Analysis of wood density profiles of tree stems: incorpo optimize wood sampling strategies for density and bion

Trees - Structure and Function 29, 551-561

DOI: 10.1007/s00468-014-1134-7

Citation Report

#	Article	IF	CITATIONS
1	Non Destructive Method for Biomass Prediction Combining TLS Derived Tree Volume and Wood Density. Forests, 2015, 6, 1274-1300.	0.9	112
2	SimpleTree â€"An Efficient Open Source Tool to Build Tree Models from TLS Clouds. Forests, 2015, 6, 4245-4294.	0.9	226
3	Wood Specific Gravity Variations and Biomass of Central African Tree Species: The Simple Choice of the Outer Wood. PLoS ONE, 2015, 10, e0142146.	1.1	36
4	Variability of European beech wood density as influenced by interactions between tree-ring growth and aspect. Forest Ecosystems, 2016, 3, .	1.3	19
5	Above-ground woody biomass allocation and within tree carbon and nutrient distribution of wild cherry (Prunus avium L.) – a case study. Forest Ecosystems, 2016, 3, .	1.3	23
6	Patterns of within-stem variations in wood specific gravity and water content for five temperate tree species. Annals of Forest Science, 2017, 74, 1.	0.8	26
7	Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Functional Ecology, 2017, 31, 568-581.	1.7	48
8	Characterization of eucalyptus clones subject to wind damage. Pesquisa Agropecuaria Brasileira, 2017, 52, 969-976.	0.9	2
9	Desarrollo y evaluaci \tilde{A}^3 n de un m \tilde{A} ©todo racional y no destructivo para la toma de muestras de maderas blandas utilizadas en an \tilde{A}_i lisis qu \tilde{A}_m icos. Madera Bosques, 2017, 24, .	0.1	2
10	Variation in wood basic density within and between tree species and site conditions of exclosures in Tigray, northern Ethiopia. Trees - Structure and Function, 2018, 32, 967-983.	0.9	9
11	Using volume-weighted average wood specific gravity of trees reduces bias in aboveground biomass predictions from forest volume data. Forest Ecology and Management, 2018, 424, 519-528.	1.4	20
12	Development and dominance of Douglas-fir in North American rainforests. Forest Ecology and Management, 2018, 429, 93-114.	1.4	20
13	Quantifying aboveground components of Picea sitchensis for allometric comparisons among tall conifers in North American rainforests. Forest Ecology and Management, 2018, 430, 59-77.	1.4	25
14	Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them. Surveys in Geophysics, 2019, 40, 881-911.	2.1	61
15	CarDen: A software for fast measurement of wood density on increment cores by CT scanning. Computers and Electronics in Agriculture, 2019, 156, 606-617.	3.7	17
16	Allometric equations for Sequoia sempervirens in forests of different ages. Forest Ecology and Management, 2019, 433, 349-363.	1.4	23
17	Wood density in mangrove forests on the Brazilian Amazon coast. Trees - Structure and Function, 2020, 34, 51-60.	0.9	8
18	Terrestrial laser scanning in forest ecology: Expanding the horizon. Remote Sensing of Environment, 2020, 251, 112102.	4.6	208

#	Article	IF	CITATIONS
19	Biomass and Volume Modeling along with Carbon Concentration Variations of Short-Rotation Poplar Plantations. Forests, 2020, 11, 780.	0.9	13
20	Improving aboveground biomass estimates by taking into account density variations between tree components. Annals of Forest Science, 2020, 77, 1.	0.8	10
21	Predicting effects of climate change on productivity and persistence of forest trees. Ecological Research, 2020, 35, 562-574.	0.7	8
22	How many trees and samples are adequate for estimating wood-specific gravity across different tropical forests?. Trees - Structure and Function, 2020, 34, 1383-1395.	0.9	2
23	Mean Annual Wood Density Variations of Larix gmelinii (Rupr.), Quercus mongolica Fisch. ex Ledeb., and Pinus tabulaeformis Carr. at Two Different Stem Heights. Forests, 2020, 11, 394.	0.9	2
24	Variations in temperate forest stem biomass ratio along three environmental gradients are dominated by interspecific differences in wood density. Plant Ecology, 2021, 222, 289-303.	0.7	7
25	Consequences of vertical basic wood density variation on the estimation of aboveground biomass with terrestrial laser scanning. Trees - Structure and Function, 2021, 35, 671-684.	0.9	17
27	Vertical variations in wood basic density for two softwood species. European Journal of Forest Research, 2021, 140, 1401-1416.	1.1	4
28	Terrestrial laser scanning as a tool for assessing tree growth. IForest, 2017, 10, 172-179.	0.5	20
29	Recommendation of non-destructive sampling method for density estimation of the Eucalyptus wood. Maderas: Ciencia Y Tecnologia, 2019, , 0-0.	0.7	1
30	Estimation of the Basic Wood Density of Native Species Using Mixed Linear Models. Floresta E Ambiente, 2019, 26, .	0.1	2
31	Influence of Planting Scheme on Some Physical Properties of Norway Spruce (Picea abies (L.) H. Karst) Wood. Forests, 2022, 13, 540.	0.9	3
32	Multivariate drought stress response of Norway spruce, silver fir and Douglas fir along elevational gradients in Southwestern Germany. Frontiers in Ecology and Evolution, $0,10,1$	1.1	5
33	Physical, Chemical, and Mechanical Characterization of Natural Bark Fibers (NBFs) Reinforced Polymer Composites: A Bibliographic Review. Fibers, 2023, 11, 13.	1.8	8