The highly polymorphic cyclophilin A-binding loop in H resistance to MxB

Retrovirology 12, 1 DOI: 10.1186/s12977-014-0129-1

Citation Report

#	Article	IF	CITATIONS
1	An HIV-1 capsid binding protein TRIM11 accelerates viral uncoating. Retrovirology, 2016, 13, 72.	0.9	35
2	SUN2 Overexpression Deforms Nuclear Shape and Inhibits HIV. Journal of Virology, 2016, 90, 4199-4214.	1.5	42
3	Accumulation of MxB/Mx2-resistant HIV-1 Capsid Variants During Expansion of the HIV-1 Epidemic in Human Populations. EBioMedicine, 2016, 8, 230-236.	2.7	27
4	Capsid-CPSF6 Interaction Is Dispensable for HIV-1 Replication in Primary Cells but Is Selected during Virus Passage <i>In Vivo</i> . Journal of Virology, 2016, 90, 6918-6935.	1.5	50
5	Complex Interplay between HIV-1 Capsid and MX2-Independent Alpha Interferon-Induced Antiviral Factors. Journal of Virology, 2016, 90, 7469-7480.	1.5	40
6	Oligomerization Requirements for MX2-Mediated Suppression of HIV-1 Infection. Journal of Virology, 2016, 90, 22-32.	1.5	41
7	Interferon but not MxB inhibits foamy retroviruses. Virology, 2016, 488, 51-60.	1.1	23
8	Mechanisms of HIV-1 Control. Current HIV/AIDS Reports, 2017, 14, 101-109.	1.1	16
9	Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA: a structural scaffold for nuclear, cytoplasmic and viral proteins. Nucleic Acids Research, 2017, 45, 6805-6821.	6.5	46
10	Capsid-Dependent Host Factors in HIV-1 Infection. Trends in Microbiology, 2017, 25, 741-755.	3.5	101
11	CryoEM structure of MxB reveals a novel oligomerization interface critical for HIV restriction. Science Advances, 2017, 3, e1701264.	4.7	47
12	Effects of Inner Nuclear Membrane Proteins SUN1/UNC-84A and SUN2/UNC-84B on the Early Steps of HIV-1 Infection. Journal of Virology, 2017, 91, .	1.5	18
13	Role of Innate Genes in HIV Replication. Current Topics in Microbiology and Immunology, 2017, 419, 69-111.	0.7	6
14	Are Evolution and the Intracellular Innate Immune System Key Determinants in HIV Transmission?. Frontiers in Immunology, 2017, 8, 1246.	2.2	28
15	Hijacking of the Ubiquitin/Proteasome Pathway by the HIV Auxiliary Proteins. Viruses, 2017, 9, 322.	1.5	53
16	Cyclophilin A potentiates TRIM5α inhibition of HIV-1 nuclear import without promoting TRIM5α binding to the viral capsid. PLoS ONE, 2017, 12, e0182298.	1.1	12
17	ADAR1 and PKR, interferon stimulated genes with clashing effects on HIV-1 replication. Cytokine and Growth Factor Reviews, 2018, 40, 48-58.	3.2	25
18	Naturally Occurring Mutations in HIV-1 CRF01_AE Capsid Affect Viral Sensitivity to Restriction Factors. AIDS Research and Human Retroviruses, 2018, 34, 382-392.	0.5	9

TION RE

#	Article	IF	CITATIONS
19	HIV-1 capsids from B27/B57+ elite controllers escape Mx2 but are targeted by TRIM5α, leading to the induction of an antiviral state. PLoS Pathogens, 2018, 14, e1007398.	2.1	25
20	Multiple components of the nuclear pore complex interact with the amino-terminus of MX2 to facilitate HIV-1 restriction. PLoS Pathogens, 2018, 14, e1007408.	2.1	43
21	A compartmentalized type I interferon response in the gut during chronic HIV-1 infection is associated with immunopathogenesis. Aids, 2018, 32, 1599-1611.	1.0	18
22	Role of MxB in Alpha Interferon-Mediated Inhibition of HIV-1 Infection. Journal of Virology, 2018, 92, .	1.5	14
23	Equine MX2 is a restriction factor of equine infectious anemia virus (EIAV). Virology, 2018, 523, 52-63.	1.1	12
24	MXB inhibits murine cytomegalovirus. Virology, 2018, 522, 158-167.	1.1	26
25	Cellular Factors That Regulate Retrovirus Uncoating and Reverse Transcription. , 2018, , 51-112.		1
26	MxB Restricts HIV-1 by Targeting the Tri-hexamer Interface of the Viral Capsid. Structure, 2019, 27, 1234-1245.e5.	1.6	36
27	Multiple Pathways To Avoid Beta Interferon Sensitivity of HIV-1 by Mutations in Capsid. Journal of Virology, 2019, 93, .	1.5	17
28	Small-molecule agents for the treatment of inflammatory bowel disease. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2034-2041.	1.0	11
29	Human MxB Inhibits the Replication of Hepatitis C Virus. Journal of Virology, 2019, 93, .	1.5	33
30	Novel HIV-1 capsid-targeting small molecules of the PF74 binding site. European Journal of Medicinal Chemistry, 2020, 204, 112626.	2.6	14
31	HIV-1 resists MxB inhibition of viral Rev protein. Emerging Microbes and Infections, 2020, 9, 2030-2045.	3.0	5
32	Laboratory and clinical findings and their association with viral and proviral loads in cats naturally infected with feline leukemia virus. Comparative Immunology, Microbiology and Infectious Diseases, 2020, 71, 101491.	0.7	0
33	MxB impedes the NUP358-mediated HIV-1 pre-integration complex nuclear import and viral replication cooperatively with CPSF6. Retrovirology, 2020, 17, 16.	0.9	16
34	Use of exosomes as vectors to carry advanced therapies. RSC Advances, 2020, 10, 23975-23987.	1.7	21
35	TRIM34 restricts HIV-1 and SIV capsids in a TRIM5α-dependent manner. PLoS Pathogens, 2020, 16, e1008507.	2.1	39
36	Matrin 3 in neuromuscular disease: physiology and pathophysiology. JCI Insight, 2021, 6, .	2.3	30

CITATION REPORT

#	Article	IF	CITATIONS
37	Cyclophilin A: a key player for etiological agent infection. Applied Microbiology and Biotechnology, 2021, 105, 1365-1377.	1.7	19
38	Human TRIM5α: Autophagy Connects Cell-Intrinsic HIV-1 Restriction and Innate Immune Sensor Functioning. Viruses, 2021, 13, 320.	1.5	13
40	Viral Suppression of RIPK1-Mediated Signaling. MBio, 2021, 12, e0172321.	1.8	15
41	Human Acute and Chronic Viruses: Host-Pathogen Interactions and Therapeutics. , 2020, , 1-120.		3
45	Anti-HIV lectins and current delivery strategies. AIMS Molecular Science, 2018, 5, 96-116.	0.3	5
46	Nuclear pore heterogeneity influences HIV-1 infection and the antiviral activity of MX2. ELife, 2018, 7, .	2.8	100
47	MxB sensitivity of HIV-1 is determined by a highly variable and dynamic capsid surface. ELife, 2020, 9, .	2.8	14
48	HIV-1 capsid variability: viral exploitation and evasion of capsid-binding molecules. Retrovirology, 2021, 18, 32.	0.9	17
49	MX2 and HIV-1 Restriction. , 2015, , 1-8.		0
50	MX2 and HIV-1 Restriction. , 2018, , 1420-1427.		0
56	Emerging vaccine nanotechnology: From defense against infection to sniping cancer. Acta Pharmaceutica Sinica B, 2022, 12, 2206-2223.	5.7	52
57	In silico prediction of HIV-1-host molecular interactions and their directionality. PLoS Computational Biology, 2022, 18, e1009720.	1.5	0
58	Emerging Roles of Cyclophilin A in Regulating Viral Cloaking. Frontiers in Microbiology, 2022, 13, 828078.	1.5	11
59	MxB inhibits long interspersed element type 1 retrotransposition. PLoS Genetics, 2022, 18, e1010034.	1.5	7
61	Secondary Osteoporosis and Metabolic Bone Diseases. Journal of Clinical Medicine, 2022, 11, 2382.	1.0	28
62	Clade-Specific Alterations within the HIV-1 Capsid Protein with Implications for Nuclear Translocation. Biomolecules, 2022, 12, 695.	1.8	3
63	Lectins and lectibodies: potential promising antiviral agents. Cellular and Molecular Biology Letters, 2022, 27, 37.	2.7	20
65	Small extracellular vesicles as key players in cancer development caused by human oncogenic viruses. Infectious Agents and Cancer, 2022, 17, .	1.2	2

CITATION REPORT

ARTICLE

IF CITATIONS