultrastrong Anion Affinity of Anionic Clay Induced by Its Inherent Nanoconfinement. Environmental Science & Technology, 2021, 55, 930-940.	4.6	18
276	Functionalized Iron–Nitrogen–Carbon Electrocatalyst Provides a Reversible Electron Transfer Platform for Efficient Uranium Extraction from Seawater. Advanced Materials, 2021, 33, e2106621.	11.1	184
277	Layered double hydroxides: Scale production and application in soil remediation as super-stable mineralizer. Chinese Journal of Chemical Engineering, 2022, 41, 42-48.	1.7	15
278	Superâ€stable mineralization effect of layered double hydroxides for heavy metals: Application in soil remediation and perspective. Exploration, 2021, 1, 20210052.	5.4	10
279	REMOVAL OF URANYL CATIONS FROM IRON-CONTAINING SOLUTIONS USING COMPOSITESORBENTS BASED ON POLYMER MATRIX. Himia, Fizika Ta Tehnologia Poverhni, 2017, 8, 30-43.	0.2	0
280	Mo ₃ S ₁₃ ^{2â^'} Intercalated Layered Double Hydroxide: Highly Selective Removal of Heavy Metals and Simultaneous Reduction of Ag ⁺ Ions to Metallic Ag ⁰ Ribbons. Angewandte Chemie, 2022, 134, .	1.6	7
281	Accelerated Chemical Thermodynamics of Uranium Extraction from Seawater by Plantâ€Mimetic Transpiration. Advanced Science, 2021, 8, e2102250.	5.6	35

#	Article	IF	CITATIONS
282	Mo ₃ S ₁₃ ^{2â^'} Intercalated Layered Double Hydroxide: Highly Selective Removal of Heavy Metals and Simultaneous Reduction of Ag ⁺ Ions to Metallic Ag ⁰ Ribbons. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
283	A high-capacity amidoxime-functionalized magnetic composite for selective uranium capture in Salt Lake water. Journal of Environmental Chemical Engineering, 2021, 9, 106688.	3.3	24
284	Synergistic contribution of flexoelectricity and piezoelectricity towards a stretchable robust nanogenerator for wearable electronics. Nano Energy, 2022, 91, 106691.	8.2	31
285	Preparation and performance of silver-incorporated antibacterial amidoximated electrospun nanofiber for uranium extraction from seawater. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331, 427-438.	0.7	9
286	A review on heavy metal ions adsorption from water by layered double hydroxide and its composites. Separation and Purification Technology, 2022, 284, 120099.	3.9	140
287	Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waals Heterojunctions. Chemistry of Materials, 2021, 33, 9012-9092.	3.2	88
288	A novel microbial induced synthesis of hydroxyapatite with highly efficient adsorption of uranyl(VI). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128046.	2.3	9
289	Porous and Biofouling-Resistant Amidoxime-Based Hybrid Hydrogel with Excellent Interfacial Compatibility for High-Performance Recovery of Uranium from Seawater. SSRN Electronic Journal, 0, ,	0.4	0
290	Efficient adsorption of U(VI) using in low-level radioactive wastewater containing organic matter by amino groups modified polyacrylonitrile fibers. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331, 921-936.	0.7	7
291	Removal of U(vi) from aqueous solutions by an effective bio-adsorbent from walnut shell and cellulose composite-stabilized iron sulfide nanoparticles. RSC Advances, 2022, 12, 2675-2683.	1.7	9
292	Water-Stable Amino-Functionalized Coordination Polymer for Efficient Hg ²⁺ Capture. Crystal Growth and Design, 2022, 22, 1412-1420.	1.4	7
293	Decorating Covalent Organic Frameworks with High-density Chelate Groups for Uranium Extraction. Chemical Research in Chinese Universities, 2022, 38, 433-439.	1.3	12
294	Solvent induced synthesis of uranium organic frameworks: from 1D→2D basaed on a flexible carboxylic acid ligand. Materials Today Communications, 2022, , 103212.	0.9	0
295	Synthesis of a porous amidoxime modified hypercrosslinked benzil polymer and efficient uranium extraction from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128508.	2.3	26
296	Porous and biofouling-resistant amidoxime-based hybrid hydrogel with excellent interfacial compatibility for high-performance recovery of uranium from seawater. Separation and Purification Technology, 2022, 287, 120571.	3.9	30
297	Covalent organic frameworks functionalized electrodes for simultaneous removal of UO22+ and ReO4- with fast kinetics and high capacities by electro-adsorption. Journal of Hazardous Materials, 2022, 429, 128315.	6.5	27
298	Simple and selective method for simultaneous removal of mercury(ii) and recovery of silver(i) from aqueous media by organic ligand 4,4′-azo-1,2,4-triazole. Environmental Science: Water Research and Technology, 0, , .	1.2	1
299	Highly-efficient and easy separation of γ-Fe2O3 selectively adsorbs U(â¥) in waters. Environmental Research, 2022, 210, 112917.	3.7	17

ARTICLE IF CITATIONS Two-Dimensional Imprinting Strategy to Create Specific Nanotrap for Selective Uranium Adsorption 300 4.0 28 with Ultrahigh Capacity. ACS Applied Materials & amp; Interfaces, 2022, 14, 9408-9417. Hydrotalcite Colloidal Stability and Interactions with Uranium(VI) at Neutral to Alkaline pH. 1.6 Lángmuir, 2022, 38, 2576-2589. Metal-organic frameworks: A new generation potential material for aqueous environmental 302 1.8 24 remediation. Inorganic Chemistry Communication, 2022, 140, 109436. Mercaptocarboxylic acid intercalated MgAl layered double hydroxide adsorbents for removal of heavy metal ions and recycling of spent adsorbents for photocatalytic degradation of organic dyes. Separation and Purification Technology, 2022, 289, 120741. 3.9 Nanoemulsion assembly toward vaterite mesoporous CaCO3 for high-efficient uranium extraction 304 6.5 17 from seawater. Journal of Hazardous Materials, 2022, 432, 128695. Anti-biofouling bio-adsorbent with ultrahigh uranium extraction capacity: One uranium resource recycling solution. Desalination, 2022, 531, 115721. 4.0 A critical review of uranium contamination in groundwater: Treatment and sludge disposal. Science 306 3.9 61 of the Total Environment, 2022, 825, 153947. Easily synthesized mesoporous aluminum phosphate for the enhanced adsorption performance of 6.5 U(VI) from aqueous solution. Journal of Hazardous Materials, 2022, 432, 128675. Phosphate group functionalized magnetic metalâ€" organic framework nanocomposite for highly 308 1.6 11 efficient removal of U(VI) from aqueous solution. Scientific Reports, 2021, 11, 24328. Recent progress on preparation and applications of layered double hydroxides. Chinese Chemical 309 4.8 Letters, 2022, 33, 4428-4436. Metal–Organic Framework-Based Materials for Adsorption and Detection of Uranium(VI) from 310 1.6 29 Aqueous Solution. ACS Omega, 2022, 7, 14430-14456. The confinement effect of layered double hydroxides on intercalated pyromellitic acidic anions and 311 1.6 highly selective uranium extraction from simulated seawater. Dalton Transactions, 2022, 51, 8327-8339. Prospective application of phosphorylated carbon nanofibers with a high adsorption capacity for the 312 1.7 7 sequestration of uranium from ground water. RSC Advances, 2022, 12, 13511-13522. Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization. Radiochimica Acta, 2022, . Adsorptive removal of heavy metal anions from water by layered double hydroxide: A review. 314 4.2 32 Chemosphere, 2022, 303, 134685. Adsorption of nitrate from water by core-shell chitosan wrinkled microspheres @LDH composite: Electrostatic interaction, hydrogen bonding and surface complexation. Applied Clay Science, 2022, 30 225, 106550. Valence regulation investigation of key factors on the electrochemical immobilization uranyl from 316 3.9 6 wastewater. Science of the Total Environment, 2022, 836, 155609. High-strength and anti-biofouling nanofiber membranes for enhanced uranium recovery from 6.5 seawater and wastewater. Journal of Hazardous Materials, 2022, 436, 128983.

#	Article	IF	CITATIONS
318	Simultaneous preparation of humic acid and mesoporous silica from municipal sludge and their adsorption properties for U(VI). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129060.	2.3	20
319	Defect-engineered metal-organic framework with enhanced photoreduction activity toward uranium extraction from seawater. Cell Reports Physical Science, 2022, 3, 100892.	2.8	11
320	Removal of CrO ₄ ^{2–} , a Nonradioactive Surrogate of ⁹⁹ TcO ₄ [–] , Using LDH–Mo ₃ S ₁₃ Nanosheets. Environmental Science & Technology, 2022, 56, 8590-8598.	. 4.6	7
321	Mixed-linker strategy toward enhanced photoreduction-assisted uranium recovery from wastewater and seawater. Chemical Engineering Journal, 2022, 446, 137264.	6.6	28
322	Adsorption of nitrate from water by quaternized chitosan wrinkled microspheres@MgFe-LDH core–shell composite. New Journal of Chemistry, 2022, 46, 14353-14362.	1.4	1
323	Preparation of chitosan-based asymmetric electrodes by co-imprinting technology for simultaneous electro-adsorption of multi-radionuclides. Separation and Purification Technology, 2022, 297, 121568.	3.9	10
324	Methyl 4-Hydroxybenzoate Nanospheres Anchored on Poly(Amidoxime)/Polyvinyl Alcohol Hydrogel Network with Excellent Antibacterial Activity for Efficient Uranium Extraction from Seawater. SSRN Electronic Journal, 0, , .	0.4	0
325	Solvents Exchange Assisted Preparation of Â3d Network PorousÂHydrogelsÂWith High Antibacterial, High Strength and High AdsorptionÂFor Uranium Extraction from Seawater. SSRN Electronic Journal, 0, , .	0.4	0
326	Trends in Layered Double Hydroxidesâ€Based Advanced Nanocomposites: Recent Progress and Latest Advancements. Advanced Materials Interfaces, 0, , 2200373.	1.9	13
327	Application progress of covalent organic framework materials in extraction of toxic and harmful substances. Chinese Journal of Chromatography (Se Pu), 2022, 40, 600-609.	0.1	3
328	Graphene Nanobeacons with Highâ€Affinity Pockets for Combined, Selective, and Effective Decontamination and Reagentless Detection of Heavy Metals. Small, 2022, 18, .	5.2	6
329	Chromatographic Purification of Lithium, Vanadium, and Uranium from Seawater Using Organic Composite Adsorbents Composed of Benzo-18-Crown-6 and Benzo-15-Crown-5 Embedded in Highly Porous Silica Beads. ACS Omega, 0, , .	1.6	2
330	Layered double hydroxide intercalated with dimethylglyoxime for highly selective and ultrafast uptake of uranium from seawater. Dalton Transactions, 2022, 51, 13046-13054.	1.6	3
331	Lacunary polyoxometalate @ ZIF for ultradeep Pb(II) adsorption. Chemical Engineering Science, 2022, 262, 118003.	1.9	13
332	Comprehensive evaluation of cobalt incorporated cryptomelane-type manganese oxide molecular sieve as an efficient adsorbent for enhanced removal of europium from wastewater systems. Environmental Research, 2022, 214, 113965.	3.7	3
333	Polyethylenimine embellished multiwalled carbon nanotube (MWCNTs) for efficiently enhancing sequestration of uranium(â¥) from seawater. Journal of Environmental Chemical Engineering, 2022, 10, 108513.	3.3	8
334	Cotton fabric functionalized with nanostructured MoS2: Efficient adsorbent for removal of Pb, Hg, Cd and Cr from water. Journal of Environmental Chemical Engineering, 2022, 10, 108583.	3.3	5
335	Constructing Nanotraps in Covalent Organic Framework for Uranium Sequestration. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
336	Highly selective and ultrafast uptake of uranium from seawater by layered double hydroxide co-intercalated with acetamidoxime and carboxylic anions. Journal of Materials Chemistry A, 2022, 10, 17520-17531.	5.2	6
337	Ultrafast and Highly Selective Extraction of Uranium from Seawater by Salicylaldoxime Intercalated Layered Double Hydroxide. SSRN Electronic Journal, 0, , .	0.4	0
338	Unexpected F- removal by Co2Al-LDHs: Performance and new insight. Chemical Engineering Journal, 2023, 452, 139400.	6.6	4
339	Preparation of diethylenetriamine-functionalized thiosulfate intercalated ZnNiAl-LDHs and its removal behavior and mechanism of U(VI). Chemical Engineering Journal, 2023, 452, 139486.	6.6	8
340	A Hydrofluoric Acid-Free Green Synthesis of Magnetic M.Ti2CTx Nanostructures for the Sequestration of Cesium and Strontium Radionuclide. Nanomaterials, 2022, 12, 3253.	1.9	2
341	All-Inorganic Open-Framework Chalcogenides, <i>A</i> ₃ Ga ₅ S ₉ · <i>x</i> H ₂ O (<i>A</i> = Rb and Cs), Exhibiting Ultrafast Uranyl Remediation and Illustrating a Novel Post-Synthetic Preparation of Open-Framework Oxychalcogenides, Chemistry of Materials, 2022, 34, 8366-8378.	3.2	4
342	Constructing nanotraps in covalent organic framework for uranium sequestration. Separation and Purification Technology, 2022, 303, 122256.	3.9	25
343	Nanopockets with a Thermoresponsive Nitrate Ionic Liquid for Highly Efficient Uranium Extraction at High Acidity. ACS Applied Nano Materials, 2022, 5, 14893-14901.	2.4	4
344	Adsorption of uranium (VI) ions by LDH intercalated with l-methionine in acidic water: Kinetics, thermodynamics and mechanisms. Results in Engineering, 2022, 16, 100686.	2.2	12
345	Adsorption of uranium (VI) by metal-organic frameworks and covalent-organic frameworks from water. Coordination Chemistry Reviews, 2023, 475, 214917.	9.5	80
346	Removal of uranium from wastewater through Ni–Al-layered double hydroxide@carbon nanotubes functionalized by polyethyleneimine. New Journal of Chemistry, 2022, 47, 109-119.	1.4	6
347	Magnetic nanocomposites based on Zn,Al-LDH intercalated with citric and EDTA groups for the removal of U(<scp>vi</scp>) from environmental and wastewater: synergistic effect and adsorption mechanism study. RSC Advances, 2022, 12, 32156-32172.	1.7	7
348	Introducing self-assembly effect in adsorption process for efficient uranium extraction by zwitterion highly-functionalized fibers. Chemical Engineering Journal, 2023, 456, 140935.	6.6	14
349	Methyl 4-hydroxybenzoate nanospheres anchored on poly(amidoxime)/polyvinyl alcohol hydrogel network with excellent antibacterial activity for efficient uranium extraction from seawater. Desalination, 2023, 548, 116243.	4.0	8
350	Layered Double Hydroxides as Promising Adsorbents for Purification of Radioactive Polluted Water: A Review. Theoretical and Experimental Chemistry, 2022, 58, 221-239.	0.2	3
351	Uranium in natural waters and the environment: Distribution, speciation and impact. Applied Geochemistry, 2023, 148, 105534.	1.4	27
352	A robust polyethyleneimine-based supramolecular hydrogel towards uranium adsorption and deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 660, 130886.	2.3	10
353	Superstable Mineralization of Heavy Metals Using Low-Cost Layered Double Hydroxide Nanosheets: Toward Water Remediation and Soil Fertility Enhancement. Industrial & Engineering Chemistry Research, 2023, 62, 365-374.	1.8	10

#	Article	IF	CITATIONS
354	Corrosion engineering approach to rapidly prepare Ni(Fe)OOH/Ni(Fe)S _{<i>x</i>} nanosheet arrays for efficient water oxidation. Journal of Materials Chemistry A, 2023, 11, 4608-4618.	5.2	9
355	Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coordination Chemistry Reviews, 2023, 483, 215097.	9.5	61
356	Selective removal of uranyl ions using ion-imprinted amino-phenolic functionalized chitosan. International Journal of Biological Macromolecules, 2023, 237, 124073.	3.6	9
357	Bio-inspired functionalization of electrospun nanofibers with anti-biofouling property for efficient uranium extraction from seawater. Chemical Engineering Journal, 2023, 465, 142844.	6.6	16
358	Intercalation of salicylaldoxime into layered double hydroxide: Ultrafast and highly selective uptake of uranium from different water systems via versatile binding modes. Journal of Colloid and Interface Science, 2023, 642, 623-637.	5.0	6
359	Efficient three-step strategy for reduction recovery of high purity uranium oxide from nuclear wastewater. Chemical Engineering Journal, 2023, 460, 141784.	6.6	3
360	Advanced porous adsorbents for radionuclides elimination. EnergyChem, 2023, 5, 100101.	10.1	84
361	Recent progress on highly efficient removal of heavy metals by layered double hydroxides. Chemical Engineering Journal, 2023, 462, 142041.	6.6	25
362	Polyacrylate/phytic acid hydrogel derived phosphate-rich macroporous carbon foam for high-efficiency uranium adsorption. Journal of Water Process Engineering, 2023, 53, 103659.	2.6	11
363	Design of ion-imprinted cellulose-based microspheres for selective recovery of uranyl ions. Carbohydrate Polymers, 2023, 313, 120873.	5.1	7
364	Efficient magnesium recovery from seawater desalination brine via CO2 mineralization to synthesize hydromagnesite for uranium extraction. Desalination, 2023, 559, 116629.	4.0	1
384	Uranium and lithium extraction from seawater: challenges and opportunities for a sustainable energy future. Journal of Materials Chemistry A, 2023, 11, 22551-22589.	5.2	2
387	Nanolayered double hydroxides. , 2024, , 483-495.		0
396	Enhanced uranium extraction from seawater: from the viewpoint of kinetics and thermodynamics. Nanoscale, 2024, 16, 4937-4960.	2.8	0