Destruction of chemical warfare agents using metalâ \in "o

Nature Materials 14, 512-516 DOI: 10.1038/nmat4238

Citation Report

#	Article	IF	CITATIONS
5	Selective Photooxidation of a Mustardâ€Gas Simulant Catalyzed by a Porphyrinic Metal–Organic Framework. Angewandte Chemie - International Edition, 2015, 54, 9001-9005.	7.2	244
7	Hierarchical Pore Development by Plasma Etching of Zrâ€Based Metal–Organic Frameworks. Chemistry - A European Journal, 2015, 21, 18029-18032.	1.7	36
8	Copper Hydroxyl Nitrate/Graphite Oxide Composite as Superoxidant for the Decomposition/Mineralization of Organophosphateâ€Based Chemical Warfare Agent Surrogate. Advanced Materials Interfaces, 2015, 2, 1500215.	1.9	30
10	Synthesis of nanocrystals of Zr-based metal–organic frameworks with csq-net: significant enhancement in the degradation of a nerve agent simulant. Chemical Communications, 2015, 51, 10925-10928.	2.2	194
11	Update 1 of: Destruction and Detection of Chemical Warfare Agents. Chemical Reviews, 2015, 115, PR1-PR76.	23.0	284
12	An Operando View of the Nanoscale. Journal of Physical Chemistry Letters, 2015, 6, 4923-4926.	2.1	5
13	One Step Backward Is Two Steps Forward: Enhancing the Hydrolysis Rate of UiO-66 by Decreasing [OH [–]]. ACS Catalysis, 2015, 5, 4637-4642.	5.5	84
14	Removal of chlorine gas by an amine functionalized metal–organic framework via electrophilic aromatic substitution. Chemical Communications, 2015, 51, 12474-12477.	2.2	66
15	Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition. Chemistry of Materials, 2015, 27, 4772-4778.	3.2	116
16	Water stabilization of Zr ₆ -based metal–organic frameworks via solvent-assisted ligand incorporation. Chemical Science, 2015, 6, 5172-5176.	3.7	102
17	When the Solvent Locks the Cage: Theoretical Insight into the Transmetalation of MOF-5 Lattices and Its Kinetic Limitations. Chemistry of Materials, 2015, 27, 3422-3429.	3.2	23
18	Puncturing cells en masse. Nature Materials, 2015, 14, 470-471.	13.3	3
19	Breaking bad chemicals down. Nature Materials, 2015, 14, 469-470.	13.3	10
20	Instantaneous Hydrolysis of Nerveâ€Agent Simulants with a Sixâ€Connected Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2015, 54, 6795-6799.	7.2	338
21	Towards the use of metal–organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field. Journal of Materials Chemistry A, 2015, 3, 22484-22506.	5.2	516
22	Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr ₆ -Based Metal–Organic Frameworks. Inorganic Chemistry, 2015, 54, 10829-10833.	1.9	132
23	Dual-Function Metal–Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants. ACS Nano, 2015, 9, 12358-12364.	7.3	207
24	Phosphine Gas Adsorption in a Series of Metal–Organic Frameworks. Inorganic Chemistry, 2015, 54, 8162-8164.	1.9	30

#	Article	IF	CITATIONS
25	Synthesis and Selective CO ₂ Capture Properties of a Series of Hexatopic Linker-Based Metal–Organic Frameworks. Inorganic Chemistry, 2015, 54, 10065-10072.	1.9	57
26	Gas-Phase Dimerization of Ethylene under Mild Conditions Catalyzed by MOF Materials Containing (bpy)Ni ^{II} Complexes. ACS Catalysis, 2015, 5, 6713-6718.	5.5	127
27	Structures and multiple properties of two polar metal–organic frameworks based on achiral N,O-coordinated ligands: toward multifunctional materials. Dalton Transactions, 2015, 44, 18882-18892.	1.6	25
28	Metal–organic frameworks for applications in remediation of oxyanion/cation-contaminated water. CrystEngComm, 2015, 17, 7245-7253.	1.3	133
29	Dual-Cavity Basket Promotes Encapsulation in Water in an Allosteric Fashion. Journal of the American Chemical Society, 2015, 137, 12276-12281.	6.6	35
30	Ultraporous, Water Stable, and Breathing Zirconium-Based Metal–Organic Frameworks with ftw Topology. Journal of the American Chemical Society, 2015, 137, 13183-13190.	6.6	149
31	Design of Surfaceâ€Active Artificial Enzyme Particles to Stabilize Pickering Emulsions for Highâ€Performance Biphasic Biocatalysis. Advanced Materials, 2016, 28, 1682-1688.	11.1	121
32	Assembly of a Metal–Organic Framework into 3 D Hierarchical Porous Monoliths Using a Pickering High Internal Phase Emulsion Template. Chemistry - A European Journal, 2016, 22, 8751-8755.	1.7	80
33	Extraordinary NO ₂ Removal by the Metal–Organic Framework UiOâ€66â€NH ₂ . Angewandte Chemie, 2016, 128, 6343-6346.	1.6	25
34	Novel Biological Functions of ZIFâ€NP as a Delivery Vehicle: High Pulmonary Accumulation, Favorable Biocompatibility, and Improved Therapeutic Outcome. Advanced Functional Materials, 2016, 26, 2715-2727.	7.8	128
35	Broadâ€5pectrum Liquid―and Gasâ€Phase Decontamination of Chemical Warfare Agents by Oneâ€Dimensional Heteropolyniobates. Angewandte Chemie, 2016, 128, 7529-7533.	1.6	75
36	Calcium Vapor Adsorption on the Metal–Organic Framework NU-1000: Structure and Energetics. Journal of Physical Chemistry C, 2016, 120, 16850-16862.	1.5	16
37	Vacancyâ€Engineered Nanoceria: Enzyme Mimetic Hotspots for the Degradation of Nerve Agents. Angewandte Chemie, 2016, 128, 1434-1438.	1.6	33
38	Reaction Mechanism of Nerve-Agent Decomposition with Zr-Based Metal Organic Frameworks. Journal of Physical Chemistry C, 2016, 120, 29312-29323.	1.5	84
39	Carboxylic Acid Functionalized Clathrochelate Complexes: Large, Robust, and Easy-to-Access Metalloligands. Inorganic Chemistry, 2016, 55, 4006-4015.	1.9	43
40	Effect of Ag containing (nano)particles on reactive adsorption of mustard gas surrogate on iron oxyhydroxide/graphite oxide composites under visible light irradiation. Chemical Engineering Journal, 2016, 303, 123-136.	6.6	23
41	Facile preparation of chitosan enwrapping Fe3O4 nanoparticles and MIL-101(Cr) magnetic composites for enhanced methyl orange adsorption. Journal of Porous Materials, 2016, 23, 1363-1372.	1.3	25
42	Towards metal–organic framework based field effect chemical sensors: UiO-66-NH ₂ for nerve agent detection. Chemical Science, 2016, 7, 5827-5832.	3.7	108

	Сітатіо	CITATION REPORT	
#	ARTICLE Probing the correlations between the defects in metal–organic frameworks and their catalytic	IF	CITATIONS
43	activity by an epoxide ring-opening reaction. Chemical Communications, 2016, 52, 7806-7809.	2.2	177
44	Structural Transitions of the Metal-Oxide Nodes within Metal–Organic Frameworks: On the Local Structures of NU-1000 and UiO-66. Journal of the American Chemical Society, 2016, 138, 4178-4185.	6.6	108
45	Breaking Down Chemical Weapons by Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2016, 55, 42-44.	7.2	48
47	Preparation of Nanofibrous Metal–Organic Framework Filters for Efficient Air Pollution Control. Journal of the American Chemical Society, 2016, 138, 5785-5788.	6.6	574
48	Graphene/ZIF-8 composites with tunable hierarchical porosity and electrical conductivity. Journal of Materials Chemistry A, 2016, 4, 7710-7717.	5.2	117
49	Unprecedented selectivity in molecular recognition of carbohydrates by a metal–organic framework. Chemical Communications, 2016, 52, 7094-7097.	2.2	49
50	CO ₂ Adsorption in M-IRMOF-10 (M = Mg, Ca, Fe, Cu, Zn, Ge, Sr, Cd, Sn, Ba). Journal of Physical Chemistry C, 2016, 120, 12819-12830.	1.5	21
51	Detoxification of Chemical Warfare Agents Using a Zr ₆ â€Based Metal–Organic Framework/Polymer Mixture. Chemistry - A European Journal, 2016, 22, 14864-14868.	1.7	93
52	Nanosizing a Metal–Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis. ACS Nano, 2016, 10, 9174-9182.	7.3	202
53	Dihydrolevoglucosenone (Cyrene) As a Green Alternative to <i>N,N</i> -Dimethylformamide (DMF) in MOF Synthesis. ACS Sustainable Chemistry and Engineering, 2016, 4, 7186-7192.	3.2	123
54	Sub-Equimolar Hydrolysis and Condensation of Organophosphates. ChemistrySelect, 2016, 1, 2698-2705.	0.7	9
55	Templateâ€Directed Synthesis of Porous and Protective Core–Shell Bionanoparticles. Angewandte Chemie, 2016, 128, 10849-10854.	1.6	33
56	Templateâ€Directed Synthesis of Porous and Protective Core–Shell Bionanoparticles. Angewandte Chemie - International Edition, 2016, 55, 10691-10696.	7.2	118
57	Aggregation State Reactivity Activation of Intramolecular Charge Transfer Type Fluorescent Probe and Application in Trace Vapor Detection of Sarin Mimics. ACS Sensors, 2016, 1, 1054-1059.	4.0	28
58	Effective cleavage of phosphodiester promoted by the zinc(II) and copper(II) inclusion complexes of β-cyclodextrin. Journal of Inorganic Biochemistry, 2016, 163, 176-184.	1.5	20
59	Complete Transmetalation in a Metal–Organic Framework by Metal Ion Metathesis in a Single Crystal for Selective Sensing of Phosphate Ions in Aqueous Media. Angewandte Chemie - International Edition, 2016, 55, 11528-11532.	7.2	135
60	Complete Transmetalation in a Metal–Organic Framework by Metal Ion Metathesis in a Single Crystal for Selective Sensing of Phosphate Ions in Aqueous Media. Angewandte Chemie, 2016, 128, 11700-11704.	1.6	25
61	Postsynthetic Modification of Zirconium Metalâ€Organic Frameworks. European Journal of Inorganic Chemistry, 2016, 2016, 4310-4331.	1.0	188

#	Article	IF	CITATIONS
62	Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal–organic framework. Journal of Materials Chemistry A, 2016, 4, 13809-13813.	5.2	147
63	Silver(I) Architectures Based on Rigid Terpyridylâ€Carboxyl Ligands: Synthesis, Crystal Structure and Electrochemical Properties. Chinese Journal of Chemistry, 2016, 34, 1027-1032.	2.6	3
64	All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition. Nature Communications, 2016, 7, 13578.	5.8	129
65	Tuning the Catalytic Activity of a Metal–Organic Framework Derived Copper and Nitrogen Co-Doped Carbon Composite for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 26769-26774.	4.0	63
66	Ultraâ€Fast Degradation of Chemical Warfare Agents Using MOF–Nanofiber Kebabs. Angewandte Chemie, 2016, 128, 13418-13422.	1.6	50
67	Ultraâ€Fast Degradation of Chemical Warfare Agents Using MOF–Nanofiber Kebabs. Angewandte Chemie - International Edition, 2016, 55, 13224-13228.	7.2	179
68	Reaction Mechanism of Nerve-Agent Hydrolysis with the Cs8Nb6O19 Lindqvist Hexaniobate Catalyst. Journal of Physical Chemistry C, 2016, 120, 16822-16830.	1.5	18
69	Single-Site Heterogeneous Catalysts for Olefin Polymerization Enabled by Cation Exchange in a Metal-Organic Framework. Journal of the American Chemical Society, 2016, 138, 10232-10237.	6.6	153
70	Toward Design Rules for Enzyme Immobilization in Hierarchical Mesoporous Metal-Organic Frameworks. CheM, 2016, 1, 154-169.	5.8	286
71	MOFsome via Transient Pickering Emulsion Template. Advanced Materials Interfaces, 2016, 3, 1600294.	1.9	7
72	Emerging Multifunctional Metal–Organic Framework Materials. Advanced Materials, 2016, 28, 8819-8860.	11.1	1,227
73	Flexible and Porous Nanocellulose Aerogels with High Loadings of Metal–Organicâ€Framework Particles for Separations Applications. Advanced Materials, 2016, 28, 7652-7657.	11.1	369
74	Applications of water stable metal–organic frameworks. Chemical Society Reviews, 2016, 45, 5107-5134.	18.7	991
75	A series of robust metal–porphyrinic frameworks based on rare earth clusters and their application in N–H carbene insertion. Dalton Transactions, 2016, 45, 17108-17112.	1.6	18
76	Computational Study of First-Row Transition Metals Supported on MOF NU-1000 for Catalytic Acceptorless Alcohol Dehydrogenation. Journal of Physical Chemistry C, 2016, 120, 24697-24705.	1.5	40
77	An Exceptionally Stable Metal–Organic Framework Supported Molybdenum(VI) Oxide Catalyst for Cyclohexene Epoxidation. Journal of the American Chemical Society, 2016, 138, 14720-14726.	6.6	211
78	Tuning the Surface Chemistry of Metal Organic Framework Nodes: Proton Topology of the Metal-Oxide-Like Zr ₆ Nodes of UiO-66 and NU-1000. Journal of the American Chemical Society, 2016, 138, 15189-15196.	6.6	155
79	Framework-Topology-Dependent Catalytic Activity of Zirconium-Based (Porphinato)zinc(II) MOFs. Journal of the American Chemical Society, 2016, 138, 14449-14457.	6.6	210

#	Article	IF	CITATIONS
80	Broadâ€Spectrum Liquid―and Gasâ€Phase Decontamination of Chemical Warfare Agents by Oneâ€Dimensional Heteropolyniobates. Angewandte Chemie - International Edition, 2016, 55, 7403-7407.	7.2	101
81	Vacancyâ€Engineered Nanoceria: Enzyme Mimetic Hotspots for the Degradation of Nerve Agents. Angewandte Chemie - International Edition, 2016, 55, 1412-1416.	7.2	157
82	Extraordinary NO ₂ Removal by the Metal–Organic Framework UiOâ€66â€NH ₂ . Angewandte Chemie - International Edition, 2016, 55, 6235-6238.	7.2	160
83	Alginate Hydrogel: A Shapeable and Versatile Platform for <i>in Situ</i> Preparation of Metal–Organic Framework–Polymer Composites. ACS Applied Materials & Interfaces, 2016, 8, 17395-17401.	4.0	127
84	Inkjet-printed porphyrinic metal–organic framework thin films for electrocatalysis. Journal of Materials Chemistry A, 2016, 4, 11094-11102.	5.2	73
85	Encapsulation of a Nerve Agent Detoxifying Enzyme by a Mesoporous Zirconium Metal–Organic Framework Engenders Thermal and Long-Term Stability. Journal of the American Chemical Society, 2016, 138, 8052-8055.	6.6	302
86	Metal–Organic Framework Colloids: Disassembly and Deaggregation. Langmuir, 2016, 32, 6123-6129.	1.6	17
87	Metal organic frameworks mimicking natural enzymes: a structural and functional analogy. Chemical Society Reviews, 2016, 45, 4127-4170.	18.7	378
88	Molecular logic operations based on optical detection of sulfur mustard simulant using pyridine appended Mg–porphyrazine complex. Sensors and Actuators B: Chemical, 2016, 227, 85-91.	4.0	3
89	A Threeâ€Dimensional TetraphenylÃetheneâ€Based Metal–Organic Framework for Selective Gas Separation and Luminescence Sensing of Metal Ions. European Journal of Inorganic Chemistry, 2016, 2016, 4470-4475.	1.0	20
90	Structure and Electronic Properties of a Continuous Random Network Model of an Amorphous Zeolitic Imidazolate Framework (a-ZIF). Journal of Physical Chemistry C, 2016, 120, 15362-15368.	1.5	60
91	A Computational and Experimental Approach Linking Disorder, Highâ€Pressure Behavior, and Mechanical Properties in UiO Frameworks. Angewandte Chemie, 2016, 128, 2447-2451.	1.6	24
92	A Computational and Experimental Approach Linking Disorder, Highâ€Pressure Behavior, and Mechanical Properties in UiO Frameworks. Angewandte Chemie - International Edition, 2016, 55, 2401-2405.	7.2	103
93	Porosity in metal–organic framework glasses. Chemical Communications, 2016, 52, 3750-3753.	2.2	76
94	A visually detectable pH responsive zirconium metal–organic framework. Chemical Communications, 2016, 52, 3438-3441.	2.2	57
95	Evaluation of BrÃ,nsted acidity and proton topology in Zr- and Hf-based metal–organic frameworks using potentiometric acid–base titration. Journal of Materials Chemistry A, 2016, 4, 1479-1485.	5.2	259
96	Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. Chemical Science, 2016, 7, 2711-2716.	3.7	145
97	Iron-based metal–organic framework, Fe(BTC): an effective dual-functional catalyst for oxidative cyclization of bisnaphthols and tandem synthesis of quinazolin-4(3H)-ones. RSC Advances, 2016, 6, 1136-1142.	1.7	55

#	Article	IF	Citations
98	Mechanochemical and solvent-free assembly of zirconium-based metal–organic frameworks. Chemical Communications, 2016, 52, 2133-2136.	2.2	256
99	Efficient extraction of sulfate from water using a Zr-metal–organic framework. Dalton Transactions, 2016, 45, 93-97.	1.6	56
100	Dynamic acidity in defective UiO-66. Chemical Science, 2016, 7, 4706-4712.	3.7	147
101	Binding of chemical warfare agent simulants as guests in a coordination cage: contributions to binding and a fluorescence-based response. Chemical Communications, 2016, 52, 6225-6228.	2.2	53
102	Amino acids as biomimetic crystallization agents for the synthesis of ZIF-8 particles. CrystEngComm, 2016, 18, 4264-4267.	1.3	51
103	Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 2016, 45, 2327-2367.	18.7	1,905
104	Selective Dimerization of Ethylene to 1-Butene with a Porous Catalyst. ACS Central Science, 2016, 2, 148-153.	5.3	180
105	<i>In Situ</i> Monitoring and Mechanism of the Mechanochemical Formation of a Microporous MOF-74 Framework. Journal of the American Chemical Society, 2016, 138, 2929-2932.	6.6	194
106	Metal–Organic Frameworks as Platforms for Functional Materials. Accounts of Chemical Research, 2016, 49, 483-493.	7.6	1,403
107	Solvent Effects on the Reactions of the Nerve Agent VX with KF/Al ₂ O ₃ : Heterogeneous or Homogeneous Decontamination?. Journal of Organic Chemistry, 2016, 81, 2154-2158.	1.7	10
108	Thermal Stabilization of Metal–Organic Framework-Derived Single-Site Catalytic Clusters through Nanocasting. Journal of the American Chemical Society, 2016, 138, 2739-2748.	6.6	83
109	Isoreticular zirconium-based metal–organic frameworks: discovering mechanical trends and elastic anomalies controlling chemical structure stability. Physical Chemistry Chemical Physics, 2016, 18, 9079-9087.	1.3	46
110	Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes. Environmental Science and Pollution Research, 2016, 23, 8200-8218.	2.7	72
111	Reactive adsorption of mustard gas surrogate on zirconium (hydr)oxide/graphite oxide composites: the role of surface and chemical features. Journal of Materials Chemistry A, 2016, 4, 1008-1019.	5.2	57
112	Connecting defects and amorphization in UiO-66 and MIL-140 metal–organic frameworks: a combined experimental and computational study. Physical Chemistry Chemical Physics, 2016, 18, 2192-2201.	1.3	85
113	Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000. Nature Protocols, 2016, 11, 149-162.	5.5	276
114	Metal–organic frameworks for the control and management of air quality: advances and future direction. Journal of Materials Chemistry A, 2016, 4, 345-361.	5.2	120
115	High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27. Dalton Transactions, 2016, 45, 4150-4153.	1.6	102

#	Article	IF	CITATIONS
116	Investigations on post-synthetically modified UiO-66-NH 2 for the adsorptive removal of heavy metal ions from aqueous solution. Microporous and Mesoporous Materials, 2016, 221, 238-244.	2.2	314
117	Wearable Atmospheric Pressure Plasma Fabrics Produced by Knitting Flexible Wire Electrodes for the Decontamination of Chemical Warfare Agents. Scientific Reports, 2017, 7, 40746.	1.6	10
118	Facile Synthesis and Direct Activation of Zirconium Based Metal–Organic Frameworks from Acetone. Industrial & Engineering Chemistry Research, 2017, 56, 1478-1484.	1.8	31
119	Ferrihydrite deposited on cotton textiles as protection media against the chemical warfare agent surrogate (2-chloroethyl ethyl sulfide). Journal of Materials Chemistry A, 2017, 5, 4972-4981.	5.2	29
120	Effective removal of chemical warfare agent simulants using water stable metal–organic frameworks: mechanistic study and structure–property correlation. RSC Advances, 2017, 7, 6691-6696.	1.7	36
121	Ruthenium(II) Complex Incorporated UiO-67 Metal–Organic Framework Nanoparticles for Enhanced Two-Photon Fluorescence Imaging and Photodynamic Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 5699-5708.	4.0	129
122	Zirconium Hydroxideâ€coated Nanofiber Mats for Nerve Agent Decontamination. Chemistry - an Asian Journal, 2017, 12, 698-705.	1.7	33
123	Metal organic frameworks as precursors for the manufacture of advanced catalytic materials. Materials Chemistry Frontiers, 2017, 1, 1709-1745.	3.2	252
124	Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nature Communications, 2017, 8, 14429.	5.8	179
125	Swellable functional hypercrosslinked polymer networks for the uptake of chemical warfare agents. Polymer Chemistry, 2017, 8, 1914-1922.	1.9	44
126	Cerium(IV) vs Zirconium(IV) Based Metal–Organic Frameworks for Detoxification of a Nerve Agent. Chemistry of Materials, 2017, 29, 2672-2675.	3.2	135
127	Tailoring porosity and rotational dynamics in a series of octacarboxylate metal-organic frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3056-3061.	3.3	73
128	Regulation and Plasticity of Catalysis in Enzymes: Insights from Analysis of Mechanochemical Coupling in Myosin. Biochemistry, 2017, 56, 1482-1497.	1.2	35
129	Applying the Power of Reticular Chemistry to Finding the Missing alb-MOF Platform Based on the (6,12)-Coordinated Edge-Transitive Net. Journal of the American Chemical Society, 2017, 139, 3265-3274.	6.6	104
130	Water-Stable In(III)-Based Metal–Organic Frameworks with Rod-Shaped Secondary Building Units: Single-Crystal to Single-Crystal Transformation and Selective Sorption of C ₂ H ₂ over CO ₂ and CH ₄ . Inorganic Chemistry, 2017, 56, 2188-2197.	1.9	83
131	A Multifunctional Zirconiumâ€Based Metal–Organic Framework for the Oneâ€Pot Tandem Photooxidative Passerini Three omponent Reaction of Alcohols. ChemCatChem, 2017, 9, 1992-2000.	1.8	71
132	Filtration of chlorine and hydrogen chloride gas by engineered UiO-66-NH2 metal-organic framework. Journal of Hazardous Materials, 2017, 332, 162-167.	6.5	28
133	Mixed-Component Sulfone–Sulfoxide Tagged Zinc IRMOFs: <i>In Situ</i> Ligand Oxidation, Carbon Dioxide, and Water Sorption Studies. Crystal Growth and Design, 2017, 17, 2016-2023.	1.4	18

#	Article	IF	CITATIONS
134	Designing metal-contained enzyme mimics for prodrug activation. Advanced Drug Delivery Reviews, 2017, 118, 78-93.	6.6	36
135	A microporous hydrogen-bonded organic framework with amine sites for selective recognition of small molecules. Journal of Materials Chemistry A, 2017, 5, 8292-8296.	5.2	78
136	Mechanism and Kinetics for Reaction of the Chemical Warfare Agent Simulant, DMMP(<i>g</i>), with Zirconium(IV) MOFs: An Ultrahigh-Vacuum and DFT Study. Journal of Physical Chemistry C, 2017, 121, 11261-11272.	1.5	120
137	Atomic-Level Structural Dynamics of Polyoxoniobates during DMMP Decomposition. Scientific Reports, 2017, 7, 773.	1.6	24
138	Effect of chemical structure of S-nitrosothiols on nitric oxide release mediated by the copper sites of a metal organic framework based environment. Physical Chemistry Chemical Physics, 2017, 19, 11947-11959.	1.3	10
139	Catalytic "MOF-Cloth―Formed via Directed Supramolecular Assembly of UiO-66-NH ₂ Crystals on Atomic Layer Deposition-Coated Textiles for Rapid Degradation of Chemical Warfare Agent Simulants. Chemistry of Materials, 2017, 29, 4894-4903.	3.2	177
140	When defects turn into virtues: The curious case of zirconium-based metal-organic frameworks. Coordination Chemistry Reviews, 2017, 343, 1-24.	9.5	226
141	Catalytically Active Silicon Oxide Nanoclusters Stabilized in a Metal–Organic Framework. Chemistry - A European Journal, 2017, 23, 8532-8536.	1.7	14
142	Tuning the selectivity of light hydrocarbons in natural gas in a family of isoreticular MOFs. Journal of Materials Chemistry A, 2017, 5, 11032-11039.	5.2	36
143	Addressing the characterisation challenge to understand catalysis in MOFs: the case of nanoscale Cu supported in NU-1000. Faraday Discussions, 2017, 201, 337-350.	1.6	66
144	Centimetre-scale micropore alignment in oriented polycrystalline metal–organic framework films via heteroepitaxial growth. Nature Materials, 2017, 16, 342-348.	13.3	298
145	Mimicking the Active Sites of Organophosphorus Hydrolase on the Backbone of Graphene Oxide to Destroy Nerve Agent Simulants. ACS Applied Materials & Interfaces, 2017, 9, 21089-21093.	4.0	44
146	Electrospun metal–organic framework polymer composites for the catalytic degradation of methyl paraoxon. New Journal of Chemistry, 2017, 41, 8748-8753.	1.4	64
147	Selective Metal–Organic Framework Catalysis of Glucose to 5-Hydroxymethylfurfural Using Phosphate-Modified NU-1000. Industrial & Engineering Chemistry Research, 2017, 56, 7141-7148.	1.8	95
148	Fluorescence Chemosensors for Chemical Warfare Agent Mimic Diethylcyanophosphonate <i>Via</i> Co ²⁺ -Naphthalimide Based Nanoaggregate in Aqueous Medium. ChemistrySelect, 2017, 2, 4725-4732.	0.7	2
150	Energy Storage during Compression of Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 4667-4670.	6.6	53
151	Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 2017, 46, 3134-3184.	18.7	861
152	Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chemical Society Reviews, 2017, 46, 3357-3385.	18.7	707

#	Article	IF	CITATIONS
153	Topological Transformation of a Metal–Organic Framework Triggered by Ligand Exchange. Inorganic Chemistry, 2017, 56, 4576-4583.	1.9	23
154	Minimal edge-transitive nets for the design and construction of metal–organic frameworks. Faraday Discussions, 2017, 201, 127-143.	1.6	32
155	Ground-State versus Excited-State Interchromophoric Interaction: Topology Dependent Excimer Contribution in Metal–Organic Framework Photophysics. Journal of the American Chemical Society, 2017, 139, 5973-5983.	6.6	122
157	Dinuclear organotin(IV) coordination polymers derived from Schiff bases with l -aspartic acid. Journal of Organometallic Chemistry, 2017, 838, 24-36.	0.8	14
158	A Polyoxoniobate–Polyoxovanadate Doubleâ€Anion Catalyst for Simultaneous Oxidative and Hydrolytic Decontamination of Chemical Warfare Agent Simulants. Angewandte Chemie - International Edition, 2017, 56, 4473-4477.	7.2	187
159	A Polyoxoniobate–Polyoxovanadate Doubleâ€Anion Catalyst for Simultaneous Oxidative and Hydrolytic Decontamination of Chemical Warfare Agent Simulants. Angewandte Chemie, 2017, 129, 4544-4548.	1.6	32
160	Aqueous phase sensing of cyanide ions using a hydrolytically stable metal–organic framework. Chemical Communications, 2017, 53, 1253-1256.	2.2	56
161	Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catalysis, 2017, 7, 997-1014.	5.5	288
162	In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 599-602.	6.6	169
163	Mechanism of Single-Site Molecule-Like Catalytic Ethylene Dimerization in Ni-MFU-4 <i>l</i> . Journal of the American Chemical Society, 2017, 139, 757-762.	6.6	122
164	Microwave-assisted activation and modulator removal in zirconium MOFs for buffer-free CWA hydrolysis. Dalton Transactions, 2017, 46, 15704-15709.	1.6	24
165	Synthesis of a Zr-Based Metal–Organic Framework with Spirobifluorenetetrabenzoic Acid for the Effective Removal of Nerve Agent Simulants. Inorganic Chemistry, 2017, 56, 12098-12101.	1.9	44
166	Polyoxometalate-based gelating networks for entrapment and catalytic decontamination. Chemical Communications, 2017, 53, 11480-11483.	2.2	56
167	Liquid metal–organic frameworks. Nature Materials, 2017, 16, 1149-1154.	13.3	326
168	Environmental Effects on Zirconium Hydroxide Nanoparticles and Chemical Warfare Agent Decomposition: Implications of Atmospheric Water and Carbon Dioxide. ACS Applied Materials & Interfaces, 2017, 9, 39747-39757.	4.0	64
169	Spiers Memorial Lecture: : Progress and prospects of reticular chemistry. Faraday Discussions, 2017, 201, 9-45.	1.6	85
170	Tuning the Morphology and Activity of Electrospun Polystyrene/UiO-66-NH ₂ Metal–Organic Framework Composites to Enhance Chemical Warfare Agent Removal. ACS Applied Materials & Interfaces, 2017, 9, 32248-32254.	4.0	93
171	Mechanical Properties of Microcrystalline Metal–Organic Frameworks (MOFs) Measured by Bimodal Amplitude Modulated-Frequency Modulated Atomic Force Microscopy. ACS Applied Materials & Interfaces, 2017, 9, 32202-32210.	4.0	46

#	Article	IF	CITATIONS
172	Copper Nanoparticles Installed in Metal–Organic Framework Thin Films are Electrocatalytically Competent for CO ₂ Reduction. ACS Energy Letters, 2017, 2, 2394-2401.	8.8	157
173	Degradation of Paraoxon and the Chemical Warfare Agents VX, Tabun, and Soman by the Metal–Organic Frameworks UiO-66-NH ₂ , MOF-808, NU-1000, and PCN-777. Inorganic Chemistry, 2017, 56, 11804-11809.	1.9	124
174	Assembly of the active center of organophosphorus hydrolase in metal–organic frameworks via rational combination of functional ligands. Chemical Communications, 2017, 53, 11302-11305.	2.2	20
175	Mustard Gas Surrogate Interactions with Modified Porous Carbon Fabrics: Effect of Oxidative Treatment. Langmuir, 2017, 33, 11475-11483.	1.6	30
176	Computational Linker Design for Highly Crystalline Metal–Organic Framework NU-1000. Chemistry of Materials, 2017, 29, 8073-8081.	3.2	40
177	Engineering Elastic ZIFâ€8â€Sponges for Oil–Water Separation. Advanced Materials Interfaces, 2017, 4, 1700560.	1.9	49
178	Study of the scale-up, formulation, ageing and ammonia adsorption capacity of MIL-100(Fe), Cu-BTC and CPO-27(Ni) for use in respiratory protection filters. Faraday Discussions, 2017, 201, 113-125.	1.6	34
179	Density Gradation of Open Metal Sites in the Mesospace of Porous Coordination Polymers. Journal of the American Chemical Society, 2017, 139, 11576-11583.	6.6	118
180	Smart textiles of MOF/g-C ₃ N ₄ nanospheres for the rapid detection/detoxification of chemical warfare agents. Nanoscale Horizons, 2017, 2, 356-364.	4.1	105
181	Co ₃ O ₄ /Reduced Graphene Oxide Nanocomposites as Effective Phosphotriesterase Mimetics for Degradation and Detection of Paraoxon. Industrial & Engineering Chemistry Research, 2017, 56, 9762-9769.	1.8	27
182	Spectroscopic and Computational Investigation of Room-Temperature Decomposition of a Chemical Warfare Agent Simulant on Polycrystalline Cupric Oxide. Chemistry of Materials, 2017, 29, 7483-7496.	3.2	48
183	A Recyclable Metal–Organic Framework as a Dual Detector and Adsorbent for Ammonia. Chemistry - A European Journal, 2017, 23, 13602-13606.	1.7	52
184	Direct Surface Growth Of UIO-66-NH ₂ on Polyacrylonitrile Nanofibers for Efficient Toxic Chemical Removal. Industrial & Engineering Chemistry Research, 2017, 56, 14502-14506.	1.8	69
185	Reticular Chemistry and the Discovery of a New Family of Rare Earth (4, 8)-Connected Metal-Organic Frameworks with csq Topology Based on RE ₄ (μ ₃ -O) ₂ (COO) ₈ Clusters. ACS Applied Materials &: Interfaces, 2017, 9, 44560-44566.	4.0	25
187	UiO-66-NH ₂ Metal–Organic Framework (MOF) Nucleation on TiO ₂ , ZnO, and Al ₂ O ₃ Atomic Layer Deposition-Treated Polymer Fibers: Role of Metal Oxide on MOF Growth and Catalytic Hydrolysis of Chemical Warfare Agent Simulants. ACS Applied Materials & amp; Interfaces, 2017, 9, 44847-44855.	4.0	163
188	All-gas-phase synthesis of amino-functionalized UiO-66 thin films. Dalton Transactions, 2017, 46, 16983-16992.	1.6	45
189	Surface Functionalization of Metal–Organic Framework Crystals with Catechol Coatings for Enhanced Moisture Tolerance. ACS Applied Materials & Interfaces, 2017, 9, 44641-44648.	4.0	33
190	Metal–organic frameworks as media for the catalytic degradation of chemical warfare agents. Coordination Chemistry Reviews, 2017, 353, 159-179.	9.5	100

#	Article	IF	CITATIONS
191	Efficient Capture and Effective Sensing of Cr ₂ O ₇ ^{2–} from Water Using a Zirconium Metal–Organic Framework. Inorganic Chemistry, 2017, 56, 14178-14188.	1.9	189
192	The growing importance of crystalline molecular flasks and the crystalline sponge method. Dalton Transactions, 2017, 46, 15979-15986.	1.6	24
194	Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires. Journal of the American Chemical Society, 2017, 139, 10410-10418.	6.6	74
195	Chemical Warfare Agents Detoxification Properties of Zirconium Metal–Organic Frameworks by Synergistic Incorporation of Nucleophilic and Basic Sites. ACS Applied Materials & Interfaces, 2017, 9, 23967-23973.	4.0	100
196	Nature of active sites on UiO-66 and beneficial influence of water in the catalysis of Fischer esterification. Journal of Catalysis, 2017, 352, 401-414.	3.1	172
197	Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. Coordination Chemistry Reviews, 2017, 346, 101-111.	9.5	275
198	Nerve Gas Simulant Sensing by a Uranyl–Salen Monolayer Covalently Anchored on Quartz Substrates. Chemistry - A European Journal, 2017, 23, 1576-1583.	1.7	25
199	Oxidized g ₃ N ₄ Nanospheres as Catalytically Photoactive Linkers in MOF/g ₃ N ₄ Composite of Hierarchical Pore Structure. Small, 2017, 13, 1601758.	5.2	109
201	Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 26-39.	3.2	518
202	Nanometric MIL-125-NH2 Metal–Organic Framework as a Potential Nerve Agent Antidote Carrier. Nanomaterials, 2017, 7, 321.	1.9	71
203	Experimentalists and theorists need to talk. Nature, 2017, 551, 433-434.	13.7	6
204	MOF the beaten track: unusual structures and uncommon applications of metal–organic frameworks. Chemistry Central Journal, 2017, 11, 100.	2.6	22
206	Application and Limitations of Nanocasting in Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 2782-2790.	1.9	21
207	Structure and Dynamics of Zr ₆ O ₈ Metal–Organic Framework Node Surfaces Probed with Ethanol Dehydration as a Catalytic Test Reaction. Journal of the American Chemical Society, 2018, 140, 3751-3759.	6.6	150
208	A Chromium Hydroxide/MILâ€101(Cr) MOF Composite Catalyst and Its Use for the Selective Isomerization of Glucose to Fructose. Angewandte Chemie - International Edition, 2018, 57, 4926-4930.	7.2	73
209	Computational Modeling of the Structure and Properties of Zr(OH) ₄ . Journal of Physical Chemistry C, 2018, 122, 5385-5400.	1.5	10
210	Cobalt complexes of Biginelli derivatives as fluorescent probes for selective estimation and degradation of organophosphates in aqueous medium. Dalton Transactions, 2018, 47, 5595-5606.	1.6	12
211	Increased Electrical Conductivity in a Mesoporous Metal–Organic Framework Featuring Metallacarboranes Guests. Journal of the American Chemical Society, 2018, 140, 3871-3875.	6.6	158

#	Article	IF	CITATIONS
212	A Chromium Hydroxide/MILâ€101(Cr) MOF Composite Catalyst and Its Use for the Selective Isomerization of Glucose to Fructose. Angewandte Chemie, 2018, 130, 5020-5024.	1.6	30
213	Linking defects, hierarchical porosity generation and desalination performance in metal–organic frameworks. Chemical Science, 2018, 9, 3508-3516.	3.7	65
214	Superactivity of MOF-808 toward Peptide Bond Hydrolysis. Journal of the American Chemical Society, 2018, 140, 6325-6335.	6.6	120
215	Stabilized Vanadium Catalyst for Olefin Polymerization by Site Isolation in a Metal–Organic Framework. Angewandte Chemie - International Edition, 2018, 57, 8135-8139.	7.2	73
216	H ₅ PV ₂ Mo ₁₀ O ₄₀ encapsulated in MIL-101(Cr): facile synthesis and characterization of rationally designed composite materials for efficient decontamination of sulfur mustard. Dalton Transactions, 2018, 47, 6394-6403.	1.6	35
217	Stabilized Vanadium Catalyst for Olefin Polymerization by Site Isolation in a Metal–Organic Framework. Angewandte Chemie, 2018, 130, 8267-8271.	1.6	6
218	Trace Detection of Organophosphorus Chemical Warfare Agents in Wastewater and Plants by Luminescent UIO-67(Hf) and Evaluating the Bioaccumulation of Organophosphorus Chemical Warfare Agents. ACS Applied Materials & Interfaces, 2018, 10, 14869-14876.	4.0	66
219	Plasmonic Hotspots in Air: An Omnidirectional Threeâ€Dimensional Platform for Standâ€Off Inâ€Air SERS Sensing of Airborne Species. Angewandte Chemie - International Edition, 2018, 57, 5792-5796.	7.2	41
220	Computer-aided discovery of a metal–organic framework with superior oxygen uptake. Nature Communications, 2018, 9, 1378.	5.8	136
221	Modeling Gas Flow Dynamics in Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2018, 9, 1092-1096.	2.1	3
222	Engineering a Zirconium MOF through Tandem "Click―Reactions: A General Strategy for Quantitative Loading of Bifunctional Groups on the Pore Surface. Inorganic Chemistry, 2018, 57, 2288-2295.	1.9	28
223	Nanopore-induced host–guest charge transfer phenomena in a metal–organic framework. Chemical Science, 2018, 9, 3282-3289.	3.7	28
224	Efficient MOF-based degradation of organophosphorus compounds in non-aqueous environments. Journal of Materials Chemistry A, 2018, 6, 3038-3045.	5.2	42
225	On the intrinsic dynamic nature of the rigid UiO-66 metal–organic framework. Chemical Science, 2018, 9, 2723-2732.	3.7	41
226	Extending the Compositional Range of Nanocasting in the Oxozirconium Cluster-Based Metal–Organic Framework NU-1000—A Comparative Structural Analysis. Chemistry of Materials, 2018, 30, 1301-1315.	3.2	10
227	Intelligent environmental nanomaterials. Environmental Science: Nano, 2018, 5, 811-836.	2.2	54
228	Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. Angewandte Chemie - International Edition, 2018, 57, 1949-1953.	7.2	121
229	Metal–Organic Framework Modified Glass Substrate for Analysis of Highly Volatile Chemical Warfare Agents by Paper Spray Mass Spectrometry. ACS Applied Materials & Interfaces, 2018, 10, 8359-8365.	4.0	33

#	Article	IF	CITATIONS
230	Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. Angewandte Chemie, 2018, 130, 1967-1971.	1.6	24
231	Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2018, 30, e1704303.	11.1	1,740
232	Zinc peroxide nanoparticles: Surface, chemical and optical properties and the effect of thermal treatment on the detoxification of mustard gas. Applied Catalysis B: Environmental, 2018, 226, 429-440.	10.8	51
233	Porphyrinic Metal–Organic Frameworks Coated Gold Nanorods as a Versatile Nanoplatform for Combined Photodynamic/Photothermal/Chemotherapy of Tumor. Advanced Functional Materials, 2018, 28, 1705451.	7.8	232
234	MOFâ€Derived Cobalt Phosphide/Carbon Nanocubes for Selective Hydrogenation of Nitroarenes to Anilines. Chemistry - A European Journal, 2018, 24, 4234-4238.	1.7	73
235	Impact of ambient gases on the mechanism of [Cs8Nb6O19]-promoted nerve-agent decomposition. Chemical Science, 2018, 9, 2147-2158.	3.7	18
236	Plasmonic Hotspots in Air: An Omnidirectional Threeâ€Dimensional Platform for Standâ€Off Inâ€Air SERS Sensing of Airborne Species. Angewandte Chemie, 2018, 130, 5894-5898.	1.6	5
237	Revisiting the structural homogeneity of NU-1000, a Zr-based metal–organic framework. CrystEngComm, 2018, 20, 5913-5918.	1.3	136
238	Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Central Science, 2018, 4, 440-450.	5.3	382
241	Crystal Engineering for Catalysis. Annual Review of Chemical and Biomolecular Engineering, 2018, 9, 283-309.	3.3	37
242	Investigation of Controlled Growth of Metal–Organic Frameworks on Anisotropic Virus Particles. ACS Applied Materials & Interfaces, 2018, 10, 18161-18169.	4.0	83
243	Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks. Chemical Society Reviews, 2018, 47, 4729-4756.	18.7	530
244	Investigating the cheletropic reaction between sulfur dioxide and butadiene-containing linkers in UiO-66. Canadian Journal of Chemistry, 2018, 96, 139-143.	0.6	5
245	Metal–organic layers stabilize earth-abundant metal–terpyridine diradical complexes for catalytic C–H activation. Chemical Science, 2018, 9, 143-151.	3.7	75
246	Heterogeneous catalysts based on mesoporous metal–organic frameworks. Coordination Chemistry Reviews, 2018, 373, 199-232.	9.5	113
247	Metal–Organic Frameworks as Platforms for Catalytic Applications. Advanced Materials, 2018, 30, e1703663.	11.1	1,210
248	Molecular Building Block-Based Electronic Charges for High-Throughput Screening of Metal–Organic Frameworks for Adsorption Applications. Journal of Chemical Theory and Computation, 2018, 14, 365-376.	2.3	18
249	Stabilizing a Vanadium Oxide Catalyst by Supporting on a Metal–Organic Framework. ChemCatChem, 2018, 10, 1772-1777.	1.8	21

#	Article	IF	Citations
250	Degradation of chemical warfare agents over cotton fabric functionalized with UiO-66-NH ₂ . RSC Advances, 2018, 8, 41633-41638.	1.7	32
251	Synthesis of hydroxylated group IV metal oxides inside hollow graphitised carbon nanofibers: nano-sponges and nanoreactors for enhanced decontamination of organophosphates. Journal of Materials Chemistry A, 2018, 6, 20444-20453.	5.2	15
253	Reticular Chemistry of Multifunctional Metalâ€Organic Framework Materials. Israel Journal of Chemistry, 2018, 58, 949-961.	1.0	24
254	Recent Hydrophobic Metal-Organic Frameworks and Their Applications. Materials, 2018, 11, 2250.	1.3	45
255	Defect and Linker Effects on the Binding of Organophosphorous Compounds in UiO-66 and Rare-Earth MOFs. Journal of Physical Chemistry C, 2018, 122, 26889-26896.	1.5	40
256	Subwavelength Spatially Resolved Coordination Chemistry of Metal–Organic Framework Glass Blends. Journal of the American Chemical Society, 2018, 140, 17862-17866.	6.6	23
257	Facile Mechanosynthesis of the Archetypal Zn-Based Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13437-13442.	1.9	36
258	From Transition Metals to Lanthanides to Actinides: Metal-Mediated Tuning of Electronic Properties of Isostructural Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13246-13251.	1.9	80
259	Benign by Design: Green and Scalable Synthesis of Zirconium UiO-Metal–Organic Frameworks by Water-Assisted Mechanochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 15841-15849.	3.2	120
260	Diethyl phosphite production from phosphorothioate degradation with molybdenum peroxides and hydrogen peroxide in ethanol. Inorganica Chimica Acta, 2018, 483, 229-234.	1.2	0
261	A Versatile Selfâ€Detoxifying Material Based on Immobilized Polyoxoniobate for Decontamination of Chemical Warfare Agent Simulants. Chemistry - A European Journal, 2018, 24, 19208-19215.	1.7	35
262	Rapid, Selective Extraction of Trace Amounts of Gold from Complex Water Mixtures with a Metal–Organic Framework (MOF)/Polymer Composite. Journal of the American Chemical Society, 2018, 140, 16697-16703.	6.6	195
263	How Useful Are Common Simulants of Chemical Warfare Agents at Predicting Adsorption Behavior?. Journal of Physical Chemistry C, 2018, 122, 26061-26069.	1.5	58
264	Oxidative Detoxification of Sulfur-Containing Chemical Warfare Agents by Electrophilic Iodine. Journal of Organic Chemistry, 2018, 83, 13949-13955.	1.7	16
265	Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nature Reviews Materials, 2018, 3, 431-440.	23.3	314
266	An Unusual Two‣tep Hydrolysis of Nerve Agents by a Nanozyme. ChemCatChem, 2018, 10, 4826-4831.	1.8	19
267	Innovative Biocatalysts as Tools to Detect and Inactivate Nerve Agents. Scientific Reports, 2018, 8, 13773.	1.6	13
268	Supramolecular recognition of a CWA simulant by metal–salen complexes: the first multi-topic approach. Chemical Communications, 2018, 54, 11156-11159.	2.2	28

#	Article	IF	CITATIONS
269	Chemical Protective Textiles of UiO-66-Integrated PVDF Composite Fibers with Rapid Heterogeneous Decontamination of Toxic Organophosphates. ACS Applied Materials & Interfaces, 2018, 10, 34585-34591.	4.0	82
270	Flexible metal–organic frameworks for the wavelength-based luminescence sensing of aqueous pH. Journal of Materials Chemistry C, 2018, 6, 10628-10639.	2.7	45
271	Investigating the crystal engineering of the pillared paddlewheel metal–organic framework Zn2(NH2BDC)2DABCO. CrystEngComm, 2018, 20, 6082-6087.	1.3	3
272	Fast and Sustained Degradation of Chemical Warfare Agent Simulants Using Flexible Self-Supported Metal–Organic Framework Filters. ACS Applied Materials & Interfaces, 2018, 10, 20396-20403.	4.0	65
273	Dual Role of Water in Heterogeneous Catalytic Hydrolysis of Sarin by Zirconium-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 18435-18439.	4.0	62
274	Catalytic degradation of organophosphorous nerve agent simulants by polymer beads@graphene oxide with organophosphorus hydrolase-like activity based on rational design of functional bimetallic nuclear ligand. Journal of Hazardous Materials, 2018, 355, 65-73.	6.5	10
275	Insights into Catalytic Hydrolysis of Organophosphate Warfare Agents by Metal–Organic Framework NU-1000. Journal of Physical Chemistry C, 2018, 122, 12362-12368.	1.5	55
276	Green and rapid mechanosynthesis of high-porosity NU- and UiO-type metal–organic frameworks. Chemical Communications, 2018, 54, 6999-7002.	2.2	63
277	Characterization of Undercoordinated Zr Defect Sites in UiO-66 with Vibrational Spectroscopy of Adsorbed CO. Journal of Physical Chemistry C, 2018, 122, 14582-14589.	1.5	52
278	High-throughput screening of solid-state catalysts for nerve agent degradation. Chemical Communications, 2018, 54, 5768-5771.	2.2	55
279	Electrospun Filters for Defense and Protective Applications. , 2018, , 69-83.		2
280	Tuning the Photoinduced Electron Transfer in a Zrâ€MOF: Toward Solidâ€State Fluorescent Molecular Switch and Turnâ€On Sensor. Advanced Materials, 2018, 30, e1802329.	11.1	120
281	Toxic Organophosphate Hydrolysis Using Nanofiber-Templated UiO-66-NH ₂ Metal–Organic Framework Polycrystalline Cylinders. ACS Applied Materials & Interfaces, 2018, 10, 25794-25803.	4.0	73
282	Significant enhancement in hydrolytic degradation of sulfur mustard promoted by silver nanoparticles in the Ag NPs@HKUST-1 composites. Journal of Hazardous Materials, 2018, 358, 113-121.	6.5	27
283	From synthesis to applications: Metal–organic frameworks for an environmentally sustainable future. Current Opinion in Green and Sustainable Chemistry, 2018, 12, 47-56.	3.2	33
284	Metal-Organic Frameworks for the Capture of Trace Aromatic Volatile Organic Compounds. CheM, 2018, 4, 1911-1927.	5.8	232
285	Twoâ€Dimensional Metalâ€Organic Framework Nanosheets: A Rapidly Growing Class of Versatile Nanomaterials for Gas Separation, MALDIâ€TOF Matrix and Biomimetic Applications. Chemistry - A European Journal, 2018, 24, 15131-15142.	1.7	65
286	Harnessing Structural Dynamics in a 2D Manganese–Benzoquinoid Framework To Dramatically Accelerate Metal Transport in Diffusion-Limited Metal Exchange Reactions. Journal of the American Chemical Society, 2018, 140, 11444-11453.	6.6	31

#	Article	IF	CITATIONS
287	MOF-Derived Porous ZnO Nanocages/rGO/Carbon Sponge-Based Photocatalytic Microreactor for Efficient Degradation of Water Pollutants and Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 11989-11998.	3.2	101
288	Tuning Lewis Acidity of Metal–Organic Frameworks via Perfluorination of Bridging Ligands: Spectroscopic, Theoretical, and Catalytic Studies. Journal of the American Chemical Society, 2018, 140, 10553-10561.	6.6	121
289	Metal–Organicâ€Frameworkâ€Derived Co ₃ S ₄ Hollow Nanoboxes for the Selective Reduction of Nitroarenes. ChemSusChem, 2018, 11, 3131-3138.	3.6	40
290	Degradation of Sulfur Mustard on KF/Al ₂ O ₃ : The Role of Organic Solvents and Active Species. Journal of Organic Chemistry, 2018, 83, 10541-10545.	1.7	2
291	Barium titanate perovskite nanoparticles as a photoreactive medium for chemical warfare agent detoxification. Journal of Colloid and Interface Science, 2018, 531, 233-244.	5.0	37
292	UiO-66-Coated Mesh Membrane with Underwater Superoleophobicity for High-Efficiency Oil–Water Separation. ACS Applied Materials & Interfaces, 2018, 10, 17301-17308.	4.0	120
293	Activation of Methyltrioxorhenium for Olefin Metathesis in a Zirconium-Based Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 6956-6960.	6.6	36
294	Supported cluster catalysts synthesized to be small, simple, selective, and stable. Faraday Discussions, 2018, 208, 9-33.	1.6	8
295	Effect of surface acidity of cyano-bridged polynuclear metal complexes on the catalytic activity for the hydrolysis of organophosphates. Catalysis Science and Technology, 2018, 8, 4747-4756.	2.1	15
296	Surfactant-assisted synthesis of Zn3(BTC)2 (H3BTC = 1, 3, 5â€ ⁶ benzenetricarboxylic acid) hollow nanoparticles. Inorganic Chemistry Communication, 2018, 96, 86-89.	1.8	9
297	Pore surface engineering of metal–organic frameworks for heterogeneous catalysis. Coordination Chemistry Reviews, 2018, 376, 248-276.	9.5	174
298	Multi-Tasking POM Systems. Frontiers in Chemistry, 2018, 6, 365.	1.8	22
299	MOF/polymer composite synthesized using a double solvent method offers enhanced water and CO ₂ adsorption properties. Chemical Communications, 2018, 54, 10602-10605.	2.2	33
300	Inorganic "Conductive Glass―Approach to Rendering Mesoporous Metal–Organic Frameworks Electronically Conductive and Chemically Responsive. ACS Applied Materials & Interfaces, 2018, 10, 30532-30540.	4.0	54
301	Exposed Equatorial Positions of Metal Centers via Sequential Ligand Elimination and Installation in MOFs. Journal of the American Chemical Society, 2018, 140, 10814-10819.	6.6	70
302	Structural Characterization of Pristine and Defective [Zr ₁₂ (μ4 _{3} -O) ₈ (μ4 ₃ -OH) ₈ 2< Double-Node Metal–Organic Framework and Predicted Applications for Single-Site Catalytic Hydrolysis of Sarin, Chemistry of Materials, 2018, 30, 4432-4439,	/syb>-OH)	×عudsections (/su
303	Synthesis and Characterization of UiO-66-NH ₂ Metal–Organic Framework Cotton Composite Textiles. Industrial & Engineering Chemistry Research, 2018, 57, 9151-9161.	1.8	65
304	Discovery of an Optimal Porous Crystalline Material for the Capture of Chemical Warfare Agents. Chemistry of Materials, 2018, 30, 4571-4579.	3.2	62

#	Article	IF	CITATIONS
305	Buffer-Induced Acceleration and Inhibition in Polyoxometalate-Catalyzed Organophosphorus Ester Hydrolysis. ACS Catalysis, 2018, 8, 7068-7076.	5.5	37
306	Rapid Decontamination of Chemical Warfare Agent Simulant with Thermally Activated Porous Polymer Foams. Industrial & Engineering Chemistry Research, 2018, 57, 8630-8634.	1.8	18
307	Enriching the Reticular Chemistry Repertoire: Merged Nets Approach for the Rational Design of Intricate Mixed-Linker Metal–Organic Framework Platforms. Journal of the American Chemical Society, 2018, 140, 8858-8867.	6.6	129
308	Advances and applications of chemical protective clothing system. Journal of Industrial Textiles, 2019, 49, 97-138.	1.1	70
309	Recent Advances of MOFs and MOFâ€Derived Materials in Thermally Driven Organic Transformations. Chemistry - A European Journal, 2019, 25, 2161-2178.	1.7	81
310	Availability of Zr-Based MOFs for the degradation of nerve agents in all humidity conditions. Microporous and Mesoporous Materials, 2019, 274, 9-16.	2.2	35
311	Design, Synthesis, and Characterization of Metal–Organic Frameworks for Enhanced Sorption of Chemical Warfare Agent Simulants. Journal of Physical Chemistry C, 2019, 123, 19748-19758.	1.5	33
312	Spectroscopically Resolved Binding Sites for the Adsorption of Sarin Gas in a Metal–Organic Framework: Insights beyond Lewis Acidity. Journal of Physical Chemistry Letters, 2019, 10, 5142-5147.	2.1	24
313	Preparation of Peelable Coating Films with a Metal Organic Framework (UiO-66) and Self-Crosslinkable Polyurethane for the Decomposition of Methyl Paraoxon. Polymers, 2019, 11, 1298.	2.0	7
314	Degradation and Detection of the Nerve Agent VX by a Chromophore-Functionalized Zirconium MOF. Chemistry of Materials, 2019, 31, 7417-7424.	3.2	39
315	Simultaneous implementation of resistive switching and rectifying effects in a metal-organic framework with switched hydrogen bond pathway. Science Advances, 2019, 5, eaaw4515.	4.7	90
316	Metal–Organocatalyst for Detoxification of Phosphorothioate Pesticides: Demonstration of Acetylcholine Esterase Activity. Inorganic Chemistry, 2019, 58, 9773-9784.	1.9	11
317	Preserving Porosity of Mesoporous Metal–Organic Frameworks through the Introduction of Polymer Guests. Journal of the American Chemical Society, 2019, 141, 12397-12405.	6.6	68
318	Magnesium Exchanged Zirconium Metal–Organic Frameworks with Improved Detoxification Properties of Nerve Agents. Journal of the American Chemical Society, 2019, 141, 11801-11805.	6.6	48
319	Detoxification and Sensing of Organophosphate-Based Pesticides and Preservatives in Beverages. , 2019, , 467-510.		1
320	Metal-organic frameworks for capture and detoxification of nerve agents. , 2019, , 179-202.		3
321	Computational Exploration of the Catalytic Degradation of Sarin and Its Simulants by a Titanium Metal–Organic Framework. Journal of Physical Chemistry C, 2019, 123, 19077-19086.	1.5	22
322	Ligand-Directed Reticular Synthesis of Catalytically Active Missing Zirconium-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 12229-12235.	6.6	58

#	Article	IF	CITATIONS
323	Synthesis of poly[2-(3-butenyl)-2-oxazoline] with abundant carboxylic acid functional groups as a fiber-based sol–gel reaction supporter for catalytic applications. Journal of Industrial and Engineering Chemistry, 2019, 80, 112-121.	2.9	2
324	A Water-Stable Luminescent Metal–Organic Framework for Rapid and Visible Sensing of Organophosphorus Pesticides. ACS Applied Materials & Interfaces, 2019, 11, 26250-26260.	4.0	109
325	Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities. EnergyChem, 2019, 1, 100005.	10.1	289
326	A highly augmented, (12,3)-connected Zr-MOF containing hydrated coordination sites for the catalytic transformation of gaseous CO2 to cyclic carbonates. Dalton Transactions, 2019, 48, 15487-15492.	1.6	18
327	Oligomerization of Light Olefins Catalyzed by Brà nsted-Acidic Metal–Organic Framework-808. Journal of the American Chemical Society, 2019, 141, 11557-11564.	6.6	55
329	Effect of Carbon Dioxide on the Degradation of Chemical Warfare Agent Simulant in the Presence of Zr Metal Organic Framework MOF-808. Chemistry of Materials, 2019, 31, 9904-9914.	3.2	31
330	Dynamic Interplay between Defective UiOâ€66 and Protic Solvents in Activated Processes. Chemistry - A European Journal, 2019, 25, 15315-15325.	1.7	13
331	Strongly Lewis Acidic Metal–Organic Frameworks for Continuous Flow Catalysis. Journal of the American Chemical Society, 2019, 141, 14878-14888.	6.6	118
332	Metal–organic frameworks: A tunable platform to access single-site heterogeneous catalysts. Applied Catalysis A: General, 2019, 586, 117214.	2.2	96
333	Scalable and Template-Free Aqueous Synthesis of Zirconium-Based Metal–Organic Framework Coating on Textile Fiber. Journal of the American Chemical Society, 2019, 141, 15626-15633.	6.6	148
334	Cobalt MOFs base on benzimidazol and varied carboxylate ligands with higher capacitance for supercapacitors and magnetic properties. Journal of Solid State Chemistry, 2019, 279, 120917.	1.4	11
335	Co(II)-catalyzed decarboxylation of itaconic acid engendering methacrylic acid and Co(II)-MOFs for structure regulated fluorescent detection of cations. Journal of Solid State Chemistry, 2019, 280, 120987.	1.4	16
336	Photothermally Enhanced Detoxification of Chemical Warfare Agent Simulants Using Bioinspired Core–Shell Dopamine–Melanin@Metal–Organic Frameworks and Their Fabrics. ACS Applied Materials & Interfaces, 2019, 11, 7927-7935.	4.0	60
337	Computational evaluation of the chemical warfare agents capture performances of robust MOFs. Microporous and Mesoporous Materials, 2019, 280, 97-104.	2.2	19
338	Postsynthetic Ligand Exchange of Metal–Organic Framework for Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 7884-7892.	4.0	48
339	Direct ink writing of catalytically active UiO-66 polymer composites. Chemical Communications, 2019, 55, 2190-2193.	2.2	57
340	Zirconium-Based Metal–Organic Frameworks for the Removal of Protein-Bound Uremic Toxin from Human Serum Albumin. Journal of the American Chemical Society, 2019, 141, 2568-2576.	6.6	105
341	Waterâ€Stable Chemicalâ€Protective Textiles via Euhedral Surfaceâ€Oriented 2D Cu–TCPP Metalâ€Organic Frameworks. Small, 2019, 15, e1805133.	5.2	72

	CITATION REPO	ORT	
Article		IF	CITATIONS
Computational Screening of Roles of Defects and Metal Substitution on Reactivity of Different Sing vs Double-Node Metal–Organic Frameworks for Sarin Decomposition. Journal of Physical Chemist C, 2019, 123, 15157-15165.		1.5	31
Solid-Phase Detoxification of Chemical Warfare Agents using Zirconium-Based Metal Organic Frameworks and the Moisture Effects: Analyze via Digestion. ACS Applied Materials & amp; Interface 2019, 11, 21109-21116.	25,	4.0	50
Toward Green Production of Water-Stable Metal–Organic Frameworks Based on High-Valence Me with Low Toxicities. ACS Sustainable Chemistry and Engineering, 0, , .	etals	3.2	21
Metal–Organic Frameworks Toward Electrocatalytic Applications. Applied Sciences (Switzerland), 2019, 9, 2427.		1.3	55
Introduction to chemical warfare agents, relevant simulants and modern neutralisation methods. Organic and Biomolecular Chemistry, 2019, 17, 6528-6537.	:	1.5	75
Exploring the Role of Hexanuclear Clusters as Lewis Acidic Sites in Isostructural Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 4166-4172.		3.2	80
Metal–organic framework (UiOâ€66)â€dispersed polyurethane composite films for the decontan of methyl paraoxon. Polymer International, 2019, 68, 1502-1508.	nination	1.6	7
Nanozyme: new horizons for responsive biomedical applications. Chemical Society Reviews, 2019, 4 3683-3704.	18,	18.7	1,101
A Stable Mesoporous Zr-Based Metal Organic Framework for Highly Efficient CO ₂ Conversion. Inorganic Chemistry, 2019, 58, 7480-7487.	:	1.9	51
A novel exploration of metal–organic frameworks in flame-retardant epoxy composites. Journal of Thermal Analysis and Calorimetry, 2019, 138, 905-914.	:	2.0	53
Lock and key-based nanozyme model to understand the substituent effect on the hydrolysis of organophosphate-based nerve agents by Zr-incorporated cerium oxide. Polyhedron, 2019, 172, 198	-204.	1.0	8
Single-component frameworks for heterogeneous catalytic hydrolysis of organophosphorous compounds in pure water. Chemical Communications, 2019, 55, 7005-7008.		2.2	28
Discovery of precise pH-controlled biomimetic catalysts: defective zirconium metal–organic frameworks as alkaline phosphatase mimics. Nanoscale, 2019, 11, 11270-11278.		2.8	29
Adsorptive removal of nerve-agent simulant with zirconium-based metal-organic frameworks modifi by hydrophobic monocarboxylic acids. Microporous and Mesoporous Materials, 2019, 285, 61-69.	ed	2.2	21
Correlated Multimodal Approach Reveals Key Details of Nerve-Agent Decomposition by Single-Site Zr-Based Polyoxometalates. Journal of Physical Chemistry Letters, 2019, 10, 2295-2299.	:	2.1	23
Torsion Angle Effect on the Activation of UiO Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 15788-15794.		4.0	31
Selective decontamination of the reactive air pollutant nitrous acid <i>via</i> node-linker cooperativity in a metal–organic framework. Chemical Science, 2019, 10, 5576-5581.	:	3.7	28

359Insight into organophosphate chemical warfare agent simulant hydrolysis in metal-organic6.556frameworks. Journal of Hazardous Materials, 2019, 375, 191-197.6.556

#

#	Article	IF	CITATIONS
360	Insights into the water adsorption mechanism in the chemically stable zirconium-based MOF DUT-67 – a prospective material for adsorption-driven heat transformations. Journal of Materials Chemistry A, 2019, 7, 12681-12690.	5.2	51
361	A new post-synthetic polymerization strategy makes metal–organic frameworks more stable. Chemical Science, 2019, 10, 4542-4549.	3.7	112
362	Pressure promoted low-temperature melting of metal–organic frameworks. Nature Materials, 2019, 18, 370-376.	13.3	134
363	Bioderived protoporphyrin IX incorporation into a metal-organic framework for enhanced photocatalytic degradation of chemical warfare agents. MRS Communications, 2019, 9, 464-473.	0.8	12
364	Highly Selective Heterogeneous Ethylene Dimerization with a Scalable and Chemically Robust MOF Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 6654-6661.	3.2	62
365	<i>De novo</i> synthesis of mesoporous photoactive titanium(<scp>iv</scp>)–organic frameworks with MIL-100 topology. Chemical Science, 2019, 10, 4313-4321.	3.7	72
366	Free energy of metal-organic framework self-assembly. Journal of Chemical Physics, 2019, 150, 104502.	1.2	18
367	Scalable, room temperature, and water-based synthesis of functionalized zirconium-based metal–organic frameworks for toxic chemical removal. CrystEngComm, 2019, 21, 2409-2415.	1.3	67
368	Solar light decomposition of warfare agent simulant DMMP on TiO2/graphene oxide nanocomposites. Catalysis Science and Technology, 2019, 9, 1816-1824.	2.1	13
369	Multiple functional groups in UiO-66 improve chemical warfare agent simulant degradation. Chemical Communications, 2019, 55, 5367-5370.	2.2	54
370	Screening for Improved Nerve Agent Simulants and Insights into Organophosphate Hydrolysis Reactions from DFT and QSAR Modeling. Chemistry - A European Journal, 2019, 25, 9217-9229.	1.7	26
371	<i>In situ</i> construction of metal–organic framework (MOF) UiO-66 film on Parylene-patterned resonant microcantilever for trace organophosphorus molecules detection. Analyst, The, 2019, 144, 3729-3735.	1.7	50
373	A metal–organic framework converted catalyst that boosts photo-electrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 11143-11149.	5.2	59
374	In Situ Growth of Metal–Organic Frameworks in Three-Dimensional Aligned Lumen Arrays of Wood for Rapid and Highly Efficient Organic Pollutant Removal. Environmental Science & Technology, 2019, 53, 2705-2712.	4.6	157
375	Complementary Chromophore Decoration in NUâ€1000 via Solventâ€Assisted Ligands Incorporation: Efficient Energy Transfer within the Metalâ€Organic Frameworks. Bulletin of the Korean Chemical Society, 2019, 40, 128-133.	1.0	14
376	Tuning the Properties of Zr ₆ O ₈ Nodes in the Metal Organic Framework UiO-66 by Selection of Node-Bound Ligands and Linkers. Chemistry of Materials, 2019, 31, 1655-1663.	3.2	97
377	Reticular Access to Highly Porous acs -MOFs with Rigid Trigonal Prismatic Linkers for Water Sorption. Journal of the American Chemical Society, 2019, 141, 2900-2905.	6.6	150
378	Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coordination Chemistry Reviews, 2019, 386, 32-49.	9.5	326

#	Article	IF	CITATIONS
379	Toward Base Heterogenization: A Zirconium Metal–Organic Framework/Dendrimer or Polymer Mixture for Rapid Hydrolysis of a Nerve-Agent Simulant. ACS Applied Nano Materials, 2019, 2, 1005-1008.	2.4	57
380	In-built fabrication of MOF assimilated B/N co-doped 3D porous carbon nanofiber network as a binder-free electrode for supercapacitors. Electrochimica Acta, 2019, 301, 209-219.	2.6	96
381	Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chemical Reviews, 2019, 119, 4357-4412.	23.0	1,955
382	Modeling Gas Adsorption in Flexible Metal–Organic Frameworks via Hybrid Monte Carlo/Molecular Dynamics Schemes. Advanced Theory and Simulations, 2019, 2, 1800177.	1.3	40
383	Halogen bonding in UiO-66 frameworks promotes superior chemical warfare agent simulant degradation. Chemical Communications, 2019, 55, 3481-3484.	2.2	68
384	Metal–Organic-Framework-Supported and -Isolated Ceria Clusters with Mixed Oxidation States. ACS Applied Materials & Interfaces, 2019, 11, 47822-47829.	4.0	39
385	Zn (BDC)-(MOF): Introduction of a New Catalyst for the Synthesis Pyrimido[4,5- <i>d</i>]Pyrimidine Derivatives under Ultrasound Irradiation in the Absence of Solvent. Polycyclic Aromatic Compounds, 2021, 41, 1580-1589.	1.4	12
386	Controlling the Polymorphism and Topology Transformation in Porphyrinic Zirconium Metal–Organic Frameworks via Mechanochemistry. Journal of the American Chemical Society, 2019, 141, 19214-19220.	6.6	73
387	Determining Diffusion Coefficients of Chemical Warfare Agents in Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2019, 10, 7823-7830.	2.1	32
389	Building MOF Nanocomposites with Oxidized Graphitic Carbon Nitride Nanospheres: The Effect of Framework Geometry on the Structural Heterogeneity. Molecules, 2019, 24, 4529.	1.7	14
390	Enriching the Reticular Chemistry Repertoire with Minimal Edge-Transitive Related Nets: Access to Highly Coordinated Metal–Organic Frameworks Based on Double Six-Membered Rings as Net-Coded Building Units. Journal of the American Chemical Society, 2019, 141, 20480-20489.	6.6	42
391	Integration of Metal–Organic Frameworks on Protective Layers for Destruction of Nerve Agents under Relevant Conditions. Journal of the American Chemical Society, 2019, 141, 20016-20021.	6.6	106
392	Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose. Chemical Engineering Journal, 2019, 356, 227-235.	6.6	185
393	Photoelectrocatalytic degradation of vesicant agent using Eu/ZnO/pPy nanocomposite. Environmental Pollution, 2019, 246, 491-500.	3.7	14
394	Detoxification of a Mustard-Gas Simulant by Nanosized Porphyrin-Based Metal–Organic Frameworks. ACS Applied Nano Materials, 2019, 2, 465-469.	2.4	32
395	Key mechanistic details of paraoxon decomposition by polyoxometalates: Critical role of para-nitro substitution. Chemical Physics, 2019, 518, 30-37.	0.9	8
396	Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research. ACS Catalysis, 2019, 9, 1779-1798.	5.5	622
397	Crystal Growth of Metal–Organic Framework-5 around Cellulose-Based Fibers Having a Necklace Morphology. ACS Omega, 2019, 4, 169-175.	1.6	35

#	Article	IF	CITATIONS
398	Facile control of defect site density and particle size of UiO-66 for enhanced hydrolysis rates: insights into feasibility of Zr(IV)-based metal-organic framework (MOF) catalysts. Applied Catalysis B: Environmental, 2019, 245, 635-647.	10.8	79
399	Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chemical Reviews, 2019, 119, 2453-2523.	23.0	260
400	Room temperature decomposition of dimethyl methylphosphonate on cuprous oxide yields atomic phosphorus. Surface Science, 2019, 680, 75-87.	0.8	20
401	A dual-functional bimetallic-organic framework nanosensor for detection and decontamination of lachrymator in drinking water. Sensors and Actuators B: Chemical, 2019, 281, 168-174.	4.0	31
402	Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chemical Society Reviews, 2019, 48, 1004-1076.	18.7	2,528
403	Advice on assistance and protection by the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons: Part 2. On preventing and treating health effects from acute, prolonged, and repeated nerve agent exposure, and the identification of medical countermeasures able to reduce or eliminate the longer term health effects of nerve agents. Toxicology. 2019. 413. 13-23.	2.0	23
404	Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries. Energy Storage Materials, 2019, 18, 165-173.	9.5	155
405	Composite porous carbon textile with deposited barium titanate nanospheres as wearable protection medium against toxic vapors. Chemical Engineering Journal, 2020, 384, 123280.	6.6	23
406	Mechanical properties and decomposition performance of peelable coating containing UiO-66 catalyst and waterborne silane-terminated polyurethane dispersions. Journal of Materials Science, 2020, 55, 2604-2617.	1.7	13
407	MOF thin films with bi-aromatic linkers grown by molecular layer deposition. Journal of Materials Chemistry A, 2020, 8, 2539-2548.	5.2	42
408	Metal Organic Framework Functionalized Fabrics for Detoxification of Chemical Warfare Agents. Industrial & Engineering Chemistry Research, 2020, 59, 569-586.	1.8	39
409	BrĂnsted-Lewis dual acid sites in a chromium-based metal-organic framework for cooperative catalysis: Highly efficient synthesis of quinazolin-(4H)-1-one derivatives. Journal of Colloid and Interface Science, 2020, 561, 782-792.	5.0	40
410	Programming Covalent Organic Frameworks for Photocatalysis: Investigation of Chemical and Structural Variations. Matter, 2020, 2, 416-427.	5.0	110
411	Insights into Catalytic Gas-Phase Hydrolysis of Organophosphate Chemical Warfare Agents by MOF-Supported Bimetallic Metal-Oxo Clusters. ACS Applied Materials & Interfaces, 2020, 12, 14631-14640.	4.0	18
412	Computational Screening of Metal–Organic Framework-Supported Single-Atom Transition-Metal Catalysts for the Gas-Phase Hydrolysis of Nerve Agents. ACS Catalysis, 2020, 10, 1310-1323.	5.5	39
413	Protective Fabrics: Metal-Organic Framework Textiles for Rapid Photocatalytic Sulfur Mustard Simulant Detoxification. Matter, 2020, 2, 404-415.	5.0	92
414	A Decade of UiO-66 Research: A Historic Review of Dynamic Structure, Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal–Organic Framework. Crystal Growth and Design, 2020, 20, 1347-1362.	1.4	306
415	Contributions of metalloporphyrin linkers and Zr6 nodes in gas adsorption on a series of bioinspired zirconium-based metal-organic frameworks: A computational study. Journal of Molecular Structure, 2020, 1204, 127559.	1.8	3

#	Article	IF	Citations
416	Multimodal Characterization of Materials and Decontamination Processes for Chemical Warfare Protection. ACS Applied Materials & amp; Interfaces, 2020, 12, 14721-14738.	4.0	21
417	Defectous UiO-66 MOF Nanocomposites as Reactive Media of Superior Protection against Toxic Vapors. ACS Applied Materials & Interfaces, 2020, 12, 14678-14689.	4.0	44
418	Coordinationâ€Cageâ€Catalysed Hydrolysis of Organophosphates: Cavity―or Surfaceâ€Based?. Chemistry - A European Journal, 2020, 26, 3065-3073.	1.7	38
419	Linker defect engineering for effective reactive site formation in metal–organic framework photocatalysts with a MIL-125(Ti) architecture. Journal of Catalysis, 2020, 392, 119-125.	3.1	27
420	MOF-Assisted Synthesis of Highly Mesoporous Cr ₂ O ₃ /SiO ₂ Nanohybrids for Efficient Lewis-Acid-Catalyzed Reactions. ACS Applied Materials & Interfaces, 2020, 12, 48691-48699.	4.0	14
421	Dry Reactive H2O2–Polymer Complexes for the Degradation of Mustard Gas. ACS Applied Polymer Materials, 2020, 2, 4640-4646.	2.0	7
422	Heterometallic Titanium-Organic Frameworks as Dual-Metal Catalysts for Synergistic Non-buffered Hydrolysis of Nerve Agent Simulants. CheM, 2020, 6, 3118-3131.	5.8	37
423	Green synthesis of Zr-based metal–organic framework hydrogel composites and their enhanced adsorptive properties. Inorganic Chemistry Frontiers, 2020, 7, 4813-4821.	3.0	18
424	Effects of Phase Purity and Pore Reinforcement on Mechanical Behavior of NU-1000 and Silica-Infiltrated NU-1000 Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 49971-49981.	4.0	10
425	Mechanism of the highly effective peptide bond hydrolysis by MOF-808 catalyst under biologically relevant conditions. Physical Chemistry Chemical Physics, 2020, 22, 25136-25145.	1.3	22
426	Transforming Hydroxide-Containing Metal–Organic Framework Nodes for Transition Metal Catalysis. Trends in Chemistry, 2020, 2, 965-979.	4.4	14
427	Ionic Liquid Welding of the UIO-66-NH2 MOF to Cotton Textiles. Industrial & Engineering Chemistry Research, 2020, 59, 19285-19298.	1.8	17
428	Exploring the Effects of Node Topology, Connectivity, and Metal Identity on the Binding of Nerve Agents and Their Hydrolysis Products in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 35657-35675.	4.0	17
429	Microporous Materials in Scalable Shapes: Fiber Sorbents. Chemistry of Materials, 2020, 32, 7081-7104.	3.2	15
430	Electronic Structure Modeling of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8641-8715.	23.0	149
431	Functionalized Carbon Nanoparticle-Based Sensors for Chemical Warfare Agents. ACS Applied Nano Materials, 2020, 3, 8182-8191.	2.4	40
432	Construction of Flexibleâ€onâ€Rigid Hybridâ€Phase Metal–Organic Frameworks for Controllable Multiâ€Drug Delivery. Angewandte Chemie, 2020, 132, 18234-18242.	1.6	8
433	Modulation of crystal growth and structure within cerium-based metal–organic frameworks. CrystEngComm, 2020, 22, 8182-8188.	1.3	17

	CHANON RE		
#	Article	IF	CITATIONS
434	Node-Accessible Zirconium MOFs. Journal of the American Chemical Society, 2020, 142, 21110-21121.	6.6	103
435	Zr ₆ O ₈ Node-Catalyzed Butene Hydrogenation and Isomerization in the Metal–Organic Framework NU-1000. ACS Catalysis, 2020, 10, 14959-14970.	5.5	24
436	Ultrafast Removal of Phosphate from Eutrophic Waters Using a Cerium-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2020, 12, 52788-52796.	4.0	83
437	Metal-organic framework and inorganic glass composites. Nature Communications, 2020, 11, 5800.	5.8	35
438	Simple and highly active strontium-based catalyst for detoxification of an organophosphorus chemical warfare agent simulant. Brazilian Journal of Chemical Engineering, 2020, 37, 533-541.	0.7	4
439	Combining Two into One: A Dual-Function H ₅ PV ₂ Mo ₁₀ O ₄₀ @MOF-808 Composite as a Versatile Decontaminant for Sulfur Mustard and Soman. Inorganic Chemistry, 2020, 59, 11595-11605.	1.9	25
440	Decontamination of VX with Acid-Activated Clay. Journal of Chemical Health and Safety, 2020, 27, 280-287.	1.1	4
441	Catalytic Degradation of an Organophosphorus Agent at Zn–OH Sites in a Metal–Organic Framework. Chemistry of Materials, 2020, 32, 6998-7004.	3.2	32
442	From DNA to Nerve Agents – The Biomimetic Catalysts for the Hydrolysis of Phosphate Esters. ChemistrySelect, 2020, 5, 9492-9516.	0.7	16
443	Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chemical Reviews, 2020, 120, 11810-11899.	23.0	325
444	Catalytic Degradation of Nerve Agents. Catalysts, 2020, 10, 881.	1.6	22
445	Intrinsic Apyraseâ€Like Activity of Ceriumâ€Based Metal–Organic Frameworks (MOFs): Dephosphorylation of Adenosine Tri―and Diphosphate. Angewandte Chemie, 2020, 132, 23152-23156.	1.6	5
446	Microwave-Assisted Solvothermal Synthesis of UiO-66-NH2 and Its Catalytic Performance toward the Hydrolysis of a Nerve Agent Simulant. Catalysts, 2020, 10, 1086.	1.6	21
447	Fiber Composites of Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 7120-7140.	3.2	82
448	Investigating the Process and Mechanism of Molecular Transport within a Representative Solvent-Filled Metal–Organic Framework. Langmuir, 2020, 36, 10853-10859.	1.6	18
449	Bentâ€Butâ€Notâ€Broken: Reactive Metalâ€Organic Framework Composites from Elastomeric Phaseâ€Inverted Polymers. Advanced Functional Materials, 2020, 30, 2005517.	7.8	14
450	Intrinsic Apyraseâ€Like Activity of Ceriumâ€Based Metal–Organic Frameworks (MOFs): Dephosphorylation of Adenosine Tri―and Diphosphate. Angewandte Chemie - International Edition, 2020, 59, 22952-22956.	7.2	50
451	Metal–organic framework based nanozymes: promising materials for biochemical analysis. Chemical Communications, 2020, 56, 11338-11353.	2.2	170

#	Article	IF	CITATIONS
452	Hydrophobic Fluorinated Porous Organic Frameworks for Enhanced Adsorption of Nerve Agents. Applied Sciences (Switzerland), 2020, 10, 8789.	1.3	2
453	Capture and Decomposition of the Nerve Agent Simulant, DMCP, Using the Zeolitic Imidazolate Framework (ZIF-8). ACS Applied Materials & Interfaces, 2020, 12, 58326-58338.	4.0	22
454	Microfluidic High-Throughput Platforms for Discovery of Novel Materials. Nanomaterials, 2020, 10, 2514.	1.9	12
455	Modeling of Diffusion of Acetone in UiO-66. Journal of Physical Chemistry C, 2020, 124, 28469-28478.	1.5	23
456	Mixed-Metal Cerium/Zirconium MOFs with Improved Nerve Agent Detoxification Properties. Inorganic Chemistry, 2020, 59, 16160-16167.	1.9	19
457	The role of defects in the properties of functional coordination polymers. Advances in Inorganic Chemistry, 2020, 76, 73-119.	0.4	6
458	Sprayâ€Coating of Catalytically Active MOF–Polythiourea through Postsynthetic Polymerization. Angewandte Chemie - International Edition, 2020, 59, 13984-13989.	7.2	49
459	Sarin and Air Permeation Through a Nanoporous Graphene. MRS Advances, 2020, 5, 1475-1482.	0.5	0
460	Artificial Metalloenzymes: Recent Developments and Innovations in Bioinorganic Catalysis. Small, 2020, 16, e2000392.	5.2	25
461	Opportunities and critical factors of porous metal–organic frameworks for industrial light olefins separation. Materials Chemistry Frontiers, 2020, 4, 1954-1984.	3.2	48
462	Sprayâ€Coating of Catalytically Active MOF–Polythiourea through Postsynthetic Polymerization. Angewandte Chemie, 2020, 132, 14088-14093.	1.6	12
463	Metal organic frameworks for biomass conversion. Chemical Society Reviews, 2020, 49, 3638-3687.	18.7	176
464	Pore Chemistry of Metal–Organic Frameworks. Advanced Functional Materials, 2020, 30, 2000238.	7.8	245
465	Hydrolytic Nanozymes. European Journal of Organic Chemistry, 2020, 2020, 5044-5055.	1.2	36
466	Mixed-matrix membrane reactors for the destruction of toxic chemicals. Journal of Membrane Science, 2020, 605, 118112.	4.1	14
467	A dual-function all-inorganic intercluster salt comprising the polycation ε-[Al ₁₃ O ₄ (OH) ₂₄ (H ₂ O) ₁₂] ⁷⁺ and polyanion α-[PMo ₁₀ V ₂ O ₄₀] ^{5â^'} for detoxifying sulfur mustard and soman. Dalton Transactions. 2020. 49. 8122-8135.	1.6	5
468	Waste to MOFs: sustainable linker, metal, and solvent sources for value-added MOF synthesis and applications. Green Chemistry, 2020, 22, 4082-4104.	4.6	101
469	Cerium(IV) Enhances the Catalytic Oxidation Activity of Single-Site Cu Active Sites in MOFs. ACS Catalysis, 2020, 10, 7820-7825.	5.5	50

#	Article	IF	CITATIONS
470	Room temperature aqueous synthesis of UiO-66 derivatives <i>via</i> postsynthetic exchange. Dalton Transactions, 2020, 49, 8841-8845.	1.6	19
471	Nanocable catalysts MTe (M = Pt, PtCu)@UIO-67 for CO2 conversion. Science China Materials, 2020, 63, 769-778.	3.5	12
472	Illuminating a Practical Solution to Clothing Protection from Mustard Gas. Matter, 2020, 2, 286-287.	5.0	3
473	Bio-Inspired Polydopamine-Mediated Zr-MOF Fabrics for Solar Photothermal-Driven Instantaneous Detoxification of Chemical Warfare Agent Simulants. ACS Applied Materials & Interfaces, 2020, 12, 18437-18445.	4.0	77
474	Chiral Carbon Dots Mimicking Topoisomeraseâ€I To Mediate the Topological Rearrangement of Supercoiled DNA Enantioselectively. Angewandte Chemie, 2020, 132, 11180-11185.	1.6	25
475	Chiral Carbon Dots Mimicking Topoisomeraseâ€I To Mediate the Topological Rearrangement of Supercoiled DNA Enantioselectively. Angewandte Chemie - International Edition, 2020, 59, 11087-11092.	7.2	100
476	Metal–Organic Frameworks against Toxic Chemicals. Chemical Reviews, 2020, 120, 8130-8160.	23.0	406
477	Tuning Catalytic Sites on Zr ₆ O ₈ Metal–Organic Framework Nodes via Ligand and Defect Chemistry Probed with <i>tert</i> -Butyl Alcohol Dehydration to Isobutylene. Journal of the American Chemical Society, 2020, 142, 8044-8056.	6.6	83
478	Continuous Flow Composite Membrane Catalysts for Efficient Decomposition of Chemical Warfare Agent Simulants. ACS Applied Materials & amp; Interfaces, 2020, 12, 32778-32787.	4.0	24
479	Influence of cyclic and acyclic cucurbiturils on the degradation pathways of the chemical warfare agent VX. Organic and Biomolecular Chemistry, 2020, 18, 5218-5227.	1.5	5
480	Isothermal Titration Calorimetry to Explore the Parameter Space of Organophosphorus Agrochemical Adsorption in MOFs. Journal of the American Chemical Society, 2020, 142, 12357-12366.	6.6	53
481	Construction of Flexibleâ€onâ€Rigid Hybridâ€Phase Metal–Organic Frameworks for Controllable Multiâ€Drug Delivery. Angewandte Chemie - International Edition, 2020, 59, 18078-18086.	7.2	86
482	Continuous phase regulation of MoSe ₂ from 2H to 1T for the optimization of peroxidase-like catalysis. Journal of Materials Chemistry B, 2020, 8, 6451-6458.	2.9	14
483	What triggers dye adsorption by metal organic frameworks? The current perspectives. Materials Advances, 2020, 1, 1575-1601.	2.6	126
484	Mono- and Di-Sc-Substituted Keggin Polyoxometalates: Effective Lewis Acid Catalysts for Nerve Agent Simulant Hydrolysis and Mechanistic Insights. Inorganic Chemistry, 2020, 59, 9756-9764.	1.9	20
485	Impact of intrinsic framework flexibility for selective adsorption of sarin in non-aqueous solvents using metal–organic frameworks. Physical Chemistry Chemical Physics, 2020, 22, 6441-6448.	1.3	22
486	Photothermal graphene/UiO-66-NH2 fabrics for ultrafast catalytic degradation of chemical warfare agent simulants. Journal of Hazardous Materials, 2020, 393, 122332.	6.5	60
487	Multistep Engineering of Synergistic Catalysts in a Metal–Organic Framework for Tandem C–O Bond Cleavage. Journal of the American Chemical Society, 2020, 142, 4872-4882.	6.6	48

# 488	ARTICLE Solvent-assisted linker exchange enabled preparation of cerium-based metal–organic frameworks constructed from redox active linkers. Inorganic Chemistry Frontiers, 2020, 7, 984-990.	IF 3.0	Citations 39
489	Zirconium-Based Metal–Organic Frameworks for the Catalytic Hydrolysis of Organophosphorus Nerve Agents. ACS Applied Materials & Interfaces, 2020, 12, 14702-14720.	4.0	175
490	Swell and Destroy: A Metal–Organic Framework-Containing Polymer Sponge That Immobilizes and Catalytically Degrades Nerve Agents. ACS Applied Materials & Interfaces, 2020, 12, 8634-8641.	4.0	29
491	Tuning Zr ₁₂ O ₂₂ Node Defects as Catalytic Sites in the Metal–Organic Framework hcp UiO-66. ACS Catalysis, 2020, 10, 2906-2914.	5.5	90
492	High-Throughput Screening of MOFs for Breakdown of V-Series Nerve Agents. ACS Applied Materials & Interfaces, 2020, 12, 14672-14677.	4.0	21
493	<scp>Poreâ€Environment</scp> Engineering in Multifunctional <scp>Metalâ€Organic</scp> Frameworks. Chinese Journal of Chemistry, 2020, 38, 509-524.	2.6	28
494	Synthesis of ZIF-8-based multifunctional shell and sustained release of drugs. Inorganic Chemistry Communication, 2020, 114, 107773.	1.8	7
495	Study on Corrosion Resistance of Zn-Al Alloy Coated with Zeolitic Imidazolate Framework-67 Film in 3.5Âwt.% NaCl Solution. Journal of Materials Engineering and Performance, 2020, 29, 1043-1050.	1.2	7
496	The Effect of Surface Hydroxylation on MOF Formation on ALD Metal Oxides: MOF-525 on TiO ₂ /Polypropylene for Catalytic Hydrolysis of Chemical Warfare Agent Simulants. ACS Applied Materials & Interfaces, 2020, 12, 14690-14701.	4.0	39
497	Vapor phase processing: a novel approach for fabricating functional hybrid materials. Nanotechnology, 2020, 31, 342001.	1.3	28
498	Three isostructural Zn/Ni nitro-containing metal-organic frameworks for supercapacitor. Journal of Solid State Chemistry, 2020, 288, 121375.	1.4	17
499	Reticular Chemistry 3.2: Typical Minimal Edge-Transitive <i>Derived</i> and <i>Related</i> Nets for the Design and Synthesis of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8039-8065.	23.0	149
500	Photogenerated Charge Separation in a CdSe Nanocluster Encapsulated in a Metal–Organic Framework for Improved Photocatalysis. Journal of Physical Chemistry C, 2020, 124, 8504-8513.	1.5	14
501	Impact of dehydration and mechanical amorphization on the magnetic properties of Ni(<scp>)i</scp>)-MOF-74. Journal of Materials Chemistry C, 2020, 8, 7132-7142.	2.7	21
502	Ultrafast assembly of swordlike Cu ₃ (1,3,5-benzenetricarboxylate) _n metal–organic framework crystals with exposed active metal sites. Nanoscale Horizons, 2020, 5, 1050-1057.	4.1	16
503	Characterization of the Zirconium Metal-Organic Framework (MOF) UiO-66-NH ₂ for the Decomposition of Nerve Agents in Solid-State Conditions Using Phosphorus-31 Solid State-Magic Angle Spinning Nuclear Magnetic Resonance (³¹ P SS-MAS NMR) and Gas Chromatography †Mass Spectrometry (GC-MS). Analytical Letters. 2021, 54, 468-480.	1.0	7
504	Metal–organic frameworks based on multicarboxylate linkers. Coordination Chemistry Reviews, 2021, 426, 213542.	9.5	158
505	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	1.6	70

#	Article	IF	CITATIONS
506	Breaking the pH limitation of peroxidase-like CoFe2O4 nanozyme via vitriolization for one-step glucose detection at physiological pH. Sensors and Actuators B: Chemical, 2021, 328, 129033.	4.0	38
507	<scp>Metal–organic framework polymer</scp> composite enhancement via acyl chloride modification. Polymer International, 2021, 70, 783-789.	1.6	11
508	Prospective applications of nanometer-scale pore size biomimetic and bioinspired membranes. Journal of Membrane Science, 2021, 620, 118968.	4.1	40
509	Petal-like metal-organic framework stabilized Si@C with long cycle life and excellent kinetics. Journal of Colloid and Interface Science, 2021, 586, 381-390.	5.0	31
510	Doubly Protective MOFâ€Photoâ€Fabrics: Facile Templateâ€Free Synthesis of PCNâ€222â€Textiles Enables Rapid Hydrolysis, Photoâ€Hydrolysis and Selective Oxidation of Multiple Chemical Warfare Agents and Simulants. Chemistry - A European Journal, 2021, 27, 1465-1472.	1.7	24
511	Nanozymes in Environmental Protection. Environmental Chemistry for A Sustainable World, 2021, , 213-241.	0.3	1
512	Facile and rapid synthesis of functionalized Zr-BTC for the optical detection of the blistering agent simulant 2-chloroethyl ethyl sulfide (CEES). Dalton Transactions, 2021, 50, 3261-3268.	1.6	17
513	Tuning the Lewis acidity of metal–organic frameworks for enhanced catalysis. Dalton Transactions, 2021, 50, 3116-3120.	1.6	9
514	Metal–organic frameworks for chemical sensing devices. Materials Horizons, 2021, 8, 2387-2419.	6.4	139
515	In Situ Nuclear Magnetic Resonance Investigation of Molecular Adsorption and Kinetics in Metal–Organic Framework UiO-66. Journal of Physical Chemistry Letters, 2021, 12, 892-899.	2.1	10
516	Introducing reticular chemistry into agrochemistry. Chemical Society Reviews, 2021, 50, 1070-1110.	18.7	106
517	Advancement in functionalized luminescent frameworks and their prospective applications as inkjet-printed sensors and anti-counterfeit materials. Dalton Transactions, 2021, 50, 8657-8670.	1.6	13
518	The Future of Chemical Warfare: How Urbanization and Proliferation of Delivery Mechanisms Create the Need for In-Situ Defense. Advanced Sciences and Technologies for Security Applications, 2021, , 93-109.	0.4	0
519	Surface organometallic and coordination chemistry approach to formation of single site heterogeneous catalysts. , 2021, , .		0
520	Impact of defects on the decomposition of chemical warfare agent simulants in Zrâ€based metal organic frameworks. AICHE Journal, 2021, 67, e17156.	1.8	5
521	Beyond structural motifs: the frontier of actinide-containing metal–organic frameworks. Chemical Science, 2021, 12, 7214-7230.	3.7	43
522	Oxidative detoxification of nerve agent VX simulant by polyoxoniobate: Experimental and theoretical insights. Journal of Catalysis, 2021, 394, 83-93.	3.1	6
523	Bifunctional Europium(III) and Niobium(V) ontaining Saponite Clays for the Simultaneous Optical Detection and Catalytic Oxidative Abatement of Blister Chemical Warfare Agents. Chemistry - A European Journal, 2021, 27, 4723-4730.	1.7	6

#	Article	IF	CITATIONS
524	Successive degradation of organophosphate nerve agent by integrating the merits of artificial enzyme and metal nanoparticle catalyst. Colloids and Interface Science Communications, 2021, 41, 100382.	2.0	5
525	Atomic layer deposition (ALD) assisting the visibility of metal-organic frameworks (MOFs) technologies. Coordination Chemistry Reviews, 2021, 430, 213734.	9.5	17
526	Metalâ€Organic Framework Materials for Light Hydrocarbon Separation. ChemPlusChem, 2021, 86, 387-395.	1.3	11
527	Sonochemical synthesis of Zr-based porphyrinic MOF-525 and MOF-545: Enhancement in catalytic and adsorption properties. Microporous and Mesoporous Materials, 2021, 316, 110985.	2.2	61
528	Paraoxonase Mimic by a Nanoreactor Aggregate Containing Benzimidazolium Calix and <scp>l</scp> â€Histidine: Demonstration of the Acetylcholine Esterase Activity. Chemistry - A European Journal, 2021, 27, 5737-5744.	1.7	1
529	Metal Organic Framework Functionalized Textiles as Protective Clothing for the Detection and Detoxification of Chemical Warfare Agents—A Review. Industrial & Engineering Chemistry Research, 2021, 60, 4218-4239.	1.8	36
530	Microâ€Bioâ€Chemoâ€Mechanicalâ€Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. Advanced Materials, 2021, 33, e2007465.	11.1	60
531	Ammonia Capture within Zirconium Metal–Organic Frameworks: Reversible and Irreversible Uptake. ACS Applied Materials & Interfaces, 2021, 13, 20081-20093.	4.0	36
532	Metal-to-Semiconductor Transition in Two-Dimensional Metal–Organic Frameworks: An <i>Ab Initio</i> Dynamics Perspective. ACS Applied Materials & Interfaces, 2021, 13, 25270-25279.	4.0	8
533	Dimensional Reduction of Lewis Acidic Metal–Organic Frameworks for Multicomponent Reactions. Journal of the American Chemical Society, 2021, 143, 8184-8192.	6.6	59
534	Zirconium Metal–Organic Frameworks Integrating Chloride Ions for Ammonia Capture and/or Chemical Separation. ACS Applied Materials & Interfaces, 2021, 13, 22485-22494.	4.0	27
535	Programmable Logic in Metal–Organic Frameworks for Catalysis. Advanced Materials, 2021, 33, e2007442.	11.1	129
536	HKUST-1 Metal Organic Framework as an Efficient Dual-Function Catalyst: Aziridination and One-Pot Ring-Opening Transformation for Formation of β-Aryl Sulfonamides with C–C, C–N, C–S, and C–O Bonds. Inorganic Chemistry, 2021, 60, 7794-7802.	1.9	19
537	Role of Zr ₆ Metal Nodes in Zr-Based Metal–Organic Frameworks for Catalytic Detoxification of Pesticides. Inorganic Chemistry, 2021, 60, 10249-10256.	1.9	8
538	Tetracycline removal from aqueous solution using zirconium-based metal-organic frameworks (Zr-MOFs) with different pore size and topology: Adsorption isotherm, kinetic and mechanism studies. Journal of Colloid and Interface Science, 2021, 590, 495-505.	5.0	111
539	Designing Oxide Aerogels With Enhanced Sorptive and Degradative Activity for Acute Chemical Threats. Frontiers in Materials, 2021, 8, .	1.2	7
540	Insights into Catalytic Hydrolysis of Organophosphonates at M–OH Sites of Azolate-Based Metal Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 9893-9900.	6.6	45
541	UiO-66-NH2 and Zeolite-Templated Carbon Composites for the Degradation and Adsorption of Nerve Agents. Molecules, 2021, 26, 3837.	1.7	8

#	Article	IF	CITATIONS
542	Battling Chemical Weapons with Zirconium Hydroxide Nanoparticle Sorbent: Impact of Environmental Contaminants on Sarin Sequestration and Decomposition. Langmuir, 2021, 37, 6923-6934.	1.6	8
543	Functional Gels Containing Hydroxamic Acid Degrade Organophosphates in Aqueous Solutions. Industrial & Engineering Chemistry Research, 2021, 60, 8799-8811.	1.8	2
544	Computational catalysis for metal-organic frameworks: An overview. Coordination Chemistry Reviews, 2021, 436, 213777.	9.5	34
545	Product Inhibition and the Catalytic Destruction of a Nerve Agent Simulant by Zirconium-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 30565-30575.	4.0	28
546	A bifunctional composite H5PV2Mo10O40@MOF-808(Ce): Preparation, characterization, and performance in the decontamination of chemical warfare agent surrogates CEES and DMNP. Microporous and Mesoporous Materials, 2021, 322, 111163.	2.2	6
547	Robust Nanocellulose/Metal–Organic Framework Aerogel Composites: Superior Performance for Static and Continuous Disposal of Chemical Warfare Agent Simulants. ACS Applied Materials & Interfaces, 2021, 13, 33516-33523.	4.0	21
548	Ultrathin Zirconium Hydroxide Nanosheetâ€Assembled Nanofibrous Membranes for Rapid Degradation of Chemical Warfare Agents. Small, 2021, 17, e2101639.	5.2	20
549	Metal–Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chemical Reviews, 2021, 121, 12278-12326.	23.0	633
550	Aptamer-Modified Cu ²⁺ -Functionalized C-Dots: Versatile Means to Improve Nanozyme Activities-"Aptananozymes― Journal of the American Chemical Society, 2021, 143, 11510-11519.	6.6	66
551	The forgotten chemistry of group(IV) metals: A survey on the synthesis, structure, and properties of discrete Zr(IV), Hf(IV), and Ti(IV) oxo clusters. Coordination Chemistry Reviews, 2021, 438, 213886.	9.5	40
552	Influence of Defects and Linker Exchange on Removal of Phosphate Using MOFs with the Node Structure <i>M</i> ₆ (OH) ₄ (O) ₄ for <i>M</i> = Hf, Zr, or Ce. Chemistry of Materials, 2021, 33, 5730-5737.	3.2	10
553	Facile integration of Ni-substituted polyoxometalate catalysts into mesoporous light-responsive metal-organic framework for effective photogeneration of hydrogen. Applied Catalysis B: Environmental, 2021, 291, 120091.	10.8	66
554	Facile microwave synthesis of zirconium metal-organic framework thin films on gold and silicon and application to sensor functionalization. Microporous and Mesoporous Materials, 2021, 323, 111133.	2.2	19
555	UiO-66-NH ₂ Fabrics: Role of Trifluoroacetic Acid as a Modulator on MOF Uniform Coating on Electrospun Nanofibers and Efficient Decontamination of Chemical Warfare Agent Simulants. ACS Applied Materials & Margine Science 2021, 13, 39976-39984.	4.0	33
556	Near-instantaneous catalytic hydrolysis of organophosphorus nerve agents with zirconium-based MOF/hydrogel composites. Chem Catalysis, 2021, 1, 721-733.	2.9	49
557	Neutralization of organophosphate over highly dispersed Fe, Cu, and Co on silica. Catalysis Communications, 2021, 156, 106319.	1.6	1
558	Hydrolytic cleavage of nerve agent simulants by gold nanozymes. Journal of Hazardous Materials, 2021, 415, 125644.	6.5	16
559	High-performance Fe-doped ZIF-8 adsorbent for capturing tetracycline from aqueous solution. Journal of Hazardous Materials, 2021, 416, 126046.	6.5	109

#	Article	IF	CITATIONS
560	Benign Synthesis and Modification of a Zn–Azolate Metal–Organic Framework for Enhanced Ammonia Uptake and Catalytic Hydrolysis of an Organophosphorus Chemical. , 2021, 3, 1363-1368.		13
561	Facile Synthesis of Metal–Organic Layers with High Catalytic Performance toward Detoxification of a Chemical Warfare Agent Simulant. ACS Applied Materials & Interfaces, 2021, 13, 40863-40871.	4.0	12
562	Fabrication of cross-like ZIF-L structures with water repellency and self-cleaning property via a simple in-situ growth strategy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126731.	2.3	9
563	Bibliometric Analysis on Decontamination of Chemical Warfare Agents in Last Thirty Years. IOP Conference Series: Earth and Environmental Science, 2021, 831, 012022.	0.2	0
564	Molecular Recognition of Nerve Agents and Their Organophosphorus Surrogates: Toward Supramolecular Scavengers and Catalysts. Chemistry - A European Journal, 2021, 27, 13280-13305.	1.7	15
565	Molecular Cage-Mediated Radial Gradient Porous Sponge Nanofiber for Selective Adsorption of a Mustard Gas Simulant. ACS Applied Materials & Interfaces, 2021, 13, 47835-47844.	4.0	10
566	Rational design of three-dimensional graphene/graphene oxide-based architectures for the efficient adsorption of contaminants from aqueous solutions. Journal of Molecular Liquids, 2021, 343, 117709.	2.3	8
567	Integrating Two Highly Active Components into One for Decontaminating Sulfur Mustard and Sarin. Industrial & Engineering Chemistry Research, 2021, 60, 14193-14202.	1.8	4
568	Utilizing Zirconium MOFâ€functionalized Fiber Substrates Prepared by Molecular Layer Deposition for Toxic Gas Capture and Chemical Warfare Agent Degradation. Global Challenges, 2021, 5, 2100001.	1.8	10
569	"Shake â€~n Bake―Route to Functionalized Zr-UiO-66 Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 14294-14301.	1.9	20
570	Immobilized Regenerable Active Chlorine within a Zirconium-Based MOF Textile Composite to Eliminate Biological and Chemical Threats. Journal of the American Chemical Society, 2021, 143, 16777-16785.	6.6	64
571	Photo-assisted enhancement performance for rapid detoxification of chemical warfare agent simulants over versatile ZnIn2S4/UiO-66-NH2 nanocomposite catalysts. Journal of Hazardous Materials, 2021, 417, 126056.	6.5	18
572	Applications of phytochemicals against nerve agents in counterterrorism. , 2021, , 69-118.		0
573	Isomer of linker for NU-1000 yields a new she -type, catalytic, and hierarchically porous, Zr-based metal–organic framework. Chemical Communications, 2021, 57, 3571-3574.	2.2	25
574	Recent advances in the capture and abatement of toxic gases and vapors by metal–organic frameworks. Materials Chemistry Frontiers, 2021, 5, 5970-6013.	3.2	44
575	Atomic resolution tracking of nerve-agent simulant decomposition and host metal–organic framework response in real space. Communications Chemistry, 2021, 4, .	2.0	8
576	Differentiating Zr/Hf ^{IV} Aqueous Polyoxocation Chemistry with Peroxide Ligation. Inorganic Chemistry, 2021, 60, 1631-1640.	1.9	13
577	Decomposition of the Simulant 2-Chloroethyl Ethyl Sulfide Blister Agent under Ambient Conditions Using Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 3782-3792.	4.0	16

	CITATION	REPORT	
#	Article	IF	Citations
578	Metal-Organic Frameworks: Synthetic Methods and Potential Applications. Materials, 2021, 14, 310.	1.3	112
579	A microporous shp -topology metal–organic framework with an unprecedented high-nuclearity Co ₁₀ -cluster for iodine capture and histidine detection. Materials Chemistry Frontiers, 2021, 5, 4300-4309.	3.2	27
580	Rapid, Biomimetic Degradation of a Nerve Agent Simulant by Incorporating Imidazole Bases into a Metal–Organic Framework. ACS Catalysis, 2021, 11, 1424-1429.	5.5	36
581	Crystal engineering of coordination networks: then and now. , 2021, , 17-60.		Ο
582	The role of metal–organic porous frameworks in dual catalysis. Inorganic Chemistry Frontiers, 2021, 8, 3618-3658.	3.0	30
583	Hierarchically Structured Twoâ€Dimensional Bimetallic CoNiâ€Hexaaminobenzene Coordination Polymers Derived from Co(OH) ₂ for Enhanced Oxygen Evolution Catalysis. Small, 2020, 16, e1907043.	5.2	32
584	The Amazing Chemistry of Metal-Organic Frameworks. , 2017, , 339-369.		3
585	First-Principles Calculation. Springer Handbooks, 2019, , 1097-1130.	0.3	3
586	Impact of nanoceria shape on degradation of diethyl paraoxon: Synthesis, catalytic mechanism, and water remediation application. Environmental Research, 2020, 188, 109653.	3.7	9
587	Uncovering the Role of Metal–Organic Framework Topology on the Capture and Reactivity of Chemical Warfare Agents. Chemistry of Materials, 2020, 32, 4609-4617.	3.2	70
588	Fracture toughness of a metal–organic framework glass. Nature Communications, 2020, 11, 2593.	5.8	76
589	Metal–Organic Frameworks (MOFs) as Potential Hybrid Ferroelectric Materials. RSC Smart Materials, 2019, , 197-244.	0.1	2
590	Interplay between structural parameters and reactivity of Zr ₆ -based MOFs as artificial proteases. Chemical Science, 2020, 11, 6662-6669.	3.7	38
591	Freestanding Metal Organic Frameworkâ€Based Multifunctional Membranes Fabricated via Pseudomorphic Replication toward Liquid―and Gasâ€Hazards Abatement. Advanced Materials Interfaces, 2021, 8, 2101178.	1.9	3
592	Nanozyme-Participated Biosensing of Pesticides and Cholinesterases: A Critical Review. Biosensors, 2021, 11, 382.	2.3	12
593	Design Rules for Chemostrictive Materials as Selective Molecular Barriers. Advanced Engineering Materials, 0, , 2101112.	1.6	1
594	Micropore environment regulation of zirconium MOFs for instantaneous hydrolysis of an organophosphorus chemical. Cell Reports Physical Science, 2021, 2, 100612.	2.8	10
595	Layer-by-Layer Integration of Zirconium Metal–Organic Frameworks onto Activated Carbon Spheres and Fabrics with Model Nerve Agent Detoxification Properties. ACS Applied Materials & Interfaces, 2021, 13, 50491-50496.	4.0	20

#	Article	IF	CITATIONS
596	Nanoflake-Engineered Zirconic Fibrous Aerogels with Parallel-Arrayed Conduits for Fast Nerve Agent Degradation. Nano Letters, 2021, 21, 8839-8847.	4.5	10
597	Adsorption and Decomposition of Dimethyl Methylphosphonate on Size-Selected Zirconium Oxide Trimer Clusters. Journal of Physical Chemistry C, 2021, 125, 23688-23698.	1.5	5
598	Defect Level and Particle Size Effects on the Hydrolysis of a Chemical Warfare Agent Simulant by UiO-66. Inorganic Chemistry, 2021, 60, 16378-16387.	1.9	16
599	Potentiality of Nanoenzymes for Cancer Treatment and Other Diseases: Current Status and Future Challenges. Materials, 2021, 14, 5965.	1.3	25
600	Metal–organic frameworks for the generation of reactive oxygen species. Chemical Physics Reviews, 2021, 2, .	2.6	7
601	Suvremena sredstva za dekontaminaciju bojnih otrova. Kemija U Industriji, 2019, 68, 599-608.	0.2	0
602	Wearable membranes from zirconium-oxo clusters cross-linked polymer networks for ultrafast chemical warfare agents decontamination. Chinese Chemical Letters, 2022, 33, 3241-3244.	4.8	6
603	Materials for the Simultaneous Entrapment and Catalytic Aerobic Oxidative Removal of Sulfur Mustard Simulants. ACS Applied Materials & Interfaces, 2021, 13, 51519-51524.	4.0	5
604	Identifying UiOâ€67 Metalâ€Organic Framework Defects and Binding Sites through Ammonia Adsorption. ChemSusChem, 2022, 15, .	3.6	6
606	Metall-organiske rammeverk: Supermaterialer som kan gjÃ,re verden til et tryggere sted. Naturen, 2020, 144, 226-233.	0.0	0
607	Green MIP-202(Zr) Catalyst: Degradation and Thermally Robust Biomimetic Sensing of Nerve Agents. Journal of the American Chemical Society, 2021, 143, 18261-18271.	6.6	33
608	Engineered Nanoenzymes with Multifunctional Properties for Nextâ€Generation Biological and Environmental Applications. Advanced Functional Materials, 2022, 32, 2108650.	7.8	43
609	Blocking chemical warfare agent simulants by graphene oxide/polymer multilayer membrane based on hydrogen bonding and size sieving effect. Journal of Hazardous Materials, 2022, 427, 127884.	6.5	5
610	Defect engineering in nanozymes. Materials Today, 2022, 52, 327-347.	8.3	91
611	Selective and Sensitive Fluorescence Turnâ€on Detection of Cyanide Ions in Water by Post Metallization of a MOF. ChemPlusChem, 2021, 87, e202100426.	1.3	6
612	Enhanced Adsorption and Mass Transfer of Hierarchically Porous Zr-MOF Nanoarchitectures toward Toxic Chemical Removal. ACS Applied Materials & amp; Interfaces, 2021, 13, 58848-58861.	4.0	15
613	FDA-Approved Oximes and Their Significance in Medicinal Chemistry. Pharmaceuticals, 2022, 15, 66.	1.7	39
614	MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chemical Society Reviews, 2022, 51, 1045-1097.	18.7	148

#	Article	IF	CITATIONS
615	Development of a Metal–Organic Framework/Textile Composite for the Rapid Degradation and Sensitive Detection of the Nerve Agent VX. Chemistry of Materials, 2022, 34, 1269-1277.	3.2	22
616	Fabrication of a hybrid from metal organic framework and sepiolite (ZIF-8@SEP) for reducing the fire hazards in thermoplastic polyurethane. Applied Clay Science, 2022, 216, 106376.	2.6	13
617	Vanadium(V ^{IV})–Porphyrin-Based Metal–Organic Frameworks for Synergistic Bimetallic Activation of Inert C(sp ³)–H Bonds. ACS Applied Materials & Interfaces, 2022, 14, 2794-2804.	4.0	9
618	Amine-substituent induced highly selective and rapid "turn-on―detection of carcinogenic 1,4-dioxane from purely aqueous and vapour phase with novel post-synthetically modified d10-MOFs. Dalton Transactions, 2022, 51, 2083-2093.	1.6	14
619	Organophosphorus chemical security from a peaceful perspective: sustainable practices in its synthesis, decontamination and detection. Green Chemistry, 2022, 24, 585-613.	4.6	19
620	Materials Nanoarchitectonics Here, There, Everywhere: Looking Back and Leaping Forward. RSC Nanoscience and Nanotechnology, 2022, , 546-578.	0.2	1
621	Data-informed discovery of hydrolytic nanozymes. Nature Communications, 2022, 13, 827.	5.8	73
622	Effective Degradation of Novichok Nerve Agents by the Zirconium Metal–Organic Framework MOF-808. ACS Applied Materials & Interfaces, 2022, 14, 9222-9230.	4.0	18
623	Coordination Polymers in Adsorptive Remediation of Environmental Contaminants. SSRN Electronic Journal, 0, , .	0.4	0
624	Metal–organic cages against toxic chemicals and pollutants. Chemical Communications, 2022, 58, 5055-5071.	2.2	24
625	Metal–Organic Frameworks (MOFs) as Versatile Detoxifiers for Chemical Warfare Agents (CWAs). , 2022, , 453-489.		1
626	Computational Approach Toward Identification and Catalytic Degradation of Chemical Warfare Agents Using MOFs. , 2022, , 431-451.		3
627	A smart nanoprobe based on luminescent terbium metal–organic framework coated gold nanorods for monitoring and photo-stimulated combined thermal-chemotherapy. Journal of Rare Earths, 2022, 40, 1371-1381.	2.5	9
628	Synergistic Effect of Sorption and Hydrolysis by NU-1000 Nanostructures for Removal and Detoxification of Chlorpyrifos. ACS Applied Nano Materials, 2022, 5, 3312-3324.	2.4	7
629	Recent Advances on Nanozymeâ \in based Electrochemical Biosensors. Electroanalysis, 2023, 35, .	1.5	12
630	An Unprecedented FeMo ₆ @Ceâ€Uioâ€66 Nanocomposite with Cascade Enzymeâ€Mimic Activity a Colorimetric Sensing Platform. Chemistry - A European Journal, 2022, , .	^{3S} 1.7	6
631	Mechanism for Catalytic Stability Enhancement of Fe ^{III} [Co ^{III} (CN) ₆] by Doping Divalent Ions for Organophosphate Hydrolysis. Journal of Physical Chemistry C, 2022, 126, 5564-5574.	1.5	3
632	Nanobody and Nanozymeâ€Enabled Immunoassays with Enhanced Specificity and Sensitivity. Small Methods, 2022, 6, e2101576.	4.6	23

#	Article	IF	CITATIONS
633	Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
634	Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angewandte Chemie, 0, , .	1.6	0
635	Perspectives in Adsorptive and Catalytic Mitigations of NO _{<i>x</i>} Using Metal–Organic Frameworks. Energy & Fuels, 2022, 36, 3347-3371.	2.5	13
636	Fabrication of metal-organic framework architectures with macroscopic size: A review. Coordination Chemistry Reviews, 2022, 462, 214520.	9.5	26
637	Linear α-olefin oligomerization and polymerization catalyzed by metal-organic frameworks. Coordination Chemistry Reviews, 2022, 462, 214522.	9.5	27
638	In-situ detoxification of schedule-I chemical warfare agents utilizing Zr(OH)4@W-ACF functional material for the development of next generation NBC protective gears. Scientific Reports, 2021, 11, 24421.	1.6	5
639	Generating Catalytic Sites in UiO-66 through Defect Engineering. ACS Applied Materials & Interfaces, 2021, 13, 60715-60735.	4.0	86
640	Metalâ^'Organic Framework and Its Nanocomposites as Chemical Sensors. ACS Symposium Series, 0, , 83-124.	0.5	3
641	Nanozymes with Multiple Activities: Prospects in Analytical Sensing. Biosensors, 2022, 12, 251.	2.3	23
642	Degradation of G-Type Nerve Agent Simulant with Phase-Inverted Spherical Polymeric-MOF Catalysts. ACS Applied Materials & Interfaces, 2022, 14, 19747-19755.	4.0	15
643	Metal-organic frameworks for the prolific purification of hazardous airborne pollutants. , 2022, , 47-104.		0
644	Green synthesis of zirconium MOF-808 for simultaneous phosphate recovery and organophosphorus pesticide detoxification in wastewater. Journal of Materials Chemistry A, 2022, 10, 19606-19611.	5.2	23
645	Progress on 3Dâ€Printed Metalâ€Organic Frameworks with Hierarchical Structures. Advanced Materials Technologies, 2022, 7, .	3.0	10
646	Sensor Array Chip for Realâ€Time Field Detection and Discrimination of Organophosphorus Neurotoxins. ChemElectroChem, 2022, 9, .	1.7	6
647	A comprehensive review on water remediation using UiO-66 MOFs and their derivatives. Chemosphere, 2022, 302, 134845.	4.2	69
648	Computational study of BrÃ,nsted acidity in the metal–organic framework UiO-66. Chemical Physics Letters, 2022, 800, 139658.	1.2	2
649	Surfactant regulated synthesis of ZIF-8 crystals as carbonic anhydrase-mimicking nanozyme. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129103.	2.3	7
650	Development of a multimetal-based phosphotriesterase hybrid nanoflowers for decontamination of environmental organophosphorus compounds pollution. Chemical Engineering Journal, 2022, 446, 136933.	6.6	5

#	Article	IF	CITATIONS
651	3d Supramolecular Assembly of Cu(li) Cp Containing 1d Zig-Zag Chain and 2d Paddle-Wheel Net: Crystal Structure Determination and Band Gap Study. SSRN Electronic Journal, 0, , .	0.4	0
652	Aqueous-Phase Destruction of Nerve-Agent Simulants at Copper Single Atoms in UiO-66. Inorganic Chemistry, 2022, 61, 8585-8591.	1.9	5
653	Aggregation-Suppressed Porous Processable Hexa-Zirconium/Polymer Composites for Detoxification of a Nerve Agent Simulant. Chemistry of Materials, 2022, 34, 4983-4991.	3.2	7
654	Selective Oxidation of 2-Chloroethyl Ethyl Sulfide in Aqueous Media Catalyzed by {Mo ₇₂ M ₃₀ } Nano-polyoxometalate Clusters Differentiating the Catalytic Activity of Nodal Metals. Industrial & Engineering Chemistry Research, 2022, 61, 7699-7708.	1.8	2
655	Zirconium Metal–Organic Polyhedra with Dual Behavior for Organophosphate Poisoning Treatment. ACS Applied Materials & Interfaces, 2022, 14, 26501-26506.	4.0	9
656	Combined Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66. Journal of Chemical Theory and Computation, 2022, 18, 3593-3606.	2.3	19
657	Improving Water Quality Using Metalâ ² Organic Frameworks. ACS Symposium Series, 0, , 171-191.	0.5	8
658	Construction of hierarchically porous metal-organic frameworks via vapor atmosphere etching. Science China Materials, 2022, 65, 3062-3068.	3.5	7
659	Facile in-situ strategy for incorporating amphoteric dopamine into metal–organic framework with optimized degradation capacity of nerve agents simulant. Chemical Engineering Journal, 2022, 448, 137702.	6.6	9
660	Washable and Reusable Zr-Metal–Organic Framework Nanostructure/Polyacrylonitrile Fibrous Mats for Catalytic Degradation of Real Chemical Warfare Agents. ACS Applied Nano Materials, 2022, 5, 9657-9665.	2.4	4
661	Mechanistic Investigations of Gas-Phase Catalytic Hydrogenation in Metal–Organic Frameworks: Cooperative Activity of the Metal and Linker Sites in Cu _{<i>x</i>} Rh _{3–<i>x</i>} (BTC) ₂ . Journal of Physical Chemistry C, 2022, 126, 11553-11565.	1.5	3
662	Coordination polymers in adsorptive remediation of environmental contaminants. Coordination Chemistry Reviews, 2022, 470, 214694.	9.5	16
663	Insights into dual-functional modification for water stability enhancement of mesoporous zirconium metal–organic frameworks. Journal of Materials Chemistry A, 2022, 10, 17307-17316.	5.2	7
664	Experimental and Simulation Studies of the Adsorption of Methylbenzene by Fe(III)-Doped NU-1000 (Zr). ACS Applied Materials & Interfaces, 2022, 14, 40052-40061.	4.0	4
665	Incorporation of Metal–Organic Frameworks onto Polypropylene Fibers Using a Phase Inverted Poly(ether- <i>block</i> -amide) Glue. Industrial & Engineering Chemistry Research, 2022, 61, 13298-13302.	1.8	4
666	Fast and Selective Detection of Trace Chemical Warfare Agents Enabled by an ESIPT-Based Fluorescent Film Sensor. Analytical Chemistry, 2022, 94, 11151-11158.	3.2	11
667	3D supramolecular assembly of Cu(II) CP containing 1D zig-zag chain and 2D paddle-wheel net: Structural elucidation and investigation of band gap. Inorganica Chimica Acta, 2022, 543, 121206.	1.2	0
668	Metal–organic-framework composite-based rapid self-detoxifying smart textile filters for chemical warfare agents. , 2023, , 33-79.		0

		CITATION REPORT		
#	Article		IF	CITATIONS
669	Chemical warfare agents: an outlook on past and present technologies. , 2023, , 3-31.			1
670	Synthesis of a UiO-66/g-C ₃ N ₄ composite using terephthalic waste plastic for the photocatalytic degradation of the chemical warfare agent simular paraoxon. RSC Advances, 2022, 12, 22367-22376.		1.7	16
671	Vibrational spectroscopy investigation of defects in Zr- and Hf-UiO-66. RSC Advances, 22440-22447.	2022, 12,	1.7	5
672	Nanobiocatalysis: a materials science road to biocatalysis. Chemical Society Reviews, 2 6948-6964.	022, 51,	18.7	27
673	Accessing a Forbidden Disordered State of a Zeolitic Imidazolate Framework with High Toughness through Irradiation. Chemistry of Materials, 2022, 34, 8749-8759.	er Stiffness and	3.2	7
674	Prediction of chemical warfare agents based on cholinergic array type meta-predictors. Reports, 2022, 12, .	Scientific	1.6	1
675	Adsorptive degradation of dimethyl methylphosphonate over Zr-based metal–organi from 3,3′,5,5′-azobenzenetetracarboxylic acid. Journal of Hazardous Materials Le		2.0	5
676	Two amino acid Cu (II)-MOFs via one-pot method: Exhibiting good catalytic effect on the decomposition of ammonium perchlorate and hexogen. Journal of Solid State Chemistre 123551.	ne thermal ry, 2022, 316,	1.4	2
677	Catalytically active silver nanoparticles stabilized on a thiol-functionalized metal–org framework for an efficient hydrogen evolution reaction. Nanoscale, 2022, 14, 17345-1		2.8	5
678	Solid-state degradation and visual detection of the nerve agent GB by SA@UiO-66-NH ₂ @PAMAM hydrogel. Polymer Chemistry, 2022, 13, 6205	-6212.	1.9	5
679	Feasible Detoxification Coating Material for Chemical Warfare Agents Using Poly(meth ACS Applied Materials & Amp; Interfaces, 2022, 14, 50246-50255.	ıyl) Tj ETQq0 0 0 rgBT /Ovei	lock 10 T 4.0	f 50 347 Td 3
680	Cooperative Catalysis between Dual Copper Centers in a Metal–Organic Framework Detoxification of Chemical Warfare Agent Simulants. Journal of the American Chemical 144, 21046-21055.		6.6	18
681	Metal-organic-framework-involved nanobiocatalysis for biomedical applications. Chem 2, 2552-2589.	Catalysis, 2022,	2.9	8
682	Reticular chemistry for the rational design of mechanically robust mesoporous merged metal-organic frameworks. Matter, 2023, 6, 285-295.	-net	5.0	12
683	The Dependence of Olefin Hydrogenation and Isomerization Rates on Zirconium Metal Framework Structure. ACS Catalysis, 2022, 12, 13671-13680.	–Organic	5.5	3
684	Impact of Loading-Dependent Intrinsic Framework Flexibility on Adsorption in UiO-66. J Physical Chemistry C, 2022, 126, 17699-17711.	lournal of	1.5	7
685	Aptamer-Modified Au Nanoparticles: Functional Nanozyme Bioreactors for Cascaded C Catalysts for Chemodynamic Treatment of Cancer Cells. ACS Nano, 2022, 16, 18232-1		7.3	32
686	UiO-66(Zr/Ti) for catalytic PET polycondensation. Molecular Catalysis, 2022, 532, 1127	741.	1.0	5

#	Article	IF	CITATIONS
687	Biomedical engineered nanomaterials to alleviate tumor hypoxia for enhanced photodynamic therapy. Pharmacological Research, 2022, 186, 106551.	3.1	15
688	Rational Design of a Zr-MOF@Curli-Polyelectrolyte Hybrid Membrane toward Efficient Chemical Protection, Moisture Permeation, and Catalytic Detoxification. ACS Applied Materials & Interfaces, 2022, 14, 53421-53432.	4.0	3
689	Recent progress in metal-organic frameworks (MOFs) for CO2 capture at different pressures. Journal of Environmental Chemical Engineering, 2022, 10, 108930.	3.3	28
690	UiO-66/TiO2 nanostructures as adsorbent/photocatalytic composites for air treatment towards dry dimethyl methylphosphonate-laden air flow as a chemical warfare agent analog. Catalysis Today, 2023, 413-415, 113960.	2.2	0
691	Catalytic degradation of CWAs with MOF-808 and PCN-222: Toward practical application. Journal of Chemical Research, 2022, 46, 174751982211380.	0.6	2
692	A General Strategy for the Synthesis of Hierarchically Ordered Metal–Organic Frameworks with Tunable Macroâ€; Mesoâ€; and Microâ€Pores. Small, 2023, 19, .	5.2	6
693	Node Distortion as a Tunable Mechanism for Negative Thermal Expansion in Metal–Organic Frameworks. Journal of the American Chemical Society, 2023, 145, 268-276.	6.6	10
694	Mechanism and Kinetics-Guided Discovery of Nanometal Scissors to Cut Phosphoester Bonds. ACS Catalysis, 2023, 13, 504-514.	5.5	9
695	Toward the Design and Construction of Supramolecular Functional Molecular Materials Based on Metal–Metal Interactions. Journal of the American Chemical Society, 2022, 144, 22805-22825.	6.6	34
696	The Atomic Structure and Mechanical Properties of ZIF-4 under High Pressure: Ab Initio Calculations. Molecules, 2023, 28, 22.	1.7	5
697	Aptamer-Functionalized Ce ⁴⁺ -Ion-Modified C-Dots: Peroxidase Mimicking Aptananozymes for the Oxidation of Dopamine and Cytotoxic Effects toward Cancer Cells. ACS Applied Materials & Interfaces, 2022, 14, 55365-55375.	4.0	11
698	Zr- and Ti-based metal–organic frameworks: synthesis, structures and catalytic applications. Chemical Communications, 2023, 59, 2541-2559.	2.2	16
699	Immobilization of BrÃ,nsted basic hexaniobate on the Lewis acidic zirconia using an emulsion assisted self-assembly strategy for synergistic boosting of nerve agent simulant decontamination. Inorganic Chemistry Frontiers, 2023, 10, 1436-1446.	3.0	4
700	MOF–Polymer Mixed Matrix Membranes as Chemical Protective Layers for Solid-Phase Detoxification of Toxic Organophosphates. ACS Applied Materials & Interfaces, 2023, 15, 2933-2939.	4.0	2
701	Dual-Function Detoxifying Nanofabrics against Nerve Agent and Blistering Agent Simulants. ACS Applied Materials & Interfaces, 2023, 15, 1265-1275.	4.0	9
702	Optimization and Synthesis of a La-TMA MOF with Some Improvements in Its Properties. ACS Omega, 2023, 8, 262-270.	1.6	2
703	Tổng hợp vá≌t liệu nano TiO2 ứng dụng để phân há»§y chá≌¥t mô phá»ng chá≌¥t độc thá≌§i	ı kinh DMI	NP.g 2022, , 4

704	Poreâ€Environmentâ€Dependent Photoresponsive Oxidaseâ€like Activity in Hydrogenâ€Bonded Organic Frameworks. Angewandte Chemie, 0, , .	1.6	1	
-----	--	-----	---	--

#	Article	IF	CITATIONS
705	MOF/polymer hybrids through <i>in situ</i> free radical polymerization in metal-organic frameworks. Materials Horizons, 2023, 10, 1301-1308.	6.4	10
706	Porphyrin-Moiety-Functionalized Metal–Organic Layers Exhibiting Catalytic Capabilities for Detoxifying Nerve Agent and Blister Agent Simulants. ACS Applied Materials & Interfaces, 2023, 15, 3297-3306.	4.0	5
707	Metal Node Control of BrÃnsted Acidity in Heterobimetallic Titanium–Organic Frameworks. Journal of the American Chemical Society, 2023, 145, 3855-3860.	6.6	8
708	Poreâ€Environmentâ€Dependent Photoresponsive Oxidaseâ€Like Activity in Hydrogenâ€Bonded Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	7.2	21
709	Effect of a Single Platinum Atom within a Small Metal Oxide Cluster: Reaction of DMMP with Size-Selected Pt ₁ Zr ₂ O ₇ Supported on HOPG. Journal of Physical Chemistry A, 2023, 127, 2895-2901.	1.1	1
710	Aramid nanofibers supported metal-organic framework aerogel for protection of chemical warfare agent. Journal of Colloid and Interface Science, 2023, 640, 192-198.	5.0	2
711	Study on hydrolase mechanism of copper compound nanoparticles and its application in the evaluation of gut bacteria in aquatic environment. Applied Catalysis B: Environmental, 2023, 330, 122639.	10.8	1
712	Nanoconfinementâ€Guided Construction of Nanozymes for Determining H ₂ O ₂ Produced by Sonication. Angewandte Chemie, 2023, 135, .	1.6	0
713	Nanoconfinementâ€Guided Construction of Nanozymes for Determining H ₂ O ₂ Produced by Sonication. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
714	Dark and UV-Enhanced Degradation of Dimethyl Methylphosphonate on Mesoporous CeO ₂ Aerogels. ACS Applied Nano Materials, 2023, 6, 3075-3084.	2.4	Ο
716	Sustainable and Highly Reactive Nerve-Agent Simulant Detoxification: Effective Amine Buffers for Metal–Organic Framework Catalysts. Chemistry of Materials, 2023, 35, 1624-1632.	3.2	2
717	Spontaneously super-hygroscopic MOF-gel microreactors for efficient detoxification of nerve agent simulant in atmospheric environments. Applied Catalysis B: Environmental, 2023, 328, 122516.	10.8	7
718	Oxime-Functionalized, Nonwoven Nanofabrics for Rapid, Inexpensive Decontamination of a Nerve Agent Simulant. ACS Applied Nano Materials, 2023, 6, 3425-3434.	2.4	2
719	Metal-Organic Frameworks Based Chemical Sensors. , 2023, , 36-53.		0
720	High reactivity of mesoporous CeO ₂ to dissociate chemical warfare agent sarin. Materials Chemistry Frontiers, 0, , .	3.2	0
721	Host–Guest Interactions of Zirconium-Based Metal–Organic Framework with Ionic Liquid. Molecules, 2023, 28, 2833.	1.7	1
722	Vapor-Like Water in the NU-1000 Zr-MOF: A Molecular Level Understanding of Balanced Hydrophobicity in Humid Conditions. Journal of Physical Chemistry C, 2023, 127, 6503-6514.	1.5	3
723	High-performance of surface-treated Si-flakes anode via a Schiff-base reaction processed at room-temperature. Materials Chemistry and Physics, 2023, 302, 127676.	2.0	Ο

#	Article	IF	CITATIONS
724	Single copper sites dispersed on metal-organic frameworks boost the degradation of nerve agent simulants. Science China Materials, 0, , .	3.5	0
725	Brittle-to-ductile transition and theoretical strength in a metal–organic framework glass. Nanoscale, 2023, 15, 8235-8244.	2.8	1
726	Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chemical Reviews, 2023, 123, 5347-5420.	23.0	37
730	A mesoporous Zr-based metal–organic framework driven by the assembly of an octatopic linker. Chemical Communications, 2023, 59, 7803-7806.	2.2	2
737	A critical review on emerging photoactive porous materials for sulfide oxidation and sulfur mustard decontamination. Green Chemistry, 2023, 25, 5789-5812.	4.6	5
739	Metal–Organic Frameworks for Luminescence Thermometry. , 2023, , .		0
742	Recent progress in MOFs-based nanozymes for biosensing. Nano Research, 2024, 17, 39-64.	5.8	4
745	Strategies for enhanced bioavailability of oxime reactivators in the central nervous system. Archives of Toxicology, 2023, 97, 2839-2860.	1.9	2
760	Solubility and thermodynamic stability of metal–organic frameworks. , 2024, , 159-178.		0
761	Design, synthesis and applications of functional zirconium-based metal-organic frameworks. Science China Chemistry, 2023, 66, 3383-3397.	4.2	1
765	Reactivity of metal–oxo clusters towards biomolecules: from discrete polyoxometalates to metal–organic frameworks. Chemical Society Reviews, 2024, 53, 84-136.	18.7	5
778	Nanozyme as detector and remediator to environmental pollutants: between current situation and future prospective. Environmental Science and Pollution Research, 2024, 31, 3435-3465.	2.7	0
781	Real-time observation of the exchange process between H ₂ O and NO in the metal–organic framework Ni-MOF-74. Journal of Materials Chemistry A, 2024, 12, 6880-6884.	5.2	0
783	Introduction to metal-organic frameworks and their derivatives. , 2024, , 19-36.		0
784	Mesopore and macropore engineering in metal–organic frameworks for energy environment-related applications. Journal of Materials Chemistry A, 2024, 12, 4931-4970.	5.2	0
786	Role of porous coordination polymers as chemical and bio-sensors in the remediation of environmental contaminants. , 2024, , 65-99.		0