Gut microbiota: a key player in health and disease. A rev

Journal of Physiology and Biochemistry 71, 509-525

DOI: 10.1007/s13105-015-0390-3

Citation Report

#	Article	IF	CITATIONS
1	Role of metabolic phenotyping in understanding obesity and related conditions in <scp>G</scp> ulf <scp>C</scp> oâ€operation <scp>C</scp> ouncil countries. Clinical Obesity, 2015, 5, 302-311.	1.1	2
2	Lack of Adrenomedullin Results in Microbiota Changes and Aggravates Azoxymethane and Dextran Sulfate Sodium-Induced Colitis in Mice. Frontiers in Physiology, 2016, 7, 595.	1.3	14
3	The Gut Bacteria-Driven Obesity Development. Digestive Diseases, 2016, 34, 221-229.	0.8	53
4	Adipocyte biology and obesity-mediated adipose tissue remodeling. Obesity Medicine, 2016, 4, 15-20.	0.5	10
5	Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: A review. Journal of Functional Foods, 2016, 25, 511-522.	1.6	257
6	Fecal Microbiota-based Therapeutics for Recurrent Clostridium difficile Infection, Ulcerative Colitis and Obesity. EBioMedicine, 2016, 13, 37-45.	2.7	65
7	Prolonged transfer of feces from the lean mice modulates gut microbiota in obese mice. Nutrition and Metabolism, 2016, 13, 57.	1.3	55
8	Dietary green-plant thylakoids decrease gastric emptying and gut transit, promote changes in the gut microbial flora, but does not cause steatorrhea. Nutrition and Metabolism, 2016, 13, 67.	1.3	23
9	The role of Gut Microbiota in the development of obesity and Diabetes. Lipids in Health and Disease, 2016, 15, 108.	1.2	364
10	High prevalence of asymptomatic carriers of Tropheryma whipplei in different populations from the North of Spain. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2016, 34, 340-345.	0.3	13
11	Limited beneficial effects of piceatannol supplementation on obesity complications in the obese Zucker rat: gut microbiota, metabolic, endocrine, and cardiac aspects. Journal of Physiology and Biochemistry, 2016, 72, 567-582.	1.3	28
12	Gut microbiome and metabolic syndrome. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2016, 10, S150-S157.	1.8	147
13	Perinatal Lead Exposure Alters Gut Microbiota Composition and Results in Sex-specific Bodyweight Increases in Adult Mice. Toxicological Sciences, 2016, 151, 324-333.	1.4	113
14	Talking microbes: When gut bacteria interact with diet and host organs. Molecular Nutrition and Food Research, 2016, 60, 58-66.	1.5	125
15	Microbiotal-Host Interactions and Hypertension. Physiology, 2017, 32, 224-233.	1.6	27
16	Differential effects of antiretrovirals on microbial translocation and gut microbiota composition of HIVâ€infected patients. Journal of the International AIDS Society, 2017, 20, 21526.	1.2	94
17	Gut microbial metabolism defines host metabolism: an emerging perspective in obesity and allergic inflammation. Obesity Reviews, 2017, 18, 18-31.	3.1	93
18	Links between Dietary Protein Sources, the Gut Microbiota, and Obesity. Frontiers in Physiology, 2017, 8, 1047.	1.3	83

#	Article	IF	CITATIONS
19	Fecal Microbiota Transplants: Current Knowledge and Future Directions., 2018,, 279-302.		O
20	Influence of food consumption patterns and Galician lifestyle on human gut microbiota. Journal of Physiology and Biochemistry, 2018, 74, 85-92.	1.3	11
21	In vitro evaluation of the prebiotic effect of red and white grape polyphenolic extracts. Journal of Physiology and Biochemistry, 2018, 74, 101-110.	1.3	18
22	Ophiopogonin D alleviates highâ€fat dietâ€induced metabolic syndrome and changes the structure of gut microbiota in mice. FASEB Journal, 2018, 32, 1139-1153.	0.2	35
23	Maternal obesity is associated with gut microbial metabolic potential in offspring during infancy. Journal of Physiology and Biochemistry, 2018, 74, 159-169.	1.3	29
25	Cardiovascular Benefits of GLP-1ÂReceptor Agonism. JACC Basic To Translational Science, 2018, 3, 858-860.	1.9	10
26	Obesity: A New Adverse Effect of Antibiotics?. Frontiers in Pharmacology, 2018, 9, 1408.	1.6	28
27	Cordycepin reduces weight through regulating gut microbiota in high-fat diet-induced obese rats. Lipids in Health and Disease, 2018, 17, 276.	1.2	46
28	Intestinal Homeostasis and Longevity: Drosophila Gut Feeling. Advances in Experimental Medicine and Biology, 2018, 1086, 157-168.	0.8	13
29	Early colonization of the gut microbiome and its relationship with obesity. Human Microbiome Journal, 2018, 10, 1-5.	3.8	33
30	The divergent restoration effects of Lactobacillus strains in antibiotic-induced dysbiosis. Journal of Functional Foods, 2018, 51, 142-152.	1.6	13
31	Aging and Aging-Related Diseases. Advances in Experimental Medicine and Biology, 2018, , .	0.8	15
32	Cognitive reappraisal of low-calorie food predicts real-world craving and consumption of high- and low-calorie foods in daily life. Appetite, 2018, 131, 44-52.	1.8	22
33	Composición de la microbiota intestinal en pacientes con esclerosis múltiple. Influencia del tratamiento con interferón β-1b. NeurologÃa, 2021, 36, 495-503.	0.3	22
34	Metataxonomic Analysis of Individuals at BMI Extremes and Monozygotic Twins Discordant for BMI. Twin Research and Human Genetics, 2018, 21, 203-213.	0.3	15
35	Modifying progression of aging and reducing the risk of neurodegenerative diseases by probiotics and synbiotics. Frontiers in Bioscience - Elite, 2018, 10, 344-351.	0.9	14
36	Hypertension in childhood obesity. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 37-43.	0.7	70
37	High Doses of Copper and Mercury Changed Cecal Microbiota in Female Mice. Biological Trace Element Research, 2019, 189, 134-144.	1.9	47

#	ARTICLE	IF	Citations
38	Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. Advances in Nutrition, 2019, 10, S17-S30.	2.9	255
39	<i>Eurotium cristatum</i> , a potential probiotic fungus from Fuzhuan brick tea, alleviated obesity in mice by modulating gut microbiota. Food and Function, 2019, 10, 5032-5045.	2.1	61
40	SCFAs-Induced GLP-1 Secretion Links the Regulation of Gut Microbiome on Hepatic Lipogenesis in Chickens. Frontiers in Microbiology, 2019, 10, 2176.	1.5	46
41	A Fermented Food Product Containing Lactic Acid Bacteria Protects ZDF Rats from the Development of Type 2 Diabetes. Nutrients, 2019, 11, 2530.	1.7	33
42	Next-Generation Probiotics Their Molecular Taxonomy and Health Benefits., 2019,, 471-500.		0
43	A New Questionnaire to Assess Bowel Symptoms. Korean journal of gastroenterology = Taehan Sohwagi Hakhoe chi, The, 2019, 73, 313.	0.2	0
44	Bacillus amyloliquefaciens SC06 Protects Mice Against High-Fat Diet-Induced Obesity and Liver Injury via Regulating Host Metabolism and Gut Microbiota. Frontiers in Microbiology, 2019, 10, 1161.	1.5	43
45	High-Esterified Pectin Reverses Metabolic Malprogramming, Improving Sensitivity to Adipostatic/Adipokine Hormones. Journal of Agricultural and Food Chemistry, 2019, 67, 3633-3642.	2.4	12
46	Hydroxytyrosol Improves Obesity and Insulin Resistance by Modulating Gut Microbiota in High-Fat Diet-Induced Obese Mice. Frontiers in Microbiology, 2019, 10, 390.	1.5	60
47	Major Traditional Probiotics: Comparative Genomic Analyses and Roles in Gut Microbiome of Eight Cohorts. Frontiers in Microbiology, 2019, 10, 712.	1.5	13
48	Impairment of Intestinal Monocarboxylate Transporter 6 Function and Expression in Diabetic Rats Induced by Combination of High-Fat Diet and Low Dose of Streptozocin: Involvement of Butyrate–Peroxisome Proliferator-Activated Receptor- <i>γ</i> Activation. Drug Metabolism and Disposition, 2019, 47, 556-566.	1.7	12
49	The Oral, Genital and Gut Microbiome in HIV Infection. , 2019, , 307-323.		2
50	Using herbal medicine to target the "microbiota-metabolism-immunity―axis as possible therapy for cardiovascular disease. Pharmacological Research, 2019, 142, 205-222.	3.1	27
51	Vitamin D, gut microbiota, and radiation-related resistance: a love-hate triangle. Journal of Experimental and Clinical Cancer Research, 2019, 38, 493.	3.5	28
52	Pomegranate peel polyphenols reduce chronic low-grade inflammatory responses by modulating gut microbiota and decreasing colonic tissue damage in rats fed a high-fat diet. Food and Function, 2019, 10, 8273-8285.	2.1	69
53	Regulation of Adaptive Thermogenesis and Browning by Prebiotics and Postbiotics. Frontiers in Physiology, 2018, 9, 1908.	1.3	50
54	The gut microbiota of hand, foot and mouth disease patients demonstrates downâ€regulated butyrateâ€producing bacteria and upâ€regulated inflammationâ€inducing bacteria. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 1133-1139.	0.7	12
55	Ferulic Acid Produced by Lactobacillus fermentum Influences Developmental Growth Through a dTOR-Mediated Mechanism. Molecular Biotechnology, 2019, 61, 1-11.	1.3	21

#	Article	IF	CITATIONS
56	Exercise prevents high fat diet-induced bone loss, marrow adiposity and dysbiosis in male mice. Bone, 2019, 118, 20-31.	1.4	69
57	Naturally Occurring TPE-CA Maintains Gut Microbiota and Bile Acids Homeostasis via FXR Signaling Modulation of the Liver–Gut Axis. Frontiers in Pharmacology, 2020, 11, 12.	1.6	37
58	Effects of thylakoid intake on appetite and weight loss: a systematic review. Journal of Diabetes and Metabolic Disorders, 2020, 19, 565-573.	0.8	5
59	Gut microbiota and old age: Modulating factors and interventions for healthy longevity. Experimental Gerontology, 2020, 141, 111095.	1.2	61
60	Female Gut and Genital Tract Microbiota-Induced Crosstalk and Differential Effects of Short-Chain Fatty Acids on Immune Sequelae. Frontiers in Immunology, 2020, 11, 2184.	2.2	82
61	Relationship between Wine Consumption, Diet and Microbiome Modulation in Alzheimer's Disease. Nutrients, 2020, 12, 3082.	1.7	27
62	Microbiota Transplant in the Treatment of Obesity and Diabetes: Current and Future Perspectives. Frontiers in Microbiology, 2020, 11, 590370.	1.5	40
63	Interplay between gut microbiota and antimicrobial peptides. Animal Nutrition, 2020, 6, 389-396.	2.1	77
64	Bringing the digestibility of prebiotics into focus: update of carbohydrate digestion models. Critical Reviews in Food Science and Nutrition, 2021, 61, 3267-3278.	5.4	17
65	The impact of intestinal microbiota on weight loss in Parkinson's disease patients: a pilot study. Future Microbiology, 2020, 15, 1393-1404.	1.0	4
66	Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek, 2020, 113, 2019-2040.	0.7	473
67	Probiotics in Treatment of Viral Respiratory Infections and Neuroinflammatory Disorders. Molecules, 2020, 25, 4891.	1.7	50
68	Anti-Obesity and Gut Microbiota Modulation Effect of Secoiridoid-Enriched Extract from Fraxinus mandshurica Seeds on High-Fat Diet-Fed Mice. Molecules, 2020, 25, 4001.	1.7	18
69	Lycium barbarum relieves gut microbiota dysbiosis and improves colonic barrier function in mice following antibiotic perturbation. Journal of Functional Foods, 2020, 71, 103973.	1.6	16
70	Gut microbiota and Covid-19- possible link and implications. Virus Research, 2020, 285, 198018.	1.1	452
71	Autologous fecal transplantation from a lean state potentiates caloric restriction effects on body weight and adiposity in obese mice. Scientific Reports, 2020, 10, 9388.	1.6	25
72	The influence of interferon \hat{l}^2 -1b on gut microbiota composition in patients with multiple sclerosis. NeurologÃa (English Edition), 2021, 36, 495-503.	0.2	24
73	Colonization and immunoregulation of <i>Lactobacillus plantarum </i> BF_15, a novel probiotic strain from the feces of breast-fed infants. Food and Function, 2020, 11, 3156-3166.	2.1	17

#	Article	IF	CITATIONS
74	Gut microbiota and aging-A focus on centenarians. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165765.	1.8	45
7 5	Effect of Caloric Restriction on BMI, Gut Microbiota, and Blood Amino Acid Levels in Non-Obese Adults. Nutrients, 2020, 12, 631.	1.7	36
76	Research trends on the relationship between Microbiota and Gastric Cancer: A Bibliometric Analysis from 2000 to 2019. Journal of Cancer, 2020, 11, 4823-4831.	1.2	54
77	Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. British Journal of Nutrition, 2020, 123, 1127-1137.	1.2	193
78	Toxicity, gut microbiota and metabolome effects after copper exposure during early life in SD rats. Toxicology, 2020, 433-434, 152395.	2.0	26
79	Dietary whole Goji berry (Lycium barbarum) intake improves colonic barrier function by altering gut microbiota composition in mice. International Journal of Food Science and Technology, 2021, 56, 103-114.	1.3	19
80	Gender-associated differences in oral microbiota and salivary biochemical parameters in response to feeding. Journal of Physiology and Biochemistry, 2021, 77, 155-166.	1.3	18
81	Current progress of research on intestinal bacterial translocation. Microbial Pathogenesis, 2021, 152, 104652.	1.3	28
82	Gut Microbiota in Obesity and Bariatric Surgery: Where Do We Stand?. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 183-227.	0.2	0
83	The beneficial effects of <i>Lactobacillus brevis</i> FZU0713-fermented <i>Laminaria japonica</i> on lipid metabolism and intestinal microbiota in hyperlipidemic rats fed with a high-fat diet. Food and Function, 2021, 12, 7145-7160.	2.1	26
85	Beneficial impacts of fermented celery (<i>Apium graveolens</i> L.) juice on obesity prevention and gut microbiota modulation in high-fat diet fed mice. Food and Function, 2021, 12, 9151-9164.	2.1	28
86	Alterations in Gut Microbial Communities Across Anatomical Locations in Inflammatory Bowel Diseases. Frontiers in Nutrition, 2021, 8, 615064.	1.6	14
87	Oleuropein Ameliorates Advanced Stage of Type 2 Diabetes in db/db Mice by Regulating Gut Microbiota. Nutrients, 2021, 13, 2131.	1.7	29
88	Lights and Shadows of Microbiota Modulation and Cardiovascular Risk in HIV Patients. International Journal of Environmental Research and Public Health, 2021, 18, 6837.	1.2	3
89	The intestinal microbiota: Towards a multifactorial integrative model. Eubiosis and dysbiosis in morbid physical and psychological conditions. Archives of Clinical Gastroenterology, 2021, , 024-035.	0.1	12
90	Role of Postbiotics in Diabetes Mellitus: Current Knowledge and Future Perspectives. Foods, 2021, 10, 1590.	1.9	29
91	Gastrointestinal manifestations of coronavirus disease 2019. Current Opinion in Infectious Diseases, 2021, 34, 471-476.	1.3	4
92	Gastrointestinal mucosal immunity and COVID-19. World Journal of Gastroenterology, 2021, 27, 5047-5059.	1.4	20

#	ARTICLE	IF	CITATIONS
93	Oral angiotensin-($1\hat{a}\in$ "7) peptide modulates intestinal microbiota improving metabolic profile in obese mice. Protein and Peptide Letters, 2021, 28, .	0.4	3
94	Human Microbiota Network: Unveiling Potential Crosstalk between the Different Microbiota Ecosystems and Their Role in Health and Disease. Nutrients, 2021, 13, 2905.	1.7	26
95	Microbiota and Its Impact on the Immune System in COVID-19â€"A Narrative Review. Journal of Clinical Medicine, 2021, 10, 4537.	1.0	11
96	Gut Microbiota in Lung Cancer: Where Do We Stand?. International Journal of Molecular Sciences, 2021, 22, 10429.	1.8	23
97	Dietary fibers extracted from Saccharina japonica can improve metabolic syndrome and ameliorate gut microbiota dysbiosis induced by high fat diet. Journal of Functional Foods, 2021, 85, 104642.	1.6	9
98	Gastrointestinal Tract and COVID-19. Advances in Medical Diagnosis, Treatment, and Care, 2022, , 127-140.	0.1	1
99	An exercise intervention alters stool microbiota and metabolites among older, sedentary adults. Therapeutic Advances in Infectious Disease, 2021, 8, 204993612110270.	1.1	16
100	Metabolic networks of the human gut microbiota. Microbiology (United Kingdom), 2020, 166, 96-119.	0.7	22
103	Gut Microbiota, Obesity and Bariatric Surgery: Current Knowledge and Future Perspectives. Current Pharmaceutical Design, 2019, 25, 2038-2050.	0.9	19
104	The Microbiome and Alzheimer's Disease: Potential and Limitations of Prebiotic, Synbiotic, and Probiotic Formulations. Frontiers in Bioengineering and Biotechnology, 2020, 8, 537847.	2.0	47
105	Are Probiotics Pro-Obesity or Potential Anti-Obesity Agents?. International Journal of Food and Nutritional Science, 2015, 2, 1.	0.4	0
106	Regular Exercise Shapes Healthy Gut Microbiom. Journal of Bacteriology & Mycology Open Access, 2016, 3, .	0.2	0
107	Alteraciones en el eje intestino-ri \tilde{A} ± \tilde{A} 3n durante la enfermedad renal cr \tilde{A} 3nica: causas, consecuencias y propuestas de tratamiento. Revista Espanola De Nutricion Humana Y Dietetica, 2017, 21, 174-183.	0.1	3
108	Nutrition, the Gastrointestinal Microbiota and Cancer Prevention. Food Chemistry, Function and Analysis, 2019, , 261-293.	0.1	0
109	Gut Microbiota and Antipsychotics Induced Metabolic Alteration. Global Clinical and Translational Research, 2019, , 131-143.	0.4	0
110	The Beneficial Effects of Essential Oils in Anti-Obesity Treatment. International Journal of Molecular Sciences, 2021, 22, 11832.	1.8	20
111	Microbial metabolites beneficial in regulation of obesity. , 2022, , 355-375.		1
112	Polyphenols-rich extracts from walnut green husk prevent non-alcoholic fatty liver disease, vascular endothelial dysfunction and colon tissue damage in rats induced by high-fat diet. Journal of Functional Foods, 2021, 87, 104853.	1.6	15

#	Article	IF	CITATIONS
113	COVID-19 Pandemic and Mental Illness: Impact of Gut Microbiota., 2021,, 349-368.		0
115	Gastrointestinal symptoms in COVID-19. Przeglad Gastroenterologiczny, 0, , .	0.3	1
116	Impending Mental Health Issues During Coronavirus Disease 2019 $\hat{a} \in \text{``Iime for Personalized Nutrition}$ Based on the Gut Microbiota to Tide Over the Crisis? Frontiers in Neuroscience, 2021, 15, 831193.	1.4	3
117	Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides. Critical Reviews in Food Science and Nutrition, 2023, 63, 5890-5910.	5.4	32
118	A Combined Supplement of Probiotic Strains AP-32, bv-77, and CP-9 Increased Akkermansia mucinphila and Reduced Non-Esterified Fatty Acids and Energy Metabolism in HFD-Induced Obese Rats. Nutrients, 2022, 14, 527.	1.7	12
119	COVID-19 Hastalığında Probiyotiklerin Rolü, ×nemi ve Kullanımı. Sakarya Medical Journal, 0, , .	0.1	1
120	Dietary fiber combinations to mitigate the metabolic, microbial, and cognitive imbalances resulting from dietâ€induced obesity in rats. FASEB Journal, 2022, 36, e22269.	0.2	4
121	Neurohormonal Changes in the Gut–Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. International Journal of Molecular Sciences, 2022, 23, 3339.	1.8	21
122	What Does 16S rRNA Gene-Targeted Next Generation Sequencing Contribute to the Study of Infective Endocarditis in Heart-Valve Tissue? Pathogens, 2022, 11, 34.	1.2	6
123	Differences in the Composition of Gut Microbiota between Patients with Parkinson's Disease and Healthy Controls: A Cohort Study. Journal of Clinical Medicine, 2021, 10, 5698.	1.0	18
143	Pediococcus acidilactici FZU106 alleviates high-fat diet-induced lipid metabolism disorder in association with the modulation of intestinal microbiota in hyperlipidemic rats. Current Research in Food Science, 2022, 5, 775-788.	2.7	11
144	Fat Absorption, Metabolism, and Global Regulation. Food Chemistry, Function and Analysis, 2022, , 68-85.	0.1	О
145	Proanthocyanidins at the gastrointestinal tract: mechanisms involved in their capacity to mitigate obesity-associated metabolic disorders. Critical Reviews in Food Science and Nutrition, 2024, 64, 220-240.	5.4	4
146	Eugenol, A Major Component of Clove Oil, Attenuates Adiposity, and Modulates Gut Microbiota in Highâ€Fat Dietâ€Fed Mice. Molecular Nutrition and Food Research, 2022, 66, .	1.5	15
147	Potential associations between alterations in gut microbiome and obesityâ€related traits after the bariatric surgery. Journal of Human Nutrition and Dietetics, 2023, 36, 981-996.	1.3	1
148	Small Intestinal Bacterial Overgrowth in Patients with Roux-en-Y Gastric Bypass and One-Anastomosis Gastric Bypass. Obesity Surgery, 2022, 32, 4102-4109.	1.1	10
149	Effects of palm olein and palm stearin on cecal and fecal microbiota of C57BL/6J mice under low and high fat intakes. Food Chemistry, 2023, 404, 134693.	4.2	2
150	Dietary 25-hydroxycholecalciferol modulates gut microbiota and improves the growth, meat quality, and antioxidant status of growing-finishing pigs. Frontiers in Microbiology, 0, 13, .	1.5	3

CITATION REPORT

#	Article	IF	CITATIONS
151	Combating the Sustained Inflammation Involved in Aging and Neurodegenerative Diseases with Probiotics. Healthy Ageing and Longevity, 2023, , 193-213.	0.2	0
152	Gut microbiota and synbiotic foods: Unveiling the relationship in ⟨scp⟩COVID⟨/scp⟩â€19 perspective. Food Science and Nutrition, 2023, 11, 1166-1177.	1.5	4
153	Symbiotic association of gut microbiome in health and diseases at ageing., 2023,, 551-571.		0
154	Gut microbiome as a therapeutic target for liver diseases. Life Sciences, 2023, 322, 121685.	2.0	5
155	The protective effects of Levilactobacillus brevis FZU0713 on lipid metabolism and intestinal microbiota in hyperlipidemic rats. Food Science and Human Wellness, 2023, 12, 1646-1659.	2.2	6
156	Effects of liposoluble components of highland barley spent grains on physiological indexes, intestinal microorganisms, and the liver transcriptome in mice fed a highâ€fat diet. Food Science and Nutrition, 2023, 11, 3096-3110.	1.5	0