Genetic blueprint of the zoonotic pathogen Toxocara ca

Nature Communications 6, 6145 DOI: 10.1038/ncomms7145

Citation Report

#	Article	IF	CITATIONS
1	The Haemonchus contortus kinome - a resource for fundamental molecular investigations and drug discovery. Parasites and Vectors, 2015, 8, 623.	1.0	14
2	Rendering the Intractable More Tractable: Tools from <i>Caenorhabditis elegans</i> Ripe for Import into Parasitic Nematodes. Genetics, 2015, 201, 1279-1294.	1.2	47
3	The barber's pole worm CAP protein superfamily — A basis for fundamental discovery and biotechnology advances. Biotechnology Advances, 2015, 33, 1744-1754.	6.0	16
4	Cracking the nodule worm code advances knowledge of parasite biology and biotechnology to tackle major diseases of livestock. Biotechnology Advances, 2015, 33, 980-991.	6.0	21
5	Expanding the view on the evolution of the nematode dauer signalling pathways: refinement through gene gain and pathway co-option. BMC Genomics, 2016, 17, 476.	1.2	35
6	The Anisakis Transcriptome Provides a Resource for Fundamental and Applied Studies on Allergy-Causing Parasites. PLoS Neglected Tropical Diseases, 2016, 10, e0004845.	1.3	41
7	Harnessing the Toxocara Genome to Underpin Toxocariasis Research and New Interventions. Advances in Parasitology, 2016, 91, 87-110.	1.4	23
8	Kinetic and avidity of IgY anti-Toxocara antibodies in experimentally infected chickens. Experimental Parasitology, 2016, 171, 33-41.	0.5	8
9	CAP protein superfamily members in Toxocara canis. Parasites and Vectors, 2016, 9, 360.	1.0	6
10	MicroRNAs of Toxocara canis and their predicted functional roles. Parasites and Vectors, 2016, 9, 229.	1.0	37
11	Gene silencing and sex determination by programmed DNA elimination in parasitic nematodes. Current Opinion in Microbiology, 2016, 32, 120-127.	2.3	31
12	Toxocara and toxocarosis a roundtable discussion. Companion Animal, 2016, 21, 225-235.	0.0	0
13	Epithelial sodium channel (ENaC) family: Phylogeny, structure–function, tissue distribution, and associated inherited diseases. Gene, 2016, 579, 95-132.	1.0	310
14	Phylogenomic and biogeographic reconstruction of the Trichinella complex. Nature Communications, 2016, 7, 10513.	5.8	107
15	Making sense of genomes of parasitic worms: Tackling bioinformatic challenges. Biotechnology Advances, 2016, 34, 663-686.	6.0	30
16	A perspective on genomic-guided anthelmintic discovery and repurposing using Haemonchus contortus. Infection, Genetics and Evolution, 2016, 40, 368-373.	1.0	19
17	WormBase ParaSite â^' a comprehensive resource for helminth genomics. Molecular and Biochemical Parasitology, 2017, 215, 2-10.	0.5	527
18	Tissue distribution and functional analysis of vitellogenin-6 of Toxocara canis. Experimental Parasitology, 2017, 177, 22-27.	0.5	4

#	Article	IF	CITATIONS
19	Zoonotic intestinal helminths interact with the canine immune system by modulating T cell responses and preventing dendritic cell maturation. Scientific Reports, 2017, 7, 10310.	1.6	10
20	Comparative genome analysis of programmed DNA elimination in nematodes. Genome Research, 2017, 27, 2001-2014.	2.4	94
21	Comparative transcriptomic analyses of male and female adult Toxocara canis. Gene, 2017, 600, 85-89.	1.0	12
22	Recombinant proteins of helminths with immunoregulatory properties and their possible therapeutic use. Acta Tropica, 2017, 166, 202-211.	0.9	23
23	Perusal of parasitic nematode â€~omics in the post-genomic era. Molecular and Biochemical Parasitology, 2017, 215, 11-22.	0.5	13
24	Proteomic analysis of Toxocara canis excretory and secretory (TES) proteins. Molecular and Biochemical Parasitology, 2017, 211, 39-47.	0.5	31
25	Tissue expression pattern of ABCG transporter indicates functional roles in reproduction of Toxocara canis. Parasitology Research, 2018, 117, 775-782.	0.6	2
26	Advances in kinome research of parasitic worms - implications for fundamental research and applied biotechnological outcomes. Biotechnology Advances, 2018, 36, 915-934.	6.0	8
27	Molecular characterization and transcriptional analysis of the female-enriched chondroitin proteoglycan 2 of Toxocara canis. Journal of Helminthology, 2018, 92, 154-160.	0.4	3
28	The genomic basis of nematode parasitism. Briefings in Functional Genomics, 2018, 17, 8-14.	1.3	31
29	Human toxocariasis. Lancet Infectious Diseases, The, 2018, 18, e14-e24.	4.6	278
30	A TGF-β type I receptor-like molecule with a key functional role in Haemonchus contortus development. International Journal for Parasitology, 2018, 48, 1023-1033.	1.3	16
31	The somatic proteins of Toxocara canis larvae and excretory-secretory products revealed by proteomics. Veterinary Parasitology, 2018, 259, 25-34.	0.7	24
32	Toxocariasis: a silent threat with a progressive public health impact. Infectious Diseases of Poverty, 2018, 7, 59.	1.5	134
33	Host- and Helminth-Derived Endocannabinoids That Have Effects on Host Immunity Are Generated during Infection. Infection and Immunity, 2018, 86, .	1.0	16
34	Human toxocariasis – A look at a neglected disease through an epidemiological â€~prism'. Infection, Genetics and Evolution, 2019, 74, 104002.	1.0	76
35	Serum metabolomic alterations in Beagle dogs experimentally infected with Toxocara canis. Parasites and Vectors, 2019, 12, 447.	1.0	32
36	Aquaporin 1 is located on the intestinal basolateral membrane in Toxocara canis and might play a role in drug uptake. Parasites and Vectors, 2019, 12, 243.	1.0	3

#	Article	IF	CITATIONS
37	Common workflow language (CWL)-based software pipeline forde novogenome assembly from long- and short-read data. GigaScience, 2019, 8, .	3.3	17
38	A TGF-β type II receptor that associates with developmental transition in Haemonchus contortusÂin vitro. PLoS Neglected Tropical Diseases, 2019, 13, e0007913.	1.3	12
39	A secreted-Cu/Zn superoxide dismutase from Microplitis bicoloratus reduces reactive oxygen species triggered by symbiotic bracovirus. Developmental and Comparative Immunology, 2019, 92, 129-139.	1.0	6
40	Comparative bioinformatic analysis suggests that specific dauer-like signalling pathway components regulate Toxocara canis development and migration in the mammalian host. Parasites and Vectors, 2019, 12, 32.	1.0	15
41	Transcriptomic Resources for Parasitic Nematodes of Veterinary Importance. Trends in Parasitology, 2019, 35, 72-84.	1.5	20
42	Evolutionary distribution of deoxynucleoside 5-monophosphate N-glycosidase, DNPH1. Gene, 2019, 683, 1-11.	1.0	3
43	Proteomic Insights into the Biology of the Most Important Foodborne Parasites in Europe. Foods, 2020, 9, 1403.	1.9	17
44	Toxocara canis Differentially Affects Hepatic MicroRNA Expression in Beagle Dogs at Different Stages of Infection. Frontiers in Veterinary Science, 2020, 7, 587273.	0.9	10
45	Speciation and adaptive evolution reshape antioxidant enzymatic system diversity across the phylum Nematoda. BMC Biology, 2020, 18, 181.	1.7	10
46	Excretory/Secretory Metabolome of the Zoonotic Roundworm Parasite Toxocara canis. Biomolecules, 2020, 10, 1157.	1.8	12
47	GSK3α: An Important Paralog in Neurodegenerative Disorders and Cancer. Biomolecules, 2020, 10, 1683.	1.8	7
48	Human gnathostomiasis: a neglected food-borne zoonosis. Parasites and Vectors, 2020, 13, 616.	1.0	31
49	Global and regional seroprevalence estimates for human toxocariasis: A call for action. Advances in Parasitology, 2020, 109, 275-290.	1.4	37
50	A daf-7-related TGF-β ligand (Hc-tgh-2) shows important regulations on the development of Haemonchus contortus. Parasites and Vectors, 2020, 13, 326.	1.0	8
51	Elucidating the molecular and developmental biology of parasitic nematodes: Moving to a multiomics paradigm. Advances in Parasitology, 2020, 108, 175-229.	1.4	17
52	Toxocara "omics―and the promises it holds for medicine and veterinary medicine. Advances in Parasitology, 2020, 109, 89-108.	1.4	25
53	Global profiling of IncRNAs-miRNAs-mRNAs reveals differential expression of coding genes and non-coding RNAs in the lung of beagle dogs at different stages of Toxocara canis infection. International Journal for Parasitology, 2021, 51, 49-61.	1.3	13
54	Proteomic alterations in the plasma of Beagle dogs induced by Toxocara canis infection. Journal of Proteomics, 2021, 232, 104049.	1.2	6

#	Article	IF	CITATIONS
55	Expression and functionality of allergenic genes regulated by simulated gastric juice in Anisakis pegreffii. Parasitology International, 2021, 80, 102223.	0.6	3
56	Genomic Signatures of Coevolution between Nonmodel Mammals and Parasitic Roundworms. Molecular Biology and Evolution, 2021, 38, 531-544.	3.5	10
57	Toxocariasis. Neglected Tropical Diseases, 2021, , 17-29.	0.4	0
58	Extensive non-redundancy in a recently duplicated developmental gene family. Bmc Ecology and Evolution, 2021, 21, 33.	0.7	5
59	Expression of Ascaris lumbricoides putative virulence-associated genes when infecting a human host. Parasites and Vectors, 2021, 14, 176.	1.0	1
60	Genomics of the Parasitic Nematode Ascaris and Its Relatives. Genes, 2021, 12, 493.	1.0	17
61	Toxocara canis and Toxocara cati Somatic and Excretory-Secretory Antigens Are Recognised by C-Type Lectin Receptors. Pathogens, 2021, 10, 321.	1.2	7
63	Abdominal angiostrongyliasis in the Americas: fifty years since the discovery of a new metastrongylid species, Angiostrongylus costaricensis. Parasites and Vectors, 2021, 14, 374.	1.0	12
64	Identification of Toxocara canis Antigen-Interacting Partners by Yeast Two-Hybrid Assay and a Putative Mechanism of These Host–Parasite Interactions. Pathogens, 2021, 10, 949.	1.2	3
65	Monitoring of parasitic diseases of dogs. EUREKA Health Sciences, 2021, , 109-116.	0.1	0
66	Chromosomeâ€scale assembly and wholeâ€genome sequencing of 266 giant panda roundworms provide insights into their evolution, adaptation and potential drug targets. Molecular Ecology Resources, 2022, 22, 768-785.	2.2	6
67	Genome of the Giant Panda Roundworm Illuminates Its Host Shift and Parasitic Adaptation. Genomics, Proteomics and Bioinformatics, 2022, 20, 366-381.	3.0	13
68	Excretory/secretory proteins of adult Toxocara canis induce changes in the expression of proteins involved in the NOD1-RIP2-NF-κB pathway and modulate cytokine production in mouse macrophages. Experimental Parasitology, 2021, 229, 108152.	0.5	3
69	Potentially zoonotic parasites in the soil of public squares in the city of Aracaju (Sergipe,) Tj ETQq1 1 0.784314 r	gBT <u>/</u> Over	lock 10 Tf 50
70	Long-read RNA sequencing of human and animal filarial parasites improves gene models and discovers operons. PLoS Neglected Tropical Diseases, 2020, 14, e0008869.	1.3	11
71	Expression of Mir-21 and Mir-103a in Toxocara canis: Potential for Diagnosis of Human Toxocariasis. Iranian Journal of Parasitology, 2020, 15, 559-567.	0.6	5
72	Draft Genome of Toxocara canis, a Pathogen Responsible for Visceral Larva Migrans. Korean Journal of Parasitology, 2016, 54, 751-758.	0.5	5
73	Development of a Multiplex Bead Assay for the Detection of IgG Antibody Responses to Guinea Worm. American Journal of Tropical Medicine and Hygiene, 2020, 103, 2294-2304.	0.6	5

#	Article	IF	CITATIONS
74	Molecular evidence of hybridization between pig and human Ascaris indicates an interbred species complex infecting humans. ELife, 2020, 9, .	2.8	42
75	A transcription factor DAF-5 functions in Haemonchus contortus development. Parasites and Vectors, 2021, 14, 529.	1.0	3
76	MOLECULAR SEQUANCING AND PHYLOGENIC ANALYSIS TO VIRULENCE nmuc-1 GENE IN VISCERAL LARVAE MIGRANCE. Iraqi Journal of Agricultural Sciences, 2020, 51, 894-902.	0.1	0
78	Advances in the treatment, diagnosis, control and scientific understanding of taeniid cestode parasite infections over the past 50Âyears. International Journal for Parasitology, 2021, 51, 1167-1192.	1.3	21
79	On the role of dauer in the adaptation of nematodes to a parasitic lifestyle. Parasites and Vectors, 2021, 14, 554.	1.0	11
81	Toxocariasis y vacunación para Toxocara: una revisión sistemática. Orinoquia, 2020, 24, 79-95.	0.1	4
82	Antigenic Proteins from the Excretory–Secretory Products of Toxocara canis Larvae and Evaluation of Their Potential for Immunodiagnostics of Larval Toxocarosis. Acta Parasitologica, 2022, 67, 705-713.	0.4	2
83	Protective response mediated by immunization with recombinant proteins in a murine model of toxocariasis and canine infection by Toxocara canis. Vaccine, 2022, 40, 912-923.	1.7	3
90	Anisaxins, helical antimicrobial peptides from marine parasites, kill resistant bacteria by lipid extraction and membrane disruption. Acta Biomaterialia, 2022, 146, 131-144.	4.1	15
91	Changes in the expression of miR-103a and miR-21: a functional diagnosis of toxocariasis in rats. Journal of Medical Microbiology, 2022, 71, .	0.7	0
92	Toxocara canis Infection Alters mRNA Expression Profiles of Peripheral Blood Mononuclear Cells in Beagle Dogs at the Lung Infection Period. Animals, 2022, 12, 1517.	1.0	1
93	Toxocariosis. , 2022, , 509-520.		0
94	Lipidomic changes in the liver of beagle dogs associated with Toxocara canis infection. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	0
95	Identification of Novel Genes and Proteoforms in Angiostrongylus costaricensis through a Proteogenomic Approach. Pathogens, 2022, 11, 1273.	1.2	2
96	Lung Lipidomic Alterations in Beagle Dogs Infected with Toxocara canis. Animals, 2022, 12, 3080.	1.0	0
97	Altered miRNA Expression Profiles in the Serum of Beagle Dogs Experimentally Infected with Toxocara canis. Animals, 2023, 13, 299.	1.0	1
98	Toward anthelmintic drug candidates for toxocariasis: Challenges and recent developments. European Journal of Medicinal Chemistry, 2023, 251, 115268.	2.6	2
99	A proteasomal β5 subunit of Haemonchus contortus with a role in the growth, development and life span. Parasites and Vectors, 2023, 16, .	1.0	0

#	Article	IF	CITATIONS
100	Repertoire of P-glycoprotein drug transporters in the zoonotic nematode Toxocara canis. Scientific Reports, 2023, 13, .	1.6	0
103	Getting around the roundworms: Identifying knowledge gaps and research priorities for the ascarids. Advances in Parasitology, 2024, , 51-123.	1.4	0