Taxonomic reorganization of the family Bornaviridae

Archives of Virology 160, 621-632

DOI: 10.1007/s00705-014-2276-z

Citation Report

#	Article	IF	Citations
1	Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009). Archives of Virology, 2010, 155, 133-146.	0.9	601
2	Aquatic Bird Bornavirus 1 in Wild Geese, Denmark. Emerging Infectious Diseases, 2015, 21, 2201-2203.	2.0	17
3	GC–MS-Based Metabonomic Profiling Displayed Differing Effects of Borna Disease Virus Natural Strain Hu-H1 and Laboratory Strain V Infection in Rat Cortical Neurons. International Journal of Molecular Sciences, 2015, 16, 19347-19368.	1.8	17
5	Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2015). Archives of Virology, 2015, 160, 1837-1850.	0.9	126
6	The genome sequence of parrot bornavirus 5. Virus Genes, 2015, 51, 430-433.	0.7	8
7	A Variegated Squirrel Bornavirus Associated with Fatal Human Encephalitis. New England Journal of Medicine, 2015, 373, 154-162.	13.9	217
8	Parrot bornavirus-2 and -4 RNA detected in wild bird samples in Japan are phylogenetically adjacent to those found in pet birds in Japan. Virus Genes, 2015, 51, 234-243.	0.7	6
9	Coding-complete sequencing classifies parrot bornavirus 5 into a novel virus species. Archives of Virology, 2015, 160, 2763-2768.	0.9	6
10	Avian Bornaviruses in North American Gulls. Journal of Wildlife Diseases, 2015, 51, 754-758.	0.3	17
11	Classes, taxa and categories in hierarchical virus classification: a review of current debates on definitions and names of virus species . Bionomina, 2016, 10, 1-21.	0.2	18
12	Exaptation of Bornavirus-Like Nucleoprotein Elements in Afrotherians. PLoS Pathogens, 2016, 12, e1005785.	2.1	26
13	Sequence determination of a new parrot bornavirusâ€5 strain in Japan: implications of cladeâ€specific sequence diversity in the regions interacting with host factors. Microbiology and Immunology, 2016, 60, 437-441.	0.7	5
14	The pathogenesis of proventricular dilatation disease. Animal Health Research Reviews, 2016, 17, 110-126.	1.4	20
15	Screening red foxes (Vulpes vulpes) for possible viral causes of encephalitis. Virology Journal, 2016, 13, 151.	1.4	12
16	SeeHaBITaT: A server on bioinformatics applications for Tospoviruses and other species. Applied & Translational Genomics, 2016, 9, 30-32.	2.1	0
17	Taxonomy of the order Mononegavirales: update 2016. Archives of Virology, 2016, 161, 2351-2360.	0.9	407
18	Parrot Bornavirus (PaBV)-2 isolate causes different disease patterns in cockatiels than PaBV-4. Avian Pathology, 2016, 45, 156-168.	0.8	31
19	Neurotropic Viral Infections. , 2016, , .		3

#	Article	IF	CITATIONS
20	West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses. Virology, 2016, 498, 288-299.	1.1	112
21	Isolation of avian bornaviruses from psittacine birds using QT6 quail cells in Japan. Journal of Veterinary Medical Science, 2016, 78, 305-308.	0.3	7
22	Viral vector vaccines expressing nucleoprotein and phosphoprotein genes of avian bornaviruses ameliorate homologous challenge infections in cockatiels and common canaries. Scientific Reports, 2016, 6, 36840.	1.6	19
25	Primary psychosis and Borna disease virus infection in Lithuania: a case control study. BMC Psychiatry, 2016, 16, 369.	1.1	17
26	Surface glycoprotein of Borna disease virus mediates virus spread from cell to cell. Cellular Microbiology, 2016, 18, 340-354.	1.1	20
27	Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Research, 2016, 44, D733-D745.	6.5	4,739
28	The pathogenesis of bornaviral diseases in mammals. Animal Health Research Reviews, 2016, 17, 92-109.	1.4	44
29	Viral vector vaccines protect cockatiels from inflammatory lesions after heterologous parrot bornavirus 2 challenge infection. Vaccine, 2017, 35, 557-563.	1.7	20
30	Plasma protein, haematologic and blood chemistry changes in African grey parrots (<i>Psittacus) Tj ETQq0 0 0 r</i>	gBT/Qver	lock 10 Tf 50
31	Antiviral activity of favipiravir (T-705) against mammalian and avian bornaviruses. Antiviral Research, 2017, 143, 237-245.	1.9	38
32	Aquatic Bird Bornavirus-Associated Disease in Free-Living Canada Geese (<i>Branta canadensis</i>) in the Northeastern USA. Journal of Wildlife Diseases, 2017, 53, 607-611.	0.3	7
33	Recent Developments in the Definition and Official Names of Virus Speciesâ ⁻ —., 2017, , 1-23.		1
34	Investigation of Different Infection Routes of Parrot Bornavirus in Cockatiels. Avian Diseases, 2017, 61, 90-95.	0.4	23
35	Multiple detection of zoonotic variegated squirrel bornavirus 1 RNA in different squirrel species suggests a possible unknown origin for the virus. Archives of Virology, 2017, 162, 2747-2754.	0.9	21
36	Different inhibitory effects on the proliferation and apoptosis of human and laboratory Borna disease virusâ€'infected human neuroblastoma SHâ€'SY5Y cells inÃ-¿½vitro. Molecular Medicine Reports, 2017, 17, 925-931.	1.1	2
37	Infections of horses and shrews with Bornaviruses in Upper Austria: a novel endemic area of Borna disease. Emerging Microbes and Infections, 2017, 6, 1-9.	3.0	31
38	The biological significance of bornavirus-derived genes in mammals. Current Opinion in Virology, 2017, 25, 1-6.	2.6	22
39	From nerves to brain to gastrointestinal tract: A time-based study of parrot bornavirus 2 (PaBV-2) pathogenesis in cockatiels (Nymphicus hollandicus). PLoS ONE, 2017, 12, e0187797.	1.1	22

#	ARTICLE	IF	Citations
40	Assessment of listing and categorisation of animal diseasesÂwithin the framework of the Animal Health Law (Regulation (EU) NoÂ2016/429): Borna disease. EFSA Journal, 2017, 15, e04951.	0.9	O
41	Studies on immunity and immunopathogenesis of parrot bornaviral disease in cockatiels. Virology, 2018, 515, 81-91.	1.1	23
42	Aquatic bird bornavirus 1 infection in a captive Emu (<i>Dromaius novaehollandiae</i>): presumed natural transmission from free-ranging wild waterfowl. Avian Pathology, 2018, 47, 58-62.	0.8	12
43	Avian Ganglioneuritis in Clinical Practice. Veterinary Clinics of North America - Exotic Animal Practice, 2018, 21, 33-67.	0.4	24
44	Application of antibodies against Borna disease virus phosphoprotein and nucleoprotein on paraffin sections. Molecular Medicine Reports, 2018, 17, 5416-5422.	1.1	1
45	Memory Impairment Induced by Borna Disease Virus 1 Infection is Associated with Reduced H3K9 Acetylation. Cellular Physiology and Biochemistry, 2018, 49, 381-394.	1.1	18
46	The Species Problem in Virology. Advances in Virus Research, 2018, 100, 1-18.	0.9	18
47	miR-146a promotes Borna disease virus 1 replication through IRAK1/TRAF6/NF-κB signaling pathway. Virus Research, 2019, 271, 197671.	1.1	15
48	Solving the species problem in viral taxonomy: recommendations on non-Latinized binomial species names and on abandoning attempts to assign metagenomic viral sequences to species taxa. Archives of Virology, 2019, 164, 2223-2229.	0.9	10
49	Intranasal Borna Disease Virus (BoDV-1) Infection: Insights into Initial Steps and Potential Contagiosity. International Journal of Molecular Sciences, 2019, 20, 1318.	1.8	22
51	Comparison Of Four Anti-Avian IgY Secondary Antibodies Used In Western Blot And Dot-Blot ELISA To Detect Avian Bornavirus Antibodies In Four Different Bird Species. Veterinary Medicine: Research and Reports, 2019, Volume 10, 141-150.	0.4	2
52	Treatment With Nonsteroidal Anti-Inflammatory Drugs Fails To Ameliorate Pathology In Cockatiels Experimentally Infected With Parrot Bornavirus-2. Veterinary Medicine: Research and Reports, 2019, Volume 10, 185-195.	0.4	1
53	Recombinant Modified Vaccinia Virus Ankara (MVA) Vaccines Efficiently Protect Cockatiels Against Parrot Bornavirus Infection and Proventricular Dilatation Disease. Viruses, 2019, 11, 1130.	1.5	7
54	Paleovirology of bornaviruses: What can be learned from molecular fossils of bornaviruses. Virus Research, 2019, 262, 2-9.	1.1	24
55	Development of a reverse transcription-loop-mediated isothermal amplification assay for the detection of parrot bornavirus 4. Journal of Virological Methods, 2020, 275, 113749.	1.0	2
56	Viral Equine Encephalitis, a Growing Threat to the Horse Population in Europe?. Viruses, 2020, 12, 23.	1.5	35
57	Evolutionary Selection of the Nuclear Localization Signal in the Viral Nucleoprotein Leads to Host Adaptation of the Genus Orthobornavirus. Viruses, 2020, 12, 1291.	1.5	3
58	Update on immunopathology of bornavirus infections in humans and animals. Advances in Virus Research, 2020, 107, 159-222.	0.9	14

#	Article	IF	Citations
59	A brief history of the species concept in virology and an opinion on the proposal to introduce Linnaean binomial virus species names. Archives of Virology, 2020, 165, 3073-3077.	0.9	2
60	Update on Avian Bornavirus and Proventricular Dilatation Disease. Veterinary Clinics of North America - Exotic Animal Practice, 2020, 23, 337-351.	0.4	8
61	Avian Bornaviral Ganglioneuritis: Current Debates and Unanswered Questions. Veterinary Medicine International, 2020, 2020, 1-9.	0.6	5
62	Antiviral treatment perspective against Borna disease virus 1 infection in major depression: a double-blind placebo-controlled randomized clinical trial. BMC Pharmacology & Doxicology, 2020, 21, 12.	1.0	14
63	Genetic stability of the open reading frame 2 (ORF2) of borna disease virus 1 (BoDV-1) distributed in cattle in Hokkaido. Journal of Veterinary Medical Science, 2021, 83, 1526-1533.	0.3	3
64	New World camelids are sentinels for the presence of Borna disease virus. Transboundary and Emerging Diseases, 2021, , .	1.3	7
66	Leftovers of viruses in human physiology. Brain Structure and Function, 2021, 226, 1649-1658.	1.2	3
67	$100 ext{-My}$ history of bornavirus infections hidden in vertebrate genomes. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	3.3	25
68	Two novel bornaviruses identified in colubrid and viperid snakes. Archives of Virology, 2021, 166, 2611-2614.	0.9	9
69	A New Multiplex Real-Time RT-PCR for Simultaneous Detection and Differentiation of Avian Bornaviruses. Viruses, 2021, 13, 1358.	1.5	5
70	Synergistic antiviral activity of ribavirin and interferon- \hat{l}_{\pm} against parrot bornaviruses in avian cells. Journal of General Virology, 2016, 97, 2096-2103.	1.3	22
71	Infections Caused by Bornaviruses. , 0, , 1395-1407.		2
72	Ribavirin Inhibits Parrot Bornavirus 4 Replication in Cell Culture. PLoS ONE, 2015, 10, e0134080.	1.1	25
73	Shedding of Infectious Borna Disease Virus-1 in Living Bicolored White-Toothed Shrews. PLoS ONE, 2015, 10, e0137018.	1.1	59
74	Phylogenetic Analysis Supports Horizontal Transmission as a Driving Force of the Spread of Avian Bornaviruses. PLoS ONE, 2016, 11, e0160936.	1.1	29
75	Divergent bornaviruses from Australian carpet pythons with neurological disease date the origin of extant Bornaviridae prior to the end-Cretaceous extinction. PLoS Pathogens, 2018, 14, e1006881.	2.1	36
76	Borna disease virus phosphoprotein triggers the organization of viral inclusion bodies by liquid-liquid phase separation. International Journal of Biological Macromolecules, 2021, 192, 55-63.	3.6	9
77	Borna Disease Virus. , 2016, , 315-336.		0

#	Article	IF	CITATIONS
79	Detection of Avian Bornavirus in Wild and Captive Passeriformes in Brazil. Avian Diseases, 2019, 63, 294.	0.4	2
80	Wounds as the Portal of Entrance for Parrot Bornavirus 4 (PaBV-4) and Retrograde Axonal Transport in Experimentally Infected Cockatiels (Nymphicus hollandicus). Avian Diseases, 2019, 64, 247-253.	0.4	9
82	Seroepidemiological Analysis in Borna Disease Virus 1 Antibody Prevalence and Vertical Transmission Relative Risk in Borna Disease Onset in Dairy Herd. Nippon Juishikai Zasshi Journal of the Japan Veterinary Medical Association, 2020, 73, 501-505.	0.0	0
83	No molecular evidence of Borna disease virus among schizophrenia and bipolar disorder patients in Iran. Iranian Journal of Microbiology, 2017, 9, 112-118.	0.8	0
84	miR-505 inhibits replication of Borna disease virus 1 via inhibition of HMGB1-mediated autophagy. Journal of General Virology, 2022, 103 , .	1.3	3
85	<i>Jingchuvirales</i> : a New Taxonomical Framework for a Rapidly Expanding Order of Unusual Monjiviricete Viruses Broadly Distributed among Arthropod Subphyla. Applied and Environmental Microbiology, 2022, 88, AEM0195421.	1.4	16
87	Avian Bornavirus Research—A Comprehensive Review. Viruses, 2022, 14, 1513.	1.5	23
88	Experimental infection of aquatic bird bornavirus in Muscovy ducks. Scientific Reports, 2022, 12, .	1.6	6
89	Borna Disease Virus 1 Phosphoprotein Forms a Tetramer and Interacts with Host Factors Involved in DNA Double-Strand Break Repair and mRNA Processing. Viruses, 2022, 14, 2358.	1.5	2
90	Vaccination against Borna Disease: Overview, Vaccine Virus Characterization and Investigation of Live and Inactivated Vaccines. Viruses, 2022, 14, 2706.	1.5	1
91	Marburg Virus and Monkeypox Virus: The Concurrent Outbreaks in Ghana and the lesson learned from the Marburg Virus Containment. Journal of Pure and Applied Microbiology, 2022, 16, 3179-3184.	0.3	2
92	Structural and biophysical characterization of the Borna disease virus 1 phosphoprotein. Acta Crystallographica Section F, Structural Biology Communications, 2023, 79, 51-60.	0.4	O