The Heat-Up Synthesis of Colloidal Nanocrystals

Chemistry of Materials 27, 2246-2285 DOI: 10.1021/cm5028964

Citation Report

#	Article	IF	CITATIONS
5	Surfactant-controlled composition and crystal structure of manganese(II) sulfide nanocrystals prepared by solvothermal synthesis. Beilstein Journal of Nanotechnology, 2015, 6, 2319-2329.	1.5	8
6	Plasmonic Ge-doped ZnO nanocrystals. Chemical Communications, 2015, 51, 12369-12372.	2.2	28
7	Nanocrystal engineering of noble metals and metal chalcogenides: controlling the morphology, composition and crystallinity. CrystEngComm, 2015, 17, 3727-3762.	1.3	113
8	Zinc Chalcogenide Seed-Mediated Synthesis of CdSe Nanocrystals: Nails, Chesses and Tetrahedrons. Chemistry of Materials, 2015, 27, 3055-3064.	3.2	20
9	Measuring the Time-Dependent Monomer Concentration during the Hot-Injection Synthesis of Colloidal Nanocrystals. Chemistry of Materials, 2015, 27, 6102-6108.	3.2	9
10	Prodigious Effects of Concentration Intensification on Nanoparticle Synthesis: A High-Quality, Scalable Approach. Journal of the American Chemical Society, 2015, 137, 15843-15851.	6.6	53
11	Rapid Nanoparticle Synthesis by Magnetic and Microwave Heating. Nanomaterials, 2016, 6, 85.	1.9	62
12	Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. Chemical Reviews, 2016, 116, 10731-10819.	23.0	469
13	Chemistry of InP Nanocrystal Syntheses. Chemistry of Materials, 2016, 28, 2491-2506.	3.2	301
14	Preparation of photoluminescence tunable Cu-doped AgInS ₂ and AgInS ₂ /ZnS nanocrystals and their application as cellular imaging probes. RSC Advances, 2016, 6, 51161-51170.	1.7	21
15	The formation mechanism of Janus nanostructures in one-pot reactions: the case of Ag–Ag ₈ GeS ₆ . Journal of Materials Chemistry A, 2016, 4, 7060-7070.	5.2	7
16	Revealing Complexity of Nanoparticle Synthesis in Solution by in Situ Hard X-ray Spectroscopy—Today and Beyond. Chemistry of Materials, 2016, 28, 2478-2490.	3.2	45
17	Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chemical Reviews, 2016, 116, 10513-10622.	23.0	744
18	Aqueous Based Semiconductor Nanocrystals. Chemical Reviews, 2016, 116, 10623-10730.	23.0	364
19	Mechanism of magnetite formation in high temperature corrosion by model naphthenic acids. Corrosion Science, 2016, 111, 822-834.	3.0	18
20	Shape-Controlled Synthesis of High-Quality Cu ₇ S ₄ Nanocrystals for Efficient Light-Induced Water Evaporation. Small, 2016, 12, 5320-5328.	5.2	145
21	Facile Synthesis of Cadmium-Free Zn-In-S:Ag/ZnS Nanocrystals for Bio-Imaging. Scientific Reports, 2016, 6, 24459.	1.6	27
22	Colloidal synthesis of pure CuInTe ₂ crystallites based on the HSAB theory. New Journal of Chemistry, 2016, 40, 10259-10266.	1.4	12

#	Article	IF	CITATIONS
23	Fabrication of sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and mechanical stability. Nano Research, 2016, 9, 2162-2173.	5.8	45
24	Water-soluble, luminescent ZnTe quantum dots: supersaturation-controlled synthesis and self-assembly into nanoballs, nanonecklaces and nanowires. Dalton Transactions, 2016, 45, 3918-3926.	1.6	21
25	Anisotropic Nanoparticles and Anisotropic Surface Chemistry. Journal of Physical Chemistry Letters, 2016, 7, 632-641.	2.1	162
26	High-Performance Ferrite Nanoparticles through Nonaqueous Redox Phase Tuning. Nano Letters, 2016, 16, 1345-1351.	4.5	84
27	Scalable Heating-Up Synthesis of Monodisperse Cu ₂ ZnSnS ₄ Nanocrystals. Chemistry of Materials, 2016, 28, 720-726.	3.2	43
28	Synthesis, Characterization, and Photocatalytic Properties of In ₂ S ₃ , ZnIn ₂ S ₄ , and CdIn ₂ S ₄ Nanocrystals. Crystal Growth and Design, 2016, 16, 2231-2238.	1.4	85
29	Analysis of defect luminescence in Ga-doped ZnO nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 9586-9593.	1.3	31
30	Crystal phase-controlled synthesis of rod-shaped AgInTe ₂ nanocrystals for in vivo imaging in the near-infrared wavelength region. Nanoscale, 2016, 8, 5435-5440.	2.8	49
31	Enhanced Optical Properties of Cu-In-S Quantum Dots with Zn Addition. Journal of Electronic Materials, 2016, 45, 2449-2454.	1.0	4
32	Monodispersed wurtzite Cu ₂ SnS ₃ nanocrystals by phosphine and oleylamine free facile heat-up technique. CrystEngComm, 2016, 18, 2885-2893.	1.3	25
33	Towards cost effective metal precursor sources for future photovoltaic material synthesis: CTS nanoparticles. Optical Materials, 2016, 54, 207-216.	1.7	28
34	Generic Synthetic Route to Monodisperse Sub-10 nm Lanthanide Oxide Nanodisks: A Modified Digestive Ripening Process. Chemistry of Materials, 2016, 28, 172-179.	3.2	19
35	Heat-up synthesis of Ag–In–S and Ag–In–S/ZnS nanocrystals: Effect of indium precursors on their optical properties. Journal of Alloys and Compounds, 2016, 665, 137-143.	2.8	20
36	Bandgap tunable colloidal Cu-based ternary and quaternary chalcogenide nanosheets via partial cation exchange. Nanoscale, 2016, 8, 7906-7913.	2.8	24
37	Shape-controlled synthesis of β-In ₂ S ₃ nanocrystals and their lithium storage properties. CrystEngComm, 2016, 18, 250-256.	1.3	20
38	Chemical synthesis of Cu 2 SnS 3 (CTS) nanoparticles: A status review. Journal of Alloys and Compounds, 2016, 656, 295-310.	2.8	88
39	Materials aspects of semiconductor nanocrystals for optoelectronic applications. Materials Horizons, 2017, 4, 155-205.	6.4	78
40	Low cost and large scale synthesis of PbS quantum dots with hybrid surface passivation. CrystEngComm, 2017, 19, 946-951.	1.3	24

#	Article	IF	CITATIONS
41	Heat-up and gram-scale synthesis of Cu-poor CZTS nanocrystals with controllable compositions and shapes. CrystEngComm, 2017, 19, 2013-2020.	1.3	9
42	InP Nanocrystals with Color-Tunable Luminescence by Microwave-Assisted Ionic-Liquid Etching. Chemistry of Materials, 2017, 29, 2101-2109.	3.2	24
43	Hydrophilic Gold Supracrystals Differing by the Nanoparticle Crystalline Structure. Journal of Physical Chemistry C, 2017, 121, 10670-10680.	1.5	5
44	Phosphine-Free Synthesis of Metal Chalcogenide Quantum Dots by Directly Dissolving Chalcogen Dioxides in Alkylthiol as the Precursor. ACS Applied Materials & Interfaces, 2017, 9, 9840-9848.	4.0	20
45	Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: Effects of chain length of organic amines and reaction temperature. Applied Surface Science, 2017, 405, 280-288.	3.1	38
46	Compound Copper Chalcogenide Nanocrystals. Chemical Reviews, 2017, 117, 5865-6109.	23.0	670
47	An optothermally generated surface bubble and its applications. Nanoscale, 2017, 9, 6622-6631.	2.8	70
48	Mechanistic Investigations of the Synthesis of Sizeâ€Tunable Ni Nanoparticles by Reduction of Simple Ni ^{II} Diamide Precursors. Chemistry - A European Journal, 2017, 23, 9352-9361.	1.7	2
49	Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth. Accounts of Chemical Research, 2017, 50, 1248-1257.	7.6	103
50	Colloidal synthesis of copper cadmium sulphide (CuCdS 2) nanoparticles and its structural, optical and morphological properties. Materials Science in Semiconductor Processing, 2017, 66, 123-130.	1.9	14
51	Tuning the coercivity and exchange bias by controlling the interface coupling in bimagnetic core/shell nanoparticles. Nanoscale, 2017, 9, 10240-10247.	2.8	44
52	Fullyâ€Inorganic Trihalide Perovskite Nanocrystals: A New Research Frontier of Optoelectronic Materials. Advanced Materials, 2017, 29, 1700775.	11.1	230
53	Living Nanocrystals. Chemistry of Materials, 2017, 29, 5415-5425.	3.2	32
54	Mechanistic Aspects in the Formation, Growth and Surface Functionalization of Metal Oxide Nanoparticles in Organic Solvents. Chemistry - A European Journal, 2017, 23, 8542-8570.	1.7	90
55	Growth and Aggregation Regulate Clusters Structural Properties and Gel Time. Journal of Physical Chemistry B, 2017, 121, 2511-2524.	1.2	10
56	Scroll-like Alloyed CdS _{<i>x</i>} Se _{1–<i>x</i>} Nanoplatelets: Facile Synthesis and Detailed Analysis of Tunable Optical Properties. Chemistry of Materials, 2017, 29, 579-586.	3.2	49
57	Effect of Sulfide Precursor Selection on the Nucleation, Growth, and Elemental Composition of Cu ₂ ZnSnS ₄ Nanocrystals. Crystal Growth and Design, 2017, 17, 73-79.	1.4	7
58	Solution-based synthesis and processing of Sn- and Bi-doped Cu ₃ SbSe ₄ nanocrystals, nanomaterials and ring-shaped thermoelectric generators. Journal of Materials Chemistry A, 2017, 5, 2592-2602.	5.2	73

#	Article	IF	CITATIONS
59	Combined Experimental and Theoretical Investigation of Heating Rate on Growth of Iron Oxide Nanoparticles. Chemistry of Materials, 2017, 29, 9648-9656.	3.2	37
60	Growth Mechanism and Surface State of CuInS ₂ Nanocrystals Synthesized with Dodecanethiol. Journal of the American Chemical Society, 2017, 139, 15748-15759.	6.6	58
61	Bright-Emitting Perovskite Films by Large-Scale Synthesis and Photoinduced Solid-State Transformation of CsPbBr ₃ Nanoplatelets. ACS Nano, 2017, 11, 10206-10213.	7.3	118
62	From Colloidal Monodisperse Nickel Nanoparticles to Well-Defined Ni/Al ₂ O ₃ Model Catalysts. Langmuir, 2017, 33, 9836-9843.	1.6	19
63	Phase-Controlled Colloidal Syntheses of Iron Sulfide Nanocrystals via Sulfur Precursor Reactivity and Direct Pyrite Precipitation. Chemistry of Materials, 2017, 29, 8521-8530.	3.2	49
64	Chalcogenide and pnictide nanocrystals from the silylative deoxygenation of metal oxides. Journal of Materials Chemistry A, 2017, 5, 20351-20358.	5.2	5
65	Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the ligand–metal binding role in controlling the nucleation and growth kinetics. Nanoscale, 2017, 9, 13772-13785.	2.8	137
66	Mn doped AIZS/ZnS nanocrystals: Synthesis and optical properties. Journal of Alloys and Compounds, 2017, 725, 1077-1083.	2.8	16
67	Tunable, Bright, and Narrow-Band Luminescence from Colloidal Indium Phosphide Quantum Dots. Chemistry of Materials, 2017, 29, 6893-6899.	3.2	182
68	One-pot scalable synthesis of all-inorganic perovskite nanocrystals with tunable morphology, composition and photoluminescence. CrystEngComm, 2017, 19, 7041-7049.	1.3	35
69	Zinc–Phosphorus Complex Working as an Atomic Valve for Colloidal Growth of Monodisperse Indium Phosphide Quantum Dots. Chemistry of Materials, 2017, 29, 6346-6355.	3.2	53
70	Modeling of the formation kinetics and size distribution evolution of II–VI quantum dots. Reaction Chemistry and Engineering, 2017, 2, 567-576.	1.9	14
71	Correlation between product purity and process parameters for the synthesis of Cu2ZnSnS4 nanoparticles using microwave irradiation. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	7
72	Opportunities and Challenges in the Synthesis, Characterization, and Catalytic Properties of Controlled Nanostructures. Studies in Surface Science and Catalysis, 2017, 177, 1-56.	1.5	1
73	Dopant-controlled photoluminescence of Ag-doped Zn–In–S nanocrystals. Journal of Materials Research, 2017, 32, 3585-3592.	1.2	4
74	Mesoporous Aluminum Hydroxide Synthesized by a Singleâ€Source Precursorâ€Decomposition Approach as a Highâ€Quantumâ€Yield Blue Phosphor for UVâ€Pumped Whiteâ€Lightâ€Emitting Diodes. Advanced Material 2017, 29, 1604284.	s ļ1. 1	47
75	Assembly and Electronic Applications of Colloidal Nanomaterials. Advanced Materials, 2017, 29, 1603895.	11.1	98
76	Synthesis of aerogels: from molecular routes to 3-dimensional nanoparticle assembly. Nanoscale Horizons, 2017, 2, 6-30.	4.1	113

#	ARTICLE	IF	CITATIONS
77	Insights into the Seeded-Growth Synthesis of Colloidal Hybrid Nanoparticles. Chemistry of Materials, 2017, 29, 106-119.	3.2	36
78	Influence of Capping Ligand and Synthesis Method on Structure and Morphology of Aqueous Phase Synthesized CulnSe2 Nanoparticles. Journal of Electronic Materials, 2017, 46, 296-305.	1.0	4
79	Role of magnetic concentration in modulating the magnetic properties of ultra-small FePt nanoparticles. Inorganica Chimica Acta, 2017, 460, 114-118.	1.2	5
80	Functionalisation of Colloidal Transition Metal Sulphides Nanocrystals: A Fascinating and Challenging Playground for the Chemist. Crystals, 2017, 7, 110.	1.0	26
81	Dual-tuning the thermodynamics and kinetics: Magnesium-naphthalocyanine nanocomposite for low temperature hydrogen cycling. International Journal of Hydrogen Energy, 2018, 43, 5089-5097.	3.8	6
82	Rational Design of Nanosized Light Elements for Hydrogen Storage: Classes, Synthesis, Characterization, and Properties. Advanced Materials Technologies, 2018, 3, 1700298.	3.0	34
83	Bimetallic Cobalt Nanoparticles (Co–M): Synthesis, Characterization, and Application in the Fischer–Tropsch Process. Topics in Catalysis, 2018, 61, 1002-1015.	1.3	6
84	Largeâ€5cale Synthesis and Medical Applications of Uniformâ€5ized Metal Oxide Nanoparticles. Advanced Materials, 2018, 30, e1704290.	11.1	97
85	Aqueous synthesis of Z-scheme photocatalyst powders and thin-film photoanodes from earth abundant elements. Journal of Environmental Chemical Engineering, 2018, 6, 2606-2615.	3.3	8
86	VSION as high field MRI T1 contrast agent: evidence of their potential as positive contrast agent for magnetic resonance angiography. Nanotechnology, 2018, 29, 265103.	1.3	18
87	Ligand-Mediated Nanocrystal Growth. Langmuir, 2018, 34, 3307-3315.	1.6	19
88	Just Add Ligands: Self-Sustained Size Focusing of Colloidal Semiconductor Nanocrystals. Chemistry of Materials, 2018, 30, 1391-1398.	3.2	38
89	Localized Surface Plasmon Resonance in Semiconductor Nanocrystals. Chemical Reviews, 2018, 118, 3121-3207.	23.0	656
90	Bifunctional CoFe ₂ O ₄ /ZnO Core/Shell Nanoparticles for Magnetic Fluid Hyperthermia with Controlled Optical Response. Journal of Physical Chemistry C, 2018, 122, 3047-3057.	1.5	38
91	Synthetic Control of Quinary Nanocrystals of a Photovoltaic Material: The Clear Role of Chalcogen Ratio on Light Absorption and Charge Transport for Cu _{2–<i>x</i>} Zn _{1+<i>x</i>} Sn(S _{1–<i>y</i>} Se _{<i>y</i>})< ACS Applied Energy Materials, 2018, 1, 1053-1059.	sub>4 <td>b>.4</td>	b>.4
92	Triphenyl Phosphite as the Phosphorus Source for the Scalable and Cost-Effective Production of Transition Metal Phosphides. Chemistry of Materials, 2018, 30, 1799-1807.	3.2	65
93	Effect of sulfonating agent and ligand chemistry on structural and optical properties of CuSbS ₂ particles prepared by heat-up method. CrystEngComm, 2018, 20, 1527-1535.	1.3	12
94	Aluminum Nanorods. Nano Letters, 2018, 18, 1234-1240.	4.5	69

#	Article	IF	CITATIONS
95	Tuning Precursor Reactivity toward Nanometer-Size Control in Palladium Nanoparticles Studied by in Situ Small Angle X-ray Scattering. Chemistry of Materials, 2018, 30, 1127-1135.	3.2	43
96	Aqueous Synthesis of High-Quality Cu ₂ ZnSnS ₄ Nanocrystals and Their Thermal Annealing Characteristics. Langmuir, 2018, 34, 1655-1665.	1.6	15
97	Review on earth-abundant and environmentally benign Cu–Sn–X(X = S, Se) nanoparticles by chemical synthesis for sustainable solar energy conversion. Journal of Industrial and Engineering Chemistry, 2018, 60, 19-52.	2.9	36
98	Controllable synthesis of nanocrystals in droplet reactors. Lab on A Chip, 2018, 18, 41-56.	3.1	97
99	Solventâ€Free Synthesis of Quaternary Metal Sulfide Nanoparticles Derived from Thiourea. Particle and Particle Systems Characterization, 2018, 35, 1700183.	1.2	7
100	From metal to metal-free catalysts: Routes to sustainable chemistry. Advances in Catalysis, 2018, 63, 1-73.	0.1	16
101	Contact and Noncontact Measurement of Electronic Transport in Individual 2D SnS Colloidal Semiconductor Nanocrystals. ACS Nano, 2018, 12, 10045-10060.	7.3	19
102	Sustainable scalable synthesis of sulfide nanocrystals at low cost with an ionic liquid sulfur precursor. Nature Communications, 2018, 9, 4078.	5.8	13
103	Quantum Dot Solar Cells: Small Beginnings Have Large Impacts. Applied Sciences (Switzerland), 2018, 8, 1867.	1.3	34
104	Nickel Cobalt Thiospinel Nanoparticles as Hydrodesulfurization Catalysts: Importance of Cation Position, Structural Stability, and Sulfur Vacancy. ACS Applied Materials & Interfaces, 2018, 10, 19673-19681.	4.0	17
105	Rapid Induction and Microwave Heat-Up Syntheses of CdSe Quantum Dots. ACS Omega, 2018, 3, 5399-5405.	1.6	13
106	Synthesis of InP/ZnS Nanocrystals and Phase Transfer by Hydrolysis of Ester. Zeitschrift Fur Physikalische Chemie, 2018, 233, 55-67.	1.4	1
107	Recent advances in colloidal indium phosphide quantum dot production. Current Opinion in Green and Sustainable Chemistry, 2018, 12, 76-82.	3.2	12
108	Design of Hollow Protein Nanoparticles with Modifiable Interior and Exterior Surfaces. Angewandte Chemie - International Edition, 2018, 57, 12400-12404.	7.2	33
109	Rapid Stepwise Growth of Water-Dispersive CdS Quantum Dots in Ethylene Glycol. Crystal Growth and Design, 2018, 18, 4945-4951.	1.4	4
110	Cadmium tris(dithiocarbamate) ionic liquids as single source, solvent-free cadmium sulfide precursors. Chemical Communications, 2018, 54, 8925-8928.	2.2	6
111	Nanoscale self-assembly of thermoelectric materials: a review of chemistry-based approaches. Nanotechnology, 2018, 29, 432001.	1.3	50
112	Solvent-Less Solid State Synthesis of Dispersible Metal and Semiconducting Metal Sulfide Nanocrystals. ACS Sustainable Chemistry and Engineering, 2018, 6, 12006-12016.	3.2	10

#	Article	IF	CITATIONS
113	Au nanocrystal superlattices: nanocrystallinity, vicinal surfaces, and growth processes. Nanoscale, 2018, 10, 15371-15378.	2.8	3
114	Hidden gapless states during thermal transformations of preorganized zinc alkoxides to zinc oxide nanocrystals. Materials Horizons, 2018, 5, 905-911.	6.4	11
115	Molecular valves for colloidal growth of nanocrystal quantum dots: effect of precursor decomposition and intermediate species. MRS Communications, 2018, 8, 742-753.	0.8	3
116	Hotâ€Injection Synthesized Ag ₂ S Quantum Dots with Broad Light Absorption and High Stability for Solar Cell Applications. ChemNanoMat, 2018, 4, 1223-1230.	1.5	18
117	Design of Hollow Protein Nanoparticles with Modifiable Interior and Exterior Surfaces. Angewandte Chemie, 2018, 130, 12580-12584.	1.6	2
118	Physical Chemistry of Nanoparticle Syntheses. , 2019, , 1-16.		2
119	Advances in green colloidal synthesis of metal selenide and telluride quantum dots. Chinese Chemical Letters, 2019, 30, 277-284.	4.8	13
120	Copper nanomaterials and assemblies for soft electronics. Science China Materials, 2019, 62, 1679-1708.	3.5	22
121	Ligand Exchange Functionalization of CIS Quantum Dots for CIS/ZnO Film Heterojunctions. IEEE Nanotechnology Magazine, 2019, 18, 728-733.	1.1	4
122	Influence of Monomer Flux and Temperature on Morphology of Indium Oxide Nanocrystals during a Continuous Growth Synthesis. Chemistry of Materials, 2019, 31, 7638-7649.	3.2	5
123	Synthesis of titanium oxide nanotubes and their decoration by MnO nanoparticles for biomedical applications. Ceramics International, 2019, 45, 19275-19282.	2.3	19
124	Versatile Colloidal Syntheses of Metal Chalcogenide Nanoparticles from Elemental Precursors Using Amine-Thiol Chemistry. Chemistry of Materials, 2019, 31, 9087-9097.	3.2	34
125	Advances in the Stability of Halide Perovskite Nanocrystals. Materials, 2019, 12, 3733.	1.3	33
126	Beneficial Impurities and Phase Control in Colloidal Synthesis of Tin Monoselenide. Langmuir, 2019, 35, 15855-15863.	1.6	9
127	Continuous Growth Synthesis of Zinc Oxide Nanocrystals with Tunable Size and Doping. Chemistry of Materials, 2019, 31, 9604-9613.	3.2	18
128	Design of Anisotropic Iron-Oxide-Based Nanoparticles for Magnetic Hyperthermia. , 2019, , 41-60.		12
129	Augmented band gap tunability in indium-doped zinc sulfide nanocrystals. Nanoscale, 2019, 11, 3154-3163.	2.8	15
130	Synthetic Evolution of Colloidal Metal Halide Perovskite Nanocrystals. Langmuir, 2019, 35, 11609-11628.	1.6	47

#	Article	IF	CITATIONS
131	Chalcogen-containing metal chelates as single-source precursors of nanostructured materials: recent advances and future development. Journal of Coordination Chemistry, 2019, 72, 1425-1465.	0.8	8
132	Ultrathin Solar Absorber Layers of Silver Bismuth Sulfide from Molecular Precursors. ACS Applied Materials & Interfaces, 2019, 11, 16674-16682.	4.0	24
133	The heat-up synthesis of monodispersed Bi2S3 and Cu7S4 nanoparticles from novel precursor complexes and their characterizations. Materials Science in Semiconductor Processing, 2019, 99, 92-98.	1.9	15
134	Synthesis of Colloidal Halide Perovskite Quantum Dots/Nanocrystals: Progresses and Advances. Israel Journal of Chemistry, 2019, 59, 649-660.	1.0	25
135	Facile synthesis of nearly monodisperse AgCu alloy nanoparticles with synergistic effect against oxidation and electromigration. Journal of Materials Research, 2019, 34, 2095-2104.	1.2	19
136	One-step nanohybrid synthesis in waste cooking oil, for direct lower environmental impact and stable lubricant formulation. Tribology International, 2019, 135, 355-367.	3.0	12
137	Magnetic Strategies for Nervous System Control. Annual Review of Neuroscience, 2019, 42, 271-293.	5.0	44
138	Unraveling the Growth Mechanism Forming Stable γ-In ₂ S ₃ and β-In ₂ S ₃ Colloidal Nanoplatelets. Chemistry of Materials, 2019, 31, 1784-1793.	3.2	37
139	Third-Generation Solar Cells: Concept, Materials and Performance - An Overview. Environmental Chemistry for A Sustainable World, 2019, , 305-339.	0.3	22
140	Hotâ€Injection Synthesis of PbE (E= S, Se) Nanoparticles from Dichalcogenoimidophosphinato Lead (II) Complexes. ChemistrySelect, 2019, 4, 13908-13911.	0.7	5
141	Bromobenzene aliphatic nucleophilic substitution guided controllable and reproducible synthesis of high quality cesium lead bromide perovskite nanocrystals. Inorganic Chemistry Frontiers, 2019, 6, 3577-3582.	3.0	18
142	Synthesis and Characterization of CuZnSe ₂ Nanocrystals in Wurtzite, Zinc Blende, and Core–Shell Polytypes. Chemistry of Materials, 2019, 31, 10085-10093.	3.2	10
143	On-Demand Sonochemical Synthesis of Ultrasmall and Magic-Size CdSe Quantum Dots in Single-Phase and Emulsion Systems. Langmuir, 2019, 35, 16583-16592.	1.6	8
144	The Frontiers of Nanomaterials (SnS, PbS and CuS) for Dye-Sensitized Solar Cell Applications: An Exciting New Infrared Material. Molecules, 2019, 24, 4223.	1.7	17
145	Water-Dispersible Copper Sulfide Nanocrystals via Ligand Exchange of 1-Dodecanethiol. Chemistry of Materials, 2019, 31, 541-552.	3.2	37
146	Design strategies for shape-controlled magnetic iron oxide nanoparticles. Advanced Drug Delivery Reviews, 2019, 138, 68-104.	6.6	217
147	The development of strategies for nanoparticle synthesis: Considerations for deepening understanding of inherently complex systems. Journal of Solid State Chemistry, 2019, 273, 243-286.	1.4	11
148	Colloidal nanocrystals for heterogeneous catalysis. Nano Today, 2019, 24, 15-47.	6.2	98

#	Article	IF	CITATIONS
149	Colloidal Nanocrystals as Building Blocks for Well-Defined Heterogeneous Catalysts. Chemistry of Materials, 2019, 31, 576-596.	3.2	80
150	Role of aliphatic ligands and solvent composition in the solvothermal synthesis of iron oxide nanocrystals. Polyhedron, 2019, 157, 54-62.	1.0	12
151	Highly luminescent and stable green-emitting In(Zn,Ga)P/ZnSeS/ZnS small-core/thick-multishell quantum dots. Journal of Luminescence, 2019, 205, 555-559.	1.5	14
152	Ruthenium Nanomaterials: An Overview of Recent Developments in Colloidal Synthesis, Properties, and Potential Applications. , 2019, , 99-141.		3
153	Understanding the role of zinc dithiocarbamate complexes as single source precursors to ZnS nanomaterials. Nanoscale Advances, 2020, 2, 798-807.	2.2	16
154	Tweaking Nickel with Minimal Silver in a Heterogeneous Alloy of Decahedral Geometry to Deliver Platinumâ€like Hydrogen Evolution Activity. Angewandte Chemie, 2020, 132, 2903-2911.	1.6	6
155	Tweaking Nickel with Minimal Silver in a Heterogeneous Alloy of Decahedral Geometry to Deliver Platinumâ€like Hydrogen Evolution Activity. Angewandte Chemie - International Edition, 2020, 59, 2881-2889.	7.2	50
156	Progress in Mesocrystal Formation. ACS Symposium Series, 2020, , 73-96.	0.5	6
157	Seedless Continuous Injection Synthesis of Indium Phosphide Quantum Dots as a Route to Large Size and Low Size Dispersity. Chemistry of Materials, 2020, 32, 6532-6539.	3.2	22
158	Hybrid approach to obtain high-quality BaMO ₃ perovskite nanocrystals. RSC Advances, 2020, 10, 28872-28878.	1.7	10
159	Nanocrystal Precursor Incorporating Separated Reaction Mechanisms for Nucleation and Growth to Unleash the Potential of Heat-up Synthesis. ACS Nano, 2020, 14, 11579-11593.	7.3	9
160	From platinum atoms in molecules to colloidal nanoparticles: A review on reduction, nucleation and growth mechanisms. Advances in Colloid and Interface Science, 2020, 286, 102300.	7.0	57
161	Optimizing the Key Variables to Generate Host Sensitized Lanthanide Doped Semiconductor Nanoparticle Luminophores. Journal of Physical Chemistry C, 2020, 124, 26495-26517.	1.5	24
162	Precursor-Mediated Linear- and Branched-Polytypism Control in Cu _α Zn _β Sn _γ Se _δ Colloidal Nanocrystals Using a Dual-Injection Method. Chemistry of Materials, 2020, 32, 7254-7262.	3.2	7
163	Synthesis of Blue-Emissive InP/GaP/ZnS Quantum Dots via Controlling the Reaction Kinetics of Shell Growth and Length of Capping Ligands. Nanomaterials, 2020, 10, 2171.	1.9	14
164	Solubilityâ€Controlled Roomâ€Temperature Synthesis of Cesium Lead Halide Perovskite Nanocrystals. ChemNanoMat, 2020, 6, 1863-1869.	1.5	15
165	Ligand-Induced Luminescence Transformation in AgInS ₂ Nanoparticles: From Defect Emission to Band-Edge Emission. Journal of Physical Chemistry Letters, 2020, 11, 3969-3974.	2.1	18
166	Hybrid Ligand Exchange of Cu(In,Ga)S ₂ Nanoparticles for Carbon Impurity Removal in Solution-Processed Photovoltaics. Chemistry of Materials, 2020, 32, 5091-5103.	3.2	23

#	Article	IF	Citations
167	Effect of Ag2S-BSA nanoparticle size on 3T3 fibroblast cell line cytotoxicity. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	2
168	Synthesis and optoelectronic properties of Cu3VSe4 nanocrystals. PLoS ONE, 2020, 15, e0232184.	1.1	15
169	Nonclassical Recrystallization. Chemistry - A European Journal, 2020, 26, 15242-15248.	1.7	16
170	Lead-free all-inorganic halide perovskite quantum dots: review and outlook. Journal of the Korean Ceramic Society, 2020, 57, 455-479.	1.1	45
171	Synthesis, modification and bioapplications of nanoscale copper chalcogenides. Journal of Materials Chemistry B, 2020, 8, 4778-4812.	2.9	45
172	Facile Deposition of Mesoporous PbI2 through DMF:DMSO Solvent Engineering for Sequentially Deposited Metal Halide Perovskites. ACS Applied Energy Materials, 2020, 3, 3358-3368.	2.5	11
173	InP Quantum Dots: Synthesis and Lighting Applications. Small, 2020, 16, e2002454.	5.2	129
174	Continuous production of iron oxide nanoparticles <i>via</i> fast and economical high temperature synthesis. Reaction Chemistry and Engineering, 2020, 5, 1474-1483.	1.9	21
175	PbS Quantum Dots Decorating TiO2 Nanocrystals: Synthesis, Topology, and Optical Properties of the Colloidal Hybrid Architecture. Molecules, 2020, 25, 2939.	1.7	2
176	Catalytic Nanoframes and Beyond. Advanced Materials, 2020, 32, e2001345.	11.1	57
177	Metal/semiconductor interfaces in nanoscale objects: synthesis, emerging properties and applications of hybrid nanostructures. Nanoscale Advances, 2020, 2, 930-961.	2.2	42
178	Synthetic approaches for growing zinc sulfide and zinc selenide colloidal nanocrystals. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 020805.	0.9	2
179	Phase Transfer of Hydrophobic Nanoparticles Using a Zwitterionic Sulfobetaine Siloxane Generates Highly Biocompatible and Compact Surfaces. ACS Applied Nano Materials, 2020, 3, 1489-1496.	2.4	7
180	Synthesis and Analysis of Zinc Copper Indium Sulfide Quantum Dot Nanoparticles. Journal of Chemical Education, 2020, 97, 806-812.	1.1	11
181	Efficient Control of Atom Arrangement in Ternary Metal Chalcogenide Nanoparticles Using Precursor Oxidation State. Chemistry of Materials, 2020, 32, 1322-1331.	3.2	8
182	Uniform, Assembled 4 nm Mn ₃ O ₄ Nanoparticles as Efficient Water Oxidation Electrocatalysts at Neutral pH. Advanced Functional Materials, 2020, 30, 1910424.	7.8	55
183	Application of perovskite nanocrystals (NCs)/quantum dots (QDs) in solar cells. Nano Energy, 2020, 73, 104757.	8.2	77
184	Growth of InZnP/ZnS core/shell quantum dots with wide-range and refined tunable photoluminescence wavelengths. Dalton Transactions, 2020, 49, 6119-6126.	1.6	9

#	Article	IF	CITATIONS
185	Influence of Experimental Parameters of a Continuous Flow Process on the Properties of Very Small Iron Oxide Nanoparticles (VSION) Designed for T1-Weighted Magnetic Resonance Imaging (MRI). Nanomaterials, 2020, 10, 757.	1.9	19
186	Design of experiments a powerful tool to improve the selectivity of copper antimony sulfide nanoparticles synthesis. CrystEngComm, 2021, 23, 397-403.	1.3	6
187	Solvent manipulation of the pre-reduction metal–ligand complex and particle-ligand binding for controlled synthesis of Pd nanoparticles. Nanoscale, 2021, 13, 206-217.	2.8	18
188	2D Hybrid Halide Perovskites: Synthesis, Properties, and Applications. Solar Rrl, 2021, 5, .	3.1	20
189	Insights into Growth Kinetics of Colloidal Gold Nanoparticles: In Situ SAXS and UV–Vis Evaluation. Journal of Physical Chemistry C, 2021, 125, 1087-1095.	1.5	23
190	Synthesis of CsPbBr ₃ perovskite nanocrystals with acoustically actuated millisecond mixing. Journal of Materials Chemistry C, 2021, 9, 313-321.	2.7	11
191	Synthesis of Advanced Inorganic Materials Through Molecular Precursors. Indian Institute of Metals Series, 2021, , 467-501.	0.2	3
192	Copper-Containing Nanomaterials Derived from Copper(II) Laurate as Antifriction Additives for Oil Lubricants. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 934-944.	1.9	3
193	Facile one-pot synthesis of γ-Fe ₂ O ₃ nanoparticles by inductive heating. Materials Advances, 2021, 2, 5616-5621.	2.6	3
194	Reversible disorder-order transitions in atomic crystal nucleation. Science, 2021, 371, 498-503.	6.0	117
195	Group 13 Lewis acid catalyzed synthesis of metal oxide nanocrystals <i>via</i> hydroxide transmetallation. Nanoscale, 2021, 13, 11505-11517.	2.8	1
196	Hot Injection Method for Nanoparticle Synthesis: Basic Concepts, Examples and Applications. Indian Institute of Metals Series, 2021, , 383-434.	0.2	4
197	The effect of the metal and selenium precursors on the properties of NbSe ₂ and Nb ₂ Se ₉ nanostructures and their application in dye-sensitized solar cells. RSC Advances, 2021, 11, 31159-31173.	1.7	5
198	Colloidal synthesis of metal chalcogenide nanomaterials from metal–organic precursors and capping ligand effect on electrocatalytic performance: progress, challenges and future perspectives. Dalton Transactions, 2021, 50, 11347-11359.	1.6	23
199	Role of the Precursor Composition in the Synthesis of Metal Ferrite Nanoparticles. Inorganic Chemistry, 2021, 60, 4261-4268.	1.9	13
200	Molecular-Level Insight into Semiconductor Nanocrystal Surfaces. Journal of the American Chemical Society, 2021, 143, 1251-1266.	6.6	61
201	The Impact of PbI 2 :KI Alloys on the Performance of Sequentially Deposited Perovskite Solar Cells. European Journal of Inorganic Chemistry, 2021, 2021, 821-830.	1.0	5
202	Open-air solvothermal synthesis and photoresponse of plate-shaped Cu3ZnInSnSe6 nanocrystals. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	1

		CITATION REPORT	
#	Article	IF	CITATIONS
203	Whither Magnetic Hyperthermia? A Tentative Roadmap. Materials, 2021, 14, 706.	1.3	76
204	Effect of the Size and Shape of Ho, Tm:KLu(WO4)2 Nanoparticles on Their Self-Assessed Photothermal Properties. Nanomaterials, 2021, 11, 485.	1.9	5
205	Structural studies and morphological properties of antimony sulphide nanorods obtained by solvothermal synthesis. Physica B: Condensed Matter, 2021, 605, 412691.	1.3	8
206	Plasmonic luminescent solar concentrator. Solar Energy, 2021, 216, 61-74.	2.9	12
207	Precise Control of CsPbBr ₃ Perovskite Nanocrystal Growth at Room Temperature: Size Tunability and Synthetic Insights. Chemistry of Materials, 2021, 33, 2387-2397.	3.2	40
208	Rare-Earth Sulfide Nanocrystals from Wet Colloidal Synthesis: Tunable Compositions, Size-Dependent Light Absorption, and Sensitized Rare-Earth Luminescence. Journal of the American Chemical Society, 2021, 143, 3300-3305.	6.6	31
209	Extended Nucleation and Superfocusing in Colloidal Semiconductor Nanocrystal Synthesis. Nano Letters, 2021, 21, 2487-2496.	4.5	36
210	NIR-quantum dots in biomedical imaging and their future. IScience, 2021, 24, 102189.	1.9	80
211	Sulvanites: The Promise at the Nanoscale. Nanomaterials, 2021, 11, 823.	1.9	8
212	Stoichiometric phases and mechanism of crystal phase selectivity of copper-based ternary sulphides. Materials Science in Semiconductor Processing, 2021, 125, 105627.	1.9	7
213	Dithiocarbamate Complexes as Single Source Precursors to Nanoscale Binary, Ternary and Quaternary Metal Sulfides. Chemical Reviews, 2021, 121, 6057-6123.	23.0	91
214	Magnetic Nanoparticle Composites: Synergistic Effects and Applications. Advanced Science, 2021, 8, 2004951.	5.6	70
215	Evaluating Cu ₂ SnS ₃ Nanoparticle Layers as Hole-Transporting Materials in Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 5560-5573.	2.5	14
216	The interplay between monomer formation, nucleation and growth during colloidal nanoparticle synthesis. Journal of Materials Science, 2021, 56, 15718-15732.	1.7	4
217	Nanoparticle synthesis assisted by machine learning. Nature Reviews Materials, 2021, 6, 701-716.	23.3	179
218	Sb2S3 and Cu3SbS4 nanocrystals as inorganic hole transporting materials in perovskite solar cells. Solar Energy, 2021, 223, 106-112.	2.9	17
219	Iron Stearate Structures: An Original Tool for Nanoparticles Design. Inorganic Chemistry, 2021, 60, 12445-12456.	1.9	14
220	Antisolvent solvothermal synthesis of MAPbBr3 nanocrystals for efficient solar photodecomposition of methyl orange. Journal of Colloid and Interface Science, 2021, 595, 98-106.	5.0	5

# 221	ARTICLE Understanding the Nucleation and Growth of Iron Oxide Nanoparticle Formation by a "Heating-Up―	IF 1.5	CITATIONS 9
221	Process: An NMR Relaxation Study. Journal of Physical Chemistry C, 2021, 125, 20980-20992. Synthesis and magnetic properties of CuCr2S4 chalcospinel nanocrystals using single-source precursors. Journal of Magnetism and Magnetic Materials, 2021, 539, 168338.	1.0	4
223	Modeling Sigmoidal Transients Using Dispersive Kinetic Models to Predict Nanoparticle Size Distributions. Crystal Growth and Design, 2021, 21, 1843-1853.	1.4	2
224	Colloidal chemical bottom-up synthesis routes of pnictogen (As, Sb, Bi) nanostructures with tailored properties and applications: a summary of the state of the art and main insights. CrystEngComm, 2021, 23, 7876-7898.	1.3	11
225	Colloidal Quantum Dots as Platforms for Quantum Information Science. Chemical Reviews, 2021, 121, 3186-3233.	23.0	138
226	â€~Beneficial impurities' in colloidal synthesis of surfactant coated inorganic nanoparticles. Nanotechnology, 2021, 32, 102001.	1.3	12
227	Scalable low-temperature synthesis of two-dimensional materials beyond graphene. JPhys Materials, 2020, 4, 012001.	1.8	29
228	Phenethylamine ligand engineering of red InP quantum dots for improving the efficiency of quantum dot light-emitting diodes. Optics Letters, 2020, 45, 5800.	1.7	9
229	Size and shape-controlled nanomaterials based on modified polyol and thermal decomposition approaches. A brief review Anais Da Academia Brasileira De Ciencias, 2019, 91, .	0.3	33
230	Colloidal Two-Dimensional Metal Chalcogenides: Realization and Application of the Structural Anisotropy. Accounts of Chemical Research, 2021, 54, 3792-3803.	7.6	15
231	Ligand Conversion in Nanocrystal Synthesis: The Oxidation of Alkylamines to Fatty Acids by Nitrate. Jacs Au, 2021, 1, 1898-1903.	3.6	15
232	Strategies for improving performance, lifetime, and stability in light-emitting diodes using liquid medium. Chemical Physics Reviews, 2021, 2, .	2.6	6
233	Synthesis of Colloidal Nanocrystals through Thermolysis of Precursors. World Scientific Series in Nanoscience and Nanotechnology, 2019, , 1-21.	0.1	0
234	Plasmonic Bismuth Nanoparticles: Thiolate Pyrolysis Synthesis, Size-Dependent LSPR Property, and Their Oxidation Behavior. Inorganic Chemistry, 2021, 60, 17258-17267.	1.9	22
235	Scalably Nanomanufactured Atomically Thin Materialsâ€Based Wearable Health Sensors. Small Structures, 2022, 3, 2100120.	6.9	16
236	Solution–Liquid–Solid Growth of One-Dimensional Metal-Oxide Nanostructures Assisted by Catalyst Design. Chemistry of Materials, 0, , .	3.2	1
237	Direct Synthesis of Sulfide-Capped Nanoparticles for Carbon-Free Solution-Processed Photovoltaics. ACS Applied Nano Materials, 2021, 4, 11466-11472.	2.4	3
238	Modern nanoscience: Convergence of AI, robotics, and colloidal synthesis. Applied Physics Reviews, 2021, 8, .	5.5	18

#	Article	IF	CITATIONS
239	Synthesis and Characterization of Semiconductor Nanoparticles CuInS ₂ QDs/TiO ₂ . Materials Science Forum, 0, 1051, 10-16.	0.3	0
240	Past, present and future of indium phosphide quantum dots. Nano Research, 2022, 15, 4468-4489.	5.8	50
241	Simple Setup Miniaturization with Multiple Benefits for Green Chemistry in Nanoparticle Synthesis. ACS Omega, 2022, 7, 4714-4721.	1.6	6
242	Catalytically Stable Monodispersed Multi-Core Ni-Co Nanoparticles Encapsulated with SiO ₂ Shells for Dry Reforming of Ch ₄ with CO ₂ . SSRN Electronic Journal, 0, , .	0.4	0
243	Cuznalooh Catalysts with Cu0/Cu+ Constructed by Two-Step Hydrolysis for Ethanol Production from Syngas. SSRN Electronic Journal, 0, , .	0.4	0
244	<i>In Situ</i> Control of Crystallinity of 3D Colloidal Crystals by Tuning the Growth Kinetics of Nanoparticle Building Blocks. Journal of the American Chemical Society, 2022, 144, 5871-5877.	6.6	12
245	Effect of Zn/Sn Ratio on Perovskite Solar Cell Performance Applying Off-Stoichiometric Cu ₂ ZnSnS ₄ /Carbon Hole-Collecting Electrodes. ACS Applied Materials & Interfaces, 2022, 14, 17296-17311.	4.0	6
246	Catalytically stable monodispersed multi-core Ni-Co nanoparticles encapsulated with SiO2 shells for dry reforming of CH4 with CO2. Journal of CO2 Utilization, 2022, 60, 101984.	3.3	9
247	Concentration Dependences of Charge Transfer and the Kinetics of Monte Carlo Modeling of the Growth of 2D Mono- and Nanocrystals of Gallium Chalcogenides. Russian Microelectronics, 2021, 50, 452-462.	0.1	3
248	CuZnAlOOH catalysts with Cu0/Cu+ constructed by two-step hydrolysis for ethanol production from syngas. Fuel, 2022, 322, 124111.	3.4	10
249	Quantum Dots for Type III Photovoltaics. RSC Nanoscience and Nanotechnology, 2017, , 436-471.	0.2	1
250	Transition Metal Dichalcogenides [MX2] in Photocatalytic Water Splitting. Catalysts, 2022, 12, 468.	1.6	12
251	Advances and Challenges in Heavy-Metal-Free InP Quantum Dot Light-Emitting Diodes. Micromachines, 2022, 13, 709.	1.4	10
252	Predicting Indium Phosphide Quantum Dot Properties from Synthetic Procedures Using Machine Learning. Chemistry of Materials, 2022, 34, 6296-6311.	3.2	13
253	Metal supported graphene catalysis: A review on the benefits of nanoparticular supported specialty sp2 carbon catalysts on enhancing the activities of multiple chemical transformations. Carbon Trends, 2022, 9, 100196.	1.4	22
254	Microwave synthesis of upconverting nanoparticles with bis(2-ethylhexyl) adipate. RSC Advances, 2022, 12, 23026-23038.	1.7	2
255	Low-Temperature, Solution-Based Synthesis of Luminescent Chalcogenide Perovskite BaZrS ₃ Nanoparticles. Journal of the American Chemical Society, 2022, 144, 15928-15931.	6.6	23
256	Synthesis of metal chalcogenide semiconductors by thermal decomposition of organosulfur and organoselenium compounds. Chemistry - A European Journal, 0, , .	1.7	1

#	Article	IF	CITATIONS
257	Size-Tunable Magnetite Nanoparticles from Well-Defined Iron Oleate Precursors. Chemistry of Materials, 2022, 34, 8043-8053.	3.2	4
258	Cross-scale modulation for aqueous fabrication of monodisperse Cu2â^'xE (E = S, Se, Te) nanocrystals and supraparticles. Nano Research, 0, , .	5.8	1
259	Scheffe simplex lattice planning for predicting the optical properties of AgInS2/ZnS quantum dots. Naukovij VA¬snik ÄŒernA¬vecE¹kogo UnA¬versitetu H¬m¢, 2020, , 16-22.	0.0	0
260	All-Optical Detection of Biocompatible Quantum Dots. , 2022, , 35-65.		0
261	Accelerating colloidal quantum dot innovation with algorithms and automation. Materials Advances, 2022, 3, 6950-6967.	2.6	7
262	Recent advances in solution assisted synthesis of transition metal chalcogenides for photo-electrocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2022, 24, 20638-20673.	1.3	27
263	Synthetic Developments of Semiconductor Quantum Dot for Biological Applications. , 2022, , 9-33.		2
264	Two Birds with One Stone: Concurrent Ligand Removal and Carbon Encapsulation Decipher Thickness-Dependent Catalytic Activity. Nano Letters, 2022, 22, 8763-8770.	4.5	1
265	Solution-Processed Inorganic Thermoelectric Materials: Opportunities and Challenges. Chemistry of Materials, 2022, 34, 8471-8489.	3.2	12
266	Solvent engineering to regulate the phase of copper zinc tin sulfide nanocrystals. Dalton Transactions, 0, , .	1.6	0
267	Engineered Materials for Probing and Perturbing Brain Chemistry. , 2022, , 89-168.		1
268	Recent progress and future prospects on halide perovskite nanocrystals for optoelectronics and beyond. IScience, 2022, 25, 105371.	1.9	10
269	Perovskite catalysts with different dimensionalities for environmental and energy applications: A review. Separation and Purification Technology, 2023, 307, 122716.	3.9	71
270	Revisiting the single-step synthesis of quantum dots: The hidden ligand-promoted surface reaction channels. Nano Research, 2023, 16, 5817-5825.	5.8	0
271	Highly luminescent and narrow-band-emitting InP/ZnSe/ZnS quantum dot synthesis by halide modified shell reaction. Applied Physics Express, 2023, 16, 015504.	1.1	1
272	A review on ternary CuFeS2 compound: Fabrication strategies and applications. Journal of Alloys and Compounds, 2023, 938, 168566.	2.8	5
273	Colloidal Approaches to Zinc Oxide Nanocrystals. Chemical Reviews, 2023, 123, 271-326.	23.0	26
274	A reactivity-controlled epitaxial growth strategy for synthesizing large nanocrystals. , 2023, 2, 296-304.		6

#	Article	IF	CITATIONS
275	Accelerated Multi‣tage Synthesis of Indium Phosphide Quantum Dots in Modular Flow Reactors. Advanced Materials Technologies, 2023, 8, .	3.0	2
276	Wearable chemical sensors based on 2D materials for healthcare applications. Nanoscale, 2023, 15, 3079-3105.	2.8	7
277	Tailoring Sizes and Compositions of Heavy Pnictogen Bismuth Thiohalide Nanorods and Nanowires via Heat-up Method. CrystEngComm, 0, , .	1.3	0
278	Nanocomposite and Hybrid-Based Electric and Electronic Gas Sensors. , 2023, , 201-231.		0
279	Redox phase transformations in magnetite nanoparticles: impact on their composition, structure and biomedical applications. Nanotechnology, 2023, 34, 192001.	1.3	8
280	Integration of ternary I-III-VI quantum dots in light-emitting diodes. Frontiers in Chemistry, 0, 11, .	1.8	1
281	Surfactant-Free Colloidal Syntheses of Precious Metal Nanoparticles for Improved Catalysts. ACS Catalysis, 2023, 13, 4903-4937.	5.5	13
282	InP Lowâ€Dimensional Nanomaterials for Electronic and Optoelectronic Device Applications: A Review. , 0, , .		0
283	Chemical Processing of Cu2SnS3 Nanoparticles for Solar Cells. , 2023, , 271-295.		0
284	Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity. Advanced Drug Delivery Reviews, 2023, 197, 114830.	6.6	25
285	Colloidal Nanoparticles of II-VI Semiconductor Compounds and Their Participation in Photosensitization of Metal Oxides. , 2023, , 157-179.		0
286	Matched Ligands for Small, Stable Colloidal Nanoparticles of Copper, Cuprous Oxide and Cuprous Sulfide. Chemistry - A European Journal, 2023, 29, .	1.7	2
297	Nanoclusters as Synthons for Unit-Cell-Size Comparable One-Dimensional Nanostructures. Chemical Research in Chinese Universities, 2023, 39, 568-579.	1.3	1
299	Advancements and Challenges in Synthesizing Colloidal Semiconductor Nanocrystals by Hot-Injection Method. , 2023, , 143-179.		0
303	Nanoparticle-Based Inorganic Aerogels. Springer Handbooks, 2023, , 1041-1060.	0.3	0

ased Inorganic Aerogels. Springer Handbooks, 2023, , 1041-1060.

17