Whole-genome sequence of the Tibetan frog <i>Nanorate evolution of tetrapod genomes

Proceedings of the National Academy of Sciences of the Unite 112, E1257-62

DOI: 10.1073/pnas.1501764112

Citation Report

#	Article	IF	CITATIONS
1	Genomic takeover by transposable elements in the Strawberry poison frog. Molecular Biology and Evolution, 2014, 35, 2913-2927.	3.5	45
2	Amphibian molecular ecology and how it has informed conservation. Molecular Ecology, 2015, 24, 5084-5109.	2.0	45
3	Transcriptomes reveal the genetic mechanisms underlying ionic regulatory adaptations to salt in the crab-eating frog. Scientific Reports, 2015, 5, 17551.	1.6	14
4	Transposons, Genome Size, and Evolutionary Insights in Animals. Cytogenetic and Genome Research, 2015, 147, 217-239.	0.6	119
5	First insights on the retroelement Rex1 in the cytogenetics of frogs. Molecular Cytogenetics, 2015, 8, 86.	0.4	1
6	A Single Transcriptome of a Green Toad (Bufo viridis) Yields Candidate Genes for Sex Determination and -Differentiation and Non-Anonymous Population Genetic Markers. PLoS ONE, 2016, 11, e0156419.	1.1	18
7	Exon capture optimization in amphibians with large genomes. Molecular Ecology Resources, 2016, 16, 1094.	2.2	54
8	Para-allopatry in hybridizing fire-bellied toads (<i>Bombina bombina</i> and <i>B. variegata</i>): Inference from transcriptome-wide coalescence analyses. Evolution; International Journal of Organic Evolution, 2016, 70, 1803-1818.	1.1	25
9	Genomewide scan for adaptive differentiation along altitudinal gradient in the Andrew's toad <i>Bufo andrewsi</i> . Molecular Ecology, 2016, 25, 3884-3900.	2.0	38
10	The conservation genetics juggling act: integrating genetics and ecology, science and policy. Evolutionary Applications, 2016, 9, 181-195.	1.5	38
11	Characterisation and vascular expression of nitric oxide synthase 3 in amphibians. Cell and Tissue Research, 2016, 366, 679-692.	1.5	4
12	The Evolution of Line-1 in Vertebrates. Genome Biology and Evolution, 2016, 8, evw247.	1.1	54
13	Systematic profiling of short tandem repeats in the cattle genome. Genome Biology and Evolution, 2016, 9, evw256.	1.1	20
14	Mitogenome assembly from genomic multiplex libraries: comparison of strategies and novel mitogenomes for five species of frogs. Molecular Ecology Resources, 2016, 16, 686-693.	2.2	21
15	Searching the Evolutionary Origin of Epithelial Mucus Protein Components—Mucins and FCGBP. Molecular Biology and Evolution, 2016, 33, 1921-1936.	3.5	104
16	Distinct Viral Lineages from Fish and Amphibians Reveal the Complex Evolutionary History of Hepadnaviruses. Journal of Virology, 2016, 90, 7920-7933.	1.5	71
17	Amphibians have immunoglobulins similar to ancestral IgD and IgA from Amniotes. Molecular Immunology, 2016, 69, 52-61.	1.0	13
18	Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments. Genome Biology and Evolution, 2016, 8, 765-776.	1.1	116

#	Article	IF	CITATIONS
19	Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution. Genome, 2016, 59, 295-310.	0.9	40
20	High-density sex-specific linkage maps of a European tree frog (Hyla arborea) identify the sex chromosome without information on offspring sex. Heredity, 2016, 116, 177-181.	1.2	102
21	AmphiBase: A new genomic resource for nonâ€nodel amphibian species. Genesis, 2017, 55, e23010.	0.8	2
22	Molecular Convergent Evolution of the MYBPC2 Gene Among Three High-Elevation Amphibian Species. Journal of Molecular Evolution, 2017, 84, 139-143.	0.8	2
23	Molecular Physiology of Freeze Tolerance in Vertebrates. Physiological Reviews, 2017, 97, 623-665.	13.1	154
24	Editorial: The Xenopus laevis genome. Developmental Biology, 2017, 426, 139-142.	0.9	1
25	Evolutionary dynamics of an expressed MHC class Ilβ locus in the Ranidae (Anura) uncovered by genome walking and high-throughput amplicon sequencing. Developmental and Comparative Immunology, 2017, 76, 177-188.	1.0	10
26	Molecular phylogeny and phylogeography of genus <i>Pseudois</i> (Bovidae, Cetartiodactyla): New insights into the contrasting phylogeographic structure. Ecology and Evolution, 2017, 7, 7047-7057.	0.8	8
27	Evolution and Diversity of Transposable Elements in Vertebrate Genomes. Genome Biology and Evolution, 2017, 9, 161-177.	1.1	226
28	Filaggrin has evolved from an "S100 fusedâ€ŧype protein―(<scp>SFTP</scp>) gene present in a common ancestor of amphibians and mammals. Experimental Dermatology, 2017, 26, 955-957.	1.4	14
29	The North American bullfrog draft genome provides insight into hormonal regulation of long noncoding RNA. Nature Communications, 2017, 8, 1433.	5.8	86
30	Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. Developmental Biology, 2017, 426, 301-324.	0.9	24
31	Identifying homomorphic sex chromosomes from wild aught adults with limited genomic resources. Molecular Ecology Resources, 2017, 17, 752-759.	2.2	44
32	Identification and comparative analyses of Siamois cluster genes in Xenopus laevis and tropicalis. Developmental Biology, 2017, 426, 374-383.	0.9	3
33	Toxicogenomics: new strategies for ecotoxicology studies in autochthonous species II. The 'omic' era in non-model species. Transcriptome analysis for biomarker screening. International Journal of Environment and Health, 2017, 8, 213.	0.3	5
34	Amphibian and Avian Karyotype Evolution: Insights from Lampbrush Chromosome Studies. Genes, 2017, 8, 311.	1.0	9
35	The levels of oxidative stress and antioxidant capacity in hibernating Nanorana parkeri. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2018, 219-220, 19-27.	0.8	26
36	A novel approach to wildlife transcriptomics provides evidence of diseaseâ€mediated differential expression and changes to the microbiome of amphibian populations. Molecular Ecology, 2018, 27, 1413-1427.	2.0	32

#	Article	IF	CITATIONS
37	The axolotl genome and the evolution of key tissue formation regulators. Nature, 2018, 554, 50-55.	13.7	463
38	Origin of new genes after zygotic genome activation in vertebrate. Journal of Molecular Cell Biology, 2018, 10, 139-146.	1.5	1
39	Comparative genome analysis of 52 fish species suggests differential associations of repetitive elements with their living aquatic environments. BMC Genomics, 2018, 19, 141.	1.2	89
40	AnimalÂpersonality and behavioral syndromes in amphibians: a review of the evidence, experimental approaches, and implications for conservation. Behavioral Ecology and Sociobiology, 2018, 72, 1.	0.6	89

Phylogenomic support for evolutionary relationships of New World direct-developing frogs (Anura:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

42	Conservation genetics and genomics of threatened vertebrates in China. Journal of Genetics and Genomics, 2018, 45, 593-601.	1.7	9
43	Advancing Understanding of Amphibian Evolution, Ecology, Behavior, and Conservation with Massively Parallel Sequencing. Population Genomics, 2018, , 211-254.	0.2	22
44	A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nature Communications, 2018, 9, 4088.	5.8	149
45	The annotation of repetitive elements in the genome of channel catfish (Ictalurus punctatus). PLoS ONE, 2018, 13, e0197371.	1.1	13
46	Unique Composition of Intronless and Intron-Containing Type I IFNs in the Tibetan Frog <i>Nanorana parkeri</i> Provides New Evidence To Support Independent Retroposition Hypothesis for Type I IFN Genes in Amphibians. Journal of Immunology, 2018, 201, 3329-3342.	0.4	37
47	Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10634-E10641.	3.3	57
48	Improving amphibian genomic resources: a multitissue reference transcriptome of an iconic invader. GigaScience, 2018, 7, 1-7.	3.3	23
49	Selection and environmental adaptation along a path to speciation in the Tibetan frog <i>Nanorana parkeri</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5056-E5065.	3.3	49
50	The first complete mitochondrial genome sequence of <i>Nanorana parkeri</i> and <i>Nanorana ventripunctata</i> (Amphibia: Anura: Dicroglossidae), with related phylogenetic analyses. Ecology and Evolution, 2018, 8, 6972-6987.	0.8	11
51	Comparative genomic investigation of high-elevation adaptation in ectothermic snakes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8406-8411.	3.3	119
52	Draft genome assembly of the invasive cane toad, Rhinella marina. GigaScience, 2018, 7, .	3.3	60
53	Genomeâ€specific histories of divergence and introgression between an allopolyploid unisexual salamander lineage and two ancestral sexual species. Evolution; International Journal of Organic Evolution, 2018, 72, 1689-1700.	1.1	6
54	Tissue Specificity and Dynamics of Sex-Biased Gene Expression in a Common Frog Population with Differentiated, Yet Homomorphic, Sex Chromosomes. Genes, 2018, 9, 294.	1.0	24

#	Article	IF	CITATIONS
55	Clonorchis sinensis and Clonorchiasis: The Relevance of Exploring Genetic Variation. Advances in Parasitology, 2018, 100, 155-208.	1.4	18
56	Kif2a Scales Meiotic Spindle Size in Hymenochirus boettgeri. Current Biology, 2019, 29, 3720-3727.e5.	1.8	22
57	Chromosome-level assembly of the mustache toad genome using third-generation DNA sequencing and Hi-C analysis. GigaScience, 2019, 8, .	3.3	25
58	Latitudinal divergence in a widespread amphibian: Contrasting patterns of neutral and adaptive genomic variation. Molecular Ecology, 2019, 28, 2996-3011.	2.0	30
59	Variation in pigmentation gene expression is associated with distinct aposematic color morphs in the poison frog Dendrobates auratus. BMC Evolutionary Biology, 2019, 19, 85.	3.2	25
60	A comprehensive reference transcriptome resource for the Iberian ribbed newt Pleurodeles waltl, an emerging model for developmental and regeneration biology. DNA Research, 2019, 26, 217-229.	1.5	45
61	Contaminant and Environmental Influences on Thyroid Hormone Action in Amphibian Metamorphosis. Frontiers in Endocrinology, 2019, 10, 276.	1.5	54
62	Inadvertent Paralog Inclusion Drives Artifactual Topologies and Timetree Estimates in Phylogenomics. Molecular Biology and Evolution, 2019, 36, 1344-1356.	3.5	56
63	Genetic diversity in frogs linked to past and future climate changes on the roof of the world. Journal of Animal Ecology, 2019, 88, 953-963.	1.3	19
64	Integrated mRNA and miRNA expression profile analyses reveal the potential roles of sexâ€biased miRNA–mRNA pairs in gonad tissues of the Chinese concaveâ€eared torrent frog (Odorrana tormota). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2019, 332, 69-80.	0.6	6
65	Glycosaminoglycans compositional analysis of Urodele axolotl (Ambystoma mexicanum) and Porcine Retina. Glycoconjugate Journal, 2019, 36, 165-174.	1.4	6
66	The First Transcriptome Assembly of Yenyuan Stream Salamander (Batrachuperus yenyuanensis) Provides Novel Insights into Its Molecular Evolution. International Journal of Molecular Sciences, 2019, 20, 1529.	1.8	7
67	Genotyping-by-Sequencing (GBS) of large amphibian genomes: a comparative study of two non-model speciesAendemic to Italy. Animal Biology, 2019, 69, 307-326.	0.6	1
68	Genome of <i>Spea multiplicata</i> , a Rapidly Developing, Phenotypically Plastic, and Desert-Adapted Spadefoot Toad. G3: Genes, Genomes, Genetics, 2019, 9, 3909-3919.	0.8	23
69	Genomic and transcriptomic insights into molecular basis of sexually dimorphic nuptial spines in Leptobrachium leishanense. Nature Communications, 2019, 10, 5551.	5.8	52
70	A reciprocal translocation radically reshapes sexâ€linked inheritance in the common frog. Molecular Ecology, 2019, 28, 1877-1889.	2.0	30
71	Does batrachotoxin autoresistance coevolve with toxicity in <i>Phyllobates</i> poisonâ€dart frogs?. Evolution; International Journal of Organic Evolution, 2019, 73, 390-400.	1.1	12
72	A review of the role of parasites in the ecology of reptiles and amphibians. Austral Ecology, 2019, 44, 433-448.	0.7	47

#	Article	IF	CITATIONS
73	Phylogenomics of the adaptive radiation of Triturus newts supports gradual ecological niche expansion towards an incrementally aquatic lifestyle. Molecular Phylogenetics and Evolution, 2019, 133, 120-127.	1.2	38
74	Multi-tissue transcriptomes of caecilian amphibians highlight incomplete knowledge of vertebrate gene families. DNA Research, 2019, 26, 13-20.	1.5	19
75	Ion channels and signaling pathways used in the fast polyspermy block. Molecular Reproduction and Development, 2020, 87, 350-357.	1.0	21
76	Developmental Systems Drift and the Drivers of Sex Chromosome Evolution. Molecular Biology and Evolution, 2020, 37, 799-810.	3.5	25
77	Sympatric lineages in the Mantidactylus ambreensis complex of Malagasy frogs originated allopatrically rather than by in-situ speciation. Molecular Phylogenetics and Evolution, 2020, 144, 106700.	1.2	12
78	Evolutionary Dynamics of the Repetitive DNA in the Karyotypes of Pipa carvalhoi and Xenopus tropicalis (Anura, Pipidae). Frontiers in Genetics, 2020, 11, 637.	1.1	7
79	Dact-4 is a Xenopus laevis Spemann organizer gene related to the Dapper/Frodo antagonist of β-catenin family of proteins. Gene Expression Patterns, 2020, 38, 119153.	0.3	4
80	Genomewide analysis of microsatellite markers based on sequenced database in two anuran species. Journal of Genetics, 2020, 99, 1.	0.4	1
81	The roles of climate, geography and natural selection as drivers of genetic and phenotypic differentiation in a widespread amphibian <i>Hyla annectans</i> (Anura: Hylidae). Molecular Ecology, 2020, 29, 3667-3683.	2.0	20
82	Divergence, gene flow, and the origin of leapfrog geographic distributions: The history of colour pattern variation in <i>Phyllobates</i> poisonâ€dart frogs. Molecular Ecology, 2020, 29, 3702-3719.	2.0	14
83	The Influence of Environmental Variation on the Genetic Structure of a Poison Frog Distributed Across Continuous Amazonian Rainforest. Journal of Heredity, 2020, 111, 457-470.	1.0	9
84	CSA: A high-throughput chromosome-scale assembly pipeline for vertebrate genomes. GigaScience, 2020, 9, .	3.3	4
85	The Rhinella arenarum transcriptome: de novo assembly, annotation and gene prediction. Scientific Reports, 2020, 10, 1053.	1.6	11
86	The Origin and Evolution of Chromosomal Reciprocal Translocation in Quasipaa boulengeri (Anura,) Tj ETQq1 1 C	0.784314 r 1.1	gBT /Overlo
87	The transcriptome of the newt Cynops orientalis provides new insights into evolution and function of sexual gene networks in sarcopterygians. Scientific Reports, 2020, 10, 5445.	1.6	11
88	Metabolic characteristics of overwintering by the high-altitude dwelling Xizang plateau frog, Nanorana parkeri. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2020, 190, 433-444.	0.7	13
89	The rise and fall of globins in the amphibia. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2021, 37, 100759.	0.4	4
90	Freeze tolerance and the underlying metabolite responses in the Xizang plateau frog, Nanorana parkeri. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2021, 191, 173-184.	0.7	12

#	Article	IF	CITATIONS
91	Small-scale population divergence is driven by local larval environment in a temperate amphibian. Heredity, 2021, 126, 279-292.	1.2	3
92	High-continuity genome assembly of the jellyfish <i>Chrysaora quinquecirrha</i> . Zoological Research, 2021, 42, 130-134.	0.9	4
93	The effects of drift and selection on latitudinal genetic variation in Scandinavian common toads (Bufo bufo) following postglacial recolonisation. Heredity, 2021, 126, 656-667.	1.2	11
94	Transposable Elements and Stress in Vertebrates: An Overview. International Journal of Molecular Sciences, 2021, 22, 1970.	1.8	23
96	The Diversity and Evolution of Sex Chromosomes in Frogs. Genes, 2021, 12, 483.	1.0	27
97	A bird-like genome from a frog: Mechanisms of genome size reduction in the ornate burrowing frog, <i>Platyplectrum ornatum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
98	Gigantic Genomes Provide Empirical Tests of Transposable Element Dynamics Models. Genomics, Proteomics and Bioinformatics, 2021, 19, 123-139.	3.0	13
99	Pseudogenized Amelogenin Reveals Early Tooth Loss in True Toads (Anura: Bufonidae). Integrative and Comparative Biology, 2021, , .	0.9	2
101	The gastrin-releasing peptide/bombesin system revisited by a reverse-evolutionary study considering Xenopus. Scientific Reports, 2021, 11, 13315.	1.6	8
102	Concerted evolution reveals co-adapted amino acid substitutions in Na+K+-ATPase of frogs that prey on toxic toads. Current Biology, 2021, 31, 2530-2538.e10.	1.8	20
103	Gene Conversion Facilitates the Adaptive Evolution of Self-Resistance in Highly Toxic Newts. Molecular Biology and Evolution, 2021, 38, 4077-4094.	3.5	12
104	The Structural, Functional and Evolutionary Impact of Transposable Elements in Eukaryotes. Genes, 2021, 12, 918.	1.0	31
105	The genomics of mimicry: Gene expression throughout development provides insights into convergent and divergent phenotypes in a Müllerian mimicry system. Molecular Ecology, 2021, 30, 4039-4061.	2.0	20
106	A dense linkage map for a large repetitive genome: discovery of the sex-determining region in hybridizing fire-bellied toads (<i>Bombina bombina</i> and <i>Bombina variegata</i>). G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	2
107	Metabolic responses of plasma to extreme environments in overwintering Tibetan frogs Nanorana parkeri: a metabolome integrated analysis. Frontiers in Zoology, 2021, 18, 41.	0.9	11
108	FrogCap: A modular sequence capture probeâ€set for phylogenomics and population genetics for all frogs, assessed across multiple phylogenetic scales. Molecular Ecology Resources, 2022, 22, 1100-1119.	2.2	17
109	Vertebrate Genome Size and the Impact of Transposable Elements in Genome Evolution. , 2019, , 233-251.		7
116	Species Delimitation in Herpetology. Journal of Herpetology, 2019, 53, 3.	0.2	102

#	Article	IF	CITATIONS
117	A draft genome assembly of the eastern banjo frog Limnodynastes dumerilii dumerilii (Anura:ALimnodynastidae). GigaByte, 0, 2020, 1-13.	0.0	8
118	A practical guide to build <i>de-novo</i> assemblies for single tissues of non-model organisms: the example of a Neotropical frog. PeerJ, 2017, 5, e3702.	0.9	16
119	Selective constraint acting on TLR2 and TLR4 genes of Japanese <i>Rana</i> frogs. PeerJ, 2018, 6, e4842.	0.9	7
121	<i>De novo</i> oviduct transcriptome of the moor frog <i>Rana arvalis</i> : a quest for maternal effect candidate genes. PeerJ, 2018, 6, e5452.	0.9	1
127	Genomic evidence for adaptive differentiation among <i>Microhyla fissipes</i> populations: Implications for conservation. Diversity and Distributions, 2022, 28, 2665-2680.	1.9	5
128	Perspectives on studying molecular adaptations of amphibians in the genomic era. Zoological Research, 2020, 41, 351-364.	0.9	13
132	A chromosomal level genome sequence for <i>Quasipaa spinosa</i> (Dicroglossidae) reveals chromosomal evolution and population diversity. Molecular Ecology Resources, 2022, 22, 1545-1558.	2.2	3
133	Evolutionary dynamics of <i>DIRS-like</i> and <i>Ngaro-like</i> retrotransposons in <i>Xenopus laevis</i> and <i>Xenopus tropicalis</i> genomes. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	0
134	Antioxidant and non-specific immune defenses in partially freeze-tolerant Xizang plateau frogs, Nanorana parkeri. Journal of Thermal Biology, 2021, 102, 103132.	1.1	5
135	A genomic survey of LINE elements in Pipidae aquatic frogs shed light on Rex-elements evolution in these genomes. Molecular Phylogenetics and Evolution, 2022, 168, 107393.	1.2	2
136	Using Sex-Linked Markers via Genotyping-by-Sequencing to Identify XX/XY Sex Chromosomes in the Spiny Frog (Quasipaa boulengeri). Genes, 2022, 13, 575.	1.0	3
144	Sequencing of laser captured Z and W chromosomes of the tocantins paradoxical frog (<i>Pseudis) Tj ETQq1 Biology, 2022, 35, 1659-1674.</i>	1 0.784314 0.8	rgBT /Overloc 1
145	Physiological and Biochemical Adaptations to High Altitude in Tibetan Frogs, Nanorana parkeri. Frontiers in Physiology, 0, 13, .	1.3	10
146	Genome of Laudakia sacra Provides New Insights into High-Altitude Adaptation of Ectotherms. International Journal of Molecular Sciences, 2022, 23, 10081.	1.8	4
147	Genomic Data Clarify Aquarana Systematics and Reveal Isolation-by-Distance Dominates Phylogeography of the Wide-Ranging Frog Rana clamitans. Ichthyology and Herpetology, 2022, 110, .	0.3	0
148	State of the Amphibia 2020: A Review of Five Years of Amphibian Research and Existing Resources. Ichthyology and Herpetology, 2022, 110, .	0.3	15
149	The highest-elevation frog provides insights into mechanisms and evolution of defenses against high UV radiation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
150	Integrated analysis of transcriptome and metabolome data reveals insights for molecular mechanisms in overwintering Tibetan frogs, Nanorana parkeri. Frontiers in Physiology, 0, 13, .	1.3	5

#	Article	IF	CITATIONS
151	Chromosome-level genome assembly of a high-altitude-adapted frog (Rana kukunoris) from the Tibetan plateau provides insight into amphibian genome evolution and adaptation. Frontiers in Zoology, 2023, 20, .	0.9	3
152	ls it inappropriate to ask for your age? Evaluating parameter impact on tree dating in a challenging clade (Macroscelidea). Molecular Phylogenetics and Evolution, 2023, 183, 107756.	1.2	Ο
154	Bloom Filter for bioinformatics. , 2023, , 197-214.		0