Effect of hydrogen bond of hydroxyl-functionalized am cycloaddition of CO2

Tetrahedron Letters 56, 1416-1419 DOI: 10.1016/j.tetlet.2015.01.174

Citation Report

#	Article	IF	CITATIONS
1	Rationalizing the role of the anion in CO ₂ capture and conversion using imidazolium-based ionic liquid modified mesoporous silica. RSC Advances, 2015, 5, 64220-64227.	1.7	53
2	Functionalized Ionic (Poly)Styrenes and their Application as Catalysts in the Cycloaddition of <scp>CO</scp> ₂ to Epoxides. Helvetica Chimica Acta, 2016, 99, 821-829.	1.0	12
3	A hydroxyl-functionalized microporous organic polymer for capture and catalytic conversion of CO ₂ . RSC Advances, 2016, 6, 76957-76963.	1.7	17
4	Quaternary ammonium-based ionic liquids bearing different numbers of hydroxyl groups as highly efficient catalysts for the fixation of CO ₂ : a theoretical study by QM and MD. Catalysis Science and Technology, 2016, 6, 7773-7782.	2.1	42
5	Catalytic Synthesis of Propylene Carbonate from CO2 and Propylene Oxide on Fixed Bed. Catalysis Letters, 2016, 146, 2098-2104.	1.4	4
6	Tetraarylphosphonium Salt-Catalyzed Carbon Dioxide Fixation at Atmospheric Pressure for the Synthesis of Cyclic Carbonates. ACS Catalysis, 2016, 6, 6906-6910.	5.5	144
7	Reusable and efficient polymer nanoparticles grafted with hydroxyl-functionalized phosphonium-based ionic liquid catalyst for cycloaddition of CO2 with epoxides. Applied Catalysis A: General, 2016, 514, 43-50.	2.2	51
8	Synthesis of carbonates and related compounds incorporating CO2 using ionic liquid-type catalysts: State-of-the-art and beyond. Journal of Catalysis, 2016, 343, 52-61.	3.1	183
9	Cycloaddition of CO ₂ and epoxide catalyzed by amino- and hydroxyl-rich graphitic carbon nitride. Catalysis Science and Technology, 2016, 6, 2942-2948.	2.1	80
10	Novel isothiouronium ionic liquid as efficient catalysts for the synthesis of cyclic carbonates from CO 2 and epoxides. Journal of CO2 Utilization, 2017, 17, 256-262.	3.3	56
11	Multiscale Studies on Ionic Liquids. Chemical Reviews, 2017, 117, 6636-6695.	23.0	584
12	Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: catalyst design and mechanistic studies. Catalysis Science and Technology, 2017, 7, 2651-2684.	2.1	403
13	Triethylamine Hydroiodide as a Simple Yet Effective Bifunctional Catalyst for CO ₂ Fixation Reactions with Epoxides under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2017, 5, 7295-7301.	3.2	89
14	Multifunctional alkanolamine as a catalyst for CO2 and propylene oxide cycloaddition. Molecular Catalysis, 2017, 438, 121-129.	1.0	23
15	Controllable preparation of phosphonium-based polymeric ionic liquids as highly selective nanocatalysts for the chemical conversion of CO ₂ with epoxides. Green Chemistry, 2017, 19, 2184-2193.	4.6	40
16	Solvent effect on the fixation of CO2 catalyzed by quaternary ammonium-based ionic liquids bearing different numbers of hydroxyl groups: A combined molecular dynamics simulation and ONIOM study. Molecular Catalysis, 2017, 441, 134-139.	1.0	15
17	CO2 conversion to propylene carbonate catalyzed by ionic liquid containing organosilane groups supported on titanate nanotubes/nanowires. Applied Catalysis A: General, 2017, 544, 46-54.	2.2	30
18	Synthesis of Crossâ€linked Ionic Poly(styrenes) and their Application as Catalysts for the Synthesis of Carbonates from CO ₂ and Epoxides. ChemPlusChem, 2017, 82, 144-151.	1.3	18

ARTICLE IF CITATIONS Study of Superbase-Based Deep Eutectic Solvents as the Catalyst in the Chemical Fixation of CO2 into 19 1.3 24 Cyclic Carbonates under Mild Conditions. Materials, 2017, 10, 759. Polyvinyl alcohol-potassium iodide: An efficient binary catalyst for cycloaddition of epoxides with 1.0 CO2. Molecular Catalysis, 2018, 449, 25-30. Hydroxyl group as IR probe to detect the structure of ionic liquid-acetonitrile mixtures. Journal of 21 1.8 16 Molecular Structure, 2018, 1161, 424-432. Intricacies of Cation–Anion Combinations in Imidazolium Salt-Catalyzed Cycloaddition of 129 CO₂ Into Epoxides. ACS Catalysis, 2018, 8, 2589-2594. Protic pyrazolium ionic liquids for efficient chemical fixation of CO₂: design, synthesis, 23 1.7 16 and catalysis. Molecular Systems Design and Engineering, 2018, 3, 348-356. Highly efficient fixation of carbon dioxide to cyclic carbonates with new multi-hydroxyl bis-(quaternary ammonium) ionic liquids as metal-free catalysts under mild conditions. Fuel, 2018, 224, 3.4 481-488. Protic Pyrazolium Ionic Liquids: An Efficient Catalyst for Conversion of CO₂ in the 25 3.2 72 Absence of Metal and Solvent. ACS Sustainable Chemistry and Engineering, 2018, 6, 2574-2582. Insight on <i>asym</i>-Pyrazolium Ionic Liquids for Chemical Fixation of CO₂ and Propylene Epoxide into Propylene Carbonate without Organic Solvent and Metal. Industrial & amp; 1.8 26 10 Engineering Chemistry Research, 2018, 57, 13342-13352 An Electrostatically Enhanced Phenol as a Simple and Efficient Bifunctional Organocatalyst for 27 3.6 27 Carbon Dioxide Fixation. ChemSusChem, 2018, 11, 4262-4268. Novel porous organocatalysts for cycloaddition of CO2 and epoxides. RSC Advances, 2019, 9, 1.7 24527-24538. Phosphoniumâ€Based Ionic Liquids Used as Reagents or Catalysts. ChemistrySelect, 2019, 4, 9285-9299. 29 0.7 28 Reaction parameters dependence of the CO2/epoxide coupling reaction catalyzed by tunable ionic liquids, optimization of comonomer-alternating enhancement pathway. Journal of CO2 Utilization, 30 3.3 2019, 33, 500-512. Hydroxyl-functionalized pyrazolium ionic liquids to catalyze chemical fixation of CO2: Further benign $\mathbf{31}$ 2.318 reaction condition for the single-component catalyst. Journal of Molecular Liquids, 2019, 293, 111479. (Thio)urea containing quaternary ammonium salts for the CO2-fixation with epoxides. Monatshefte Für Chemie, 2019, 150, 789-794. Design of Novel Poly(ionic liquids) for the Conversion of CO₂ to Cyclic Carbonates 33 3.2 93 under Mild Conditions without Solvent. ACS Sustainable Chemistry and Engineering, 2019, 7, 9489-9497. Bridge-functionalized bisimidazolium bromides as catalysts for the conversion of epoxides to cyclic carbonates with CO2. Catalysis Communications, 2019, 124, 118-122. Synergistic cooperation of bi-active hydrogen atoms in protic carboxyl imidazolium ionic liquids to 35 2.322 push cycloaddition of CO2 under benign conditions. Journal of Molecular Liquids, 2019, 296, 111936. Triethanolamine-modified mesoporous SBA-15: Facile one-pot synthesis and its catalytic application for cycloaddition of CO2 with epoxides under mild conditions. Microporous and Mesoporous Materials, 2.2 2019, 274, 363-372.

CITATION REPORT

#	Article	IF	CITATIONS
37	Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO ₂ : current state-of-the art of catalyst development and reaction analysis. Catalysis Reviews - Science and Engineering, 2019, 61, 214-269.	5.7	187
38	3-Bromo-1,1,1-trifluoro-2-propanol assisted chemical fixation of CO2 and epoxides. Tetrahedron Letters, 2020, 61, 151593.	0.7	6
39	Effect of cluster of quaternary ammonium ionic liquids on catalytic performance for CO2 fixation: ONIOM and MD. Journal of Materials Science, 2020, 55, 2419-2428.	1.7	5
40	Effects of imidazolium-based ionic liquids on the isobaric vapor–liquid equilibria of methanol†+†dimethyl carbonate azeotropic systems. Chinese Journal of Chemical Engineering, 2020, 28, 766-776.	1.7	16
41	Quaternary phosphonium salt-functionalized Cr-MIL-101: A bifunctional and efficient catalyst for CO2 cycloaddition with epoxides. Journal of CO2 Utilization, 2020, 36, 295-305.	3.3	81
42	Recent advances in carbon dioxide capture and utilization with amines and ionic liquids. Green Chemical Engineering, 2020, 1, 16-32.	3.3	81
43	Crosslinked Resin‣upported Bifunctional Organocatalyst for Conversion of CO ₂ into Cyclic Carbonates. ChemSusChem, 2020, 13, 4121-4127.	3.6	29
44	An Aminopyridinium Ionic Liquid: A Simple and Effective Bifunctional Organocatalyst for Carbonate Synthesis from Carbon Dioxide and Epoxides. ChemPlusChem, 2020, 85, 1587-1595.	1.3	13
45	Choline-based eutectic mixtures as catalysts for effective synthesis of cyclic carbonates from epoxides and CO2. Journal of CO2 Utilization, 2020, 42, 101302.	3.3	23
46	L-Serine@ZnO as an efficient and reusable catalyst for synthesis of cyclic carbonates and formamides in presence of CO2 atmosphere. Molecular Catalysis, 2020, 492, 111000.	1.0	4
47	Protic vs aprotic ionic liquid for CO2 fixation: A simulation study. Green Energy and Environment, 2020, 5, 183-194.	4.7	49
48	Catalytic effect of different hydroxyl-functionalised ionic liquids together with Zn(II) complex in the synthesis of cyclic carbonates from CO2. Molecular Catalysis, 2021, 499, 111292.	1.0	4
49	Review on Carbon Dioxide Utilization for Cycloaddition of Epoxides by Ionic Liquid-Modified Hybrid Catalysts: Effect of Influential Parameters and Mechanisms Insight. Catalysts, 2021, 11, 4.	1.6	30
50	Hydrogen bond donor functionalized poly(ionic liquid)s for efficient synergistic conversion of CO ₂ to cyclic carbonates. Physical Chemistry Chemical Physics, 2021, 23, 2005-2014.	1.3	37
51	One-step preparation of ammonium-specified pyrazolium ionic liquids unveil the more popular pathway for the CO2 fixation: Integrated experimental and theoretical studies. Journal of Molecular Liquids, 2021, 328, 115435.	2.3	9
52	One-Pot Synthesis of Dimethyl Carbonate over a Binary Catalyst of an Ionic Liquid and an Alkali Carbonate under Low Pressure. ACS Omega, 2021, 6, 13839-13846.	1.6	9
53	A novel and efficient catalyst system composed of detonation nanodiamond and potassium iodide for chemical fixation of carbon dioxide. Diamond and Related Materials, 2021, 116, 108430.	1.8	0
54	Highly efficient CO2 fixation into cyclic carbonate by hydroxyl-functionalized protic ionic liquids at atmospheric pressure. Molecular Catalysis, 2021, 511, 111756.	1.0	19

#	Article	IF	CITATIONS
55	Hydroxy acid-functionalized ionic liquids as green alternatives for the efficient catalytic conversion of epoxides to cyclic carbonates under solvent and co-catalyst-free conditions. Catalysis Science and Technology, 2021, 11, 6999-7008.	2.1	16
56	Metal-free catalytic conversion of CO2 into cyclic carbonate by hydroxyl-functionalized graphitic carbon nitride materials. Molecular Catalysis, 2020, 491, 110979.	1.0	14
57	Recent developments in state-of-the-art silica-modified catalysts for the fixation of CO ₂ in epoxides to form organic carbonates. Sustainable Energy and Fuels, 2022, 6, 1198-1248.	2.5	22
58	Conversion of CO2 with epoxides to cyclic carbonates catalyzed by amino acid ionic liquids at room temperature. Journal of CO2 Utilization, 2022, 56, 101840.	3.3	28
59	Feedforward and cascade forward networks for viscosity prediction for binary mixtures of ammonium-based ionic liquids and water. Fluid Phase Equilibria, 2022, 556, 113416.	1.4	2
60	Novel hydroxyl-functionalized ionic liquids as efficient catalysts for the conversion of CO ₂ into cyclic carbonates under metal/halogen/cocatalyst/solvent-free conditions. New Journal of Chemistry, 2022, 46, 5881-5888.	1.4	9
61	Design and synthesis of pyridinamide functionalized ionic liquids for efficient conversion of carbon dioxide into cyclic carbonates. Journal of CO2 Utilization, 2022, 58, 101930.	3.3	16
62	Three in one: Rational engineering of multifunctional MIL-101-based ionic catalysts for carbon dioxide-epoxide cycloaddition. Microporous and Mesoporous Materials, 2022, 339, 111984.	2.2	3
63	Ionic liquids and biomass as carbon precursors: Synergistically answering a call for CO2 capture and conversion. Fuel, 2022, 327, 125164.	3.4	11
64	Synthesis of highly effective [Emim]IM applied in one-step CO2 conversion to dimethyl carbonate. Journal of CO2 Utilization, 2022, 65, 102178.	3.3	8
65	Functionalized β-Cyclodextrins Catalyzed Environment-Friendly Cycloaddition of Carbon Dioxide and Epoxides. Materials, 2023, 16, 53.	1.3	0
66	Pyridinium-Inspired Organocatalysts for Carbon Dioxide Fixation: A Density Functional Theory Inspection. Journal of Physical Chemistry A, 2023, 127, 29-37.	1.1	0
67	One-step DMC synthesis from CO2 under catalysis of ionic liquids prepared with 1,2-propylene glycol. Catalysis Today, 2023, 418, 114052.	2.2	1
68	Solvent-Free Coupling Reaction of Carbon Dioxide and Epoxides Catalyzed by Quaternary Ammonium Functionalized Schiff Base Metal Complexes under Mild Conditions. Materials, 2023, 16, 1646.	1.3	1
69	Task-Specific Ionic Liquids Catalysts Efficiently Catalyze Atmospheric CO2 Gas Mixture to Cyclic Carbonates Under Mild Conditions. Catalysis Letters, 2024, 154, 749-759.	1.4	0

CITATION REPORT