Efficient Light-Emitting Diodes Based on Nanocrystallin Matrix

Nano Letters 15, 2640-2644

DOI: 10.1021/acs.nanolett.5b00235

Citation Report

#	Article	IF	CITATIONS
4	Organic–Inorganic Perovskite Lightâ€Emitting Electrochemical Cells with a Large Capacitance. Advanced Functional Materials, 2015, 25, 7226-7232.	7.8	87
5	Singleâ€Layer Lightâ€Emitting Diodes Using Organometal Halide Perovskite/Poly(ethylene oxide) Composite Thin Films. Advanced Materials, 2015, 27, 5196-5202.	11.1	288
6	Quantum Dot Lightâ€Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX ₃). Advanced Materials, 2015, 27, 7162-7167.	11.1	2,457
7	Environmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 2200-2205.	2.1	205
8	Emulsion Synthesis of Size-Tunable CH ₃ NH ₃ PbBr ₃ Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2015, 7, 28128-28133.	4.0	429
9	Ultraviolet surprise: Efficient soft x-ray high-harmonic generation in multiply ionized plasmas. Science, 2015, 350, 1225-1231.	6.0	165
10	Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350, 1222-1225.	6.0	2,440
11	Comparison of Recombination Dynamics in CH ₃ NH ₃ PbBr ₃ and CH ₃ NH ₃ PbI ₃ Perovskite Films: Influence of Exciton Binding Energy. Journal of Physical Chemistry Letters, 2015, 6, 4688-4692.	2.1	350
12	Planar-integrated single-crystalline perovskite photodetectors. Nature Communications, 2015, 6, 8724.	5.8	617
13	Color tunable halide perovskite CH3NH3PbBr3â^'Cl emission via annealing. Organic Electronics, 2015, 26, 260-264.	1.4	15
14	Blue-Green Color Tunable Solution Processable Organolead Chloride–Bromide Mixed Halide Perovskites for Optoelectronic Applications. Nano Letters, 2015, 15, 6095-6101.	4.5	461
15	Growth and Anion Exchange Conversion of CH ₃ NH ₃ PbX ₃ Nanorod Arrays for Light-Emitting Diodes. Nano Letters, 2015, 15, 5519-5524.	4.5	342
16	Synthesis, Optical Properties, and Exciton Dynamics of Organolead Bromide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2015, 119, 26672-26682.	1.5	96
17	Inorganic Halide Perovskites for Efficient Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2015, 6, 4360-4364.	2.1	482
18	Multiscale morphology design of hybrid halide perovskites through a polymeric template. Nanoscale, 2015, 7, 18956-18963.	2.8	80
19	Highly luminescent perovskite–aluminum oxide composites. Journal of Materials Chemistry C, 2015, 3, 11286-11289.	2.7	63
20	Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots. ACS Nano, 2015, 9, 10386-10393.	7.3	459
21	A resistance change effect in perovskite CH ₃ NH ₃ PbI ₃ films induced by ammonia. Chemical Communications, 2015, 51, 15426-15429.	2.2	86

	CHATON R	LFORT	
#	Article	IF	CITATIONS
22	Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. Nano Letters, 2015, 15, 6521-6527.	4.5	785
23	Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission. Journal of Physical Chemistry Letters, 2015, 6, 5027-5033.	2.1	466
24	Organometal halide perovskite quantum dots: synthesis, optical properties, and display applications. Chinese Chemical Letters, 2016, 27, 1124-1130.	4.8	65
25	Efficient Visible Quasiâ€2D Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2016, 28, 7515-7520.	11.1	554
26	The Progress of Interface Design in Perovskiteâ€Based Solar Cells. Advanced Energy Materials, 2016, 6, 1600460.	10.2	139
27	Organolead Halide Perovskite Nanocrystals: Branched Capping Ligands Control Crystal Size and Stability. Angewandte Chemie - International Edition, 2016, 55, 8864-8868.	7.2	282
28	Efficient Cementing of CH ₃ NH ₃ PbBr ₃ Nanoparticles to Upconversion Nanoparticles Visualized by Confocal Microscopy. Advanced Functional Materials, 2016, 26, 5131-5138.	7.8	36
29	Allâ€Inorganic Perovskite Nanocrystals for Highâ€Efficiency Light Emitting Diodes: Dualâ€Phase CsPbBr ₃ â€CsPb ₂ Br ₅ Composites. Advanced Functional Materials, 2016, 26, 4595-4600.	7.8	425
30	Bright Lightâ€Emitting Diodes Based on Organometal Halide Perovskite Nanoplatelets. Advanced Materials, 2016, 28, 305-311.	11.1	463
31	Improving the Stability and Performance of Perovskite Lightâ€Emitting Diodes by Thermal Annealing Treatment. Advanced Materials, 2016, 28, 6906-6913.	11.1	111
32	A Solutionâ€Processed Organometal Halide Perovskite Hole Transport Layer for Highly Efficient Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2016, 2, 1600165.	2.6	25
33	Organolead Halide Perovskite Nanocrystals: Branched Capping Ligands Control Crystal Size and Stability. Angewandte Chemie, 2016, 128, 9010-9014.	1.6	51
34	Highly luminescent and stable layered perovskite as the emitter for light emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2727-2732.	0.8	30
35	Ultrabroad Photoluminescence and Electroluminescence at New Wavelengths from Doped Organometal Halide Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 2735-2741.	2.1	97
36	Perovskite Materials for Lightâ€Emitting Diodes and Lasers. Advanced Materials, 2016, 28, 6804-6834.	11.1	1,188
37	Fully Vaporâ€Deposited Heterostructured Lightâ€Emitting Diode Based on Organoâ€Metal Halide Perovskite. Advanced Electronic Materials, 2016, 2, 1500325.	2.6	35
38	Efficient thermal conductance in organometallic perovskite CH3NH3PbI3 films. Applied Physics Letters, 2016, 108, 081902.	1.5	22
39	Morphology control of perovskite light-emitting diodes by using amino acid self-assembled monolayers. Applied Physics Letters, 2016, 108, .	1.5	69

#	Article	IF	CITATIONS
40	Research Update: Challenges for high-efficiency hybrid lead-halide perovskite LEDs and the path towards electrically pumped lasing. APL Materials, 2016, 4, .	2.2	49
41	Different emissive states in the bulk and at the surface of methylammonium lead bromide perovskite revealed by two-photon micro-spectroscopy and lifetime measurements. APL Photonics, 2016, 1, .	3.0	39
42	Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy and Environmental Science, 2016, 9, 1655-1660.	15.6	783
43	Organolead trihalide perovskite materials for efficient light emitting diodes. Science China Chemistry, 2016, 59, 653-658.	4.2	9
44	Polymer-Free Films of Inorganic Halide Perovskite Nanocrystals as UV-to-White Color-Conversion Layers in LEDs. Chemistry of Materials, 2016, 28, 2902-2906.	3.2	152
45	Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films. Physical Chemistry Chemical Physics, 2016, 18, 14701-14708.	1.3	73
46	Perovskite photonic sources. Nature Photonics, 2016, 10, 295-302.	15.6	1,369
47	Room-temperature and gram-scale synthesis of CsPbX ₃ (X = Cl, Br, I) perovskite nanocrystals with 50‑85% photoluminescence quantum yields. Chemical Communications, 2016, 52, 7265-7268.	2.2	330
48	A facile one-step solution deposition via non-solvent/solvent mixture for efficient organometal halide perovskite light-emitting diodes. Nanoscale, 2016, 8, 11084-11090.	2.8	41
49	Colloidal nanocrystals for quality lighting and displays: milestones and recent developments. Nanophotonics, 2016, 5, 74-95.	2.9	70
50	Improving the Photoluminescence Properties of Perovskite CH ₃ NH ₃ PbBr _{3-x} Cl _{<i>x</i>} Films by Modulating Organic Cation and Chlorine Concentrations. ACS Applied Materials & Interfaces, 2016, 8, 12756-12763.	4.0	30
51	Room temperature single-photon emission and lasing for all-inorganic colloidal perovskite quantum dots. Nano Energy, 2016, 28, 462-468.	8.2	115
52	Photoinduced Emissive Trap States in Lead Halide Perovskite Semiconductors. ACS Energy Letters, 2016, 1, 726-730.	8.8	137
53	Room temperature light emitting diode based on 2D hybrid organic-inorganic low dimensional perovskite semiconductor. Applied Materials Today, 2016, 5, 128-133.	2.3	25
54	A Microscale Perovskite as Single Component Broadband Phosphor for Downconversion Whiteâ€Lightâ€Emitting Devices. Advanced Optical Materials, 2016, 4, 2009-2015.	3.6	57
55	Efficient Blue Electroluminescence Using Quantum-Confined Two-Dimensional Perovskites. ACS Nano, 2016, 10, 9720-9729.	7.3	299
56	Single-Layer Halide Perovskite Light-Emitting Diodes with Sub-Band Gap Turn-On Voltage and High Brightness. Journal of Physical Chemistry Letters, 2016, 7, 4059-4066.	2.1	175
57	Metal halide perovskite light emitters. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11694-11702.	3.3	465

#	Article	IF	CITATIONS
58	Synthesis, properties, and optical applications of low-dimensional perovskites. Chemical Communications, 2016, 52, 13637-13655.	2.2	252
59	Shape-Controlled Synthesis of All-Inorganic CsPbBr ₃ Perovskite Nanocrystals with Bright Blue Emission. ACS Applied Materials & Interfaces, 2016, 8, 28824-28830.	4.0	271
60	Cross-Linkable Hole-Transport Materials Improve the Device Performance of Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 27006-27011.	4.0	41
61	Optical constants of CH_3NH_3PbBr_3 perovskite thin films measured by spectroscopic ellipsometry. Optics Express, 2016, 24, 16586.	1.7	108
62	In situ gas/solid reaction for the formation of luminescent quantum confined CH ₃ NH ₃ PbBr ₃ perovskite planar film. Chemical Communications, 2016, 52, 11080-11083.	2.2	18
63	NiO <i>_x</i> Electrode Interlayer and CH ₃ NH ₂ /CH ₃ NH ₃ PbBr ₃ Interface Treatment to Markedly Advance Hybrid Perovskiteâ€Based Lightâ€Emitting Diodes. Advanced Materials, 2016. 28. 8687-8694.	11.1	147
64	Improved performance of perovskite light-emitting diodes using a PEDOT:PSS and MoO ₃ composite layer. Journal of Materials Chemistry C, 2016, 4, 8161-8165.	2.7	75
65	Facile synthesis, characterization and structural evolution of nanorods single-crystalline (C4H9NH3)2PbI2X2 mixed halide organometal perovskite for solar cell application. Optik, 2016, 127, 9775-9787.	1.4	39
66	In Situ Fabrication of Halide Perovskite Nanocrystal‣mbedded Polymer Composite Films with Enhanced Photoluminescence for Display Backlights. Advanced Materials, 2016, 28, 9163-9168.	11.1	635
67	Solution-processed highly bright and durable cesium lead halide perovskite light-emitting diodes. Nanoscale, 2016, 8, 18021-18026.	2.8	160
68	Inorganic red perovskite quantum dot integrated blue chip: a promising candidate for high color-rendering in w-LEDs. RSC Advances, 2016, 6, 79410-79414.	1.7	26
69	Redox Chemistry Dominates the Degradation and Decomposition of Metal Halide Perovskite Optoelectronic Devices. ACS Energy Letters, 2016, 1, 595-602.	8.8	196
70	The Luminescence of CH ₃ NH ₃ PbBr ₃ Perovskite Nanoparticles Crests the Summit and Their Photostability under Wet Conditions is Enhanced. Small, 2016, 12, 5245-5250.	5.2	116
71	Highly Efficient Perovskiteâ€Quantumâ€Đot Lightâ€Emitting Diodes by Surface Engineering. Advanced Materials, 2016, 28, 8718-8725.	11.1	917
72	Enhanced Optical and Electrical Properties of Polymerâ€Assisted Allâ€Inorganic Perovskites for Lightâ€Emitting Diodes. Advanced Materials, 2016, 28, 8983-8989.	11.1	326
73	MAPbI2.9-xBrxCl0.1 hybrid halide perovskites: Shedding light on the effect of chloride and bromide ions on structural and photoluminescence properties. Applied Surface Science, 2016, 390, 744-750.	3.1	16
74	Perovskite Luminescent Materials. Topics in Current Chemistry, 2016, 374, 52.	3.0	20
75	Morphology Engineering for Highâ€Performance and Multicolored Perovskite Lightâ€Emitting Diodes with Simple Device Structures. Small, 2016, 12, 4412-4420.	5.2	125

#	Article	IF	CITATIONS
76	Efficient perovskite light-emitting diodes by film annealing temperature control. RSC Advances, 2016, 6, 71070-71075.	1.7	21
77	Efficient Lowâ€Temperature Solutionâ€Processed Leadâ€Free Perovskite Infrared Lightâ€Emitting Diodes. Advanced Materials, 2016, 28, 8029-8036.	11.1	157
78	Two-Dimensional Colloidal Nanocrystals. Chemical Reviews, 2016, 116, 10934-10982.	23.0	412
79	The Bright Side of Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 4322-4334.	2.1	115
80	Simple and Efficient Green-Light-Emitting Diodes Based on Thin Organolead Bromide Perovskite Films via Tuning Precursor Ratios and Postannealing Temperature. Journal of Physical Chemistry Letters, 2016, 7, 4259-4266.	2.1	38
81	Molecularly Engineered Organic-Inorganic Hybrid Perovskite with Multiple Quantum Well Structure for Multicolored Light-Emitting Diodes. Scientific Reports, 2016, 6, 33546.	1.6	95
82	Simple Approach to Improving the Amplified Spontaneous Emission Properties of Perovskite Films. ACS Applied Materials & amp; Interfaces, 2016, 8, 32978-32983.	4.0	48
83	High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices. Scientific Reports, 2016, 6, 36733.	1.6	134
84	Colloidal Organometal Halide Perovskite (MAPbBrxI3â^'x, 0≤â‰\$) Quantum Dots: Controllable Synthesis and Tunable Photoluminescence. Scientific Reports, 2016, 6, 35931.	1.6	22
85	Facet-dependent photovoltaic efficiency variations in single grains of hybrid halideÂperovskite. Nature Energy, 2016, 1, .	19.8	308
86	Beyond Bulk Lifetimes: Insights into Lead Halide Perovskite Films from Time-Resolved Photoluminescence. Physical Review Applied, 2016, 6, .	1.5	194
87	Amineâ€Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 8757-8763.	7.8	344
88	Experimental investigation of electroluminescent light emitting diodes based on halide perovskites. , 2016, , .		0
89	Efficient near-infrared light-emitting diodes based on organometallic halide perovskite–poly(2-ethyl-2-oxazoline) nanocomposite thin films. Nanoscale, 2016, 8, 19846-19852.	2.8	43
90	Selfâ€Assembled Dense Colloidal Cu ₂ Te Nanodisk Networks in P3HT Thin Films with Enhanced Photocurrent. Advanced Functional Materials, 2016, 26, 4535-4542.	7.8	19
91	Organometal Halide Perovskite Quantum Dot Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 4797-4802.	7.8	231
92	Monolayer and Fewâ€Layer Allâ€Inorganic Perovskites as a New Family of Twoâ€Dimensional Semiconductors for Printable Optoelectronic Devices. Advanced Materials, 2016, 28, 4861-4869.	11.1	614
93	Heterostructured WS ₂ /CH ₃ NH ₃ PbI ₃ Photoconductors with Suppressed Dark Current and Enhanced Photodetectivity. Advanced Materials, 2016, 28, 3683-3689.	11.1	396

#	Article	IF	CITATIONS
94	Tunable Near-Infrared Luminescence in Tin Halide Perovskite Devices. Journal of Physical Chemistry Letters, 2016, 7, 2653-2658.	2.1	122
95	Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 2016, 11, 872-877.	15.6	1,868
96	Size-controlled synthesis of highly luminescent organometal halide perovskite quantum dots. Journal of Alloys and Compounds, 2016, 687, 506-513.	2.8	52
97	High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles. ACS Nano, 2016, 10, 6623-6630.	7.3	347
98	Study of Perovskite QD Down-Converted LEDs and Six-Color White LEDs for Future Displays with Excellent Color Performance. ACS Applied Materials & Interfaces, 2016, 8, 18189-18200.	4.0	159
99	Organometal Halide Perovskite Artificial Synapses. Advanced Materials, 2016, 28, 5916-5922.	11.1	319
100	Halide Perovskites: Poor Man's Highâ€Performance Semiconductors. Advanced Materials, 2016, 28, 5778-5793.	11.1	339
101	A highly photoconductive composite prepared by incorporating polyoxometalate into perovskite for photodetection application. Chemical Communications, 2016, 52, 3304-3307.	2.2	35
102	Crystal organometal halide perovskites with promising optoelectronic applications. Journal of Materials Chemistry C, 2016, 4, 11-27.	2.7	185
103	All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chemical Communications, 2016, 52, 2067-2070.	2.2	874
104	Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chemical Society Reviews, 2016, 45, 655-689.	18.7	1,285
105	Solution-processed photodetectors based on organic–inorganic hybrid perovskite and nanocrystalline graphite. Nanotechnology, 2016, 27, 175201.	1.3	38
106	Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions. Chemical Communications, 2016, 52, 3887-3890.	2.2	166
107	Spatially Non-uniform Trap State Densities in Solution-Processed Hybrid Perovskite Thin Films. Journal of Physical Chemistry Letters, 2016, 7, 715-721.	2.1	160
108	Polyallene- <i>block</i> -polythiophene- <i>block</i> -polyallene Copolymers: One-Pot Synthesis, Helical Assembly, and Multiresponsiveness. Macromolecules, 2016, 49, 1180-1190.	2.2	53
109	Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping. Nano Letters, 2016, 16, 1869-1877.	4.5	425
110	Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI3â^'xBrx (0 ≤ ≤) films. Applied Surface Science, 2016, 371, 112-117.	3.1	98
111	Fully Printed Halide Perovskite Light-Emitting Diodes with Silver Nanowire Electrodes. ACS Nano, 2016, 10, 1795-1801.	7.3	261

#	Article	IF	CITATIONS
112	Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer. Nano Letters, 2016, 16, 1415-1420.	4.5	685
113	Fluorescence Blinking and Photoactivation of All-Inorganic Perovskite Nanocrystals CsPbBr ₃ and CsPbBr ₂ 1. Journal of Physical Chemistry Letters, 2016, 7, 266-271.	2.1	136
114	Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives. Journal of Materials Chemistry A, 2016, 4, 1591-1597.	5.2	183
115	Enhanced Performance of Perovskite Light-Emitting Devices With Improved Perovskite Crystallization. IEEE Photonics Journal, 2017, 9, 1-8.	1.0	2
116	Efficient Flexible Organic/Inorganic Hybrid Perovskite Lightâ€Emitting Diodes Based on Graphene Anode. Advanced Materials, 2017, 29, 1605587.	11.1	200
117	Multilayer light emitting devices with organometal halide perovskite: Polymer composite emission layer: The relationship of device performance with the compositions of emission layer and device configurations. Organic Electronics, 2017, 43, 167-174.	1.4	29
118	High Defect Tolerance in Lead Halide Perovskite CsPbBr ₃ . Journal of Physical Chemistry Letters, 2017, 8, 489-493.	2.1	899
119	CsPb _{<i>x</i>} Mn _{1–<i>x</i>} Cl ₃ Perovskite Quantum Dots with High Mn Substitution Ratio. ACS Nano, 2017, 11, 2239-2247.	7.3	496
120	Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nature Photonics, 2017, 11, 108-115.	15.6	1,175
121	Patterning of perovskite–polymer films by wrinkling instabilities. Soft Matter, 2017, 13, 1654-1659.	1.2	12
122	Oxide Semiconductor Phototransistor with Organolead Trihalide Perovskite Light Absorber. Advanced Electronic Materials, 2017, 3, 1600325.	2.6	58
123	Tunable Light-Emitting Diodes Utilizing Quantum-Confined Layered Perovskite Emitters. ACS Photonics, 2017, 4, 476-481.	3.2	124
124	Unveiling the Dynamic Processes in Hybrid Lead Bromide Perovskite Nanoparticle Thin Film Devices. Advanced Energy Materials, 2017, 7, 1602283.	10.2	47
125	Tuning the Competitive Recombination of Free Carriers and Bound Excitons in Perovskite CH ₃ NH ₃ PbBr ₃ Single Crystal. Journal of Physical Chemistry C, 2017, 121, 6916-6923.	1.5	18
126	<i>In-Situ</i> Formed Type I Nanocrystalline Perovskite Film for Highly Efficient Light-Emitting Diode. ACS Nano, 2017, 11, 3311-3319.	7.3	161
127	Neutral and Charged Exciton Fine Structure in Single Lead Halide Perovskite Nanocrystals Revealed by Magneto-optical Spectroscopy. Nano Letters, 2017, 17, 2895-2901.	4.5	216
128	Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nature Communications, 2017, 8, 14558.	5.8	473
129	Study of ethoxyethane deposition time and Co (III) complex doping on the performance of mesoscopic perovskite based solar cells. Solar Energy Materials and Solar Cells, 2017, 163, 224-230.	3.0	14

#	Article	IF	CITATIONS
130	Hybridization of CsPbBr 1.5 I 1.5 perovskite quantum dots with 9,9-dihexylfluorene co-oligomer for white electroluminescence. Organic Electronics, 2017, 44, 6-10.	1.4	27
131	Enhanced Photovoltaic Performance of Mesoscopic Perovskite Solar Cells by Controlling the Interaction between CH ₃ NH ₃ PbI ₃ Films and CsPbX ₃ Perovskite Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 4239-4245.	1.5	42
132	Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nature Reviews Materials, 2017, 2, .	23.3	867
133	Three-Photon Absorption Induced Photoluminescence in Organo-Lead Mixed Halide Perovskites. Journal of Electronic Materials, 2017, 46, 3622-3626.	1.0	7
134	Self-Assembled Lead Halide Perovskite Nanocrystals in a Perovskite Matrix. ACS Energy Letters, 2017, 2, 769-775.	8.8	15
135	All-inorganic quantum-dot light-emitting diodes based on perovskite emitters with low turn-on voltage and high humidity stability. Journal of Materials Chemistry C, 2017, 5, 4565-4570.	2.7	149
136	Highly luminescent silica-coated CdS/CdSe/CdS nanoparticles with strong chemical robustness and excellent thermal stability. Nanotechnology, 2017, 28, 185603.	1.3	33
137	One-Pot Synthesis, Stimuli Responsiveness, and White-Light Emissions of Sequence-Defined ABC Triblock Copolymers Containing Polythiophene, Polyallene, and Poly(phenyl isocyanide) Blocks. Macromolecules, 2017, 50, 3204-3214.	2.2	40
138	Beyond traditional light-emitting electrochemical cells – a review of new device designs and emitters. Journal of Materials Chemistry C, 2017, 5, 5643-5675.	2.7	210
139	Electrical Stress Influences the Efficiency of CH ₃ NH ₃ PbI ₃ PbI ₃ PbI ₃ Picovskite Light Emitting Devices. Advanced Materials, 2017, 29, 1605317.	11.1	105
140	Enhancing the Performance and Stability of Perovskite Nanocrystal Lightâ€Emitting Diodes with a Polymer Matrix. Advanced Materials Technologies, 2017, 2, 1700003.	3.0	44
141	Luminescent manganese-doped CsPbCl3 perovskite quantum dots. Scientific Reports, 2017, 7, 45906.	1.6	78
142	Improved Performance and Stability of Allâ€Inorganic Perovskite Lightâ€Emitting Diodes by Antisolvent Vapor Treatment. Advanced Functional Materials, 2017, 27, 1700338.	7.8	221
143	Size- and Wavelength-Dependent Two-Photon Absorption Cross-Section of CsPbBr ₃ Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2017, 8, 2316-2321.	2.1	173
144	High-Efficiency Perovskite Quantum-Dot Light-Emitting Devices by Effective Washing Process and Interfacial Energy Level Alignment. ACS Applied Materials & Interfaces, 2017, 9, 18054-18060.	4.0	289
145	Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission. Nano Letters, 2017, 17, 3701-3709.	4.5	409
146	An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chemical Society Reviews, 2017, 46, 3185-3241.	18.7	987
147	Photophysical properties of wavelength-tunable methylammonium lead halide perovskite nanocrystals. Journal of Materials Chemistry C, 2017, 5, 118-126.	2.7	26

#	Article	IF	CITATIONS
148	Correlating Photoluminescence Heterogeneity with Local Electronic Properties in Methylammonium Lead Tribromide Perovskite Thin Films. Chemistry of Materials, 2017, 29, 5484-5492.	3.2	42
149	Amplified Spontaneous Emission Properties of Solution Processed CsPbBr ₃ Perovskite Thin Films. Journal of Physical Chemistry C, 2017, 121, 14772-14778.	1.5	58
150	Rapid Crystallization of All-Inorganic CsPbBr3 Perovskite for High-Brightness Light-Emitting Diodes. ACS Omega, 2017, 2, 2757-2764.	1.6	28
151	Inorganic Colloidal Perovskite Quantum Dots for Robust Solar CO ₂ Reduction. Chemistry - A European Journal, 2017, 23, 9481-9485.	1.7	225
152	Combined optimization of emission layer morphology and hole-transport layer for enhanced performance of perovskite light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 6169-6175.	2.7	28
153	Tunable fluorescence and optical nonlinearities of all inorganic colloidal cesium lead halide perovskite nanocrystals. Journal of Alloys and Compounds, 2017, 724, 889-896.	2.8	71
154	Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communications, 2017, 8, 15640.	5.8	669
155	Triplet sensitization by perovskite nanocrystals for photon upconversion. Chemical Communications, 2017, 53, 8261-8264.	2.2	119
156	Layer-controlled two-dimensional perovskites: synthesis and optoelectronics. Journal of Materials Chemistry C, 2017, 5, 5610-5627.	2.7	60
157	Hybrid Perovskites: Effective Crystal Growth for Optoelectronic Applications. Advanced Energy Materials, 2017, 7, 1602596.	10.2	62
158	Experimental and simulation study for impact of different halides on the performance of planar perovskite solar cells. Materials Science in Semiconductor Processing, 2017, 66, 176-185.	1.9	44
159	Directional Fluorescence Spectral Narrowing in All-Polymer Microcavities Doped with CdSe/CdS Dot-in-Rod Nanocrystals. ACS Photonics, 2017, 4, 1761-1769.	3.2	42
160	Structure formation and evolution in semiconductor films for perovskite and organic photovoltaics. Journal of Materials Research, 2017, 32, 1798-1824.	1.2	16
161	Ligand ontrolled Formation and Photoluminescence Properties of CH ₃ NH ₃ PbBr ₃ Nanocubes and Nanowires. ChemNanoMat, 2017, 3, 303-310.	1.5	57
162	<i>In Situ</i> Preparation of Metal Halide Perovskite Nanocrystal Thin Films for Improved Light-Emitting Devices. ACS Nano, 2017, 11, 3957-3964.	7.3	151
163	Effect of the precursor's stoichiometry on the optoelectronic properties of methylammonium lead bromide perovskites. Journal of Luminescence, 2017, 189, 120-125.	1.5	10
164	Novel liquid crystalline organic semiconducting oligomers incorporating <i>N</i> -heterocyclic carbazole moieties for fluorescent OLEDs. Liquid Crystals, 2017, 44, 1632-1645.	0.9	15
165	Highly Efficient Perovskite Light-Emitting Diodes Incorporating Full Film Coverage and Bipolar Charge Injection. Journal of Physical Chemistry Letters, 2017, 8, 1810-1818.	2.1	97

#	Article	IF	CITATIONS
166	Luminescence control in hybrid perovskites and their applications. Journal of Materials Chemistry C, 2017, 5, 4098-4110.	2.7	14
167	Addressing Toxicity of Lead: Progress and Applications of Lowâ€Toxic Metal Halide Perovskites and Their Derivatives. Advanced Energy Materials, 2017, 7, 1602512.	10.2	290
168	CH ₃ NH ₃ PbBr ₃ Perovskite Nanocrystals as Efficient Lightâ€Harvesting Antenna for Fluorescence Resonance Energy Transfer. Chemistry - an Asian Journal, 2017, 12, 988-995.	1.7	14
169	Solution-processed visible-blind UV-A photodetectors based on CH ₃ NH ₃ PbCl ₃ perovskite thin films. Journal of Materials Chemistry C, 2017, 5, 3796-3806.	2.7	90
170	Quantitative Correlation of Perovskite Film Morphology to Light Emitting Diodes Efficiency Parameters. Advanced Functional Materials, 2017, 27, 1603219.	7.8	47
171	Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nature Energy, 2017, 2, .	19.8	544
172	Highly flexible organometal halide perovskite quantum dot based light-emitting diodes on a silver nanowire–polymer composite electrode. Journal of Materials Chemistry C, 2017, 5, 531-538.	2.7	80
173	Channeling Exciton Migration into Electron Transfer in Formamidinium Lead Bromide Perovskite Nanocrystal/Fullerene Composites. Angewandte Chemie - International Edition, 2017, 56, 1214-1218.	7.2	42
174	Channeling Exciton Migration into Electron Transfer in Formamidinium Lead Bromide Perovskite Nanocrystal/Fullerene Composites. Angewandte Chemie, 2017, 129, 1234-1238.	1.6	15
175	Flexible diode of polyaniline/ITO heterojunction on PET substrate. Applied Surface Science, 2017, 418, 264-269.	3.1	49
176	Kinetic Control of Perovskite Thin-Film Morphology and Application in Printable Light-Emitting Diodes. ACS Energy Letters, 2017, 2, 81-87.	8.8	16
177	Effect of the solvent used for fabrication of perovskite films by solvent dropping on performance of perovskite light-emitting diodes. Nanoscale, 2017, 9, 2088-2094.	2.8	61
178	Highâ€Performance Colorâ€Tunable Perovskite Light Emitting Devices through Structural Modulation from Bulk to Layered Film. Advanced Materials, 2017, 29, 1603157.	11.1	218
179	Full-spectra hyperfluorescence cesium lead halide perovskite nanocrystals obtained by efficient halogen anion exchange using zinc halogenide salts. CrystEngComm, 2017, 19, 1165-1171.	1.3	42
180	Investigation of Energy Levels and Crystal Structures of Cesium Lead Halides and Their Application in Full olor Lightâ€Emitting Diodes. Advanced Electronic Materials, 2017, 3, 1600448.	2.6	67
181	Vacuum-Deposited Organometallic Halide Perovskite Light-Emitting Devices. ACS Applied Materials & Interfaces, 2017, 9, 40516-40522.	4.0	26
182	A Redoxâ€Based Resistive Switching Memory Device Consisting of Organic–Inorganic Hybrid Perovskite/Polymer Composite Thin Film. Advanced Electronic Materials, 2017, 3, 1700344.	2.6	67
183	Improved performance of pure formamidinium lead iodide perovskite light-emitting diodes by moisture treatment. Journal of Materials Chemistry C, 2017, 5, 11121-11127.	2.7	8

ARTICLE IF CITATIONS Study on the band alignment of GaN/CH3NH3PbBr3 heterojunction by x-ray photoelectron 184 1.5 3 spectroscopy. Applied Physics Letters, 2017, 111, . Structural and Spectral Characteristics of Mechanochemically Prepared CsPbBr3. Theoretical and 0.2 Experimental Chemistry, 2017, 53, 235-243. Anisotropic Electric Field Effect on the Photoluminescence of CH₃NH₃PbI₃Perovskite Sandwiched between Conducting and 186 1.5 12 Insulating Films. Journal of Physical Chemistry C, 2017, 121, 22700-22706. Probing Linewidths and Biexciton Quantum Yields of Single Cesium Lead Halide Nanocrystals in Solution. Nano Letters, 2017, 17, 6838-6846. Caesium â⁻'Methyl Ammonium Mixed-Cation Lead Iodide Perovskite Crystals: Analysis and Application for 188 2.6 25 Perovskite Solar Cells. Electrochimica Acta, 2017, 257, 267-280. Recent Advances in Metal Halideâ€Based Perovskite Lightâ€Emitting Diodes. Energy Technology, 2017, 5, 1734-1749. 189 1.8 79 Zero-Dimensional Methylammonium Bismuth Iodide-Based Lead-Free Perovskite Capacitor. ACS Omega, 190 1.6 55 2017, 2, 5798-5802. Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites. 5.2 169 Journal of Materials Chemistry A, 2017, 5, 20843-20850. Solid Ligand-Assisted Storage of Air-Stable Formamidinium Lead Halide Quantum Dots via Restraining 192 the Highly Dynamic Surface toward Brightly Luminescent Light-Emitting Diodes. ACS Photonics, 2017, 4, 3.2 50 2504-2512. High Photoluminescence Quantum Yields in Organic Semiconductor–Perovskite Composite Thin Films. 3.6 ChemSusChem, 2017, 10, 3788-3793. Enhanced UV-light stability of organometal halide perovskite solar cells with interface modification 194 2.7 65 and a UV absorption layer. Journal of Materials Chemistry C, 2017, 5, 8682-8687. High Quality Hybrid Perovskite Semiconductor Thin Films with Remarkably Enhanced Luminescence and Defect Suppression via Quaternary Alkyl Ammonium Salt Based Treatment. Advanced Materials Interfaces, 2017, 4, 1700562 Chemically Addressable Perovskite Nanocrystals for Lightâ€Emitting Applications. Advanced Materials, 196 11.1 139 2017, 29, 1701153. Perovskite-based photodetectors: materials and devices. Chemical Society Reviews, 2017, 46, 5204-5236. 18.7 709 Environmentally-friendly synthesis of highly luminescent cesium lead halide perovskite nanocrystals 198 1.2 8 using Sn-based halide precursors. Inorganica Chimica Acta, 2017, 467, 251-255. Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy, 2017, 40, 195-202. 199 419 CsPbX3 nanocrystals films coated on YAG:Ce3+ PiG for warm white lighting source. Chemical 200 6.6 34 Engineering Journal, 2017, 330, 823-830. Nearly 100% Efficiency Enhancement of CH₃NH₃PbBr₃ Perovskite 201 Light-Emitting Diodes by Utilizing Plasmonic Au Nanoparticles. Journal of Physical Chemistry Letters, 2.1 2017, 8, 3961-3969.

ARTICLE IF CITATIONS Delayed Exciton Formation Involving Energetically Shallow Trap States in Colloidal 202 1.5 26 CsPbBr₃ Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 28498-28505. Transparent perovskite light-emitting diodes by employing organic-inorganic multilayer transparent 1.5 top electrodes. Applied Physics Letters, 2017, 111, 213301. Strong two-photon absorption of Mn-doped CsPbCl3 perovskite nanocrystals. Applied Physics Letters, 204 1.5 55 2017, 111, . High-Performance Green Light-Emitting Diodes Based on MAPbBr₃â€"Polymer Composite Films Prepared by Gas-Assisted Crystallization. ACS Applied Materials & amp; Interfaces, 2017, 9, 24 44106-44113. Vapor-Assisted Solution Approach for High-Quality Perovskite CH₃NH₃PbBr₃ Thin Films for High-Performance Green 206 4.0 46 Light-Emitting Diode Applications. ACS Applied Materials & amp; Interfaces, 2017, 9, 42893-42904. Benzyl Alcohol-Treated CH₃NH₃PbBr₃ Nanocrystals Exhibiting High Luminescence, Stability, and Ultralow Amplified Spontaneous Emission Thresholds. Nano Letters, 4.5 2017, 17, 7424-7432. Twoâ€Photon Optical Properties in Individual Organic–Inorganic Perovskite Microplates. Advanced 208 3.6 33 Optical Materials, 2017, 5, 1700809. Methylammonium Lead Bromide Perovskite Light-Emitting Diodes by Chemical Vapor Deposition. 2.1 Journal of Physical Chemistry Letters, 2017, 8, 3193-3198 Two-Dimensional Organic Tin Halide Perovskites with Tunable Visible Emission and Their Use in 210 8.8 204 Light-Emitting Devices. ACS Energy Letters, 2017, 2, 1662-1668. The central role of ligands in electron transfer from perovskite nanocrystals. MRS Advances, 2017, 2, 2327-2335. Near-neutral-colored semitransparent perovskite films using a combination of colloidal self-assembly 212 3.047 and plasma etching. Solar Energy Materials and Solar Cells, 2017, 160, 193-202. Conducting Polymers as Anode Buffer Materials in Organic and Perovskite Optoelectronics. Advanced Optical Materials, 2017, 5, 1600512. 3.6 High Openâ€Circuit Voltages in Tinâ€Rich Lowâ€Bandgap Perovskiteâ€Based Planar Heterojunction 214 11.1 212 Photovoltaics. Advanced Materials, 2017, 29, 1604744. Long-term stability of organic–inorganic hybrid perovskite solar cells with high efficiency under 5.2 high humidity conditions. Journal of Materials Chemistry A, 2017, 5, 1374-1379. 216 Inorganic and Organic Solution-Processed Thin Film Devices. Nano-Micro Letters, 2017, 9, 3. 152 14.4 Pure Formamidiniumâ€Based Perovskite Lightâ€Emitting Diodes with High Efficiency and Low Driving 217 11.1 179 Voltage. Advanced Materials, 2017, 29, 1603826. Mixtures of quasi-two and three dimensional hybrid organic-inorganic semiconducting perovskites 218 2.8 42 for single layer LED. Journal of Alloys and Compounds, 2017, 692, 589-598. Stable $\hat{I} \pm \hat{I}$ phase junction of formamidinium lead iodide perovskites for enhanced near-infrared emission. 219 199 Chemical Science, 2017, 8, 800-805.

#	Article	IF	CITATIONS
220	Properties of methylammonium lead iodide perovskite single crystals. Journal of Structural Chemistry, 2017, 58, 1567-1572.	0.3	7
221	A high quality and quantity hybrid perovskite quantum dots (CsPbX3, X= Cl, Br and I) powders synthesis via ionic displacement. IOP Conference Series: Earth and Environmental Science, 2017, 100, 012057.	0.2	2
222	PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals. Beilstein Journal of Nanotechnology, 2017, 8, 2521-2529.	1.5	8
223	Improving UV stability of MAPbI3 perovskite thin films by bromide incorporation. Journal of Alloys and Compounds, 2018, 746, 391-398.	2.8	47
224	CsPbBr ₃ : <i>x</i> Eu ³⁺ perovskite QD borosilicate glass: a new member of the luminescent material family. Chemical Communications, 2018, 54, 3395-3398.	2.2	96
225	Fast Postmoisture Treatment of Luminescent Perovskite Films for Efficient Lightâ€Emitting Diodes. Small, 2018, 14, e1703410.	5.2	35
227	Polymer network hole transport layers based on photochemically cross-linkable <i>N</i> ′ <i>N</i> ′-diallyl amide tri-N-substituted triazatruxene monomers. RSC Advances, 2018, 8, 8580-8585.	1.7	8
228	Rubidium Doping for Enhanced Performance of Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 9849-9857.	4.0	58
229	Single-crystal perovskite CH ₃ NH ₃ PbBr ₃ prepared by cast capping method for light-emitting diodes. Japanese Journal of Applied Physics, 2018, 57, 04FL10.	0.8	28
230	Enhanced Photoluminescence and Stability of CH 3 NH 3 PbBr 3 Perovskite Nanocrystals with Protonated Melamine. ChemNanoMat, 2018, 4, 409-416.	1.5	6
231	Investigation on Organic Molecule Additive for Moisture Stability and Defect Passivation via Physisorption in CH ₃ NH ₃ PbI ₃ Based Perovskite. ACS Applied Energy Materials, 2018, 1, 1870-1877.	2.5	37
232	Highâ€performance dielectric poly(arylene ether nitrile)/Ag nanoparticles decorated halloysites nanotube composites through modified bioâ€inspired method and synergistic effect. Polymer Engineering and Science, 2018, 58, 2227-2236.	1.5	8
233	In Situ Investigation of the Growth of Methylammonium Lead Halide (MAPbl _{3–<i>x</i>} Br _{<i>x</i>}) Perovskite from Microdroplets. Crystal Growth and Design, 2018, 18, 3458-3464.	1.4	8
234	Remarkable long-term stability of nanoconfined metal–halide perovskite crystals against degradation and polymorph transitions. Nanoscale, 2018, 10, 8320-8328.	2.8	14
235	A method towards 100% internal quantum efficiency for all-inorganic cesium halide perovskite light-emitting diodes. Organic Electronics, 2018, 58, 88-93.	1.4	11
236	Formamidinium Lead Bromide (FAPbBr3) Perovskite Microcrystals for Sensitive and Fast Photodetectors. Nano-Micro Letters, 2018, 10, 43.	14.4	77
237	Nanoscale photocurrent mapping in perovskite solar cells. Nano Energy, 2018, 48, 543-550.	8.2	19
238	Perovskiteâ€Initiated Photopolymerization for Singly Dispersed Luminescent Nanocomposites. Advanced Materials, 2018, 30, e1800774.	11.1	78

	CITATION	Report	
#	Article	IF	CITATIONS
239	Polystyrene based perovskite light emitting diode. Applied Materials Today, 2018, 12, 15-20.	2.3	8
240	Exciton-phonon coupling in a CsPbBr3 single nanocrystal. Applied Physics Letters, 2018, 112, .	1.5	67
241	A Comparative Study of Lightâ€Emitting Diodes Based on Allâ€Inorganic Perovskite Nanoparticles (CsPbBr ₃) Synthesized at Room Temperature and by a Hotâ€Injection Method. ChemPlusChem, 2018, 83, 294-299.	1.3	27
242	Optically active helical polyisocyanides bearing chiral phosphine pendants: Facile synthesis and application in enantioselective Rauhut-Currier reaction. Chinese Journal of Polymer Science (English) Tj ETQq1	1 0. 780 314	rg₿₮ /Overlo
243	A lead-free semiconducting hybrid with ultra-high color rendering index white-light emission. Journal of Materials Chemistry C, 2018, 6, 2801-2805.	2.7	23
244	Efficient and stable CH 3 NH 3 PbI 3-x (SCN) x planar perovskite solar cells fabricated in ambient air with low-temperature process. Journal of Power Sources, 2018, 377, 52-58.	4.0	53
245	Perovskite Light-Emitting Diodes via Laser Crystallization: Systematic Investigation on Grain Size Effects for Device Performance. ACS Applied Materials & Interfaces, 2018, 10, 2490-2495.	4.0	34
246	Strategy of Solution-Processed All-Inorganic Heterostructure for Humidity/Temperature-Stable Perovskite Quantum Dot Light-Emitting Diodes. ACS Nano, 2018, 12, 1462-1472.	7.3	331
247	Morphology control towards bright and stable inorganic halide perovskite light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 1573-1578.	2.7	33
248	Crystal orientation-dependent optoelectronic properties of MAPbCl ₃ single crystals. Journal of Materials Chemistry C, 2018, 6, 1579-1586.	2.7	78
249	Highly Stable and Luminescent Perovskite–Polymer Composites from a Convenient and Universal Strategy. ACS Applied Materials & Interfaces, 2018, 10, 4971-4980.	4.0	176
250	Synthesis and characterization of Mn-doped CsPb(Cl/Br) ₃ perovskite nanocrystals with controllable dual-color emission. RSC Advances, 2018, 8, 1940-1947.	1.7	30
251	Grain Size Modulation and Interfacial Engineering of CH ₃ NH ₃ PbBr ₃ Emitter Films through Incorporation of Tetraethylammonium Bromide. ChemPhysChem, 2018, 19, 1075-1080.	1.0	13
252	Highly Luminescent and Stable Perovskite Nanocrystals with Octylphosphonic Acid as a Ligand for Efficient Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 3784-3792.	4.0	255
253	Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites. Science Advances, 2018, 4, eaar7353.	4.7	56
254	Full-color tuning in binary polymer:perovskite nanocrystals organic-inorganic hybrid blends. Applied Physics Letters, 2018, 112, .	1.5	13
255	Aliovalent Doping of Lead Halide Perovskites: Exploring the CH ₃ NH ₃ PbI ₃ –(CH ₃ NH ₃) ₃ Sb Nanocrystalline Phase Space. Journal of Physical Chemistry C, 2018, 122, 14082-14090.	<subb.2<td>b>ħsub>9</td></sub	b>ħsub>9
256	Highly Efficient Spectrally Stable Red Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, ¢1707093	11.1	184

#	Article	IF	CITATIONS
257	Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes. Nano Letters, 2018, 18, 3157-3164.	4.5	199
258	Growth of Nanosized Single Crystals for Efficient Perovskite Light-Emitting Diodes. ACS Nano, 2018, 12, 3417-3423.	7.3	109
259	Surface modulation of solution processed organolead halide perovskite quantum dots to large nanocrystals integrated with silica gel G. Chemical Communications, 2018, 54, 3508-3511.	2.2	36
260	Morphological Investigation of Poly(2â€aminothiazole) Prepared by Rapid Initiated Polymerization. Advances in Polymer Technology, 2018, 37, 1028-1034.	0.8	4
261	Novel CsPbI3 QDs glass with chemical stability and optical properties. Journal of the European Ceramic Society, 2018, 38, 1998-2004.	2.8	87
262	Carrier dynamics in CsPbl 3 perovskite microcrystals synthesized in solution phase. Chinese Chemical Letters, 2018, 29, 699-702.	4.8	6
263	The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance. Advanced Materials, 2018, 30, 1700764.	11.1	141
264	On the performance of polymer:organometal halide perovskite composite light emitting devices: The effects of polymer additives. Organic Electronics, 2018, 52, 350-355.	1.4	27
265	Interfacial engineering with ultrathin poly (9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) layer for high efficient perovskite light-emitting diodes. Nanotechnology, 2018, 29, 075203.	1.3	19
266	Solution Processed CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl _{<i>x</i>} Perovskite Based Self-Powered Ozone Sensing Element Operated at Room Temperature. ACS Sensors, 2018, 3, 135-142.	4.0	96
267	Recent progress in organohalide lead perovskites for photovoltaic and optoelectronic applications. Coordination Chemistry Reviews, 2018, 373, 258-294.	9.5	67
268	A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control. Lab on A Chip, 2018, 18, 3855-3864.	3.1	34
270	Nanoplatelet modulation in 2D/3D perovskite targeting efficient light-emitting diodes. Nanoscale, 2018, 10, 19322-19329.	2.8	20
272	Effect of Bathocuproine Organic Additive on Optoelectronic Properties of Highly Efficient Methylammonium Lead Bromide Perovskite Light-Emitting Diodes. ACS Applied Energy Materials, 2018, 1, 6992-6998.	2.5	20
273	Enhanced Detectivity and Suppressed Dark Current of Perovskite–InGaZnO Phototransistor via a PCBM Interlayer. ACS Applied Materials & Interfaces, 2018, 10, 44144-44151.	4.0	50
274	High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nature Photonics, 2018, 12, 783-789.	15.6	715
275	Polymer-Assisted In Situ Growth of All-Inorganic Perovskite Nanocrystal Film for Efficient and Stable Pure-Red Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 42564-42572.	4.0	86
276	Hybrid materials based on polymer nanocomposites for environmental applications. , 2018, , 507-551.		7

#	Article	IF	CITATIONS
280	All-inorganic Cs ₂ CuX ₄ (X = Cl, Br, and Br/l) perovskite quantum dots with blue-green luminescence. Chemical Communications, 2018, 54, 11638-11641.	2.2	99
281	High-performance light-emitting diode with poly(ethylene oxide) passivated quasi two dimensional perovskite emitting layer. Organic Electronics, 2018, 63, 216-221.	1.4	22
282	Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nature Photonics, 2018, 12, 681-687.	15.6	1,123
283	Carrier cascade: Enabling high performance perovskite light-emitting diodes (PeLEDs). Current Opinion in Electrochemistry, 2018, 11, 91-97.	2.5	8
284	Understanding the Role of Lithium Doping in Reducing Nonradiative Loss in Lead Halide Perovskites. Advanced Science, 2018, 5, 1800736.	5.6	59
285	Progress on synthesis and applications of hybrid perovskite semiconductor nanomaterials—A review. Synthetic Metals, 2018, 246, 64-95.	2.1	20
286	High Brightness and Enhanced Stability of CsPbBr ₃ â€Based Perovskite Lightâ€Emitting Diodes by Morphology and Interface Engineering. Advanced Optical Materials, 2018, 6, 1801245.	3.6	57
287	Novel Fluorescence Sensor Based on All-Inorganic Perovskite Quantum Dots Coated with Molecularly Imprinted Polymers for Highly Selective and Sensitive Detection of Omethoate. ACS Applied Materials & Interfaces, 2018, 10, 39056-39063.	4.0	123
288	Opportunities and Challenges in Perovskite Light-Emitting Devices. ACS Photonics, 2018, 5, 3866-3875.	3.2	129
289	Highly compact CsPbBr ₃ perovskite film decorated by PEO for light-emitting diodes. E3S Web of Conferences, 2018, 53, 01035.	0.2	2
290	Influence of polymeric electrets on the performance of derived hybrid perovskite-based photo-memory devices. Nanoscale, 2018, 10, 18869-18877.	2.8	57
291	Hybrid organic–inorganic lead bromide perovskite supercrystals self-assembled with <scp>l</scp> -cysteine and their good luminescence properties. Journal of Materials Chemistry C, 2018, 6, 10994-11001.	2.7	33
292	Self-Assembled High Quality CsPbBr ₃ Quantum Dot Films toward Highly Efficient Light-Emitting Diodes. ACS Nano, 2018, 12, 9541-9548.	7.3	146
293	Perovskites for Light Emission. Advanced Materials, 2018, 30, e1801996.	11.1	417
294	Electrical, Optical, and Structural Characteristics of CH ₃ NH ₃ Pbl ₃ Perovskite Lightâ€Emitting Diodes. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1701014.	0.8	3
295	Microfabricable ratiometric gaseous oxygen sensors based on inorganic perovskite nanocrystals and PtTFPP. Sensors and Actuators B: Chemical, 2018, 271, 104-109.	4.0	10
296	Conjugated Polyelectrolytes as Efficient Hole Transport Layers in Perovskite Light-Emitting Diodes. ACS Nano, 2018, 12, 5826-5833.	7.3	56
297	<i>ipso</i> -Arylative polymerization as a route to π-conjugated polymers: synthesis of poly(3-hexylthiophene). Polymer Chemistry, 2018, 9, 3223-3231.	1.9	5

#	Article	IF	CITATIONS
298	Understanding the temperature-dependent charge transport, structural variation and photoluminescent properties in methylammonium lead halide perovskite single crystals. Journal of Materials Chemistry C, 2018, 6, 6556-6564.	2.7	13
299	Excitation Intensity Dependence of Photoluminescence Blinking in CsPbBr ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 12106-12113.	1.5	58
300	Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10 thin films. Journal of Materials Chemistry C, 2018, 6, 6216-6221.	2.7	12
301	Temperature-Dependent Photoluminescence of CH ₃ NH ₃ PbBr ₃ Perovskite Quantum Dots and Bulk Counterparts. Journal of Physical Chemistry Letters, 2018, 9, 4066-4074.	2.1	128
302	In Situ Fabricated Perovskite Nanocrystals: A Revolution in Optical Materials. Advanced Optical Materials, 2018, 6, 1800380.	3.6	176
303	The Role of Metal Halide Perovskites in Next-Generation Lighting Devices. Journal of Physical Chemistry Letters, 2018, 9, 3987-3997.	2.1	53
304	Low-Dimensional Perovskites. , 2018, , 197-229.		22
305	Recent Advances toward Highâ€Efficiency Halide Perovskite Lightâ€Emitting Diodes: Review and Perspective. Small Methods, 2018, 2, 1700419.	4.6	213
306	Metal Halide Perovskites: From Crystal Formations to Lightâ€Emittingâ€Diode Applications. Small Methods, 2018, 2, 1800093.	4.6	36
307	Temperature dependent two-photon photoluminescence of CH ₃ NH ₃ PbBr ₃ : structural phase and exciton to free carrier transition. Optical Materials Express, 2018, 8, 511.	1.6	26
308	Efficient Light-Emitting Diodes Based on <i>in Situ</i> Fabricated FAPbBr ₃ Nanocrystals: The Enhancing Role of the Ligand-Assisted Reprecipitation Process. ACS Nano, 2018, 12, 8808-8816.	7.3	237
309	Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications. Science China Materials, 2018, 61, 1257-1277.	3.5	84
310	Improved Performance of Perovskite Light-Emitting Diodes by Quantum Confinement Effect in Perovskite Nanocrystals. Nanomaterials, 2018, 8, 459.	1.9	9
311	Real Time Analysis of Bioanalytes in Healthcare, Food, Zoology and Botany. Sensors, 2018, 18, 5.	2.1	32
312	Rational Energy Band Alignment and Au Nanoparticles in Surface Plasmon Enhanced Siâ€Based Perovskite Quantum Dot Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800693.	3.6	32
313	Eu ³⁺ â€doped CsPbBr _{1.5} 1 _{1.5} quantum dots glasses: A strong competitor among red fluorescence solid materials. Journal of the American Ceramic Society, 2018, 101, 4927-4932.	1.9	37
314	Sequential deposition of hybrid halide perovskite starting both from lead iodide and lead chloride on the most widely employed substrates. Thin Solid Films, 2018, 657, 110-117.	0.8	5
315	A Strategy for Architecture Design of Crystalline Perovskite Lightâ€Emitting Diodes with High Performance. Advanced Materials, 2018, 30, e1800251.	11.1	148

ARTICLE IF CITATIONS # Enhancing Performances of Hybrid Perovskite Light Emitting Diodes with Thickness Controlled PMMA 316 2.0 22 Interlayer. Bulletin of the Chemical Society of Japan, 2018, 91, 1241-1248. Green Light-Emitting Devices Based on Perovskite CsPbBr3 Quantum Dots. Frontiers in Chemistry, 2018, 1.8 6, 381. Chemical regulation of metal halide perovskite nanomaterials for efficient light-emitting diodes. 318 4.2 29 Science China Chemistry, 2018, 61, 1047-1061. Coherent Spin and Quasiparticle Dynamics in Solutionâ€Processed Layered 2D Lead Halide Perovskites. Advanced Science, 2018, 5, 1800664. Ultrafast Laser Pulses Induced Insulator–Metal Transition and Multiple Plasmons in Barium Titanate 320 1.5 7 Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 19992-19999. Boosted electroluminescence of perovskite light-emitting diodes by pinhole passivation with insulating polymer. Journal Physics D: Applied Physics, 2018, 51, 405103. 1.3 Layered Mixed Tin–Lead Hybrid Perovskite Solar Cells with High Stability. ACS Energy Letters, 2018, 3, 322 8.8 64 2246-2251. Bulk Heterojunction-Assisted Grain Growth for Controllable and Highly Crystalline Perovskite Films. 323 4.0 ACS Applied Materials & amp; Interfaces, 2018, 10, 31366-31373. Trap-Limited Dynamics of Excited Carriers and Interpretation of the Photoluminescence Decay Kinetics 324 2.1 46 in Metal Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 4955-4962. Recombination Dynamics Study on Nanostructured Perovskite Lightâ€Emitting Devices. Advanced 11.1 Materials, 2018, 30, e1801370. Efficient Perovskite Lightâ€Emitting Diodes via Tuning Nanoplatelet Distribution and Crystallinity 326 1.9 26 Orientation. Advanced Materials Interfaces, 2018, 5, 1801030. UV-Green Emission from Organolead Bromide Perovskite Nanocrystals. Journal of Physical Chemistry 1.5 С, 2018, 122, 15041-15046 White perovskite based lighting devices. Chemical Communications, 2018, 54, 8150-8169. 328 2.2 70 High-Bandgap Perovskite Materials for Multijunction Solar Cells. Joule, 2018, 2, 1421-1436. 329 11.7 Interfacialâ€Fieldâ€Induced Increase of the Structural Phase Transition Temperature in 330 Organic–Inorganic Perovskite Crystals Coated with ZnO Nanoshell. Advanced Materials Interfaces, 1.9 6 2018, 5, 1800301. Realization of a Highly Oriented MAPbBr₃ Perovskite Thin Film via Ion Exchange for 8.8 38 Ultrahigh Color Purity Green Light Emission. ACS Energy Letters, 2018, 3, 1662-1669. 332 Perovskite-based lasers., 2019, , 41-74. 5 Moisture proof hole transport layers based on CISe quantum dots for highly stable and large active 3.1 area perovskite solar cells. Applied Surface Science, 2019, 496, 143610.

#	Article	IF	CITATIONS
334	Surface engineering towards highly efficient perovskite light-emitting diodes. Nano Energy, 2019, 65, 104029.	8.2	26
335	Stability of Hybrid Organic-Inorganic Perovskite CH3NH3PbBr3 Nanocrystals under Co-Stresses of UV Light Illumination and Temperature. Nanomaterials, 2019, 9, 1158.	1.9	8
336	Twoâ€Step Antisolvent Precipitated MAPbI 3 â€Pelletâ€Based Robust Roomâ€Temperature Ammonia Sensor. Advanced Materials Technologies, 2019, 4, 1900251.	3.0	23
337	Luminescent behavior of Eu3+ doped BaHfO3 perovskite ceramic under UV radiation. Applied Radiation and Isotopes, 2019, 153, 108815.	0.7	6
338	Probing the energy transfer process by controlling the morphology of CH3NH3PbBr3 nanocrystals with rhodamine B dye. Journal of Luminescence, 2019, 215, 116609.	1.5	8
339	Device Engineering for All-Inorganic Perovskite Light-Emitting Diodes. Nanomaterials, 2019, 9, 1007.	1.9	31
340	Temperature-dependent photoluminescence of cesium lead halide perovskite (CsPbX ₃ , X =) Tj ETQo	10 8 8 rgB ⁻	T /Overlock 1 14
341	A rare case of acute respiratory distress syndrome caused by use of gadoliniumâ€based magnetic resonance imaging contrast media. Respirology Case Reports, 2019, 7, e00483.	0.3	6
342	Magnetoâ€Fluorescent Perovskite Nanocomposites for Directed Cell Motion and Imaging. Advanced Healthcare Materials, 2019, 8, e1900859.	3.9	31
343	Preparation of Eu3+-doped CsPbBr3 quantum-dot microcrystals and their luminescence properties. Optical Materials, 2019, 97, 109454.	1.7	13
344	Allâ€Solutionâ€Processed Organic–Inorganic Hybrid Perovskite Lightâ€Emitting Diodes under Ambient Air. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900642.	0.8	13
345	Highly Efficient and Stable White Lightâ€Emitting Diodes Using Perovskite Quantum Dot Paper. Advanced Science, 2019, 6, 1902230.	5.6	56
346	Influence of indium-tin-oxide and emitting-layer thicknesses on light outcoupling of perovskite light-emitting diodes. Nano Convergence, 2019, 6, 26.	6.3	21
347	High-performance and stable CsPbBr ₃ light-emitting diodes based on polymer additive treatment. RSC Advances, 2019, 9, 27684-27691.	1.7	25
348	Enabling Self-passivation by Attaching Small Grains on Surfaces of Large Grains toward High-Performance Perovskite LEDs. IScience, 2019, 19, 378-387.	1.9	26
349	Higher quantum efficiency and moisture resistance of all-inorganic halide perovskite nanocrystal films <i>in situ</i> fabricated with cyclodextrin. Chemical Communications, 2019, 55, 11916-11919.	2.2	14
350	Unveiling the interfacial electrochemiluminescence behavior of lead halide perovskite nanocrystals. Nanoscale Advances, 2019, 1, 3957-3962.	2.2	12
351	Significance of Ni Doping in CsPbX ₃ Nanocrystals via Postsynthesis Cation–Anion Coexchange. Journal of Physical Chemistry C, 2019, 123, 24979-24987.	1.5	27

#	Article	IF	CITATIONS
352	Highly Efficient Flexible Perovskite Light-Emitting Diodes Using the Modified PEDOT:PSS Hole Transport Layer and Polymer–Silver Nanowire Composite Electrode. ACS Applied Materials & Interfaces, 2019, 11, 39274-39282.	4.0	24
353	Perovskite quantum dots for light-emitting devices. Nanoscale, 2019, 11, 19119-19139.	2.8	97
354	<i>In situ</i> inclusion of thiocyanate for highly luminescent and stable CH ₃ NH ₃ PbBr ₃ perovskite nanocrystals. Nanoscale, 2019, 11, 1319-1325.	2.8	29
355	Utilizing MVAD method to optimize crystallization and nanostructured surface of the perovskite film: Toward electroluminescent and ultraviolet photodetective bifunctional optoelectronics. Applied Surface Science, 2019, 478, 1009-1016.	3.1	4
356	Room-temperature synthesized formamidinium lead halide perovskite quantum dots with bright luminescence and color-tunability for efficient light emitting. Organic Electronics, 2019, 68, 76-84.	1.4	21
357	Incorporation of rubidium cations into blue perovskite quantum dot light-emitting diodes <i>via</i> FABr-modified multi-cation hot-injection method. Nanoscale, 2019, 11, 1295-1303.	2.8	36
358	Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications. Journal of Materials Chemistry C, 2019, 7, 1413-1446.	2.7	182
359	Time-dependent first-principles study of optical response of BaTiO ₃ quantum dots coupled with silver nanowires*. Chinese Physics B, 2019, 28, 067301.	0.7	4
360	3D-printed continuous flow reactor for high yield synthesis of CH ₃ NH ₃ PbX ₃ (X = Br, I) nanocrystals. Journal of Materials Chemistry C, 2019, 7, 9167-9174.	2.7	22
361	Perovskite solar cells. , 2019, , 417-446.		9
362	Stretchable and Ambient Stable Perovskite/Polymer Luminous Hybrid Nanofibers of Multicolor Fiber Mats and Their White LED Applications. ACS Applied Materials & Interfaces, 2019, 11, 23605-23615.	4.0	63
363	Poly(ethylene oxide)-assisted energy funneling for efficient perovskite light emission. Journal of Materials Chemistry C, 2019, 7, 8287-8293.	2.7	11
364	Could Nanocomposites Continue the Success of Halide Perovskites?. ACS Energy Letters, 2019, 4, 1446-1454.	8.8	9
365	Synthesis of CsPbBr ₃ perovskite nanocrystals with the sole ligand of protonated (3-aminopropyl)triethoxysilane. Journal of Materials Chemistry C, 2019, 7, 7201-7206.	2.7	27
366	Atmospheric Pressure Spatial Atomic Layer Deposited Metal Oxides for Thin Film Solar Cells. , 2019, , 245-277.		2
367	Opportunities and Challenges of Lead-Free Perovskite Optoelectronic Devices. Trends in Chemistry, 2019, 1, 368-379.	4.4	100
368	LEDs using halide perovskite nanocrystal emitters. Nanoscale, 2019, 11, 11402-11412.	2.8	41
369	Efficient Quantum Dot Light-Emitting Diodes Based on Trioctylphosphine Oxide-Passivated Organometallic Halide Perovskites. ACS Omega, 2019, 4, 9150-9159.	1.6	26

#	Article	IF	CITATIONS
370	Pure Bromideâ€Based Perovskite Nanoplatelets for Blue Lightâ€Emitting Diodes. Small Methods, 2019, 3, 1900196.	4.6	34
371	Color Patterning of Luminescent Perovskites via Lightâ€Mediated Halide Exchange with Haloalkanes. Advanced Materials, 2019, 31, e1901247.	11.1	35
372	Dual-functional light-emitting perovskite solar cells enabled by soft-covered annealing process. Nano Energy, 2019, 61, 251-258.	8.2	14
373	47-Fold EQE improvement in CsPbBr3 perovskite light-emitting diodes via double-additives assistance. Organic Electronics, 2019, 70, 264-271.	1.4	10
374	Flash-induced ultrafast recrystallization of perovskite for flexible light-emitting diodes. Nano Energy, 2019, 61, 236-244.	8.2	34
375	Aqueous stable luminescent perovskite-polymer composites. Applied Materials Today, 2019, 15, 562-569.	2.3	13
376	Morphology control of CsPbBr3 films by a surface active Lewis base for bright all-inorganic perovskite light-emitting diodes. Applied Physics Letters, 2019, 114, .	1.5	14
377	Origin of enhanced stability in thiocyanate substituted α-FAPbI3 analogues. Science China Chemistry, 2019, 62, 866-874.	4.2	12
378	Bulk- and Nanocrystalline-Halide Perovskite Light-Emitting Diodes. , 2019, , 305-341.		3
379	Boosting Efficiency in Polycrystalline Metal Halide Perovskite Light-Emitting Diodes. ACS Energy Letters, 2019, 4, 1134-1149.	8.8	68
380	Perovskites for Next-Generation Optical Sources. Chemical Reviews, 2019, 119, 7444-7477.	23.0	640
381	Metal Halide Perovskite Lightâ€Emitting Devices: Promising Technology for Nextâ€Generation Displays. Advanced Functional Materials, 2019, 29, 1902008.	7.8	296
382	Bright-Exciton Splittings in Inorganic Cesium Lead Halide Perovskite Nanocrystals. Physical Review Applied, 2019, 11, .	1.5	40
383	Light-Emitting Electrochemical Cells of Single Crystal Hybrid Halide Perovskite with Vertically Aligned Carbon Nanotubes Contacts. ACS Photonics, 2019, 6, 967-975.	3.2	49
384	Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13, 418-424.	15.6	970
385	Distinct green electroluminescence from lead-free CsCuBr ₂ halide micro-crosses. Chemical Communications, 2019, 55, 4554-4557.	2.2	52
386	Suppressing defect states in CsPbBr ₃ perovskite <i>via</i> magnesium substitution for efficient all-inorganic light-emitting diodes. Nanoscale Horizons, 2019, 4, 924-932.	4.1	34
387	Tetradic phosphor white light with variable CCT and superlative CRI through organolead halide perovskite nanocrystals. Nanoscale Advances, 2019, 1, 1791-1798.	2.2	33

#	Article	IF	CITATIONS
388	Short-chain ligand assisted synthesis of CH3NH3PbX3 (X = Cl, Br, I) perovskite quantum dots and improved morphology of CH3NH3PbBr3 thin films. Journal of Luminescence, 2019, 211, 26-31.	1.5	12
389	Concurrent Inhibition and Redistribution of Spontaneous Emission from All Inorganic Perovskite Photonic Crystals. ACS Photonics, 2019, 6, 1331-1337.	3.2	39
390	Scalable fabrication of high-quality crystalline and stable FAPbI ₃ thin films by combining doctor-blade coating and the cation exchange reaction. Nanoscale, 2019, 11, 5989-5997.	2.8	20
391	Recent progress in perovskite-based photodetectors: the design of materials and structures. Advances in Physics: X, 2019, 4, 1592709.	1.5	42
392	Interface and Defect Engineering for Metal Halide Perovskite Optoelectronic Devices. Advanced Materials, 2019, 31, e1803515.	11.1	315
393	Effect of small molecule additives on efficient operation of all inorganic polycrystalline perovskite light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 5293-5298.	2.7	19
394	Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability. Materials Today Nano, 2019, 5, 100028.	2.3	86
395	Lead-free double halide perovskite Cs ₃ BiBr ₆ with well-defined crystal structure and high thermal stability for optoelectronics. Journal of Materials Chemistry C, 2019, 7, 3369-3374.	2.7	66
396	Encapsulation of methylammonium lead bromide perovskite in nanoporous GaN. APL Materials, 2019, 7, .	2.2	22
397	Influence of a lecithin additive on the performance of all-inorganic perovskite light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2905-2910.	2.7	21
398	Hot carrier extraction in CH ₃ NH ₃ PbI ₃ unveiled by pump-push-probe spectroscopy. Science Advances, 2019, 5, eaax3620.	4.7	56
399	Surfacial ligand management of a perovskite film for efficient and stable light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 14725-14730.	2.7	10
400	Picosecond electron trapping limits the emissivity of CsPbCl3 perovskite nanocrystals. Journal of Chemical Physics, 2019, 151, 194701.	1.2	26
401	Tuning Optical Properties of Lead-Free 2D Tin-Based Perovskites with Carbon Chain Spacers. Journal of Physical Chemistry C, 2019, 123, 31279-31285.	1.5	26
402	Improved photoelectric performance of all-inorganic perovskite through different additives for green light-emitting diodes. RSC Advances, 2019, 9, 34506-34511.	1.7	15
403	Suitable medium for CsPbBr3 quantum dots toward light-emitting-diodes fabrication. Materials Letters, 2019, 234, 275-278.	1.3	5
404	The Physics of Light Emission in Halide Perovskite Devices. Advanced Materials, 2019, 31, e1803336.	11.1	189
405	Efficient CsPbBr ₃ Perovskite Lightâ€Emitting Diodes Enabled by Synergetic Morphology Control. Advanced Optical Materials, 2019, 7, 1801534.	3.6	117

#	Article	IF	CITATIONS
406	Fine Control of Perovskite Crystallization and Reducing Luminescence Quenching Using Selfâ€Doped Polyaniline Hole Injection Layer for Efficient Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2019, 29, 1807535.	7.8	58
407	Strategies to Improve Luminescence Efficiency of Metalâ€Halide Perovskites and Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1804595.	11.1	102
408	Electro-optical and dielectric performance analysis: the influence of azo dye on polymer/LC composite structures. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	7
409	Theoretical insight into the optoelectronic properties of lead-free perovskite derivatives of Cs3Sb2X9 (X = Cl, Br, I). Journal of Materials Science, 2019, 54, 4732-4741.	1.7	42
410	Effect of perovskite film morphology on device performance of perovskite light-emitting diodes. Nanoscale, 2019, 11, 1505-1514.	2.8	32
411	Perovskite Methylammonium Lead Trihalide Heterostructures: Progress and Challenges. IEEE Nanotechnology Magazine, 2019, 18, 1-12.	1.1	64
412	Few-layer formamidinium lead bromide nanoplatelets for ultrapure-green and high-efficiency light-emitting diodes. Nano Research, 2019, 12, 171-176.	5.8	34
413	Effects of n-butyl amine incorporation on the performance of perovskite light emitting diodes. Nanotechnology, 2019, 30, 105703.	1.3	10
414	Changing the colour of night on urban streets - LED vs. part-night lighting system. Socio-Economic Planning Sciences, 2020, 69, 100692.	2.5	23
415	Rb+-doped CsPbBr3 quantum dots with multi-color stabilized in borosilicate glass via crystallization. Journal of the European Ceramic Society, 2020, 40, 94-102.	2.8	24
416	Multipleâ€Quantumâ€Well Perovskites for Highâ€Performance Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e1904163.	11.1	129
417	Highly oriented perovskites for efficient light-emitting diodes with balanced charge transport. Organic Electronics, 2020, 77, 105529.	1.4	5
418	Efficient Nearâ€infrared Lightâ€Emitting Diodes based on In(Zn)As–In(Zn)P–GaP–ZnS Quantum Dots. Advanced Functional Materials, 2020, 30, 1906483.	7.8	28
419	Modulation of Electronic States of Hybrid Lead Halide Perovskite Embedded in Organic Matrix. Energy Technology, 2020, 8, 1900894.	1.8	4
420	Semi-transparent organic-inorganic hybrid perovskite light-emitting diodes fabricated under high relative humidity. Solid-State Electronics, 2020, 165, 107749.	0.8	7
421	Controlling Quantum Confinement in Luminescent Perovskite Nanoparticles for Optoelectronic Devices by the Addition of Water. ACS Applied Nano Materials, 2020, 3, 1242-1249.	2.4	21
422	Giant Dielectric Constant and Superior Photovoltaic Property of the Mechanochemically Synthesized Stable CH ₃ NH ₃ PbBr ₃ in a Hole Transporter-Free Solar Cell. ACS Sustainable Chemistry and Engineering, 2020, 8, 1445-1454.	3.2	11
423	CsPbBr ₃ nanocrystal inks for printable light harvesting devices. Sustainable Energy and Fuels, 2020, 4, 171-176.	2.5	4

#	Article	IF	CITATIONS
424	A high performance UV–visible dual-band photodetector based on an inorganic Cs ₂ SnI ₆ perovskite/ZnO heterojunction structure. Journal of Materials Chemistry C, 2020, 8, 1819-1825.	2.7	29
425	Luminescence enhancement of CsPbBr ₃ quantum dot glasses induced by two unexpected methods: mechanical and hydration crystallization. Journal of Materials Chemistry C, 2020, 8, 473-480.	2.7	35
426	Efficient Quasi-Two-Dimensional Perovskite Light-Emitting Diodes with Improved Multiple Quantum Well Structure. ACS Applied Materials & Interfaces, 2020, 12, 1721-1727.	4.0	25
427	Perovskite nanostructures: Leveraging quantum effects to challenge optoelectronic limits. Materials Today, 2020, 33, 122-140.	8.3	26
428	Strong Collectivity of Optical Transitions in Lead Halide Perovskite Quantum Dots. Plasmonics, 2020, 15, 581-590.	1.8	5
429	A novel bulk phosphor for white LDs: CsPbBr3/Cs4PbBr6 composite quantum dots-embedded borosilicate glass with high PLQY and excellent stability. Journal of Alloys and Compounds, 2020, 818, 153307.	2.8	53
430	Swellingâ€Deswelling Microencapsulationâ€Enabled Ultrastable Perovskiteâ^'Polymer Composites for Photonic Applications. Chemical Record, 2020, 20, 672-681.	2.9	15
431	Large-area near-infrared perovskite light-emitting diodes. Nature Photonics, 2020, 14, 215-218.	15.6	263
432	Recent developments in flexible photodetectors based on metal halide perovskite. InformaÄnÃ-Materiály, 2020, 2, 139-169.	8.5	83
433	Pâ€135: Halide Perovskiteâ€polymer Composite Films for the Twoâ€color White OLED Displays. Digest of Technical Papers SID International Symposium, 2020, 51, 1887-1888.	0.1	0
434	Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nature Electronics, 2020, 3, 704-710.	13.1	143
435	Traps in metal halide perovskites: characterization and passivation. Nanoscale, 2020, 12, 22425-22451.	2.8	26
436	Revealing the charge carrier kinetics in perovskite solar cells affected by mesoscopic structures and defect states from simple transient photovoltage measurements. Scientific Reports, 2020, 10, 19197.	1.6	29
437	Enhanced brightness of red light-emitting diodes based on CsPbBr I3-–PEOXA composite films. Journal of Alloys and Compounds, 2020, 845, 156272.	2.8	12
438	In Situ Observation of a Photodegradation-Induced Blueshift in Perovskite Nanocrystals Using Single-Particle Spectroscopy Combined with Atomic Force Microscopy. Journal of Physical Chemistry C, 2020, 124, 18770-18776.	1.5	15
439	Recent Advancements in Near-Infrared Perovskite Light-Emitting Diodes. ACS Applied Electronic Materials, 2020, 2, 3470-3490.	2.0	40
440	Interfacial optimization of quantum dot and silica hybrid nanocomposite for simultaneous enhancement of fluorescence retention and stability. Applied Physics Letters, 2020, 117, .	1.5	9
441	Toward Seeâ€Through Optoelectronics: Transparent Lightâ€Emitting Diodes and Solar Cells. Advanced Optical Materials, 2020, 8, 2001122.	3.6	35

#	Article	IF	CITATIONS
442	Optical properties of organic/inorganic perovskite microcrystals through the characterization of Fabry–Pérot resonances. Dalton Transactions, 2020, 49, 12798-12804.	1.6	3
443	Flexible Ultrathin Single-Crystalline Perovskite Photodetector. Nano Letters, 2020, 20, 7144-7151.	4.5	117
444	Ultrasensitive UV Photodetector Based on Interfacial Charge-Controlled Inorganic Perovskite–Polymer Hybrid Structure. ACS Applied Materials & Interfaces, 2020, 12, 43106-43114.	4.0	23
445	Enhancing the Water Resistance and Stability of CsPbBr ₃ Perovskite Quantum Dots for Light-Emitting-Diode Applications through Encapsulation in Waterproof Polymethylsilsesquioxane Aerogels. ACS Applied Materials & Interfaces, 2020, 12, 58049-58059.	4.0	34
446	Structural Deformation Controls Charge Losses in MAPbI ₃ : Unsupervised Machine Learning of Nonadiabatic Molecular Dynamics. ACS Energy Letters, 2020, 5, 1930-1938.	8.8	55
447	High-Quality MAPbBr ₃ Cuboid Film with Promising Optoelectronic Properties Prepared by a Hot Methylamine Precursor Approach. ACS Applied Materials & Interfaces, 2020, 12, 24498-24504.	4.0	14
448	Ionic-liquid induced enhanced performance of perovskite light-emitting diodes. Journal Physics D: Applied Physics, 2020, 53, 384002.	1.3	5
449	Eco-Friendly Strategy To Improve Durability and Stability of Zwitterionic Capping Ligand Colloidal CsPbBr ₃ Nanocrystals. Langmuir, 2020, 36, 6775-6781.	1.6	20
450	All-dielectric materials and related nanophotonic applications. Materials Science and Engineering Reports, 2020, 141, 100563.	14.8	28
451	Doping and ion substitution in colloidal metal halide perovskite nanocrystals. Chemical Society Reviews, 2020, 49, 4953-5007.	18.7	269
452	Coâ€Interlayer Engineering toward Efficient Green Quasiâ€Twoâ€Dimensional Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1910167.	7.8	52
453	Ultrastable Laurionite Spontaneously Encapsulates Reduced-dimensional Lead Halide Perovskites. Nano Letters, 2020, 20, 2316-2325.	4.5	20
454	Rational Interface Engineering for Efficient Flexible Perovskite Light-Emitting Diodes. ACS Nano, 2020, 14, 6107-6116.	7.3	100
455	Boosting Efficiency and Curtailing the Efficiency Roll-Off in Green Perovskite Light-Emitting Diodes via Incorporating Ytterbium as Cathode Interface Layer. ACS Applied Materials & Interfaces, 2020, 12, 18761-18768.	4.0	23
456	Effect of Donor-Acceptor Concentration Ratios on Non-Radiative Energy Transfer in Zero-Dimensional Cs4PbBr6 Perovskite/MEH-PPV Nanocomposite Thin Films. Polymers, 2020, 12, 444.	2.0	11
457	Modulation of ligand conjugation for efficient FAPbBr ₃ based green light-emitting diodes. Materials Chemistry Frontiers, 2020, 4, 1383-1389.	3.2	9
458	Nano–Micro Dimensional Structures of Fiberâ€Shaped Luminous Halide Perovskite Composites for Photonic and Optoelectronic Applications. Macromolecular Rapid Communications, 2020, 41, e2000157.	2.0	12
460	High-Efficiency Perovskite Light-Emitting Diodes with Improved Interfacial Contact. ACS Applied Materials & Interfaces, 2020, 12, 36681-36687.	4.0	35

#	Article	IF	CITATIONS
461	High Performance Quasiâ€⊋D Perovskite Skyâ€Blue Lightâ€Emitting Diodes Using a Dualâ€Ligand Strategy. Small, 2020, 16, e2002940.	5.2	65
462	Enhanced stability of red-emitting CsPbI3:Yb3+nanocrystal glasses: A potential luminescent material. Journal of Non-Crystalline Solids, 2020, 545, 120232.	1.5	18
463	Mesoporous Matrices as Hosts for Metal Halide Perovskite Nanocrystals. Advanced Optical Materials, 2020, 8, 1901868.	3.6	30
464	Organic additive engineering toward efficient perovskite lightâ€emitting diodes. InformaÄnÃ-Materiály, 2020, 2, 1095-1108.	8.5	26
465	Thermodynamic Control in the Synthesis of Quantum-Confined Blue-Emitting CsPbBr ₃ Perovskite Nanostrips. Journal of Physical Chemistry Letters, 2020, 11, 2036-2043.	2.1	39
466	Heating-up synthesis of cesium bismuth bromide perovskite nanocrystals with tailored composition, morphology, and optical properties. RSC Advances, 2020, 10, 7126-7133.	1.7	20
467	Facile growth and re-crystallization of polymer-based inorganic-organic 2D hybrid composites and their applications. Journal of Alloys and Compounds, 2020, 829, 154550.	2.8	5
468	Facile synthesis of durable perovskite quantum dots film with near unity photoluminescence quantum yield for efficient perovskite light emitting diode. Applied Surface Science, 2020, 510, 145513.	3.1	13
469	Efficient CsPbBr ₃ Inorganic Perovskite Light-Emitting Diodes via Lewis Acid–Base Reaction with Organic Small Molecule mCP. ACS Applied Electronic Materials, 2020, 2, 597-603.	2.0	5
470	High-Brightness Perovskite Light-Emitting Diodes Using a Printable Silver Microflake Contact. ACS Applied Materials & Interfaces, 2020, 12, 11428-11437.	4.0	11
471	Recent progress in surface modification and interfacial engineering for high-performance perovskite light-emitting diodes. Nano Energy, 2020, 73, 104752.	8.2	58
472	Recent advances in synthesis and application of perovskite quantum dot based composites for photonics, electronics and sensors. Science and Technology of Advanced Materials, 2020, 21, 278-302.	2.8	34
473	Moleculeâ€Induced pâ€Doping in Perovskite Nanocrystals Enables Efficient Colorâ€Saturated Red Lightâ€Emitting Diodes. Small, 2020, 16, e2001062.	5.2	53
474	Enhancing the efficiency of green perovskite-QDs-based light-emitting devices by controlling interfacial defects with diamine molecules. Chemical Engineering Journal, 2021, 403, 126339.	6.6	8
475	Emerging Lightâ€Emitting Materials for Photonic Integration. Advanced Materials, 2021, 33, e2003733.	11.1	25
476	High efficiency and stable photoluminescence of CH ₃ NH ₃ PbBr ₃ @CsPbBr ₃ perovskite quantum dots. Chemical Communications, 2021, 57, 1356-1359.	2.2	5
477	Metal halide perovskites for light-emitting diodes. Nature Materials, 2021, 20, 10-21.	13.3	800
478	Improving the performance of all-inorganic perovskite light-emitting diodes through using polymeric interlayers with a pendant design. Materials Chemistry Frontiers, 2021, 5, 7199-7207.	3.2	3

#	Article	IF	CITATIONS
479	Tuning the Optical Properties of MEH–PPV/PFO Hybrid Thin Films via the Incorporation of CsPbBr3 Quantum Dots. Coatings, 2021, 11, 154.	1.2	8
480	Organic–inorganic hybrid and inorganic halide perovskites: structural and chemical engineering, interfaces and optoelectronic properties. Journal Physics D: Applied Physics, 2021, 54, 133002.	1.3	27
481	Temperature-driven phase transition and transition dipole moment of two-dimensional (BA) ₂ CsPb ₂ Br ₇ perovskite. Physical Chemistry Chemical Physics, 2021, 23, 16341-16348.	1.3	5
482	Halide perovskites for light emission and artificial photosynthesis: Opportunities, challenges, and perspectives. EcoMat, 2021, 3, e12074.	6.8	29
483	The exceptionally high thermal conductivity after â€~alloying' two-dimensional gallium nitride (GaN) and aluminum nitride (AlN). Nanotechnology, 2021, 32, 135401.	1.3	22
484	Sublattice mixing in Cs2AgInCl6 for enhanced optical properties from first-principles. Applied Physics Letters, 2021, 118, .	1.5	9
485	Morphology optimization of perovskite films for efficient sky-blue light emitting diodes <i>via</i> a novel green anti-solvent dimethyl carbonate. Journal of Materials Chemistry C, 0, , .	2.7	2
486	Potential Application of Perovskite Glass Material in Photocatalysis Field. Journal of Physical Chemistry C, 2021, 125, 2382-2392.	1.5	26
487	Performance and stability improvements in metal halide perovskite with intralayer incorporation of organic additives. Journal of Materials Chemistry A, 2021, 9, 16281-16338.	5.2	28
488	Perovskite materials as superior and powerful platforms for energy conversion and storage applications. Nano Energy, 2021, 80, 105552.	8.2	91
489	Recent Progress on Patterning Strategies for Perovskite Lightâ€Emitting Diodes toward a Fullâ€Color Display Prototype. Small Science, 2021, 1, 2000050.	5.8	39
490	Nonlinear Photonics Using Lowâ€Dimensional Metalâ€Halide Perovskites: Recent Advances and Future Challenges. Advanced Materials, 2021, 33, e2004446.	11.1	58
491	Electroluminescence Principle and Performance Improvement of Metal Halide Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2002167.	3.6	49
492	Pressure-assisted fabrication of perovskite light emitting devices. AIP Advances, 2021, 11, 025112.	0.6	2
493	The effects of cesium lead bromide quantum dots on the performance of copper phthalocyanine-based organic field-effect transistors. Nanotechnology, 2021, 32, 195208.	1.3	11
494	Amineâ€Free Synthesis of Colloidal Cesium Lead Halide Perovskite Nanocrystals. ChemNanoMat, 2021, 7, 342-353.	1.5	23
495	High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light: Science and Applications, 2021, 10, 61.	7.7	235
496	Hot Hole Cooling and Transfer Dynamics from Lead Halide Perovskite Nanocrystals Using Porphyrin Molecules. Journal of Physical Chemistry C, 2021, 125, 5859-5869.	1.5	37

#	Article	IF	CITATIONS
497	Core/Shell Metal Halide Perovskite Nanocrystals for Optoelectronic Applications. Advanced Functional Materials, 2021, 31, 2100438.	7.8	67
498	Halide Perovskite Lightâ€Emitting Diode Technologies. Advanced Optical Materials, 2021, 9, 2002128.	3.6	100
499	Highly Efficient Halide Perovskite Lightâ€Emitting Diodes via Molecular Passivation. Angewandte Chemie, 2021, 133, 8418-8424.	1.6	9
500	Highly Efficient Halide Perovskite Lightâ€Emitting Diodes via Molecular Passivation. Angewandte Chemie - International Edition, 2021, 60, 8337-8343.	7.2	47
501	Achieving Green and Deep-Blue Perovskite LEDs by Dimensional Control Using Various Ammonium Bromides with CsPbBr-3. Materials Today Energy, 2021, , 100749.	2.5	9
502	Perovskite Lightâ€Emitting Diodes with External Quantum Efficiency Exceeding 22% via Smallâ€Molecule Passivation. Advanced Materials, 2021, 33, e2007169.	11.1	211
503	Emerging Nanopixel Light-Emitting Displays: Significance, Challenges, and Prospects. Journal of Physical Chemistry Letters, 2021, 12, 3522-3527.	2.1	14
504	High dielectric CsPbBr3/rGO/polyimide composite prepared via in-situ conversion of fillers. Journal of Materials Science: Materials in Electronics, 2021, 32, 12414-12423.	1.1	4
505	Materials, photophysics and device engineering of perovskite light-emitting diodes. Reports on Progress in Physics, 2021, 84, 046401.	8.1	52
506	Strategies Toward Efficient Blue Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2100516.	7.8	92
507	Recent Advances in Ligand Design and Engineering in Lead Halide Perovskite Nanocrystals. Advanced Science, 2021, 8, 2100214.	5.6	109
508	Airâ€Processed MAPbBr ₃ Perovskite Thin Film with Ultrastability and Enhanced Amplified Spontaneous Emission. Small, 2021, 17, e2101107.	5.2	27
509	The Past, Present, and Future of Metal Halide Perovskite Lightâ€Emitting Diodes. Small Science, 2021, 1, 2000072.	5.8	37
510	Unraveling the Role of Crystallization Dynamics on Luminescence Characteristics of Perovskite Lightâ€Emitting Diodes. Laser and Photonics Reviews, 2021, 15, 2100023.	4.4	36
511	Air-stable and low threshold amplified spontaneous emission via CsBr aqueous solution processed all-inorganic CsPbBr3 perovskite films. Applied Physics Letters, 2021, 118, .	1.5	7
512	Recent Advances in Synthesis, Properties, and Applications of Metal Halide Perovskite Nanocrystals/Polymer Nanocomposites. Advanced Materials, 2021, 33, e2005888.	11.1	108
513	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	7.3	705
514	Upside-Down Molding Approach for Geometrical Parameter-Tunable Photonic Perovskite Nanostructures. ACS Applied Materials & Interfaces, 2021, 13, 27313-27322.	4.0	2

#	ARTICLE	IF	CITATIONS
515	Restricted growth and grain boundary reinforcement of MAPbBr ₃ film by graphene quantum dots with enhanced luminescence and stability. Functional Materials Letters, 2021, 14, 2151028.	0.7	0
516	Methylammonium lead bromide based planar perovskite solar cells using various electron transport layers. Solar Energy, 2021, 221, 456-467.	2.9	12
517	High-brightness perovskite quantum dot light-emitting devices using inkjet printing. Organic Electronics, 2021, 93, 106168.	1.4	20
518	Photon-assisted nanostructures of self-assembled soft materials. Nano Today, 2021, 38, 101199.	6.2	3
519	Laserâ€induced recoverable fluorescence quenching of perovskite films at a microscopic grainâ€scale. Energy and Environmental Materials, 0, , .	7.3	2
520	Water-Dispersible CsPbBr3 Perovskite Nanocrystals with Ultra-Stability and its Application in Electrochemical CO2 Reduction. Nano-Micro Letters, 2021, 13, 172.	14.4	20
521	Efficient and Spectrally Stable Blue Perovskite Lightâ€Emitting Diodes Employing a Cationic Ï€â€Conjugated Polymer. Advanced Materials, 2021, 33, e2103640.	11.1	77
522	Flexible Perovskite CsPbBr ₃ Light Emitting Devices Integrated with GaP Nanowire Arrays in Highly Transparent and Durable Functionalized Silicones. Journal of Physical Chemistry Letters, 2021, 12, 9672-9676.	2.1	6
523	Largely improved dielectric properties of polyimide composites by tuning content and formation of CsPbBr3 nanocrystals. Journal of Physics and Chemistry of Solids, 2021, 157, 110180.	1.9	4
524	Independent dispersed and highly water-oxygen environment stable FAPbBr3 QDs-polymer composite for down-conversion display films. Chemical Engineering Journal, 2022, 428, 130974.	6.6	8
525	Environment-Induced Reversible Modulation of Optical and Electronic Properties of Lead Halide Perovskites and Possible Applications to Sensor Development: A Review. Molecules, 2021, 26, 705.	1.7	8
526	Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. , 2021, , 267-289.		2
527	Organic–inorganic hybrid thin film light-emitting devices: interfacial engineering and device physics. Journal of Materials Chemistry C, 2021, 9, 1484-1519.	2.7	25
528	Allâ€Inorganic Bismuthâ€Based Perovskite Quantum Dots with Bright Blue Photoluminescence and Excellent Stability. Advanced Functional Materials, 2018, 28, 1704446.	7.8	375
529	Photophysics of Methylammonium Lead Tribromide Perovskite: Free Carriers, Excitons, and Subâ€Bandgap States. Advanced Energy Materials, 2020, 10, 1903258.	10.2	20
530	Enhanced colloidal stability of perovskite quantum dots via split-ligand re-precipitation for efficient bi-functional interlayer in photovoltaic application. Journal of Industrial and Engineering Chemistry, 2020, 88, 137-147.	2.9	15
531	Boosting Perovskite Light-Emitting Diode Performance via Tailoring Interfacial Contact. ACS Applied Materials & Interfaces, 2018, 10, 24320-24326.	4.0	96
532	CsCu ₂ 1 ₃ Nanocrystals: Growth and Structural Evolution for Tunable Light Emission. ACS Omega, 2021, 6, 544-552.	1.6	26

#	Article	IF	CITATIONS
533	Random lasing in cesium lead iodide (CsPbI ₃) thin films with no surface passivation. Optics Express, 2020, 28, 21805.	1.7	6
534	Applications of organic additives in metal halide perovskite light-emitting diodes. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158505.	0.2	5
535	Investigation of the exciton relaxation processes in poly(9,9-dioctylfluorene- <i>co</i> -benzothiadiazole):CsPbl _{1.5} Br _{1.5} nanocrystal hybrid polymer–perovskite nanocrystal blend. RSC Advances, 2021, 11, 33531-33539.	1.7	2
536	Crystallization control <i>via</i> a molecular needle knitting strategy for the enhanced emission efficiency and stability of CsPbBr ₃ films. Journal of Materials Chemistry C, 2021, 9, 15967-15976.	2.7	6
537	Improvement of Photoluminescence of Perovskite CH ₃ NH ₃ PbI ₃ by Adding Additional CH ₃ NH ₃ I during Grinding. Chinese Physics Letters, 2021, 38, 087801.	1.3	3
538	Carbonâ€Based Nanomaterials and Sensing Tools for Wearable Health Monitoring Devices. Advanced Materials Technologies, 2022, 7, 2100572.	3.0	38
539	Optical Probing of Crystal Lattice Configurations in Single CsPbBr ₃ Nanoplatelets. Nano Letters, 2021, 21, 9085-9092.	4.5	19
540	Quasiâ€2D CsPbBr <i>_x</i> l _{3â^²} <i>_x</i> Composite Thin Films for Efficient and Stable Red Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2101419.	3.6	15
541	Uniform PMMA-CH3NH3PbBr3 Nanoparticle Composite Film for Optoelectronic Application. Korean Journal of Materials Research, 2017, 27, 307-311.	0.1	1
542	Research progress of efficient green perovskite light emitting diodes. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158504.	0.2	8
543	Colorless polyimides with excellent optical transparency and self-healing properties based on multi-exchange dynamic network. Applied Materials Today, 2021, 25, 101226.	2.3	11
544	Insight into perovskite light-emitting diodes based on PVP buffer layer. Journal of Luminescence, 2022, 241, 118515.	1.5	3
545	Stable Dy-doped CsPbBr3 quantum dot glass with enhanced optical performance. Journal of Non-Crystalline Solids, 2022, 575, 121224.	1.5	16
546	Efficient and stable blue perovskite light emitting diodes based on defect passivation. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 138502.	0.2	1
547	Effects of C 4 H 9 NH 3 Br additive on properties of CH 3 NH 3 PbBr 3 perovskite thin films. Micro and Nano Letters, 2020, 15, 732-735.	0.6	1
548	Effect of Solvent Annealing on Optical Properties of Perovskite Dualfunctional Devices. Solid State Phenomena, 0, 312, 185-191.	0.3	Ο
549	Organic building blocks at inorganic nanomaterial interfaces. Materials Horizons, 2022, 9, 61-87.	6.4	18
550	Toward Stable and Efficient Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, 2109495.	7.8	77

#	Article	IF	CITATIONS
551	Real-time and ultrasensitive humidity sensor based on lead-free Cs2SnCl6 perovskites. Sensors and Actuators B: Chemical, 2022, 354, 131084.	4.0	25
552	Ambient fabrication of efficient triple cation perovskite-based near-infrared light-emitting diodes. Optical Materials Express, 2022, 12, 153.	1.6	4
553	lon Migration in Perovskite Lightâ€Emitting Diodes: Mechanism, Characterizations, and Material and Device Engineering. Advanced Materials, 2022, 34, e2108102.	11.1	85
555	One- and Two-Photon Excited Photoluminescence and Suppression of Thermal Quenching of CsSnBr ₃ Microsquare and Micropyramid. ACS Nano, 2021, 15, 19613-19620.	7.3	11
556	DFT study of electronic structure and mobility of pristine and fluorinated methylammonium lead halide perovskites (CH ₃ NH ₃ PbX ₃ , X = I, Br, Cl). International Journal of Energy Research, 2022, 46, 6889-6900.	2.2	5
557	Uncovering the Influence of Ni ²⁺ Doping in Lead-Halide Perovskite Nanocrystals Using Optically Detected Magnetic Resonance Spectroscopy. Chemistry of Materials, 2022, 34, 1686-1698.	3.2	8
558	Polymerâ€Assisted Phase Stable γ sPbI ₃ Perovskite Film for Selfâ€Powered and Ultrafast Photodiodes. Advanced Materials Interfaces, 2022, 9, .	1.9	1
559	Light-Emitting Diodes Based on Two-Dimensional Nanoplatelets. Energy Material Advances, 2022, 2022, .	4.7	26
560	Cspbbr3 Nanocrystals Embedded Glass Enables Highly Stable and Efficient Light-Emitting Diodes. SSRN Electronic Journal, 0, , .	0.4	0
561	4â€Bromoâ€Butyric Acidâ€Assisted In Situ Passivation Strategy for Superstable Allâ€Inorganic Halide Perovskite CsPbX ₃ Quantum Dots in Polar Media. Angewandte Chemie - International Edition, 2022, 61, .	7.2	33
562	4â€Bromoâ€Butyric Acidâ€Assisted In Situ Passivation Strategy for Superstable Allâ€Inorganic Halide Perovskite CsPbX ₃ Quantum Dots in Polar Media. Angewandte Chemie, 2022, 134, .	1.6	4
563	Methylammonium Lead Bromide Perovskite Nano-Crystals Grown in a Poly[styrene-co-(2-(dimethylamino)ethyl Methacrylate)] Matrix Immobilized on Exfoliated Graphene Nano-Sheets. Nanomaterials, 2022, 12, 1275.	1.9	4
564	Enhanced electroluminescence of cesium lead bromide light-emitting diode driven by ion migration via surface passivation with organic halide surfactants. Surfaces and Interfaces, 2022, 30, 101853.	1.5	4
566	Bidentate aliphatic quaternary ammonium ligand-stabilized CsPbBr ₃ perovskite nanocrystals with high PLQY (92.3%) and superior stability. Journal of Materials Chemistry C, 2022, 10, 8356-8363.	2.7	20
567	Optimization of the carrier recombination and transmission properties in perovskite LEDs by doping poly (4-vinylpyridine) and graphene quantum dots made of chitin. Chemical Engineering Journal, 2022, 444, 136518.	6.6	8
568	CsPbBr3 nanocrystals embedded glass enables highly stable and efficient light-emitting diodes. Chemical Engineering Journal, 2022, 445, 136867.	6.6	24
569	One-step precipitation of stable perovskite CsPbBr ₃ quantum dots in silicate glass by picosecond laser pulses. Optical Materials Express, 2022, 12, 2260.	1.6	6
570	Colloidal FAPbBr ₃ perovskite nanocrystals for light emission: what's going on?. Journal of Materials Chemistry C, 2022, 10, 13437-13461.	2.7	10

#	Article	IF	CITATIONS
571	Metal Halide Perovskites for Redâ€Emission Lightâ€Emitting Diodes. Small Structures, 2022, 3, .	6.9	15
573	Unraveling hole interlayer-dependent interfacial energetics of LEDs. Nano Energy, 2022, 102, 107621.	8.2	4
574	High-Efficiency ResistiveÂSwitchÂAnd Artificial Synaptic Simulation InÂAntimony-Based Perovskite Devices. SSRN Electronic Journal, 0, , .	0.4	0
575	Synthesis of Cesium Copper Bromide Nanorods with Strong Linearly Polarized Emission. Advanced Optical Materials, 2022, 10, .	3.6	7
576	Mixed-surfactant perovskites with enhanced photostability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129757.	2.3	0
577	Improved efficiency for lead-free CsCu2I3 halide microplatelets by suppressing surface pinholes via surface functionalization. Journal of Luminescence, 2022, 252, 119390.	1.5	3
578	Electroluminescence of Halide Perovskite Single Crystals Showing Stochastically Active Multiple Emitting Centers. Journal of Physical Chemistry C, 2022, 126, 17826-17835.	1.5	3
579	A promising 1D Cd-based hybrid perovskite-type for white-light emission with high-color-rendering index. RSC Advances, 2022, 12, 33516-33524.	1.7	6
580	Blue Halide Perovskite Materials: Preparation, Progress, and Challenges. Laser and Photonics Reviews, 2023, 17, .	4.4	10
581	Silicone Materials for Flexible Optoelectronic Devices. Materials, 2022, 15, 8731.	1.3	5
582	Layer-dependent structure-optoelectronic property relationships for two-dimensional ruddlesden-popper phase (BA)2Csnâ^'1PbnBr3n+1 perovskites. Computational Materials Science, 2023, 218, 111998.	1.4	3
583	Synergetic effect of ligand removal, reparation, and surface encapsulation of CsPbBr3 quantum dots with improved brightness and stability. Surfaces and Interfaces, 2023, 36, 102606.	1.5	2
584	Phosphine oxide additives for perovskite light-emitting diodes and solar cells. CheM, 2023, 9, 562-575.	5.8	18
585	The effect of temperature and distance of hot airflow on the quality of MAPbCl3 thin films grown by sol–gel deposition. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
586	Electrospun Electroluminescent CsPbBr ₃ Fibers as Flexible Perovskite Networks for Lightâ€Emitting Application. Advanced Engineering Materials, 2023, 25, .	1.6	2
587	A Polymer Strategy toward Highâ€Performance Multifunctional Perovskite Optoelectronics: From Polymer Matrix to Device Applications. Advanced Optical Materials, 2023, 11, .	3.6	4
588	The effects of cation and halide anion on the stability, electronic and optical properties of double perovskite Cs2NaMX6 (MÂ=ÂIn, Tl, Sb, bi; X Â=ÂCl, Br, I). Computational Materials Science, 2023, 220, 112058.	1.4	13
589	Achieving Efficient Lightâ€Emitting Diodes by Controlling Phase Distribution of Quasiâ€2D Perovskites. Advanced Electronic Materials, 2023, 9, .	2.6	5

#	Article	IF	Citations
590	Water‣table CsPbBr ₃ /Reduced Graphene Oxide Nanoscrolls for Highâ€Performance Photoelectrochemical Sensing. Advanced Functional Materials, 2023, 33, .	7.8	14
591	Polymer-doped perovskite nanocrystals for efficient single active layer white light-emitting diodes through energy transfer. Polymer, 2023, 271, 125805.	1.8	3
592	Correlation between Single-Photon Emission and Size of Cesium Lead Bromide Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2023, 14, 2441-2447.	2.1	4
593	Multifunctional Conjugated Molecular Additives for Highly Efficient Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2023, 35, .	11.1	10
594	A Review of Perovskite Nanocrystal Applications in Luminescent Solar Concentrators. Advanced Optical Materials, 2023, 11, .	3.6	4
595	Hybrid composites for optoelectronics. , 2023, , 253-276.		0
610	Luminescence enhancement of green perovskite by localized surface plasmon resonance. , 2023, , .		0