CITATION REPORT List of articles citing

Modeling infectious disease dynamics in the complex landscape of global health

DOI: 10.1126/science.aaa4339 Science, 2015, 347, aaa4339.

Source: https://exaly.com/paper-pdf/61829253/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper IF	Citations
423	Manifold habitat effects on the prevalence and diversity of avian blood parasites. 2015 , 4, 421-30	86
422	Infectious disease and health systems modelling for local decision making to control neglected tropical diseases. 2015 , 9, S6	14
421	Bayesian calibration of simulation models for supporting management of the elimination of the macroparasitic disease, Lymphatic Filariasis. 2015 , 8, 522	28
420	Developing and Using Therapeutics for Emerging Infections. 2015 , 98, 346-51	2
419	The context of host competence: a role for plasticity in host-parasite dynamics. 2015 , 31, 419-25	70
418	Big city, small world: density, contact rates, and transmission of dengue across Pakistan. 2015 , 12, 20150468	47
417	Reply: Epidemiologic studies need asymptomatic controls. 2015 , 21, e53-4	3
416	Measurement and Modeling: Infectious Disease Modeling. 2016,	1
415	Development of Nano-Carbon Biosensors Using Glycan for Host Range Detection of Influenza Virus. 2016 , 1, 7	3
414	Stochastic epidemic dynamics on extremely heterogeneous networks. 2016 , 94, 062408	6
413	Towards high-resolution spatial modeling of infectious disease dynamics: Comment on "Pattern transitions in spatial epidemics: Mechanisms and emergent properties" by Gui-Quan Sun et al. 2016 , 19, 93-94	1
412	Plasmodium knowlesi transmission: integrating quantitative approaches from epidemiology and ecology to understand malaria as a zoonosis. 2016 , 143, 389-400	32
411	Modelling the seasonality of Lyme disease risk and the potential impacts of a warming climate within the heterogeneous landscapes of Scotland. 2016 , 13,	29
410	Model-based reconstruction of an epidemic using multiple datasets: understanding influenza A/H1N1 pandemic dynamics in Israel. 2016 , 13,	5
409	Epidemiological, evolutionary, and economic determinants of eradication tails. 2016 , 405, 58-65	1
408	SIR model with local and global infective contacts: A deterministic approach and applications. 2016 , 112, 70-79	5
407	Forecasting Epidemiological and Evolutionary Dynamics of Infectious Diseases. 2016 , 31, 776-788	47

(2017-2016)

406	Bayesian uncertainty quantification for transmissibility of influenza, norovirus and Ebola using information geometry. 2016 , 13,	11
405	Host Competence: An Organismal Trait to Integrate Immunology and Epidemiology. 2016 , 56, 1225-1237	53
404	Mathematical models to characterize early epidemic growth: A review. 2016 , 18, 66-97	209
403	Statistical physics of vaccination. 2016 , 664, 1-113	579
402	Three-dimensional cell culture models for investigating human viruses. 2016 , 31, 363-379	17
401	Spatial evolutionary epidemiology of spreading epidemics. 2016 , 283,	28
400	Data-driven outbreak forecasting with a simple nonlinear growth model. 2016 , 17, 19-26	17
399	Understanding Ebola: the 2014 epidemic. 2016 , 12, 53	56
398	Moving interdisciplinary science forward: integrating participatory modelling with mathematical modelling of zoonotic disease in Africa. 2016 , 5, 17	23
397	Host immunity and pathogen diversity: A computational study. 2016 , 7, 121-8	1
396	Identifying Spatial Invasion of Pandemics on Metapopulation Networks Via Anatomizing Arrival History. 2016 , 46, 2782-2795	48
395	Complex systems. Complexity theory and financial regulation. <i>Science</i> , 2016 , 351, 818-9 33.3	243
394	Coupled Heterogeneities and Their Impact on Parasite Transmission and Control. 2016, 32, 356-367	29
393	Bridging the gap between evidence and policy for infectious diseases: How models can aid public health decision-making. 2016 , 42, 17-23	42
392	Self-disseminating vaccines for emerging infectious diseases. 2016 , 15, 31-9	35
391	MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling. 2017 , 142, 442-448	26
390	University students[meta-modelling knowledge. 2017 , 35, 261-273	17
389	A comparison of two mathematical models of the impact of mass drug administration on the transmission and control of schistosomiasis. 2017 , 18, 29-37	24

388	Epidemiological features of and changes in incidence of infectious diseases in China in the first decade after the SARS outbreak: an observational trend study. 2017 , 17, 716-725		137
387	Iron and thiol redox signaling in cancer: An exquisite balance to escape ferroptosis. 2017 , 108, 610-626		116
386	Ecosystem management as a wicked problem. <i>Science</i> , 2017 , 356, 265-270	33.3	219
385	Efficient method for comprehensive computation of agent-level epidemic dissemination in networks. 2017 , 7, 40885		7
384	Modeling Chagas disease in Chile: From vector to congenital transmission. 2017 , 156-157, 63-71		7
383	Pathways to zoonotic spillover. 2017 , 15, 502-510		369
382	Simulation Modelling in Healthcare: An Umbrella Review of Systematic Literature Reviews. 2017 , 35, 937-949		43
381	The impact of stratified immunity on the transmission dynamics of influenza. 2017 , 20, 84-93		13
380	Predicting lymphatic filariasis transmission and elimination dynamics using a multi-model ensemble framework. 2017 , 18, 16-28		32
379	An antigen to remember: regulation of B cell memory in health and disease. 2017 , 45, 89-96		14
378	Towards Identifying and Predicting Spatial Epidemics on Complex Meta-population Networks. 2017 , 129-160		2
377	The basic reproduction number (R) of measles: a systematic review. 2017 , 17, e420-e428		229
376	Heterogeneous network epidemics: real-time growth, variance and extinction of infection. 2017 , 75, 577-619		9
375	Combining indoor and outdoor methods for controlling malaria vectors: an ecological model of endectocide-treated livestock and insecticidal bed nets. 2017 , 16, 114		11
374	Simulating the world: The digital enactment of pandemics as a mode of global self-observation. 2017 , 20, 392-416		10
373	Reality mining: A prediction algorithm for disease dynamics based on mobile big data. 2017 , 379, 82-93		18
372	Self-propelled pedestrian dynamics model: Application to passenger movement and infection propagation in airplanes. 2017 , 465, 248-260		21
371	Dengue fever virus in Pakistan: effects of seasonal pattern and temperature change on distribution of vector and virus. 2017 , 27, e1899		13

370	Where Sepsis and Antimicrobial Resistance Countermeasures Converge. 2017 , 5, 6	5
369	Editorial: Modeling Disease Spread and Control. 2017 , 4, 199	1
368	Towards Multiplex Molecular Diagnosis-A Review of Microfluidic Genomics Technologies. 2017, 8,	16
367	The Interdependence between Schistosome Transmission and Protective Immunity. 2017, 2,	2
366	Mathematical models used to inform study design or surveillance systems in infectious diseases: a systematic review. 2017 , 17, 775	20
365	Is Australia prepared for the next pandemic?. 2017 , 206, 284-286	1
364	Measurement and Modeling: Infectious Disease Modeling. 2017, 579-585	3
363	Geospatial modelling in guiding health program strategies in resource-limited settings-the way forward. 2017 , 5, 499	1
362	Translation of Real-Time Infectious Disease Modeling into Routine Public Health Practice. 2017, 23,	19
361	Model-Based Evaluation of Strategies to Control Brucellosis in China. 2017 , 14,	19
360	Extinction times in the subcritical stochastic SIS logistic epidemic. 2018 , 77, 455-493	7
359	Spatial Resource Allocation for Emerging Epidemics: A Comparison of Greedy, Myopic, and Dynamic Policies. 2018 , 20, 181-198	25
358	The roles of migratory and resident birds in local avian influenza infection dynamics. 2018 , 55, 2963-2975	17
357	Management of arthropod vector data - Social and ecological dynamics facing the One Health perspective. 2018 , 182, 80-91	75
356	Evidence Synthesis for Stochastic Epidemic Models. 2018 , 33, 34-43	11
355	The impact of immunization programs on 10 vaccine preventable diseases in Italy: 1900-2015. 2018 , 36, 1435-1443	44
354	The impact of HIV-1 within-host evolution on transmission dynamics. 2018 , 28, 92-101	25
353	A two-stage approach for estimating the parameters of an age-group epidemic model from incidence data. 2018 , 27, 1999-2014	5

352	epidemix-An interactive multi-model application for teaching and visualizing infectious disease transmission. 2018 , 23, 49-54	6
351	Multiple peaks patterns of epidemic spreading in multi-layer networks. 2018 , 107, 135-142	9
350	Characteristics of human encounters and social mixing patterns relevant to infectious diseases spread by close contact: a survey in Southwest Uganda. 2018 , 18, 172	49
349	Relatedness of the incidence decay with exponential adjustment (IDEA) model, "Farr's law" and SIR compartmental difference equation models. 2018 , 3, 1-12	11
348	The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt. 2018, 22, 13-21	106
347	Branching process approach for epidemics in dynamic partnership network. 2018 , 76, 265-294	6
346	Review: Host-pathogen dynamics of seagrass diseases under future global change. 2018, 134, 75-88	31
345	Addressing the Unknowns of Antimicrobial Resistance: Quantifying and Mapping the Drivers of Burden. 2018 , 66, 612-616	11
344	A model for interactions between immune cells and HIV considering drug treatments. 2018 , 37, 282-295	1
343	Dynamics and control of infections on social networks of population types. 2018 , 23, 11-18	O
342	From Experiment to Theory: What Can We Learn from Growth Curves?. 2018 , 80, 151-174	5
341	Individual preventive social distancing during an epidemic may have negative population-level outcomes. 2018 , 15,	21
340	Drivers for Livestock-Associated Methicillin-Resistant Staphylococcus Aureus Spread Among Danish Pig Herds - A Simulation Study. 2018 , 8, 16962	10
339	Spatial infectious disease epidemiology: on the cusp. 2018 , 16, 192	19
338	Improving early epidemiological assessment of emerging Aedes-transmitted epidemics using historical data. 2018 , 12, e0006526	3
337	Send more data: a systematic review of mathematical models of antimicrobial resistance. 2018 , 7, 117	16
336	Modeling a single season of Aedes albopictus populations based on host-seeking data in response to temperature and precipitation in eastern Tennessee. 2018 , 43, 138-147	9
335	Evolutionary emergence of infectious diseases in heterogeneous host populations. 2018 , 16, e2006738	49

334	High-resolution epidemic simulation using within-host infection and contact data. 2018 , 18, 886	15
333	Accounting for non-stationarity in epidemiology by embedding time-varying parameters in stochastic models. 2018 , 14, e1006211	20
332	DNA engineered micromotors powered by metal nanoparticles for motion based cellphone diagnostics. 2018 , 9, 4282	45
331	How Disease Risks Can Impact the Evolution of Social Behaviors and Emergent Population Organization. 2018 , 31-46	2
330	Integrating Landscape Hierarchies in the Discovery and Modeling of Ecological Drivers of Zoonotically Transmitted Disease from Wildlife. 2018 , 299-317	2
329	Scoping review on vector-borne diseases in urban areas: transmission dynamics, vectorial capacity and co-infection. 2018 , 7, 90	44
328	The 2017 plague outbreak in Madagascar: Data descriptions and epidemic modelling. 2018, 25, 20-25	26
327	Infection-acquired versus vaccine-acquired immunity in an SIRWS model. 2018 , 3, 118-135	4
326	Evaluating the impact of transmission mode, calibration level and farmer compliance in simulation models of paratuberculosis in dairy herds. 2018 , 8, 9100	2
325	Multiscale model within-host and between-host for viral infectious diseases. 2018 , 77, 1035-1057	18
324	Explicit size distributions of failure cascades redefine systemic risk on finite networks. 2018, 8, 6878	12
323	Best practice assessment of disease modelling for infectious disease outbreaks. 2018 , 146, 1207-1215	8
322	Agent-based models of malaria transmission: a systematic review. 2018 , 17, 299	26
321	The reachability of contagion in temporal contact networks: how disease latency can exploit the rhythm of human behavior. 2018 , 18, 219	11
320	Counting Down the 2020 Goals for 9 Neglected Tropical Diseases: What Have We Learned From Quantitative Analysis and Transmission Modeling?. 2018 , 66, S237-S244	20
319	Modern statistical tools for inference and prediction of infectious diseases using mathematical models. 2018 , 27, 1927-1929	5
318	Revealing Measles Outbreak Risk With a Nested Immunoglobulin G Serosurvey in Madagascar. 2018 , 187, 2219-2226	10
317	Kernel-density estimation and approximate Bayesian computation for flexible epidemiological model fitting in Python. 2018 , 25, 80-88	5

316	A new view of multiscale stochastic impulsive systems for modeling and control of epidemics. 2019 , 48, 242-249	9
315	The asymptotic profile of a dengue fever model on a periodically evolving domain. 2019 , 362, 124531	4
314	Bigger and Better? Representativeness of the Influenza A Surveillance Using One Consolidated Clinical Microbiology Laboratory Data Set as Compared to the Belgian Sentinel Network of Laboratories. 2019 , 7, 150	4
313	Epidemic prevalence information on social networks can mediate emergent collective outcomes in voluntary vaccine schemes. 2019 , 15, e1006977	5
312	Identifying current and emerging resources and tools utilized for detection, prediction, and visualization of viral zoonotic disease clusters: a Delphi study. 2019 , 2, 306-311	
311	A Binary Particle Swarm Optimizer With Priority Planning and Hierarchical Learning for Networked Epidemic Control. 2019 , 1-15	7
310	Hamiltonian dynamics of the SIS epidemic model with stochastic fluctuations. 2019 , 9, 15841	12
309	Effective binding of sugar chains to influenza virus on the surface by bovine serum albumin localization. 2019 , 58, SIID03	
308	Using hospital-based studies of community-onset bloodstream infections to make inferences about typhoid fever incidence. 2019 , 24, 1369-1383	2
307	Forecasting the seasonality and trend of pulmonary tuberculosis in Jiangsu Province of China using advanced statistical time-series analyses. 2019 , 12, 2311-2322	44
306	Contrasting the value of targeted versus area-wide mosquito control scenarios to limit arbovirus transmission with human mobility patterns based on different tropical urban population centers. 2019 , 13, e0007479	7
305	Investigating the relationships between health and innovation systems to guide innovation adoption. 2019 ,	2
304	Modelling microbial infection to address global health challenges. 2019 , 4, 1612-1619	23
303	From Physical to Spiritual: A Qualitative Study of Jakartans Health & Sickness. 2019 , 16,	1
302	Fuzzy logic approach for infectious disease diagnosis: A methodical evaluation, literature and classification. 2019 , 39, 937-955	31
301	Individual and temporal variation in pathogen load predicts long-term impacts of an emerging infectious disease. 2019 , 100, e02613	20
300	Extreme Competence: Keystone Hosts of Infections. 2019 , 34, 303-314	28
299	Multiple Equilibria in a Non-smooth Epidemic Model with Medical-Resource Constraints. 2019 , 81, 963-994	7

(2019-2019)

298	Coupling multiscale within-host dynamics and between-host transmission with recovery (SIR) dynamics. 2019 , 309, 34-41	11
297	Complex System Approaches for Animal Health Surveillance. 2019 , 6, 153	3
296	Applying optimal control theory to complex epidemiological models to inform real-world disease management. 2019 , 374, 20180284	25
295	Perfect counterfactuals for epidemic simulations. 2019 , 374, 20180279	7
294	How decision makers can use quantitative approaches to guide outbreak responses. 2019 , 374, 20180365	30
293	How host genetics dictates successful viral zoonosis. 2019 , 17, e3000217	32
292	Population-level mathematical modeling of antimicrobial resistance: a systematic review. 2019 , 17, 81	23
291	Systems Modeling to Advance the Promise of Data Science in Epidemiology. 2019 , 188, 862-865	5
2 90	Emerging Challenges and Opportunities in Infectious Disease Epidemiology. 2019 , 188, 873-882	7
289	Microfluidic centrifugation assisted precipitation based DNA quantification. 2019 , 19, 1657-1664	7
288	A decision-support framework to optimize border control for global outbreak mitigation. 2019 , 9, 2216	32
287	Direct and indirect effects of forest microclimate on pathogen spillover. 2019 , 100, e02686	7
286	A systematic review of scabies transmission models and data to evaluate the cost-effectiveness of scabies interventions. 2019 , 13, e0007182	11
285	Cancer and Excess Iron. 2019 , 201-207	
284	An agent-based model of dengue virus transmission shows how uncertainty about breakthrough infections influences vaccination impact projections. 2019 , 15, e1006710	17
283	How Modelling Can Enhance the Analysis of Imperfect Epidemic Data. 2019 , 35, 369-379	12
282	Assessing the performance of real-time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15. 2019 , 15, e1006785	41
281	Spread of Infectious Disease Modeling and Analysis of Different Factors on Spread of Infectious Disease Based on Cellular Automata. 2019 , 16,	14

280	Comparing alternative cholera vaccination strategies in Maela refugee camp: using a transmission model in public health practice. 2019 , 19, 1075	5
279	Applying infectious disease forecasting to public health: a path forward using influenza forecasting examples. 2019 , 19, 1659	33
278	Reconstruction and prediction of viral disease epidemics. 2018 , 147, e34	22
277	Artificial Intelligence for infectious disease Big Data Analytics. 2019 , 24, 44-48	102
276	Fogarty International Center collaborative networks in infectious disease modeling: Lessons learnt in research and capacity building. 2019 , 26, 116-127	10
275	Threshold of island anthropogenic disturbance based on ecological vulnerability Assessment acase study of Zhujiajian Island. 2019 , 167, 127-136	17
274	Dengue modeling in rural Cambodia: Statistical performance versus epidemiological relevance. 2019 , 26, 43-57	6
273	Spectral Analysis of Epidemic Thresholds of Temporal Networks. 2020 , 50, 1965-1977	44
272	Exploring the threshold of epidemic spreading for a stochastic SIR model with local and global contacts. 2020 , 540, 123208	5
271	Real-time forecasting of epidemic trajectories using computational dynamic ensembles. 2019 , 30, 100379	38
270	Choices and trade-offs in inference with infectious disease models. 2019 , 30, 100383	11
269	Effect of Acute Illness on Contact Patterns, Malawi, 2017. 2020 , 26, 44-50	4
268	Adaptive Bayesian Learning and Forecasting of Epidemic Evolution-Data Analysis of the COVID-19 Outbreak. 2020 , 8, 175244-175264	14
267	Infectious or Recovered? Optimizing the Infectious Disease Detection Process for Epidemic Control and Prevention Based on Social Media. 2020 , 17,	4
266	Transmission-dynamics models for the SARS Coronavirus-2. 2020 , 32, e23512	4
265	Molecular epidemiology of leprosy: An update. 2020 , 86, 104581	6
264	Influencing public health policy with data-informed mathematical models of infectious diseases: Recent developments and new challenges. 2020 , 32, 100393	14
263	A Phenomenological Epidemic Model Based On the Spatio-Temporal Evolution of a Gaussian Probability Density Function. 2020 , 8, 2000	Ο

(2020-2020)

262	The Science of Complex Systems Is Needed to Ameliorate the Impacts of COVID-19 on Mental Health. 2020 , 11, 606035	5
261	Predictive accuracy of a hierarchical logistic model of cumulative SARS-CoV-2 case growth until May 2020. 2020 , 20, 278	3
260	Winter Is Coming: A Southern Hemisphere Perspective of the Environmental Drivers of SARS-CoV-2 and the Potential Seasonality of COVID-19. 2020 , 17,	55
259	Nonlinear dynamic analysis of an epidemiological model for COVID-19 including public behavior and government action. 2020 , 101, 1-15	25
258	Applied phyloepidemiology: Detecting drivers of pathogen transmission from genomic signatures using density measures. 2020 , 13, 1513-1525	2
257	AeDES: a next-generation monitoring and forecasting system for environmental suitability of Aedes-borne disease transmission. 2020 , 10, 12640	8
256	Preventing Undesired Face-Touches With Wearable Devices and Haptic Feedback. 2020 , 8, 139033-139043	11
255	A Review of Multi-Compartment Infectious Disease Models. 2020 , 88, 462-513	35
254	Association between NO cumulative exposure and influenza prevalence in mountainous regions: A case study from southwest China. 2020 , 189, 109926	5
253	Time-aggregated mobile phone mobility data are sufficient for modelling influenza spread: the case of Bangladesh. 2020 , 17, 20190809	2
252	Improved susceptible-infectious-susceptible epidemic equations based on uncertainties and autocorrelation functions. 2020 , 7, 191504	4
251	Stochastic effects on the dynamics of an epidemic due to population subdivision. 2020 , 30, 101102	10
250	Predicting lymphatic filariasis elimination in data-limited settings: A´reconstructive computational framework for combining data generation and model discovery. 2020 , 16, e1007506	2
249	Prediction Models in Veterinary and Human Epidemiology: Our Experience With Modeling Sars-CoV-2 Spread. 2020 , 7, 513	3
248	Trip duration modifies spatial spread of infectious diseases. 2020 , 117, 22637-22638	1
247	A computational framework for modeling and studying pertussis epidemiology and vaccination. 2020 , 21, 344	3
246	Using Symmetry to Enhance the Performance of Agent-based Epidemic Models. 2020, PP,	1
245	Leveraging Data Science to Combat COVID-19: A Comprehensive Review. 2020 , 1, 85-103	63

244	Virus detection using nanoparticles and deep neural network-enabled smartphone system. 2020, 6,	18
243	A Comparative Study of the Innate Humoral Immune Response to Avian Influenza Virus in Wild and Domestic Mallards. 2020 , 11, 608274	4
242	Transmission dynamics of brucellosis: Mathematical modelling and applications in China. 2020 , 18, 3843-3860	15
241	Statistical methods for linking geostatistical maps and transmission models: Application to lymphatic filariasis in East Africa. 2020 , 100391	О
240	Vaccine strategies to reduce the burden of pneumococcal disease in HIV-infected adults in Africa. 2020 , 19, 1085-1092	1
239	Distribution of COVID-19 Morbidity Rate in Association with Social and Economic Factors in Wuhan, China: Implications for Urban Development. 2020 , 17,	62
238	A multiscale model of virus pandemic: Heterogeneous interactive entities in a globally connected world 2020 , 30, 1591-1651	63
237	CHRONIC WASTING DISEASE MODELING: AN OVERVIEW. 2020 , 56, 741-758	5
236	Modeling canine rabies virus transmission dynamics. 2020 , 655-670	1
235	The use of mixture density networks in the emulation of complex epidemiological individual-based models. 2020 , 16, e1006869	5
234	Molecular network-based intervention brings us closer to ending the HIV pandemic. 2020, 14, 136-148	12
233	Community context for mechanisms of disease dilution: insights from linking epidemiology and plant-soil feedback theory. 2020 , 1469, 65-85	7
232	A population model for the 2017/18 listeriosis outbreak in South Africa. 2020 , 15, e0229901	3
231	Dengue importation into Europe: A network connectivity-based approach. 2020 , 15, e0230274	7
230	Optimal devoted resource strategies to epidemic extinction by increasing recovery rate. 2020 , 31, 2050010	О
229	Winter is coming: Pathogen emergence in seasonal environments. 2020 , 16, e1007954	3
228	Analysing the Combined Health, Social and Economic Impacts of the Corovanvirus Pandemic Using Agent-Based Social Simulation. 2020 , 30, 1-18	20
227	Phase transitions in information spreading on structured populations. 2020 , 16, 590-596	16

226	Disease modeling for public health: added value, challenges, and institutional constraints. 2020 , 41, 39-51	13
225	Operational research: A multidisciplinary approach for the management of infectious disease in a global context. 2021 , 291, 929-934	9
224	Migration rate estimation in an epidemic network. 2021 , 89, 1949-1964	5
223	Global analysis of the COVID-19 pandemic using simple epidemiological models. 2021 , 90, 995-1008	16
222	Transmission dynamics and control methodology of COVID-19: A modeling study. 2021 , 89, 1983-1998	18
221	Development and dissemination of infectious disease dynamic transmission models during the COVID-19 pandemic: what can we learn from other pathogens and how can we move forward?. 2021 , 3, e41-e50	8
220	Modelling of optimal vaccination strategies in response to a bioterrorism associated smallpox outbreak. 2021 , 17, 738-746	1
219	Spheroids and organoids as humanized 3D scaffold-free engineered tissues for SARS-CoV-2 viral infection and drug screening. 2021 , 45, 548-558	4
218	Future Developments in Geographical Agent-Based Models: Challenges and Opportunities. 2021 , 53, 76-91	18
217	Stability analysis in COVID-19 within-host model with immune response. 2021 , 95, 105584	17
216	COVID-19 epidemic prediction and the impact of public health interventions: A review of COVID-19 epidemic models. 2021 , 6, 324-342	26
215	Conclusions. 2021 , 139-162	
214	Quantifying Uncertainty in Mechanistic Models of Infectious Disease. 2021 , 190, 1377-1385	5
213	Mathematical modeling as a tool for policy decision making: Applications to the COVID-19 pandemic. 2021 , 291-326	2
212	Combining machine learning and mathematical models of disease dynamics to guide development of novel malaria interventions.	1
211	Mathematical modeling of transmission dynamics of COVID-19. 2021 , 6, 12-25	2
210	The value of infectious disease modeling and trend assessment: a public health perspective. 2021 , 19, 1135-1145	1
209	Estimating the local spatio-temporal distribution of malaria from routine health information systems in areas of low health care access and reporting. 2021 , 20, 8	1

208	Endogenous social distancing and its underappreciated impact on the epidemic curve. 2021 , 11, 3093	6
207	Different disease, same challenges: Social determinants of tuberculosis and COVID-19. 2021 , 27, 338-344	11
206	Geodemography, environment and societal characteristics drive the global diversity of emerging, zoonotic and human pathogens. 2021 ,	2
205	Fine scale infectious disease modeling using satellite-derived data. 2021 , 11, 6946	O
204	Unveiling social distancing mechanisms via a fish-robot hybrid interaction. 2021 , 115, 565-573	7
203	Short-Range Forecasting of COVID-19 During Early Onset at County, Health District, and State Geographic Levels Using Seven Methods: Comparative Forecasting Study. 2021 , 23, e24925	9
202	Epidemiological dynamics of viral infection in a marine picoeukaryote.	
201	Dynamics of COVID-19 transmission with comorbidity: a data driven modelling based approach. 2021 , 106, 1-15	7
200	Testing, tracing and isolation in compartmental models. 2021 , 17, e1008633	15
199	Nowcasting epidemics of novel pathogens: lessons from COVID-19. 2021 , 27, 388-395	11
198	Modeling the role of mortality-based response triggers on the effectiveness of African swine fever control strategies.	0
197	Adding Space to Disease Models: A Case Study with COVID-19 in Oregon, USA. 2021 , 10, 438	O
196	A call for epidemic modeling to examine historical and structural drivers of racial disparities in infectious disease. 2021 , 276, 113833	0
195	Accounting for farmers' control decisions in a model of pathogen spread through animal trade. 2021 , 11, 9581	2
194	Modelling the Impact of Robotics on Infectious Spread Among Healthcare Workers. 2021, 8, 652685	1
193	Mathematical model of COVID-19 with comorbidity and controlling using non-pharmaceutical interventions and vaccination. 2021 , 106, 1-15	17
192	Future risk evaluation of the global COVID-19 pandemic.	
191	Fine-scale heterogeneity in population density predicts wave dynamics in dengue epidemics.	

190	An approximate Bayesian approach for estimation of the reproduction number under misreported epidemic data.	O
189	A dose response model for Staphylococcus aureus. 2021 , 11, 12542	
188	A review and agenda for integrated disease models including social and behavioural factors. 2021 , 5, 834-846	15
187	Reducing Face-Touches to Limit COVID-19 Outbreak: an Overview of Solutions. 2021 ,	Ο
186	Data-driven methods for present and future pandemics: Monitoring, modelling and managing. 2021 , 52, 448-464	6
185	Yearly and Daily Relationship Assessment between Air Pollution and Early-Stage COVID-19 Incidence: Evidence from 231 Countries and Regions. 2021 , 10, 401	4
184	Possible future waves of SARS-CoV-2 infection generated by variants of concern with a range of characteristics.	3
183	Thinking clearly about social aspects of infectious disease transmission. 2021 , 595, 205-213	18
182	Epidemic spread simulation in an area with a high-density crowd using a SEIR-based model. 2021 , 16, e0253220	O
181	Could a New COVID-19 Mutant Strain Undermine Vaccination Efforts? A Mathematical Modelling Approach for Estimating the Spread of B.1.1.7 Using Ontario, Canada, as a Case Study. 2021 , 9,	4
180	The collaboration between infectious disease modeling and public health decision-making based on the COVID-19. 2021 , 2, 69-76	1
179	Heterogeneity of contact patterns with Ebola virus disease cases. 2021 , 82, 276-316	1
178	Community health and human-animal contacts on the edges of Bwindi Impenetrable National Park, Uganda.	
177	When time-dependence in disease outcome risk is not captured by impact evaluation modeling studies: a measles vaccination case study.	
176	Overlapping Time Scales Obscure Early Warning Signals of the Second COVID-19 Wave.	4
175	Pneumococcal exposure routes for infants, a nested cross-sectional survey in Nha Trang, Vietnam.	O
174	Epidemics, the Ising-model and percolation theory: A comprehensive review focused on Covid-19. 2021 , 573, 125963	13
173	Optimal test-kit-based intervention strategy of epidemic spreading in heterogeneous complex networks. 2021 , 31, 071101	4

172	Transmission modelling of environmentally persistent zoonotic diseases: a systematic review. 2021 , 5, e466-e478	3
171	The Role of Movement Patterns in Epidemic Models on Complex Networks. 2021 , 83, 98	1
170	A Review of the Environmental Trigger and Transmission Components for Prediction of Cholera. 2021 , 6,	1
169	Dynamical Variations of the Global COVID-19 Pandemic Based on a SEICR Disease Model: A New Approach of Yi Hua Jie Mu. 2021 , 5, e2021GH000455	1
168	Parameter Space Exploration in Pedestrian Queue Design to Mitigate Infectious Disease Spread. 2021 , 101, 1-11	1
167	Coevolution of COVID-19 research and China's policies. 2021 , 19, 121	1
166	Development of software tools based on multi-agent modeling and implemented in the new generation geographic information system for solving epidemiological problems. 2021 , 98, 468-480	1
165	Microbiome-pathogen interactions drive epidemiological dynamics of antibiotic resistance: A modeling study applied to nosocomial pathogen control. 2021 , 10,	O
164	Mathematical modeling applied to epidemics: an overview. 1	O
163	Possible future waves of SARS-CoV-2 infection generated by variants of concern with a range of characteristics. 2021 , 12, 5730	26
162	Challenges and Controversies in COVID-19: Masking the General Population may Attenuate This Pandemic's Outbreak. 2021 , 9, 643991	
161	Review of fractional epidemic models. 2021 , 97, 281-307	10
160	Effect of human behavior on the evolution of viral strains during an epidemic.	О
159	Modelling the role of mortality-based response triggers on the effectiveness of African swine fever control strategies. 2021 ,	O
158	Book review. 2021 , 188, 363-367	
157	Rule-based epidemic models. 2021 , 530, 110851	1
156	Scenario prediction of public health emergencies using infectious disease dynamics model and dynamic Bayes. 2022 , 127, 334-346	О
155	THE STATISTICAL CHALLENGES OF MODELLING COVID-19. 2021 , 257, 46-82	2

154 A Pathway to Differential Modelling of Nipah Virus. **2021**, 164-184

153	Introduction to networks and diseases. 2017 , 1-26	1
152	From inspiration to translation: Closing the gap between research and control of helminth zoonoses in Southeast Asia. 2019 , 105, 111-124	2
151	Responsible modelling: Unit testing for infectious disease epidemiology. 2020 , 33, 100425	4
150	Disease control across urban-rural gradients. 2020 , 17, 20200775	5
149	Characteristics of human encounters and social mixing patterns relevant to infectious diseases spread by close contact: A survey in southwest Uganda.	1
148	The impact of social distancing and epicenter lockdown on the COVID-19 epidemic in mainland China: A data-driven SEIQR model study.	54
147	COVID-19 containment policies through time may cost more lives at metapopulation level.	2
146	Testing, tracing and isolation in compartmental models.	12
145	Estimating the local spatio-temporal distribution of disease from routine health information systems: the case of malaria in rural Madagascar.	1
144	The 2017 plague outbreak in Madagascar: data descriptions and epidemic modelling.	3
143	Evolutionary emergence of infectious diseases in heterogeneous host populations.	1
142	After the honeymoon, the divorce: unexpected outcomes of disease control measures against endemic infections.	2
141	Winter is coming: pathogen emergence in seasonal environments.	1
140	Causality assessment of adverse events following immunization: the problem of multifactorial pathology. 2020 , 9, 170	11
139	Causality assessment of adverse events following immunization: the problem of multifactorial pathology. 2020 , 9, 170	10
138	Invasion Dynamics of Teratogenic Infections in Light of Rubella Control: Implications for Zika Virus. 2016 , 8,	5
137	Control fast or control smart: When should invading pathogens be controlled?. 2018 , 14, e1006014	30

136	A Unified Framework for the Infection Dynamics of Zoonotic Spillover and Spread. 2016 , 10, e0004957	36
135	Mathematical Modeling of the Transmission Dynamics of Clostridium difficile Infection and Colonization in Healthcare Settings: A Systematic Review. 2016 , 11, e0163880	19
134	One Health: Addressing Global Challenges at the Nexus of Human, Animal, and Environmental Health. 2016 , 12, e1005731	43
133	Trypanosoma cruzi reservoir-triatomine vector co-occurrence networks reveal meta-community effects by synanthropic mammals on geographic dispersal. 2017 , 5, e3152	14
132	Is autumn the key for dengue epidemics in non endemic regions? The case of Argentina. 2018, 6, e5196	5
131	An Improved Solution to Identify Spatial Invasion on Metapopulation Networks with SI model. 2021	
130	A model for the co-evolution of dynamic social networks and infectious disease dynamics. 2021 , 8, 19	3
129	Lyapunov function and global asymptotic stability for a new multiscale viral dynamics model incorporating the immune system response: Implemented upon HCV. 2021 , 16, e0257975	1
128	An individual level infectious disease model in the presence of uncertainty from multiple, imperfect diagnostic tests. 2021 ,	1
127	Rffences bibliographiques. 2016 , 121	
127 126	Rffences bibliographiques. 2016, 121 15. Modelling the ecological dynamics of tick borne pathogens in a risk assessment perspective. 2016, 217-229	1
	15. Modelling the ecological dynamics of tick borne pathogens in a risk assessment perspective.	1
126	15. Modelling the ecological dynamics of tick borne pathogens in a risk assessment perspective. 2016 , 217-229	1
126	15. Modelling the ecological dynamics of tick borne pathogens in a risk assessment perspective. 2016, 217-229 pomp-astic Inference for Epidemic Models: Simple vs. Complex.	1
126 125 124	15. Modelling the ecological dynamics of tick borne pathogens in a risk assessment perspective. 2016, 217-229 pomp-astic Inference for Epidemic Models: Simple vs. Complex. Multiscale Model Within-host and Between-host for Viral Infectious Diseases.	1
126 125 124	15. Modelling the ecological dynamics of tick borne pathogens in a risk assessment perspective. 2016, 217-229 pomp-astic Inference for Epidemic Models: Simple vs. Complex. Multiscale Model Within-host and Between-host for Viral Infectious Diseases. Dynamics and Control of Infections on Social Networks of Population Types.	1
126 125 124 123	15. Modelling the ecological dynamics of tick borne pathogens in a risk assessment perspective. 2016, 217-229 pomp-astic Inference for Epidemic Models: Simple vs. Complex. Multiscale Model Within-host and Between-host for Viral Infectious Diseases. Dynamics and Control of Infections on Social Networks of Population Types. Dengue modeling in rural Cambodia: statistical performance versus epidemiological relevance.	1

118	Individual and temporal variation in pathogen load predicts long-term impacts of an emerging infectious disease.	
117	Applying optimal control theory to complex epidemiological models to inform real-world disease management.	
116	A decision-support framework to optimize border control for global outbreak mitigation.	О
115	Regional reinfection by Dengue: a network approach using data from Mexico.	
114	Comparing alternative cholera vaccination strategies in Maela refugee camp using a transmission model.	
113	Perspectives and Future Research Directions on Climate Change and Health in China. 2019 , 191-196	
112	Modeling Approaches Toward Understanding Infectious Disease Transmission. 2019 , 227-243	1
111	The use of mixture-density networks in the emulation of complex epidemiological individual-based models.	O
110	Reduction of Fluctuation of the Binding Activity of SGP to Influenza Viruses. 2019 , 62, 470-475	
109	Predicting lymphatic filariasis elimination in data-limited settings: a reconstructive computational framework for combining data generation and model discovery.	
108	Mathematical modeling of directed acyclic graphs to explore competing causal mechanisms underlying epidemiological study data.	
107	Dengue importation into Europe: a network connectivity-based approach.	
106	Prediction of the Transition From Subexponential to the Exponential Transmission of SARS-CoV-2 in Chennai, India: Epidemic Nowcasting (Preprint).	
105	Utilising sigmoid models to predict the spread of antimicrobial resistance at the country level. 2020 , 25,	1
104	Predictive Accuracy of a Hierarchical Logistic Model of Cumulative SARS-CoV-2 Case Growth.	1
103	Responsible modelling: Unit testing for infectious disease epidemiology.	1
102	Data assimilation and agent-based modelling: towards the incorporation of categorical agent parameters. 1, 131	1
101	Forecasting the final disease size: comparing calibrations of Bertalanffy-PEter models. 2020 , 149, e6	1

100	Inference of Naturally Acquired Immunity Using a Self-matched Negative-Control Design. 2021, 32, 168-178	O
99	A comparison of modelling the spatio-temporal pattern of disease: a case study of schistosomiasis japonica in Anhui Province, China. 2021 ,	O
98	Time-aggregated mobile phone mobility data are sufficient for modelling influenza spread: the case of Bangladesh.	
97	Inference of naturally-acquired immunity using a self-matched negative control design.	
96	Community structure mediates Sabin 2 polio vaccine virus transmission.	1
95	After the honeymoon, the divorce: Unexpected outcomes of disease control measures against endemic infections. 2020 , 16, e1008292	2
94	Variable Cognition in ABM Decision-Making: An Application to Livestock Vaccine Choice. 2020 , 7, 564290	
93	Prediction of the Transition From Subexponential to the Exponential Transmission of SARS-CoV-2 in Chennai, India: Epidemic Nowcasting. 2020 , 6, e21152	3
92	Assessing the strength of case growth trends in the coronavirus pandemic. 2020 , 7, 201622	2
91	COVID-19 control across urban-rural gradients.	
90	Short-Range Forecasting of COVID-19 During Early Onset at County, Health District, and State Geographic Levels Using Seven Methods: Comparative Forecasting Study (Preprint).	
89	A Narrative Review of Influenza: A Seasonal and Pandemic Disease. 2017 , 42, 2-13	39
88	Time Series Analysis in Modeling of Hepatitis B Incidence. 2019 , 48, 554-555	
87	Emergency preparedness for public health threats, surveillance, modelling & forecasting. 2021 , 153, 287-298	
86	Near Future Perspective of ESBL-Producing Klebsiella pneumoniae Strains Using Mathematical Modeling. 2022 , 130, 111-132	0
85	Graph, Spectra, Control and Epidemics: An Example with a SEIR Model. 2021 , 9, 2987	1
84	Community health and human-animal contacts on the edges of Bwindi Impenetrable National Park, Uganda. 2021 , 16, e0254467	0
	Emergency preparedness for public health threats, surveillance, modelling & forecasting. 2021,	

82	Discrete Resource Allocation in Epidemic Control with Heuristic Majority-Voting Particle Swarm Optimization. 2020 ,	О
81	SIR Infectious Disease Model Based on Age Structure and Constant Migration Rate and its Dynamics Properties. 2020 ,	
80	Global research activity on mathematical modeling of transmission and control of 23 selected infectious disease outbreak 2022 , 18, 4	3
79	Estimating the Effects of Public Health Measures by SEIR(MH) Model of COVID-19 Epidemic in Local Geographic Areas 2021 , 9, 728525	
78	Current forecast of COVID-19 in Mexico: A Bayesian and machine learning approaches 2022 , 17, e0259958	1
77	Estimation of age-stratified contact rates during the COVID-19 pandemic using a novel inference algorithm.	O
76	Mathematical modeling and optimal intervention strategies of the COVID-19 outbreak 2022 , 1-26	5
75	Modelling environmentally mediated spread of livestock-associated methicillin-resistant Staphylococcus aureus in a pig herd 2022 , 16, 100450	1
74	"SPEECH": A literature based framework for the study of past epidemics 2022, 15, 307-311	
73	Reducing disease spread through optimization: Limiting mixture of the population is more important than limiting group sizes. 2022 , 105718	
72	Overlapping timescales obscure early warning signals of the second COVID-19 wave 2022 , 289, 20211809	3
71	Infectious diseases among elderly persons: Results from a population-based observational study in Shandong province, China, 2013-2017 2021 , 11, 08010	1
70	Fine-scale heterogeneity in population density predicts wave dynamics in dengue epidemics 2022 , 13, 996	1
69	Understanding West Nile virus spread: Mathematical modelling to determine the mechanisms with the most influence on infection dynamics.	
68	Comparison of 19 major infectious diseases during COVID-19 epidemic and previous years in Zhejiang, implications for prevention measures 2022 , 22, 296	1
67	Emergence of synergistic and competitive pathogens in a coevolutionary spreading model 2022 , 105, 034308	
66	Health care cost of crusted scabies in Aboriginal communities in the Northern Territory, Australia 2022 , 16, e0010288	
65	Microfluidics-based strategies for molecular diagnostics of infectious diseases 2022 , 9, 11	О

64	Differential health impact of intervention programs for time-varying disease risk: a measles vaccination modeling study 2022 , 20, 113	О
63	Dynamic resource allocation for controlling pathogen spread on a large metapopulation network 2022 , 19, 20210744	1
62	Global Change and Emerging Infectious Diseases. 2022 , 14,	
61	Spatial dynamics of dengue fever spreading for the coexistence of two serotypes with an application to the city of SB Paulo, Brazil 2022 , 219, 106758	
60	Social mixing patterns relevant to infectious diseases spread by close contact in urban Blantyre, Malawi.	O
59	Decision Support for Infection Outbreak Analysis: the case of the Diamond Princess cruise ship. 2021 ,	O
58	Increasing COVID-19 vaccine acceptance among the general population while maintaining autonomy 2021 , 17, 5139-5141	1
57	Data_Sheet_1.pdf. 2019 ,	
56	Data_Sheet_2.pdf. 2019 ,	
55	Data_Sheet_3.pdf. 2019 ,	
54	Data_Sheet_4.pdf. 2019 ,	
53	Agribusiness vs. Public Health: Disease Control in Resource-Asymmetric Conflict. 2022 , 89-118	
52	Models and modelling practices for assessing the impact of outbreak response interventions to human vaccine-preventable diseases (1970-2019) - A systematic review.	
51	Leveraging mathematical models of disease dynamics and machine learning to improve development of novel malaria interventions. 2022 , 11,	O
50	Computing R0 of dynamic models by a definition-based method. 2022 , 7, 196-210	O
49	Association of pneumococcal carriage in infants with the risk of carriage among their contacts in Nha Trang, Vietnam: A nested cross-sectional survey. 2022 , 19, e1004016	O
48	TBERKLOZ TEDAVSIGREN BREYLERN COVD-19 SALGINI SRESNICE KAYGI DZEYLERNN	
	ELLIDERENLER ALBINDAN NICELENMESU	

46	Evaluation and comparison of three virucidal agents on inactivation of Nipah virus. 2022, 12,	0
45	Social mixing patterns relevant to infectious diseases spread by close contact in urban Blantyre, Malawi. 2022 , 40, 100590	O
44	Data assimilation and agent-based modelling: towards the incorporation of categorical agent parameters. 1, 131	
43	COVID-19 pandemic responses may impact the spread of antibiotic-resistant bacteria: a modelling study.	
42	Estimation of age-stratified contact rates during the COVID-19 pandemic using a novel inference algorithm. 2022 , 380,	1
41	The effect of interurban movements on the spatial distribution of population. 10,	
40	The effect of information-driven resource allocation on the propagation of epidemic with incubation period.	
39	Intervention strategies with 2D cellular automata for testing SARS-CoV-2 and reopening the economy. 2022 , 12,	
38	Modeling the Transmission Dynamics of COVID-19 Among Five High Burden African Countries. Volume 14, 1013-1029	0
37	Uncertainty Modeling of a Modified SEIR Epidemic Model for COVID-19. 2022 , 11, 1157	О
36	Preface: Challenges for future pandemics. 2022 , 100621	
35	The challenges of data in future pandemics. 2022 , 40, 100612	1
35	The challenges of data in future pandemics. 2022, 40, 100612 Dynamical behavior of SIRS model incorporating government action and public response in presence of deterministic and fluctuating environments. 2022, 164, 112643	0
	Dynamical behavior of SIRS model incorporating government action and public response in	
34	Dynamical behavior of SIRS model incorporating government action and public response in presence of deterministic and fluctuating environments. 2022 , 164, 112643 Modelling the dynamic relationship between spread of infection and observed crowd movement	0
34	Dynamical behavior of SIRS model incorporating government action and public response in presence of deterministic and fluctuating environments. 2022 , 164, 112643 Modelling the dynamic relationship between spread of infection and observed crowd movement patterns at large scale events. 2022 , 12,	0
34 33 32	Dynamical behavior of SIRS model incorporating government action and public response in presence of deterministic and fluctuating environments. 2022, 164, 112643 Modelling the dynamic relationship between spread of infection and observed crowd movement patterns at large scale events. 2022, 12, Managing host-parasite interactions in humans and wildlife in times of global change.	0 0

28	Simulation and forecasting models of COVID-19 taking into account spatio-temporal dynamic characteristics: A review. 10,	1
27	School-located influenza vaccination and community-wide indirect effects: reconciling mathematical models to epidemiologic models.	О
26	Epidemic spreading under mutually independent intra- and inter-host pathogen evolution. 2022 , 13,	0
25	Effect of Human Behavior on the Evolution of Viral Strains During an Epidemic. 2022, 84,	О
24	Modeling approaches for early warning and monitoring of pandemic situations as well as decision support. 10,	0
23	Global Infectious Diseases in September 2022: Monthly Analysis. 2022 , 2,	О
22	Obesity and AlzheimerE: An attempt to decipher the role of obesity in bloodErain barrier degradation. 2023 , 166, 112902	0
21	Machine learning based regional epidemic transmission risks precaution in digital society. 2022 , 12,	O
20	Transboundary hotspots associated with SARS-like coronavirus spillover risk: implications for mitigation.	0
19	Seasonality and the persistence of vector-borne pathogens.	O
19 18	Seasonality and the persistence of vector-borne pathogens. Inferring ASF transmission in domestic pigs and wild boars using a paired model iterative approach. 2023, 100665	0
	Inferring ASF transmission in domestic pigs and wild boars using a paired model iterative approach.	
18	Inferring ASF transmission in domestic pigs and wild boars using a paired model iterative approach. 2023 , 100665 Genome Structure, Life Cycle, and Taxonomy of Coronaviruses and the Evolution of SARS-CoV-2.	O
18	Inferring ASF transmission in domestic pigs and wild boars using a paired model iterative approach. 2023, 100665 Genome Structure, Life Cycle, and Taxonomy of Coronaviruses and the Evolution of SARS-CoV-2. 2023, 305-339 An approximate Bayesian approach for estimation of the instantaneous reproduction number	0
18 17 16	Inferring ASF transmission in domestic pigs and wild boars using a paired model iterative approach. 2023, 100665 Genome Structure, Life Cycle, and Taxonomy of Coronaviruses and the Evolution of SARS-CoV-2. 2023, 305-339 An approximate Bayesian approach for estimation of the instantaneous reproduction number under misreported epidemic data. 2200024	0 0
18 17 16	Inferring ASF transmission in domestic pigs and wild boars using a paired model iterative approach. 2023, 100665 Genome Structure, Life Cycle, and Taxonomy of Coronaviruses and the Evolution of SARS-CoV-2. 2023, 305-339 An approximate Bayesian approach for estimation of the instantaneous reproduction number under misreported epidemic data. 2200024 An Overview of Malaria Transmission Mechanisms, Control, and Modeling. 2023, 11, 3 study the relationship between CRP and Ferritin in people infection with COVID-19 in AL-Najaf	o o o
18 17 16 15	Inferring ASF transmission in domestic pigs and wild boars using a paired model iterative approach. 2023, 100665 Genome Structure, Life Cycle, and Taxonomy of Coronaviruses and the Evolution of SARS-CoV-2. 2023, 305-339 An approximate Bayesian approach for estimation of the instantaneous reproduction number under misreported epidemic data. 2200024 An Overview of Malaria Transmission Mechanisms, Control, and Modeling. 2023, 11, 3 study the relationship between CRP and Ferritin in people infection with COVID-19 in AL-Najaf Governorate, Iraq 2020, 12, 39-45	0 0 0

CITATION REPORT

10	Cyclopeptide self-assembly simulated epidemic sequential and synchronous complexity.	0
9	Cyclopeptide self-assembly simulated epidemic sequential and synchronous complexity.	О
8	A Scoping Review of Mathematical Models Used to Investigate the Role of Dogs in Chagas Disease Transmission. 2023 , 13, 555	0
7	A Method of Estimating Time-to-Recovery for a Disease Caused by a Contagious Pathogen Such as SARS-CoV-2 Using a Time Series of Aggregated Case Reports. 2023 , 11, 733	o
6	The Pandemic Puzzle R eviewing the Existing Pieces, Searching for the Missing Ones. 2023 , 15, 5214	0
5	Multiplex Detection of Infectious Diseases on Microfluidic Platforms. 2023, 13, 410	o
4	Modeling during an unprecedented pandemic. 2023 , 1-6	О
3	Whole-mitochondrial genomes of Nannizziopsis provide insights in evolution and detection. 2023 , 13,	o
2	Tracing the future of epidemics: Coincident niche distribution of host animals and disease incidence revealed climate-correlated risk shifts of main zoonotic diseases in China.	0
1	Assessing potential insights of an imperfect testing strategy: Parameter estimation and practical identifiability using early COVID-19 data in India. 2023 , 123, 107280	O