TREM2 deficiency eliminates TREM2+ inflammatory ma in Alzheimerâ€s™disease mouse models

Journal of Experimental Medicine 212, 287-295 DOI: 10.1084/jem.20142322

Citation Report

#	Article	IF	CITATIONS
1	Syk and Yea Shall Find. EBioMedicine, 2015, 2, 1590-1591.	2.7	0
2	Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. Journal of Neuroinflammation, 2015, 12, 139.	3.1	380
3	Genetics ignite focus on microglial inflammation in Alzheimer's disease. Molecular Neurodegeneration, 2015, 10, 52.	4.4	128
4	Myeloid Dendritic Cells are Potential Players in Human Neurodegenerative Diseases. Frontiers in Immunology, 2015, 6, 632.	2.2	34
5	TREM2 in CNS homeostasis and neurodegenerative disease. Molecular Neurodegeneration, 2015, 10, 43.	4.4	115
6	Arginase 1+ microglia reduce Aβ plaque deposition during IL-1β-dependent neuroinflammation. Journal of Neuroinflammation, 2015, 12, 203.	3.1	111
7	Stress Granules Modulate SYK to Cause Microglial Cell Dysfunction in Alzheimer's Disease. EBioMedicine, 2015, 2, 1785-1798.	2.7	42
8	A fresh perspective from immunologists and vaccine researchers: Active vaccination strategies to prevent and reverse Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 1246-1259.	0.4	50
9	RNA-sequencing reveals transcriptional up-regulation of Trem2 in response to bexarotene treatment. Neurobiology of Disease, 2015, 82, 132-140.	2.1	27
10	TREM2 and Risk of Alzheimer's Disease — Friend or Foe?. New England Journal of Medicine, 2015, 372, 2564-2565.	13.9	49
11	R47H Variant of <i>TREM2</i> Associated With Alzheimer Disease in a Large Late-Onset Family. JAMA Neurology, 2015, 72, 920.	4.5	122
12	Nuclear Receptors License Phagocytosis by Trem2 ⁺ Myeloid Cells in Mouse Models of Alzheimer's Disease. Journal of Neuroscience, 2015, 35, 6532-6543.	1.7	144
13	Immune attack: the role of inflammation in Alzheimer disease. Nature Reviews Neuroscience, 2015, 16, 358-372.	4.9	1,677
15	Infection, systemic inflammation, and Alzheimer's disease. Microbes and Infection, 2015, 17, 549-556.	1.0	81
16	TREM2 enables amyloid β clearance by microglia. Cell Research, 2015, 25, 535-536.	5.7	28
17	Microglial Malfunction: The Third Rail in the Development of Alzheimer's Disease. Trends in Neurosciences, 2015, 38, 621-636.	4.2	134
18	CD33 modulates TREM2: convergence of Alzheimer loci. Nature Neuroscience, 2015, 18, 1556-1558.	7.1	134
19	Do glia drive synaptic and cognitive impairment in disease?. Nature Neuroscience, 2015, 18, 1539-1545.	7.1	344

ATION REDO

#	Article	IF	Citations
20	β-amyloid, microglia, and the inflammasome in Alzheimer's disease. Seminars in Immunopathology, 2015, 37, 607-611.	2.8	162
21	Myeloid Cells in Alzheimer's Disease: Culprits, Victims or Innocent Bystanders?. Trends in Neurosciences, 2015, 38, 659-668.	4.2	60
22	Replacement of brain-resident myeloid cells does not alter cerebral amyloid-β deposition in mouse models of Alzheimer's disease. Journal of Experimental Medicine, 2015, 212, 1803-1809.	4.2	81
23	Silencing of TREM2 exacerbates tau pathology, neurodegenerative changes, and spatial learning deficits in P301S tau transgenic mice. Neurobiology of Aging, 2015, 36, 3176-3186.	1.5	81
24	Impact of peripheral myeloid cells on amyloid-β pathology in Alzheimer's disease–like mice. Journal of Experimental Medicine, 2015, 212, 1811-1818.	4.2	99
25	Phagocytosis of apoptotic cells in homeostasis. Nature Immunology, 2015, 16, 907-917.	7.0	632
26	Mesenchymal stem cells for the treatment of neurological diseases: Immunoregulation beyond neuroprotection. Immunology Letters, 2015, 168, 183-190.	1.1	59
27	The Triggering Receptor Expressed on Myeloid Cells 2 Binds Apolipoprotein E. Journal of Biological Chemistry, 2015, 290, 26033-26042.	1.6	218
28	Apolipoprotein E Is a Ligand for Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). Journal of Biological Chemistry, 2015, 290, 26043-26050.	1.6	395
29	Amyloid fibrils activate B-1a lymphocytes to ameliorate inflammatory brain disease. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15016-15023.	3.3	24
30	Is Alzheimer's Associated Amyloid Beta an Innate Immune Protein. , 0, , .		1
31	Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms. ELife, 2016, 5, .	2.8	145
32	Imaging of Leukocyte Trafficking in Alzheimer's Disease. Frontiers in Immunology, 2016, 7, 33.	2.2	36
33	Emerging Roles for the Immune System in Traumatic Brain Injury. Frontiers in Immunology, 2016, 7, 556.	2.2	198
34	Checkpoints to the Brain: Directing Myeloid Cell Migration to the Central Nervous System. International Journal of Molecular Sciences, 2016, 17, 2030.	1.8	12
35	microRNA-34a-Mediated Down-Regulation of the Microglial-Enriched Triggering Receptor and Phagocytosis-Sensor TREM2 in Age-Related Macular Degeneration. PLoS ONE, 2016, 11, e0150211.	1.1	107
36	Overcoming translational barriers impeding development of Alzheimer's disease modifying therapies. Journal of Neurochemistry, 2016, 139, 224-236.	2.1	17
37	Targeting microglia for the treatment of Alzheimer's Disease. Glia, 2016, 64, 1710-1732.	2.5	144

#	Article	IF	CITATIONS
38	Neuroprotective Effect of TREM-2 in Aging and Alzheimer's Disease Model. Journal of Alzheimer's Disease, 2016, 55, 199-217.	1.2	73
39	<scp>sTREM</scp> 2 cerebrospinal fluid levels are a potential biomarker for microglia activity in earlyâ€stage Alzheimer's disease and associate with neuronal injury markers. EMBO Molecular Medicine, 2016, 8, 466-476.	3.3	392
40	TREM2 deficiency reduces the efficacy of immunotherapeutic amyloid clearance. EMBO Molecular Medicine, 2016, 8, 992-1004.	3.3	144
41	Chronic consumption of a western diet induces robust glial activation in aging mice and in a mouse model of Alzheimer's disease. Scientific Reports, 2016, 6, 21568.	1.6	82
42	Early Evidence of Low Bone Density and Decreased Serotonergic Synthesis in the Dorsal Raphe of aÂTauopathy Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 55, 1605-1619.	1.2	41
43	Untangling the Web: Toxic and Protective Effects of Neuroinflammation and PGE ₂ Signaling in Alzheimer's Disease. ACS Chemical Neuroscience, 2016, 7, 454-463.	1.7	45
44	A rare coding variant in TREM2 increases risk for Alzheimer's disease in Han Chinese. Neurobiology of Aging, 2016, 42, 217.e1-217.e3.	1.5	71
45	TREM2 Haplodeficiency in Mice and Humans Impairs the Microglia Barrier Function Leading to Decreased Amyloid Compaction and Severe Axonal Dystrophy. Neuron, 2016, 90, 724-739.	3.8	528
46	TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. Journal of Experimental Medicine, 2016, 213, 667-675.	4.2	565
47	Neurological Disease as a Failure of Brain–Immune Crosstalk: The Multiple Faces of Neuroinflammation. Trends in Immunology, 2016, 37, 668-679.	2.9	190
48	Microglia: A Double-Sided Sword in Stroke. Springer Series in Translational Stroke Research, 2016, , 133-150.	0.1	0
49	Lymphatics in Neurological Disorders: A Neuro-Lympho-Vascular Component of Multiple Sclerosis and Alzheimer's Disease?. Neuron, 2016, 91, 957-973.	3.8	123
50	Multitasking Microglia and Alzheimer's Disease: Diversity, Tools and Therapeutic Targets. Journal of Molecular Neuroscience, 2016, 60, 390-404.	1.1	12
51	Dark microglia: A new phenotype predominantly associated with pathological states. Glia, 2016, 64, 826-839.	2.5	325
52	Targeting innate immunity for neurodegenerative disorders of the central nervous system. Journal of Neurochemistry, 2016, 138, 653-693.	2.1	106
53	The contribution of neuroinflammation to amyloid toxicity in Alzheimer's disease. Journal of Neurochemistry, 2016, 136, 457-474.	2.1	331
54	Extracellular Mitochondria and Mitochondrial Components Act as Damage-Associated Molecular Pattern Molecules in the Mouse Brain. Journal of NeuroImmune Pharmacology, 2016, 11, 622-628.	2.1	34
55	Non-Neuronal Mechanisms of Brain Damage and Repair After Stroke. Springer Series in Translational Stroke Research, 2016, , .	0.1	1

#	Article	IF	CITATIONS
56	Multifaceted interactions between adaptive immunity and the central nervous system. Science, 2016, 353, 766-771.	6.0	282
58	TREM2 Binds to Apolipoproteins, Including APOE and CLU/APOJ, and Thereby Facilitates Uptake of Amyloid-Beta by Microglia. Neuron, 2016, 91, 328-340.	3.8	643
59	The novel monoclonal antibody 9F5 reveals expression of a fragment of GPNMB/osteoactivin processed by furinâ€like protease(s) in a subpopulation of microglia in neonatal rat brain. Glia, 2016, 64, 1938-1961.	2.5	9
60	Inhomogeneous distribution of Ibaâ€1 characterizes microglial pathology in Alzheimer's disease. Glia, 2016, 64, 1562-1572.	2.5	81
61	Neuroinflammation — using big data to inform clinical practice. Nature Reviews Neurology, 2016, 12, 685-698.	4.9	29
62	Cerebrospinal fluid soluble TREM2 in aging and Alzheimer's disease. Alzheimer's Research and Therapy, 2016, 8, 17.	3.0	105
63	Reprint of: Microglial toll-like receptors and Alzheimer's disease. Brain, Behavior, and Immunity, 2016, 55, 166-178.	2.0	14
64	The roles of inflammation and immune mechanisms inÂAlzheimer'sÂdisease. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2016, 2, 99-109.	1.8	161
65	Functional involvement of γ-secretase in signaling of the triggering receptor expressed on myeloid cells-2 (TREM2). Journal of Neuroinflammation, 2016, 13, 17.	3.1	28
66	MicroRNA deregulation and chemotaxis and phagocytosis impairment inÂAlzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2016, 3, 7-17.	1.2	51
67	Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders. Biochemical Pharmacology, 2016, 103, 1-16.	2.0	207
68	Central nervous system myeloid cells as drug targets: current status and translational challenges. Nature Reviews Drug Discovery, 2016, 15, 110-124.	21.5	97
69	Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity, 2016, 44, 450-462.	6.6	2,591
70	Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease. Glia, 2016, 64, 197-213.	2.5	112
71	Opposing roles of the triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells-like transcript 2 in microglia activation. Neurobiology of Aging, 2016, 42, 132-141.	1.5	89
72	The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1316-25.	3.3	311
73	TREM2 Function in Alzheimer's Disease and Neurodegeneration. ACS Chemical Neuroscience, 2016, 7, 420-427.	1.7	100
74	TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nature Reviews Neuroscience, 2016, 17, 201-207.	4.9	312

#	Article	IF	CITATIONS
75	Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-β pathology. Brain, 2016, 139, 1265-1281.	3.7	514
76	Immunotherapies in Alzheimer's disease: Too much, too little, too late or off-target?. Acta Neuropathologica, 2016, 131, 481-504.	3.9	30
77	Toward more predictive genetic mouse models of Alzheimer's disease. Brain Research Bulletin, 2016, 122, 1-11.	1.4	140
78	The Triggering Receptor Expressed on Myeloid Cells 2: A Molecular Link of Neuroinflammation and Neurodegenerative Diseases. Journal of Biological Chemistry, 2016, 291, 4334-4341.	1.6	61
79	Serotonin 2B receptor slows disease progression and prevents degeneration of spinal cord mononuclear phagocytes in amyotrophic lateral sclerosis. Acta Neuropathologica, 2016, 131, 465-480.	3.9	41
80	New insights on the role of microglia in synaptic pruning in health and disease. Current Opinion in Neurobiology, 2016, 36, 128-134.	2.0	431
81	Dendritic cells in brain diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 352-367.	1.8	51
82	Microglial dysfunction connects depression and Alzheimer's disease. Brain, Behavior, and Immunity, 2016, 55, 151-165.	2.0	100
83	Viral gene transfer of APPsα rescues synaptic failure in an Alzheimer's disease mouse model. Acta Neuropathologica, 2016, 131, 247-266.	3.9	131
84	Microglial toll-like receptors and Alzheimer's disease. Brain, Behavior, and Immunity, 2016, 52, 187-198.	2.0	56
85	Microglial genes regulating neuroinflammation in the progression of Alzheimer's disease. Current Opinion in Neurobiology, 2016, 36, 74-81.	2.0	223
86	Perturbation of the transcriptome: implications of the innate immune system in Alzheimer's disease. Current Opinion in Pharmacology, 2016, 26, 47-53.	1.7	14
87	Microglia in Alzheimer's disease: A multifaceted relationship. Brain, Behavior, and Immunity, 2016, 55, 138-150.	2.0	98
88	Triggering Receptor Expressed on Myeloid Cells 2 Deficiency Alters Acute Macrophage Distribution and Improves Recovery after Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 423-435.	1.7	70
89	Targeting neuroinflammation in Alzheimer's disease: evidence for NSAIDs and novel therapeutics. Expert Review of Neurotherapeutics, 2017, 17, 17-32.	1.4	73
90	Inflammation in Alzheimer's disease: Lessons learned from microglia-depletion models. Brain, Behavior, and Immunity, 2017, 61, 1-11.	2.0	266
91	Quantitative Comparison of Dense-Core Amyloid Plaque Accumulation in Amyloid-β Protein Precursor Transgenic Mice. Journal of Alzheimer's Disease, 2017, 56, 743-761.	1.2	39
92	TREM2 Promotes Microglial Survival by Activating Wnt/β-Catenin Pathway. Journal of Neuroscience, 2017, 37, 1772-1784.	1.7	242

CITATION REPORT ARTICLE IF CITATIONS Microglial Biology and Physiology., 2017, , 167-199. 0 Early upregulation of 18-kDa translocator protein in response to acute neurodegenerative damage in 1.5 TREM2-deficient mice. Neurobiology of Aging, 2017, 53, 159-168. The role of peripheral immune cells in the CNS in steady state and disease. Nature Neuroscience, 2017, 7.1 468 20, 136-144. Astrocyte transport of glutamate and neuronal activity reciprocally modulate tau pathology in 1.1 Drosophila. Neuroscience, 2017, 348, 191-200. Clearance of cerebral $A\hat{l}^2$ in Alzheimerâ $\in Ms$ disease: reassessing the role of microglia and monocytes. Cellular and Molecular Life Sciences, 2017, 74, 2167-2201. 2.4 199 Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer's disease: the emerging role for microglia?. Neuroscience and Biobehavioral Reviews, 2017, 77, 148-164. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annual 9.5 1,450 Review of Immunology, 2017, 35, 441-468. New "programmersâ€in tissue macrophage activation. Pflugers Archiv European Journal of Physiology, 2017, 469, 375-383. 1.3 DNA methylation changes at TREM2 intron 1 and TREM2 mRNA expression in patients with Alzheimer's 70 1.5 disease. Journal of Psychiatric Research, 2017, 92, 74-80. TREM2-Ligand Interactions in Health and Disease. Journal of Molecular Biology, 2017, 429, 1607-1629. TREM2, Microglia, and Neurodegenerative Diseases. Trends in Molecular Medicine, 2017, 23, 512-533. 327 3.5 Expression site of P2RY12 in residential microglial cells in astrocytomas correlates with M1 and M2 2.4 marker expression and tumor grade. Acta Neuropathologica Communications, 2017, 5, 4. Elucidating the Role of TREM2 in Alzheimer's Disease. Neuron, 2017, 94, 237-248. 3.8 255 A split-luciferase complementation, real-time reporting assay enables monitoring of the disease-associated transmembrane protein TREM2 in live cells. Journal of Biological Chemistry, 2017, 1.6 16 292, 10651-10663. <scp>TREM</scp>2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO 2.0 240 Reports, 2017, 18, 1186-1198. Single-Cell RNA Sequencing: Unraveling the Brain One Cell at a Time. Trends in Molecular Medicine, 2017, 23, 563-576.

N-glycan and Alzheimer's disease. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2447-2454. 1.1

110	Higher Peripheral TREM2 mRNA Levels Relate to Cognitive Deficits and Hippocampal Atrophy in Alzheimer's Disease and Amnestic Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2017, 58, 413-423.	1.2	38	
-----	--	-----	----	--

94

#

93

94

95

96

97

99

100

101

103

104

105

#	Article	IF	CITATIONS
111	Deficiency of TYROBP, an adapter protein for TREM2 and CR3 receptors, is neuroprotective in a mouse model of early Alzheimer's pathology. Acta Neuropathologica, 2017, 134, 769-788.	3.9	85
112	State of Play in Alzheimer's Disease Genetics. Journal of Alzheimer's Disease, 2017, 58, 631-659.	1.2	34
113	Myeloid Cells in the Central Nervous System. Immunity, 2017, 46, 943-956.	6.6	259
114	A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease. Cell, 2017, 169, 1276-1290.e17.	13.5	3,282
115	Heterozygote galactocerebrosidase (GALC) mutants have reduced remyelination and impaired myelin debris clearance following demyelinating injury. Human Molecular Genetics, 2017, 26, 2825-2837.	1.4	27
116	Gene co-expression networks identify Trem2 and Tyrobp as major hubs in human APOE expressing mice following traumatic brain injury. Neurobiology of Disease, 2017, 105, 1-14.	2.1	39
117	Deficiency of a sulfotransferase for sialic acid-modified glycans mitigates Alzheimer's pathology. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2947-E2954.	3.3	40
118	Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Progress in Neurobiology, 2017, 156, 1-68.	2.8	112
119	Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2017, 37, 637-647.	1.7	329
120	A candidate regulatory variant at the <i>TREM</i> gene cluster associates with decreased Alzheimer's disease risk and increased <i>TREML1</i> and <i>TREM2</i> brain gene expression. Alzheimer's and Dementia, 2017, 13, 663-673.	0.4	48
121	Mechanisms of Organ Injury and Repair by Macrophages. Annual Review of Physiology, 2017, 79, 593-617.	5.6	424
122	A systemic view of Alzheimer disease — insights from amyloid-β metabolism beyond the brain. Nature Reviews Neurology, 2017, 13, 612-623.	4.9	581
123	TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11524-11529.	3.3	328
124	γâ€5ecretase in microglia – implications for neurodegeneration and neuroinflammation. Journal of Neurochemistry, 2017, 143, 445-454.	2.1	15
125	The role of the immune system in Alzheimer disease: Etiology and treatment. Ageing Research Reviews, 2017, 40, 84-94.	5.0	167
126	Human TAUP301L overexpression results in TAU hyperphosphorylation without neurofibrillary tangles in adult zebrafish brain. Scientific Reports, 2017, 7, 12959.	1.6	29
127	The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity, 2017, 47, 566-581.e9.	6.6	1,741
128	Review: Neuropathology and behavioural features of transgenic murine models of Alzheimer's disease. Neuropathology and Applied Neurobiology, 2017, 43, 553-570.	1.8	46

	Сітатіо	n Report	
# 129	ARTICLE Microglia emerge as central players in brain disease. Nature Medicine, 2017, 23, 1018-1027.	IF 15.2	Citations
130	RIPK1 mediates a disease-associated microglial response in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8788-E8797.	3.3	265
131	Increased TREM-2 expression on the subsets of CD11c+ cells in the lungs and lymph nodes during allergic airway inflammation. Scientific Reports, 2017, 7, 11853.	1.6	9
132	An Alzheimerâ€associated TREM2 variant occurs at the <scp>ADAM</scp> cleavage site and affects shedding and phagocytic function. EMBO Molecular Medicine, 2017, 9, 1356-1365.	3.3	164
133	<scp>TREM</scp> 2 shedding by cleavage at the H157‣158 bond is accelerated for the Alzheimer's diseaseâ€associated H157Y variant. EMBO Molecular Medicine, 2017, 9, 1366-1378.	3.3	120
134	Discoidin domain receptor inhibition reduces neuropathology and attenuates inflammation in neurodegeneration models. Journal of Neuroimmunology, 2017, 311, 1-9.	1.1	43
136	The Alzheimer's disease risk factors apolipoprotein E and TREM2 are linked in a receptor signaling pathway. Journal of Neuroinflammation, 2017, 14, 59.	3.1	59
137	Effect of high fat diet on phenotype, brain transcriptome and lipidome in Alzheimer's model mice. Scientific Reports, 2017, 7, 4307.	1.6	69
138	Role of Microglia in Neurological Disorders and Their Potentials as a Therapeutic Target. Molecular Neurobiology, 2017, 54, 7567-7584.	1.9	198
139	P2Y ₁₂ receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia, 2017, 65, 375-387.	2.5	216
140	Alzheimer's diseaseâ€associated TREM2 variants exhibit either decreased or increased ligandâ€dependent activation. Alzheimer's and Dementia, 2017, 13, 381-387.	0.4	192
141	Contributions of triggering-receptor-expressed-on-myeloid-cells-2 to neurological diseases. International Journal of Neuroscience, 2017, 127, 368-375.	0.8	21
142	TREM2/DAP12 Complex Regulates Inflammatory Responses in Microglia via the JNK Signaling Pathway. Frontiers in Aging Neuroscience, 2017, 9, 204.	1.7	53
143	Divergent Neuroinflammatory Regulation of Microglial TREM Expression and Involvement of NF-κB. Frontiers in Cellular Neuroscience, 2017, 11, 56.	1.8	51
144	Alzheimer's Disease: The Role of Microglia in Brain Homeostasis and Proteopathy. Frontiers in Neuroscience, 2017, 11, 680.	1.4	108
145	Caspase-8, association with Alzheimer's Disease and functional analysis of rare variants. PLoS ONE, 2017, 12, e0185777.	1.1	38
146	TREM2 in Neurodegenerative Diseases. Molecular Neurodegeneration, 2017, 12, 56.	4.4	270
147	TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Molecular Neurodegeneration, 2017, 12, 74.	4.4	208

#	Article	IF	CITATIONS
148	Practical considerations for choosing a mouse model of Alzheimer's disease. Molecular Neurodegeneration, 2017, 12, 89.	4.4	305
149	TREM2 and the Progression of Alzheimer's Disease. Current Neurovascular Research, 2017, 14, 177-183.	0.4	8
150	Microglia in Alzheimer's disease. Journal of Clinical Investigation, 2017, 127, 3240-3249.	3.9	622
151	TREM2 Is a Receptor for Î ² -Amyloid that Mediates Microglial Function. Neuron, 2018, 97, 1023-1031.e7.	3.8	462
152	Elevated TREM2 Gene Dosage Reprograms Microglia Responsivity and Ameliorates Pathological Phenotypes in Alzheimer's Disease Models. Neuron, 2018, 97, 1032-1048.e5.	3.8	246
153	Evidence of Wnt/β-catenin alterations in brain and bone of aÂtauopathy mouse model of Alzheimer's disease. Neurobiology of Aging, 2018, 67, 148-158.	1.5	36
154	GDNF-expressing macrophages mitigate loss of dopamine neurons and improve Parkinsonian symptoms in MitoPark mice. Scientific Reports, 2018, 8, 5460.	1.6	30
155	Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. Journal of Experimental Medicine, 2018, 215, 1627-1647.	4.2	281
156	TREM2-activating antibodies abrogate the negative pleiotropic effects of the Alzheimer's disease variant Trem2R47H on murine myeloid cell function. Journal of Biological Chemistry, 2018, 293, 12620-12633.	1.6	75
157	Novel targets in Alzheimer's disease: A special focus on microglia. Pharmacological Research, 2018, 130, 402-413.	3.1	46
158	Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain, 2018, 141, 422-458.	3.7	315
159	Erythromyeloid-Derived TREM2: A Major Determinant of Alzheimer's Disease Pathology in Down Syndrome. Journal of Alzheimer's Disease, 2018, 61, 1143-1162.	1.2	27
160	Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism. Journal of Experimental Medicine, 2018, 215, 745-760.	4.2	182
161	Kv1.3 inhibition as a potential microglia-targeted therapy for Alzheimer's disease: preclinical proof of concept. Brain, 2018, 141, 596-612.	3.7	79
162	Integrated biology approach reveals molecular and pathological interactions among Alzheimer's Aβ42, Tau, TREM2, and TYROBP in Drosophila models. Genome Medicine, 2018, 10, 26.	3.6	23
163	Amyloid-beta modulates microglial responses by binding to the triggering receptor expressed on myeloid cells 2 (TREM2). Molecular Neurodegeneration, 2018, 13, 15.	4.4	124
164	Brain Inflammation Connects Cognitive and Non-Cognitive Symptoms in Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 64, S313-S327.	1.2	31
165	Cellular players that shape evolving pathology and neurodegeneration following traumatic brain injury. Brain, Behavior, and Immunity, 2018, 71, 9-17.	2.0	51

#	ARTICLE	IF	CITATIONS
166	Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis. Circulation Research, 2018, 122, 1661-1674.	2.0	577
167	Tau and neuroinflammation: What impact for Alzheimer's Disease and Tauopathies?. Biomedical Journal, 2018, 41, 21-33.	1.4	262
168	Soluble TREM2 and biomarkers of central and peripheral inflammation in neurodegenerative disease. Journal of Neuroimmunology, 2018, 319, 19-27.	1.1	68
169	Regulatable Lentiviral Hematopoietic Stem Cell Gene Therapy in a Mouse Model of Parkinson's Disease. Stem Cells and Development, 2018, 27, 995-1005.	1.1	10
170	Alzheimer's Disease, Oligomers, and Inflammation. Journal of Alzheimer's Disease, 2018, 62, 1261-1276.	1.2	141
171	Aβ propagation and strains: Implications for the phenotypic diversity in Alzheimer's disease. Neurobiology of Disease, 2018, 109, 191-200.	2.1	57
172	The IL-1Î ² phenomena in neuroinflammatory diseases. Journal of Neural Transmission, 2018, 125, 781-795.	1.4	148
173	Behavioral and transcriptomic analysis of Trem2-null mice: not all knockout mice are created equal. Human Molecular Genetics, 2018, 27, 211-223.	1.4	50
174	Differential contribution of microglia and monocytes in neurodegenerative diseases. Journal of Neural Transmission, 2018, 125, 809-826.	1.4	84
175	Microglia-Mediated Neuroprotection, TREM2 , and Alzheimer's Disease: Evidence From OpticalÂlmaging. Biological Psychiatry, 2018, 83, 377-387.	0.7	84
176	Let's make microglia great again in neurodegenerative disorders. Journal of Neural Transmission, 2018, 125, 751-770.	1.4	19
177	TREM2 expression in the human brain: a marker of monocyte recruitment?. Brain Pathology, 2018, 28, 595-602.	2.1	55
178	Microglia in Alzheimer's disease. Journal of Cell Biology, 2018, 217, 459-472.	2.3	1,188
179	High TREM2 expression correlates with poor prognosis in gastric cancer. Human Pathology, 2018, 72, 91-99.	1.1	43
180	Innate Immunity and Neurodegeneration. Annual Review of Medicine, 2018, 69, 437-449.	5.0	221
181	Influence of lithium in neuron-glia interaction in hippocampal neurons. , 2018, 97, 533-546.	0.0	0
182	Militaryâ€related risk factors for dementia. Alzheimer's and Dementia, 2018, 14, 1651-1662.	0.4	18
183	New insights into the role of TREM2 in Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 66.	4.4	286

#	Article	IF	CITATIONS
184	Molecular Mechanisms of Synaptotoxicity and Neuroinflammation in Alzheimer's Disease. Frontiers in Neuroscience, 2018, 12, 963.	1.4	65
185	TREM2 in Alzheimer's Disease: Microglial Survival and Energy Metabolism. Frontiers in Aging Neuroscience, 2018, 10, 395.	1.7	64
186	TREM2 triggers microglial density and ageâ€related neuronal loss. Clia, 2019, 67, 539-550.	2.5	84
187	TREM2 — a key player in microglial biology and Alzheimer disease. Nature Reviews Neurology, 2018, 14, 667-675.	4.9	396
188	The Early Events That Initiate β-Amyloid Aggregation in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2018, 10, 359.	1.7	85
189	Microglia in Alzheimer's Disease: A Role for Ion Channels. Frontiers in Neuroscience, 2018, 12, 676.	1.4	31
190	Unravelling the glial response in the pathogenesis of Alzheimer's disease. FASEB Journal, 2018, 32, 5766-5777.	0.2	30
191	Insulin Resistance in Alzheimer's Disease. Frontiers in Neuroscience, 2018, 12, 830.	1.4	147
192	Highâ€∎ffinity interactions and signal transduction between Aβ oligomers and <scp>TREM</scp> 2. EMBO Molecular Medicine, 2018, 10, .	3.3	86
193	Inflammation as a central mechanism in Alzheimer's disease. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2018, 4, 575-590.	1.8	1,254
194	Microglial signatures and their role in health and disease. Nature Reviews Neuroscience, 2018, 19, 622-635.	4.9	599
195	The Trem2 R47H Alzheimer's risk variant impairs splicing and reduces Trem2 mRNA and protein in mice but not in humans. Molecular Neurodegeneration, 2018, 13, 49.	4.4	91
196	Lactoferrin-conjugated pH and redox-sensitive polymersomes based on PEG-S-S-PLA-PCL-OH boost delivery of bacosides to the brain. Nanoscale, 2018, 10, 17781-17798.	2.8	27
197	Human Induced Pluripotent Stem Cell-Derived Microglia-Like Cells Harboring TREM2 Missense Mutations Show Specific Deficits in Phagocytosis. Cell Reports, 2018, 24, 2300-2311.	2.9	118
198	Neurodegeneration research: Advances in clinical translational neuroscience infrastructure and methods. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2018, 4, 326-329.	1.8	3
199	The Microglial Response to Neurodegenerative Disease. Advances in Immunology, 2018, 139, 1-50.	1.1	22
201	TREM2-Dependent Effects on Microglia in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2018, 10, 202.	1.7	60
202	Differential Phagocytic Properties of CD45low Microglia and CD45high Brain Mononuclear Phagocytes—Activation and Age-Related Effects. Frontiers in Immunology, 2018, 9, 405.	2.2	102

#	ARTICLE	IF	CITATIONS
203	Brain-Resident Microglia and Blood-Borne Macrophages Orchestrate Central Nervous System Inflammation in Neurodegenerative Disorders and Brain Cancer. Frontiers in Immunology, 2018, 9, 697.	2.2	164
204	Microglia Gone Rogue: Impacts on Psychiatric Disorders across the Lifespan. Frontiers in Molecular Neuroscience, 2017, 10, 421.	1.4	151
205	Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 24.	4.4	267
206	The role of TREM2 in Alzheimer's disease and other neurodegenerative disorders. Lancet Neurology, The, 2018, 17, 721-730.	4.9	161
207	The Trem2 R47H variant confers loss-of-function-like phenotypes in Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 29.	4.4	147
208	P2X7 as a scavenger receptor for innate phagocytosis in the brain. British Journal of Pharmacology, 2018, 175, 4195-4208.	2.7	50
209	Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nature Reviews Immunology, 2018, 18, 759-772.	10.6	394
210	Microglial TREM2/DAP12 Signaling: A Double-Edged Sword in Neural Diseases. Frontiers in Cellular Neuroscience, 2018, 12, 206.	1.8	186
211	CD200 modulates spinal cord injury neuroinflammation and outcome through CD200R1. Brain, Behavior, and Immunity, 2018, 73, 416-426.	2.0	30
212	Loss of Trem2 in microglia leads to widespread disruption of cell coexpression networks in mouse brain. Neurobiology of Aging, 2018, 69, 151-166.	1.5	25
213	Neuroinflammation in Age-Related Neurodegenerative Diseases. , 2018, , 477-507.		0
214	Triggering receptor expressed on myeloid cells 2 (TREM2): a potential therapeutic target for Alzheimer disease?. Expert Opinion on Therapeutic Targets, 2018, 22, 587-598.	1.5	27
215	A Candidate Regulatory Variant at the TREM Gene Cluster Confer Alzheimer's Disease Risk by Modulating Both Amyloid-β Pathology and Neuronal Degeneration. Frontiers in Neuroscience, 2019, 13, 742.	1.4	2
216	The <i>MS4A</i> gene cluster is a key modulator of soluble TREM2 and Alzheimer's disease risk. Science Translational Medicine, 2019, 11, .	5.8	170
217	Overexpression of TIPE2, a Negative Regulator of Innate and Adaptive Immunity, Attenuates Cognitive Deficits in APP/PS1 Mice. Journal of NeuroImmune Pharmacology, 2019, 14, 519-529.	2.1	11
218	TREM2 Acts Downstream of CD33 in Modulating Microglial Pathology in Alzheimer's Disease. Neuron, 2019, 103, 820-835.e7.	3.8	222
219	Impact of TREM2 risk variants on brain region-specific immune activation and plaque microenvironment in Alzheimer's disease patient brain samples. Acta Neuropathologica, 2019, 138, 613-630.	3.9	68
220	Systemic inflammation impairs microglial Aî² clearance through <scp>NLRP</scp> 3 inflammasome. EMBO Journal, 2019, 38, e101064.	3.5	226

#	Article	IF	CITATIONS
221	Peripheral TREM1 responses to brain and intestinal immunogens amplify stroke severity. Nature Immunology, 2019, 20, 1023-1034.	7.0	101
222	TREM2 is required for microglial instruction of astrocytic synaptic engulfment in neurodevelopment. Glia, 2019, 67, 1873-1892.	2.5	54
223	Long-Term Pantethine Treatment Counteracts Pathologic Gene Dysregulation and Decreases Alzheimer's Disease Pathogenesis in a Transgenic Mouse Model. Neurotherapeutics, 2019, 16, 1237-1254.	2.1	9
224	Distinct Signaling Pathways Regulate TREM2 Phagocytic and NFήB Antagonistic Activities. Frontiers in Cellular Neuroscience, 2019, 13, 457.	1.8	61
225	Increased soluble TREM2 in cerebrospinal fluid is associated with reduced cognitive and clinical decline in Alzheimer's disease. Science Translational Medicine, 2019, 11, .	5.8	192
226	Olfactory dysfunction in the pathophysiological continuum of dementia. Ageing Research Reviews, 2019, 55, 100956.	5.0	47
227	Microglia in Alzheimer Disease: Well-Known Targets and New Opportunities. Frontiers in Aging Neuroscience, 2019, 11, 233.	1.7	228
228	Inflammatory mechanisms in neurodegeneration. Journal of Neurochemistry, 2019, 149, 562-581.	2.1	85
229	Microglial Trem2 induces synaptic impairment at early stage and prevents amyloidosis at late stage in APP/PS1 mice. FASEB Journal, 2019, 33, 10425-10442.	0.2	42
230	TREM2 function impedes tau seeding in neuritic plaques. Nature Neuroscience, 2019, 22, 1217-1222.	7.1	190
231	Chemokines in Alzheimer's Disease: New Insights Into Prokineticins, Chemokine-Like Proteins. Frontiers in Pharmacology, 2019, 10, 622.	1.6	44
232	Relationship of traumatic brain injury to chronic mental health problems and dementia in military veterans. Neuroscience Letters, 2019, 707, 134294.	1.0	42
233	Interferon-Î ³ as a Potential Link between Diabetes Mellitus and Dementia. Journal of Neuroscience, 2019, 39, 4632-4635.	1.7	5
234	Aminophospholipids are signal-transducing TREM2 ligands on apoptotic cells. Scientific Reports, 2019, 9, 7508.	1.6	61
235	Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer's disease. Acta Neuropathologica, 2019, 138, 251-273.	3.9	187
236	Pleiotropic neuroprotective effects of taxifolin in cerebral amyloid angiopathy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10031-10038.	3.3	53
237	Phagocytosis in the Brain: Homeostasis and Disease. Frontiers in Immunology, 2019, 10, 790.	2.2	206
238	Immune Signaling in Neurodegeneration. Immunity, 2019, 50, 955-974.	6.6	217

#	Article	IF	CITATIONS
239	TREM2 Variants and Neurodegenerative Diseases: A Systematic Review and Meta-Analysis. Journal of Alzheimer's Disease, 2019, 68, 1171-1184.	1.2	42
240	Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer's disease model. Nature Communications, 2019, 10, 1365.	5.8	217
241	Differential Expression of mRNAs in the Brain Tissues of Patients with Alzheimer's Disease Based on GEO Expression Profile and Its Clinical Significance. BioMed Research International, 2019, 2019, 1-9.	0.9	31
242	Exploiting microglial and peripheral immune cell crosstalk to treat Alzheimer's disease. Journal of Neuroinflammation, 2019, 16, 74.	3.1	125
243	Curcumin restores innate immune Alzheimer's disease risk gene expression to ameliorate Alzheimer pathogenesis. Neurobiology of Disease, 2019, 127, 432-448.	2.1	70
244	Up-regulation of TREM2 accelerates the reduction of amyloid deposits and promotes neuronal regeneration in the hippocampus of amyloid beta1-42 injected mice. Journal of Chemical Neuroanatomy, 2019, 97, 71-79.	1.0	22
245	Microglial inflammation and phagocytosis in Alzheimer's disease: Potential therapeutic targets. British Journal of Pharmacology, 2019, 176, 3515-3532.	2.7	85
246	Genetic Risk Factors for Alzheimer Disease: Emerging Roles of Microglia in Disease Pathomechanisms. Advances in Experimental Medicine and Biology, 2019, 1118, 83-116.	0.8	34
247	The Amyloid-Tau-Neuroinflammation Axis in the Context of Cerebral Amyloid Angiopathy. International Journal of Molecular Sciences, 2019, 20, 6319.	1.8	25
248	The Emerging Roles and Therapeutic Potential of Soluble TREM2 in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2019, 11, 328.	1.7	34
249	Potential microRNA-related targets in clearance pathways of amyloid-β: novel therapeutic approach for the treatment of Alzheimer's disease. Cell and Bioscience, 2019, 9, 91.	2.1	29
250	Pan-SHIP1/2 inhibitors promote microglia effector functions essential for CNS homeostasis. Journal of Cell Science, 2020, 133, .	1.2	41
251	IL-1β-driven amyloid plaque clearance is associated with an expansion of transcriptionally reprogrammed microglia. Journal of Neuroinflammation, 2019, 16, 261.	3.1	38
252	The Rules of Engagement: Do Microglia Seal the Fate in the Inverse Relation of Glioma and Alzheimer's Disease?. Frontiers in Cellular Neuroscience, 2019, 13, 522.	1.8	6
253	Friend, Foe or Both? Immune Activity in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2019, 11, 337.	1.7	63
254	Parvalbumin-Positive Neuron Loss and Amyloid-β Deposits in the Frontal Cortex of Alzheimer's Disease-Related Mice. Journal of Alzheimer's Disease, 2019, 72, 1323-1339.	1.2	30
255	Monocytes and Monocyte-Derived Antigen-Presenting Cells Have Distinct Gene Signatures in Experimental Model of Multiple Sclerosis. Frontiers in Immunology, 2019, 10, 2779.	2.2	18
256	The Role of APOE and TREM2 in Alzheimer′s Disease—Current Understanding and Perspectives. International Journal of Molecular Sciences, 2019, 20, 81.	1.8	123

ARTICLE IF CITATIONS Fatâ€fated microglial dysfunction. EMBO Journal, 2019, 38, . 257 3.5 0 Pathological Changes in Alzheimer's Disease Analyzed Using Induced Pluripotent Stem Cell-Derived 1.2 28 Human Microglia-Like Cells. Journal of Alzheimer's Disease, 2019, 67, 357-368. The involvement of microglia in Alzheimer's disease: a new dog in the fight. British Journal of 259 2.7 27 Pharmacology, 2019, 176, 3533-3543. Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nature 260 358 Neuroscience, 2019, 22, 191-204. Implications of sleep disturbance and inflammation for Alzheimer's disease dementia. Lancet 261 4.9 273 Neurology, The, 2019, 18, 296-306. Beyond the neuron–cellular interactions early in Alzheimer disease pathogenesis. Nature Reviews Neuroscience, 2019, 20, 94-108. Restoring microglial and astroglial homeostasis using DNA immunization in a Down Syndrome mouse 263 2.0 19 model. Brain, Behavior, and Immunity, 2019, 75, 163-180. Triggering receptor expressed on myeloid cells-2 expression in the brain is required for maximal phagocytic activity and improved neurological outcomes following experimental stroke. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1906-1918. 264 2.4 49 Serum Soluble Triggering Receptor Expressed on Myeloid Cells 2 as a Biomarker for Incident Dementia: 265 2.8 45 The Hisayama Study. Annals of Neurology, 2019, 85, 47-58. Assessing disease-modifying effects of norepinephrine in Down syndrome and Alzheimer's disease. 1.1 Brain Research, 2019, 1702, 3-11. TREM2 inhibits inflammatory responses in mouse microglia by suppressing the PI3K/NFâ&PB signaling. Cell 267 1.4 92 Biology International, 2019, 43, 360-372. The role of TREM2 in Alzheimer's disease; evidence from transgenic mouse models. Neurobiology of 1.5 Aging, 2020, 86, 39-53. Bidirectional relationship between sleep and Alzheimer's disease: role of amyloid, tau, and other 269 2.8 280 factors. Neuropsychopharmacology, 2020, 45, 104-120. The role of innate immune responses and neuroinflammation in amyloid accumulation and 270 1.0 231 progression of Alzheimer's disease. Immunology and Cell Biology, 2020, 98, 28-41. A 20-Year Journey from Axonal Injury to Neurodegenerative Diseases and the Prospect of 271 0.4 26 Immunotherapy for Combating Ålzheimer's Ďisease. Journal of Immunology, 2020, 204, 243-250. CSF sTREM2 and Tau Work Together in Predicting Increased Temporal Lobe Atrophy in Older Adults. Cerebral Cortex, 2020, 30, 2295-2306. Peripherally derived angiotensin converting enzyme-enhanced macrophages alleviate 273 3.7 52 Alzheimer-related disease. Brain, 2020, 143, 336-358. Infiltrating Hematogenous Macrophages Aggregate Around \hat{l}^2 -Amyloid Plaques in an Age- and Sex-Dependent Manner in a Mouse Model of Alzheimer Disease. Journal of Neuropathology and 274 Experimental Neurology, 2020, 79, 1147-1162.

#	Article	IF	CITATIONS
275	Selective loss of 5hmC promotes neurodegeneration in the mouse model of Alzheimer's disease. FASEB Journal, 2020, 34, 16364-16382.	0.2	29
276	Higher CSF sTREM2 attenuates ApoE4-related risk for cognitive decline and neurodegeneration. Molecular Neurodegeneration, 2020, 15, 57.	4.4	33
277	The effect of amyloid on microglia-neuron interactions before plaque onset occurs independently of TREM2 in a mouse model of Alzheimer's disease. Neurobiology of Disease, 2020, 145, 105072.	2.1	12
278	Non-pathological roles of microglial TREM2/DAP12: TREM2/DAP12 regulates the physiological functions of microglia from development to aging. Neurochemistry International, 2020, 141, 104878.	1.9	17
279	Effects of Neurological Disorders on Bone Health. Frontiers in Psychology, 2020, 11, 612366.	1.1	35
280	Furosemide as a Probe Molecule for the Treatment of Neuroinflammation in Alzheimer's Disease. ACS Chemical Neuroscience, 2020, 11, 4152-4168.	1.7	21
281	Neuronal–Glial Interaction in a Triple-Transgenic Mouse Model of Alzheimer's Disease: Gene Ontology and Lithium Pathways. Frontiers in Neuroscience, 2020, 14, 579984.	1.4	7
282	Trem2 deficiency differentially affects phenotype and transcriptome of human APOE3 and APOE4 mice. Molecular Neurodegeneration, 2020, 15, 41.	4.4	43
283	Activation of FAK/Rac1/Cdc42â€GTPase signaling ameliorates impaired microglial migration response to Aβ ₄₂ in triggering receptor expressed on myeloid cells 2 lossâ€ofâ€function murine models. FASEB Journal, 2020, 34, 10984-10997.	0.2	24
284	A1 reactive astrocytes and a loss of TREM2 are associated with an early stage of pathology in a mouse model of cerebral amyloid angiopathy. Journal of Neuroinflammation, 2020, 17, 223.	3.1	36
285	Higher CSF sTREM2 and microglia activation are associated with slower rates of betaâ€amyloid accumulation. EMBO Molecular Medicine, 2020, 12, e12308.	3.3	73
286	Loss of TREM2 Confers Resilience to Synaptic and Cognitive Impairment in Aged Mice. Journal of Neuroscience, 2020, 40, 9552-9563.	1.7	32
287	Microglial Phagocytosis: A Disease-Associated Process Emerging from Alzheimer's Disease Genetics. Trends in Neurosciences, 2020, 43, 965-979.	4.2	104
288	Plaque-associated myeloid cells derive from resident microglia in an Alzheimer's disease model. Journal of Experimental Medicine, 2020, 217, .	4.2	45
289	The Role of Microglia and the Nlrp3 Inflammasome in Alzheimer's Disease. Frontiers in Neurology, 2020, 11, 570711.	1.1	120
290	Microglial-associated responses to comorbid amyloid pathology and hyperhomocysteinemia in an aged knock-in mouse model of Alzheimer's disease. Journal of Neuroinflammation, 2020, 17, 274.	3.1	12
291	Therapeutic Trem2 activation ameliorates amyloid-beta deposition and improves cognition in the 5XFAD model of amyloid deposition. Journal of Neuroinflammation, 2020, 17, 238.	3.1	60
292	Commentary: Trem2 Deletion Reduces Late-Stage Amyloid Plaque Accumulation, Elevates the Aβ42:Aβ40 Ratio, and Exacerbates Axonal Dystrophy and Dendritic Spine Loss in the PS2APP Alzheimer's Mouse Model. Frontiers in Aging Neuroscience, 2020, 12, 219.	1.7	11

#	Article	IF	CITATIONS
293	TMEM59 interacts with TREM2 and modulates TREM2-dependent microglial activities. Cell Death and Disease, 2020, 11, 678.	2.7	27
294	The Novel Omega-6 Fatty Acid Docosapentaenoic Acid Positively Modulates Brain Innate Immune Response for Resolving Neuroinflammation at Early and Late Stages of Humanized APOE-Based Alzheimer's Disease Models. Frontiers in Immunology, 2020, 11, 558036.	2.2	14
295	Peripheral clearance of brain-derived Aβ in Alzheimer's disease: pathophysiology and therapeutic perspectives. Translational Neurodegeneration, 2020, 9, 16.	3.6	83
296	TREM2 suppresses the proinflammatory response to facilitate PRRSV infection via PI3K/NF-κB signaling. PLoS Pathogens, 2020, 16, e1008543.	2.1	44
297	Meprin β cleaves TREM2 and controls its phagocytic activity on macrophages. FASEB Journal, 2020, 34, 6675-6687.	0.2	21
298	Sleep Disturbances in MCI and AD: Neuroinflammation as a Possible Mediating Pathway. Frontiers in Aging Neuroscience, 2020, 12, 69.	1.7	23
299	Shifting paradigms: The central role of microglia in Alzheimer's disease. Neurobiology of Disease, 2020, 143, 104962.	2.1	60
300	Differential regulation of TREM2 and CSF1R in CNS macrophages in an SIV/macaque model of HIV CNS disease. Journal of NeuroVirology, 2020, 26, 511-519.	1.0	6
301	Type 1 Interleukin-4 Signaling Obliterates Mouse Astroglia in vivo but Not in vitro. Frontiers in Cell and Developmental Biology, 2020, 8, 114.	1.8	16
302	Protective Microglial Subset in Development, Aging, and Disease: Lessons From Transcriptomic Studies. Frontiers in Immunology, 2020, 11, 430.	2.2	77
303	Sleep Disruption Exacerbates and Prolongs the Inflammatory Response to Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 1829-1843.	1.7	28
304	Alzheimer's disease: microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation. Expert Opinion on Therapeutic Targets, 2020, 24, 331-344.	1.5	43
305	Association of <i>APOE</i> With Primary Open-Angle Glaucoma Suggests a Protective Effect for <i>APOE Îμ4</i> . , 2020, 61, 3.		23
306	Low-Dose Ionizing Radiation Modulates Microglia Phenotypes in the Models of Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 4532.	1.8	35
307	IPSC-Derived Neuronal Cultures Carrying the Alzheimer's Disease Associated TREM2 R47H Variant Enables the Construction of an Aβ-Induced Gene Regulatory Network. International Journal of Molecular Sciences, 2020, 21, 4516.	1.8	9
308	The role of innate immunity in Alzheimer's disease. Immunological Reviews, 2020, 297, 225-246.	2.8	70
309	Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer's disease. Nature Medicine, 2020, 26, 131-142.	15.2	641
310	Nrf2 Suppresses Oxidative Stress and Inflammation in <i>App</i> Knock-In Alzheimer's Disease Model Mice. Molecular and Cellular Biology, 2020, 40, .	1.1	98

#	Article	IF	CITATIONS
311	Patterns of Expression of Purinergic Receptor P2RY12, a Putative Marker for Non-Activated Microglia, in Aged and Alzheimer's Disease Brains. International Journal of Molecular Sciences, 2020, 21, 678.	1.8	86
312	Trem2 Deletion Reduces Late-Stage Amyloid Plaque Accumulation, Elevates the Aβ42:Aβ40 Ratio, and Exacerbates Axonal Dystrophy and Dendritic Spine Loss in the PS2APP Alzheimer's Mouse Model. Journal of Neuroscience, 2020, 40, 1956-1974.	1.7	114
313	Human iPSCâ€derived microglia: A growing toolset to study the brain's innate immune cells. Glia, 2020, 68, 721-739.	2.5	77
314	The Amyloid-beta rich CNS environment alters myeloid cell functionality independent of their origin. Scientific Reports, 2020, 10, 7152.	1.6	3
315	Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nature Reviews Drug Discovery, 2020, 19, 447-462.	21.5	73
316	The Important Interface Between Apolipoprotein E and Neuroinflammation in Alzheimer's Disease. Frontiers in Immunology, 2020, 11, 754.	2.2	100
317	IL-33-PU.1 Transcriptome Reprogramming Drives Functional State Transition and Clearance Activity of Microglia in Alzheimer's Disease. Cell Reports, 2020, 31, 107530.	2.9	65
318	Reparative Effects of Stem Cell Factor and Granulocyte Colony-Stimulating Factor in Aged APP/PS1 Mice. , 2020, 11, 1423.		9
319	Immune Suppression of Glia Maturation Factor Reverses Behavioral Impairment, Attenuates Amyloid Plaque Pathology and Neuroinflammation in an Alzheimer's Disease Mouse Model. Journal of NeuroImmune Pharmacology, 2021, 16, 363-375.	2.1	3
320	What are activated and reactive glia and what is their role in neurodegeneration?. Neurobiology of Disease, 2021, 148, 105172.	2.1	39
321	Reactive or transgenic increase in microglial TYROBP reveals a TREM2â€independent TYROBP–APOE link in wildâ€type and Alzheimer'sâ€related mice. Alzheimer's and Dementia, 2021, 17, 149-163.	0.4	30
322	Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?. Nature Reviews Neurology, 2021, 17, 157-172.	4.9	1,242
323	Alterations of GABA B receptors in the APP/PS1 mouse model of Alzheimer's disease. Neurobiology of Aging, 2021, 97, 129-143.	1.5	10
324	Attenuation of the extracellular matrix restores microglial activity during the early stage of amyloidosis. Glia, 2021, 69, 182-200.	2.5	12
325	Microbiota modulation as preventative and therapeutic approach in Alzheimer's disease. FEBS Journal, 2021, 288, 2836-2855.	2.2	60
326	Engagement of TREM2 by a novel monoclonal antibody induces activation of microglia and improves cognitive function in Alzheimer's disease models. Journal of Neuroinflammation, 2021, 18, 19.	3.1	51
327	Design of Novel PPAR Agonist for Neurodegenerative Disease. , 2021, , 249-270.		0
328	Microglia and Neuroinflammation: What Place for P2RY12?. International Journal of Molecular Sciences, 2021, 22, 1636.	1.8	67

#	Article	IF	CITATIONS
329	Exploring Potential of Alkaloidal Phytochemicals Targeting Neuroinflammatory Signaling of Alzheimer's Disease. Current Pharmaceutical Design, 2021, 27, 357-366.	0.9	11
330	Insight into the role of phosphatidylserine in complement-mediated synapse loss in Alzheimer's disease. Faculty Reviews, 2021, 10, 19.	1.7	17
331	The role of innate immune genes in Alzheimer's disease. Current Opinion in Neurology, 2021, 34, 228-236.	1.8	95
332	Apoptotic neurons and amyloid-beta clearance by phagocytosis in Alzheimer's disease: Pathological mechanisms and therapeutic outlooks. European Journal of Pharmacology, 2021, 895, 173873.	1.7	24
333	Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) Interacts With Colony-Stimulating Factor 1 Receptor (CSF1R) but Is Not Necessary for CSF1/CSF1R-Mediated Microglial Survival. Frontiers in Immunology, 2021, 12, 633796.	2.2	13
334	Alzheimer's Disease Pathogenesis: Role of Autophagy and Mitophagy Focusing in Microglia. International Journal of Molecular Sciences, 2021, 22, 3330.	1.8	71
335	Trem2 restrains the enhancement of tau accumulation and neurodegeneration by β-amyloid pathology. Neuron, 2021, 109, 1283-1301.e6.	3.8	137
336	Role of triggering receptor expressed on myeloid cells 2 (TREM2) in neurodegenerative dementias. European Journal of Neuroscience, 2021, 53, 3294-3310.	1.2	10
337	Microglia use TAM receptors to detect and engulf amyloid β plaques. Nature Immunology, 2021, 22, 586-594.	7.0	228
338	Alzheimer's Disease: New Concepts on the Role of Autoimmunity and NLRP3 Inflammasome in the Pathogenesis of the Disease. Current Neuropharmacology, 2021, 19, 498-512.	1.4	16
339	Microglial Function and Regulation during Development, Homeostasis and Alzheimer's Disease. Cells, 2021, 10, 957.	1.8	24
340	Modulating innate immune activation states impacts the efficacy of specific Al ² immunotherapy. Molecular Neurodegeneration, 2021, 16, 32.	4.4	4
341	Microglia reprogram metabolic profiles for phenotype and function changes in central nervous system. Neurobiology of Disease, 2021, 152, 105290.	2.1	76
342	Transcriptional signature in microglia associated with AÎ ² plaque phagocytosis. Nature Communications, 2021, 12, 3015.	5.8	142
343	Dietary cis-9, trans-11-conjugated linoleic acid reduces amyloid β-protein accumulation and upregulates anti-inflammatory cytokines in an Alzheimer's disease mouse model. Scientific Reports, 2021, 11, 9749.	1.6	9
344	An overview of microglia ontogeny and maturation in the homeostatic and pathological brain. European Journal of Neuroscience, 2021, 53, 3525-3547.	1.2	16
345	Knowledge gaps in Alzheimer's disease immune biomarker research. Alzheimer's and Dementia, 2021, 17, 2030-2042.	0.4	11
346	Haploinsufficiency of microglial MyD88 ameliorates Alzheimer's pathology and vascular disorders in APP / PS1 â€ŧransgenic mice. Glia, 2021, 69, 1987-2005.	2.5	6

# 347	ARTICLE Established Beta Amyloid Pathology Is Unaffected by TREM2 Elevation in Reactive Microglia in an	IF 1.7	CITATIONS
348	Alzheimera€™s Disease Mouse Model. Molecules, 2021, 26, 2685. Alzheimera€™s Disease Animal Models: Elucidation of Biomarkers and Therapeutic Approaches for Cognitive Impairment. International Journal of Molecular Sciences, 2021, 22, 5549.	1.8	20
349	Acute <i>Trem2</i> reduction triggers increased microglial phagocytosis, slowing amyloid deposition in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
350	Emodin inhibits lipid accumulation and inflammation in adipose tissue of highâ€fat dietâ€fed mice by inducing M2 polarization of adipose tissue macrophages. FASEB Journal, 2021, 35, e21730.	0.2	15
351	Reassessment of Pioglitazone for Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 666958.	1.4	30
352	TREM2 Deficiency Disrupts Network Oscillations Leading to Epileptic Activity and Aggravates Amyloid-β-Related Hippocampal Pathophysiology in Mice. Journal of Alzheimer's Disease, 2022, 88, 837-847.	1.2	7
353	Is Cerebral Amyloid-β Deposition Related to Post-stroke Cognitive Impairment?. Translational Stroke Research, 2021, 12, 946-957.	2.3	12
354	Activated microglia mitigate Aβ-associated tau seeding and spreading. Journal of Experimental Medicine, 2021, 218, .	4.2	94
355	Microglialï»; signalling pathway deficits associated with the patient derived R47H TREM2 variants linked to AD indicate inability to activate inflammasome. Scientific Reports, 2021, 11, 13316.	1.6	34
356	PIP2 depletion and altered endocytosis caused by expression of Alzheimer's diseaseâ€protective variant PLCγ2 R522. EMBO Journal, 2021, 40, e105603.	3.5	21
358	Genome-scale metabolic network reconstruction of model animals as a platform for translational research. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	48
359	Astrocytic interleukin-3 programs microglia and limits Alzheimer's disease. Nature, 2021, 595, 701-706.	13.7	157
360	THY-Tau22 mouse model accumulates more tauopathy at late stage of the disease in response to microglia deactivation through TREM2 deficiency. Neurobiology of Disease, 2021, 155, 105398.	2.1	14
361	The influence of ApoE4 on the clinical outcomes and pathophysiology of degenerative cervical myelopathy. JCI Insight, 2021, 6, .	2.3	14
362	Blood-Based Biomarkers of Neuroinflammation in Alzheimer's Disease: A Central Role for Periphery?. Diagnostics, 2021, 11, 1525.	1.3	20
363	Neuroinflammatory Signaling in the Pathogenesis of Alzheimer's Disease. Current Neuropharmacology, 2022, 20, 126-146.	1.4	28
364	Microglial TREM2 Mitigates Inflammatory Responses and Neuronal Apoptosis in Angiotensin II-Induced Hypertension in Middle-Aged Mice. Frontiers in Aging Neuroscience, 2021, 13, 716917.	1.7	15
365	Microglial TREM2 at the Intersection of Brain Aging and Alzheimer's Disease. Neuroscientist, 2023, 29, 302-316.	2.6	7

#	Article	IF	Citations
366	Emerging contributions of formyl peptide receptors to neurodegenerative diseases. Biological Chemistry, 2022, 403, 27-41.	1.2	10
367	Effects of microglial depletion and TREM2 deficiency on AÎ ² plaque burden and neuritic plaque tau pathology in 5XFAD mice. Acta Neuropathologica Communications, 2021, 9, 150.	2.4	19
368	Absence of Apolipoprotein E is associated with exacerbation of prion pathology and promotes microglial neurodegenerative phenotype. Acta Neuropathologica Communications, 2021, 9, 157.	2.4	6
369	Alternative Splicing Regulation of Low-Frequency Genetic Variants in Exon 2 of TREM2 in Alzheimer's Disease by Splicing-Based Aggregation. International Journal of Molecular Sciences, 2021, 22, 9865.	1.8	10
370	MEK1/2 activity modulates TREM2 cell surface recruitment. Journal of Biological Chemistry, 2021, 296, 100218.	1.6	4
375	Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. Journal of Clinical Investigation, 2020, 130, 1912-1930.	3.9	268
376	Impact of TREM2R47H variant on tau pathology–induced gliosis and neurodegeneration. Journal of Clinical Investigation, 2020, 130, 4954-4968.	3.9	139
377	Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2017, 37, 637-647.	1.7	52
378	Therapeutic Strategies Targeting Amyloid-β in Alzheimer's Disease. Current Alzheimer Research, 2019, 16, 418-452.	0.7	88
379	Microglia in Alzheimer's Disease. Current Alzheimer Research, 2020, 17, 29-43.	0.7	13
380	Reversal of Calcium Dysregulation as Potential Approach for Treating Alzheimer's Disease. Current Alzheimer Research, 2020, 17, 344-354.	0.7	18
381	The Ambiguous Role of Microglia in AÎ ² Toxicity: Chances for Therapeutic Intervention. Current Neuropharmacology, 2020, 18, 446-455.	1.4	16
382	Headmasters: Microglial regulation of learning and memory in health and disease. AIMS Molecular Science, 2018, 5, 63-89.	0.3	5
383	Heterozygous carriers of galactocerebrosidase mutations that cause Krabbe disease have impaired microglial function and defective repair of myelin damage. Neural Regeneration Research, 2018, 13, 393.	1.6	15
384	Cellular and Molecular Mediators of Neuroinflammation in Alzheimer Disease. International Neurourology Journal, 2019, 23, S54-62.	0.5	44
385	The development and physiological and pathophysiological functions of resident macrophages and glial cells. Advances in Immunology, 2021, 151, 1-47.	1.1	2
386	Interleukin-4 and interleukin-13 induce different metabolic profiles in microglia and macrophages that relate with divergent outcomes after spinal cord injury. Theranostics, 2021, 11, 9805-9820.	4.6	21
387	Microglia in Neuroinflammation and Neurodegeneration: From Understanding to Therapy. Frontiers in Neuroscience, 2021, 15, 742065.	1.4	171

#	Article	IF	CITATIONS
389	TREM2 modulates differential deposition of modified and non-modified AÎ ² species in extracellular plaques and intraneuronal deposits. Acta Neuropathologica Communications, 2021, 9, 168.	2.4	12
390	KYNA/Ahr Signaling Suppresses Neural Stem Cell Plasticity and Neurogenesis in Adult Zebrafish Model of Alzheimer's Disease. Cells, 2021, 10, 2748.	1.8	9
391	Uncovering Disease Mechanisms in a Novel Mouse Model Expressing Humanized APOEε4 and Trem2*R47H. Frontiers in Aging Neuroscience, 2021, 13, 735524.	1.7	29
394	Novel Somatostatin Receptor Subtypeâ€4 Agonist Mitigates Microglia Inflammatory Activation. FASEB Journal, 2019, 33, 501.3.	0.2	0
397	Glutamate and GABA in Microglia-Neuron Cross-Talk in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 11677.	1.8	54
398	Inflammation and insulin resistance in Alzheimer's disease. , 2020, , 389-405.		1
399	Alzheimer's Disease: Etiology, Neuropathology and Pathogenesis. , 0, , 1-22.		22
400	Importance of Microglial Cytoskeleton and the Actin-interacting Proteins in Alzheimer's Disease. Biomedical Science Letters, 2020, 26, 1-7.	0.0	1
401	Microglia and its Genetics in Alzheimer's Disease. Current Alzheimer Research, 2021, 18, 676-688.	0.7	10
402	Deletion of <i>Abi3</i> gene locus exacerbates neuropathological features of Alzheimer's disease in a mouse model of Aβ amyloidosis. Science Advances, 2021, 7, eabe3954.	4.7	26
403	Ameliorative effects of glycine in an experimental nonalcoholic steatohepatitis and its correlation between TREM-1 and TREM-2. American Journal of Translational Research (discontinued), 2016, 8, 284-97.	0.0	4
404	Hematogenous Macrophages: A New Therapeutic Target for Spinal Cord Injury. Frontiers in Cell and Developmental Biology, 2021, 9, 767888.	1.8	10
407	Fighting fire with fire: The immune system might be key in our fight against Alzheimer's disease. Drug Discovery Today, 2022, 27, 1261-1283.	3.2	10
408	Functional insight into LOAD-associated microglial response genes. Open Biology, 2022, 12, 210280.	1.5	5
409	<scp>MAC2</scp> is a longâ€lasting marker of peripheral cell infiltrates into the mouse <scp>CNS</scp> after bone marrow transplantation and coronavirus infection. Glia, 2022, 70, 875-891.	2.5	11
410	Variant TREM2 Signaling in Alzheimer's Disease. Journal of Molecular Biology, 2022, 434, 167470.	2.0	10
411	Neurodegenerative phagocytes mediate synaptic stripping in Neuro-HIV. Brain, 2022, 145, 2730-2741.	3.7	7
412	Brain cell type-specific cholesterol metabolism and implications for learning and memory. Trends in Neurosciences, 2022, 45, 401-414.	4.2	43

#	Article	IF	CITATIONS
413	Microglial activation in Alzheimer's disease: The role of flavonoids and microRNAs. Journal of Leukocyte Biology, 2022, 112, 47-77.	1.5	7
414	Microglia in Alzheimer's Disease: a Key Player in the Transition Between Homeostasis and Pathogenesis. Neurotherapeutics, 2022, 19, 186-208.	2.1	19
415	Neuroprotective Effects of Green Tea Seed Isolated Saponin Due to the Amelioration of Tauopathy and Alleviation of Neuroinflammation: A Therapeutic Approach to Alzheimer's Disease. Molecules, 2022, 27, 2079.	1.7	6
416	Glycolytic metabolism supports microglia training during age-related neurodegeneration. Pharmacological Reports, 2022, 74, 818-831.	1.5	4
417	Fatty acids as biomodulators of Piezo1 mediated glial mechanosensitivity in Alzheimer's disease. Life Sciences, 2022, 297, 120470.	2.0	9
430	Peripheral monocyte–derived cells counter amyloid plaque pathogenesis in a mouse model of Alzheimer's disease. Journal of Clinical Investigation, 2022, 132, .	3.9	25
431	Recent Advances Towards Diagnosis and Therapeutic Fingerprinting for Alzheimer's Disease. Journal of Molecular Neuroscience, 2022, , 1.	1.1	6
432	An Alternatively Spliced TREM2 Isoform Lacking the Ligand Binding Domain is Expressed in Human Brain. Journal of Alzheimer's Disease, 2022, 87, 1647-1657.	1.2	10
433	Microglia in the Neuroinflammatory Pathogenesis of Alzheimer's Disease and Related Therapeutic Targets. Frontiers in Immunology, 2022, 13, 856376.	2.2	38
434	Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) R47H Variant Causes Distinct Age- and Sex-Dependent Musculoskeletal Alterations in Mice. Journal of Bone and Mineral Research, 2020, 37, 1366-1381.	3.1	10
435	Neuroinflammatory Markers: Key Indicators in the Pathology of Neurodegenerative Diseases. Molecules, 2022, 27, 3194.	1.7	78
436	The Specific Mechanism of TREM2 Regulation of Synaptic Clearance in Alzheimer's Disease. Frontiers in Immunology, 2022, 13, .	2.2	8
437	Functional and Phenotypic Diversity of Microglia: Implication for Microglia-Based Therapies for Alzheimer's Disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	15
438	Sustained Trem2 stabilization accelerates microglia heterogeneity and Aβ pathology in a mouse model of Alzheimer's disease. Cell Reports, 2022, 39, 110883.	2.9	20
439	Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases. Journal of Inflammation Research, 0, Volume 15, 3083-3094.	1.6	109
440	TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target. Molecular Neurodegeneration, 2022, 17, .	4.4	36
442	Microglial mTOR Activation Upregulates Trem2 and Enhances Î ² -Amyloid Plaque Clearance in the <i>5XFAD</i> Alzheimer's Disease Model. Journal of Neuroscience, 2022, 42, 5294-5313.	1.7	34
443	LILRB2-mediated TREM2 signaling inhibition suppresses microglia functions. Molecular Neurodegeneration, 2022, 17, .	4.4	12

щ.		IF	CITATIONS
#	The role of triggering recentor expressed on myeloid cells 2 in Parkinson's disease and other	IF	CITATIONS
444	neurodegenerative disorders. Behavioural Brain Research, 2022, 433, 113977.	1.2	4
447	Alzheimer diseases. , 2023, , 313-336.		3
448	Microglia and microglial-based receptors in the pathogenesis and treatment of Alzheimer's disease. International Immunopharmacology, 2022, 110, 109070.	1.7	10
449	Deletion of Abi3/Gngt2 influences age-progressive amyloid \hat{I}^2 and tau pathologies in distinctive ways. Alzheimer's Research and Therapy, 2022, 14, .	3.0	6
450	p38αâ€MAPKâ€deficient myeloid cells ameliorate symptoms and pathology of <scp>APP</scp> â€ŧransgenic Alzheimer's disease mice. Aging Cell, 2022, 21, .	3.0	9
451	Dual ontogeny of disease-associated microglia and disease inflammatory macrophages in aging and neurodegeneration. Immunity, 2022, 55, 1448-1465.e6.	6.6	106
452	Discovery and engineering of an anti-TREM2 antibody to promote amyloid plaque clearance by microglia in 5XFAD mice. MAbs, 2022, 14, .	2.6	5
453	Inhibition of TREM-2 Markedly Suppresses Joint Inflammation and Damage in Experimental Arthritis. International Journal of Molecular Sciences, 2022, 23, 8857.	1.8	2
454	Pathogenesis, therapeutic strategies and biomarker development based on "omics―analysis related to microglia in Alzheimer's disease. Journal of Neuroinflammation, 2022, 19, .	3.1	12
455	Emerging Roles of TREM2 in Neurodegenerative Diseases. , 2022, , 169-195.		0
456	Cell Heterogeneity Uncovered by Single-Cell RNA Sequencing Offers Potential Therapeutic Targets for Ischemic Stroke. , 2022, 13, 1436.		11
457	The role of TREM2 N-glycans in trafficking to the cell surface and signal transduction of TREM2. Journal of Biochemistry, 2022, 172, 347-353.	0.9	5
458	Elevating microglia TREM2 reduces amyloid seeding and suppresses disease-associated microglia. Journal of Experimental Medicine, 2022, 219, .	4.2	20
459	Spatiotemporal patterns of gliosis and neuroinflammation in presenilin 1/2 conditional double knockout mice. Frontiers in Aging Neuroscience, 0, 14, .	1.7	4
460	A tetravalent TREM2 agonistic antibody reduced amyloid pathology in a mouse model of Alzheimer's disease. Science Translational Medicine, 2022, 14, .	5.8	33
461	Single Nucleus Transcriptome Data from Alzheimer's Disease Mouse Models Yield New Insight into Pathophysiology. Journal of Alzheimer's Disease, 2022, 90, 1233-1247.	1.2	4
462	Role of TREM2 in the Development of Neurodegenerative Diseases After Traumatic Brain Injury. Molecular Neurobiology, 2023, 60, 342-354.	1.9	6
463	Microglia are SYK of AÎ ² and cell debris. Cell, 2022, 185, 4043-4045.	13.5	2

#	Article	IF	CITATIONS
464	The Link between Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation in the Pathophysiology of Alzheimer's Disease: Therapeutic Implications and Future Perspectives. Antioxidants, 2022, 11, 2167.	2.2	17
465	TREM2 drives microglia response to amyloid-Î ² via SYK-dependent and -independent pathways. Cell, 2022, 185, 4153-4169.e19.	13.5	92
466	Triggering receptor expressed on myeloid cells 2 deficiency exacerbates injury-induced inflammation in a mouse model of tauopathy. Frontiers in Immunology, 0, 13, .	2.2	2
467	Trem2 deficiency impairs recovery and phagocytosis and dysregulates myeloid gene expression during virus-induced demyelination. Journal of Neuroinflammation, 2022, 19, .	3.1	5
468	TREM2-independent microgliosis promotes tau-mediated neurodegeneration in the presence of ApoE4. Neuron, 2023, 111, 202-219.e7.	3.8	29
469	Estimation of blood-based biomarkers of glial activation related to neuroinflammation. Brain, Behavior, & Immunity - Health, 2022, 26, 100549.	1.3	3
470	New Insights into Microglial Mechanisms of Memory Impairment in Alzheimer's Disease. Biomolecules, 2022, 12, 1722.	1.8	9
471	Microglial activation protects against accumulation of tau aggregates in nondemented individuals with underlying Alzheimer's disease pathology. Nature Aging, 2022, 2, 1138-1144.	5.3	19
472	Plaque contact and unimpaired Trem2 is required for the microglial response to amyloid pathology. Cell Reports, 2022, 41, 111686.	2.9	10
474	Microglial <i>INPP5D</i> limits plaque formation and glial reactivity in the PSAPP mouse model of Alzheimer's disease. Alzheimer's and Dementia, 2023, 19, 2239-2252.	0.4	25
475	Insights into the Pathophysiology of Alzheimer's Disease and Potential Therapeutic Targets: A Current Perspective. Journal of Alzheimer's Disease, 2023, 91, 507-530.	1.2	8
476	TREM2 R47H variant and risk for Alzheimer's disease: assessment in a Greek population and updated meta-analysis. International Journal of Neuroscience, 0, , 1-9.	0.8	1
477	Hepatic <scp>TREM2</scp> ⁺ macrophages express matrix metalloproteinases to control fibrotic scar formation. Immunology and Cell Biology, 2023, 101, 216-230.	1.0	4
478	Inflammation context in Alzheimer's disease, a relationship intricate to define. Biological Research, 2022, 55, .	1.5	29
479	Alzheimer's diseaseâ€associated <scp>R47H TREM2</scp> increases, but wildâ€type <scp>TREM2</scp> decreases, microglial phagocytosis of synaptosomes and neuronal loss. Glia, 2023, 71, 974-990.	2.5	8
480	Beyond the classical amyloid hypothesis in Alzheimer's disease: Molecular insights into current concepts of pathogenesis, therapeutic targets, and study models. WIREs Mechanisms of Disease, 2023, 15, .	1.5	3
481	TREM2 dependent and independent functions of microglia in Alzheimer's disease. Molecular Neurodegeneration, 2022, 17, .	4.4	25
482	TREM2 signalling as a multifaceted player in brain homoeostasis and a potential target for Alzheimer's disease treatment. European Journal of Neuroscience, 2023, 57, 718-733.	1.2	5

#	Article	IF	CITATIONS
483	Myeloid masquerade: Microglial transcriptional signatures in retinal development and disease. Frontiers in Cellular Neuroscience, 0, 17, .	1.8	2
484	Molecular Mechanisms of Neuroinflammation in Aging and Alzheimer's Disease Progression. International Journal of Molecular Sciences, 2023, 24, 1869.	1.8	25
485	Genetic models of cleavage-reduced and soluble TREM2 reveal distinct effects on myelination and microglia function in the cuprizone model. Journal of Neuroinflammation, 2023, 20, .	3.1	3
486	The effect of Abi3 locus deletion on the progression of Alzheimer's disease-related pathologies. Frontiers in Immunology, 0, 14, .	2.2	1
487	INPP5D modulates TREM2 loss-of-function phenotypes in a β-amyloidosis mouse model. IScience, 2023, 26, 106375.	1.9	9
488	Regulation of TREM2 expression by transcription factor YY1 and its protective effect against Alzheimer's disease. Journal of Biological Chemistry, 2023, 299, 104688.	1.6	1
489	Clusterin/apolipoprotein J, its isoforms and Alzheimer's disease. Frontiers in Aging Neuroscience, 0, 15,	1.7	2
490	Taxifolin for Cognitive Preservation in Patients with Mild Cognitive Impairment or Mild Dementia. Journal of Alzheimer's Disease, 2023, 93, 743-754.	1.2	2
503	Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	49
508	Role of neuroinflammation in neurodegeneration development. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	62
510	Pathological Roles of INPP5D in Alzheimer's Disease. Advances in Experimental Medicine and Biology, 2023, , 289-301.	0.8	0