Photon upconversion nanomaterials

Chemical Society Reviews 44, 1299-1301 DOI: 10.1039/c5cs90009c

Citation Report

#	Article	IF	Citations
1	Lanthanide-doped upconversion nanoparticles. Physics Today, 2015, 68, 38-44.	0.3	142
2	Energy Migration Upconversion in Manganese(II)â€Doped Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 13312-13317.	7.2	64
3	Recent Advances in Upconversion Nanoparticlesâ€Based Multifunctional Nanocomposites for Combined Cancer Therapy. Advanced Materials, 2015, 27, 7692-7712.	11.1	243
4	Modular Integration of Upconverting Nanocrystal–Dendrimer Composites for Folate Receptorâ€5pecific NIR Imaging and Lightâ€Triggered Drug Release. Small, 2015, 11, 6078-6090.	5.2	61
5	Photon Upconversion Through Tb ³⁺ â€Mediated Interfacial Energy Transfer. Advanced Materials, 2015, 27, 6208-6212.	11.1	89
7	The Effect of Coatings on the Affinity of Lanthanide Nanoparticles to MKN45 and HeLa Cancer Cells and Improvement in Photodynamic Therapy Efficiency. International Journal of Molecular Sciences, 2015, 16, 22415-22424.	1.8	14
8	Heterogeneous core/shell fluoride nanocrystals with enhanced upconversion photoluminescence for in vivo bioimaging. Nanoscale, 2015, 7, 10775-10780.	2.8	43
9	Active-core/active-shell nanostructured design: an effective strategy to enhance Nd ³⁺ /Yb ³⁺ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles. Journal of Materials Chemistry C, 2015, 3, 7652-7657.	2.7	114
10	Intracellular Adenosine Triphosphate Deprivation through Lanthanide-Doped Nanoparticles. Journal of the American Chemical Society, 2015, 137, 6550-6558.	6.6	88
11	Synthesis, luminescence, and anti-tumor properties of MgSiO3:Eu-DOX-DPP-RGD hollow microspheres. Dalton Transactions, 2015, 44, 18585-18595.	1.6	5
12	An upconversion fluorescent resonant energy transfer biosensor for hepatitis B virus (HBV) DNA hybridization detection. Analyst, The, 2015, 140, 7622-7628.	1.7	44
13	Fast and background-free three-dimensional (3D) live-cell imaging with lanthanide-doped upconverting nanoparticles. Nanoscale, 2015, 7, 19397-19402.	2.8	31
14	Controlling upconversion nanocrystals for emerging applications. Nature Nanotechnology, 2015, 10, 924-936.	15.6	1,221
15	Lanthanide-doped semiconductor nanocrystals: electronic structures and optical properties. Science China Materials, 2015, 58, 819-850.	3.5	74
16	Effects of trisodium citrate on morphology of β-NaGd1â^'x Yb x F4:Er3+ nanocrystals: role of Yb3+ concentration. Applied Physics A: Materials Science and Processing, 2015, 121, 193-202.	1.1	2
17	Synthesis and thermometric properties of shuttle-like Er ³⁺ /Yb ³⁺ co-doped NaLa(MoO ₄) ₂ microstructures. CrystEngComm, 2015, 17, 7745-7753.	1.3	45
18	Native Point Defects in CaS: Focus on Intrinsic Defects and Rare Earth Ion Dopant Levels for Up-converted Persistent Luminescence. Inorganic Chemistry, 2015, 54, 11423-11440.	1.9	47
19	Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy. International Journal of Nanomedicine, 2016, Volume 11, 4327-4338.	3.3	33

TATION REDO

#	Article	IF	CITATIONS
20	<scp>REVO</scp> ₄ â€Based Nanomaterials (<scp>RE</scp> = Y, La, Gd, and Lu) as Hosts for Yb ³⁺ /Ho ³⁺ , Yb ³⁺ /Er ³⁺ , and Yb ³⁺ /Tm ³⁺ lons: Structural and Upâ€Conversion Luminescence Studies. Journal of the American Ceramic Society, 2016, 99, 3300-3308.	1.9	23
21	Designing Upconversion Nanocrystals Capable of 745â€nm Sensitization and 803â€nm Emission for Deepâ€Tissue Imaging. Chemistry - A European Journal, 2016, 22, 10801-10807.	1.7	34
22	Enhanced Upconversion Luminescence of Metal apped NaGd _{0.3} Yb _{0.7} F4:Er Submicrometer Particles. Small, 2016, 12, 2092-2098.	5.2	18
23	Propellerâ€Like Nanorodâ€Upconversion Nanoparticle Assemblies with Intense Chiroptical Activity and Luminescence Enhancement in Aqueous Phase. Advanced Materials, 2016, 28, 5907-5915.	11.1	132
24	Roomâ€Temperature Wavelengthâ€Tunable Singleâ€Band Upconversion Luminescence from Yb ³⁺ /Mn ²⁺ Codoped Fluoride Perovskites ABF ₃ . Advanced Optical Materials, 2016, 4, 798-806.	3.6	55
25	Upconversion luminescence of lanthanide-doped mixed CaMoO4–CaWO4 micro-/nano-materials. Dalton Transactions, 2016, 45, 12094-12102.	1.6	16
26	An upconversion nanoplatform for simultaneous photodynamic therapy and Pt chemotherapy to combat cisplatin resistance. Dalton Transactions, 2016, 45, 13052-13060.	1.6	58
27	Enhanced Multiphoton Upconversion in Single Nanowires by Waveguiding Excitation. Advanced Optical Materials, 2016, 4, 1174-1178.	3.6	16
28	Lichtgesteuerte Kupplungsreaktionen im nahen Infrarot mittels Aufkonvertierungsâ€Nanopartikeln. Angewandte Chemie, 2016, 128, 12382-12386.	1.6	13
29	Enhanced 808 nm driven Ce ³⁺ doped red-emitting upconversion nanocrystals by intercalated nanostructures. Journal of Materials Chemistry C, 2016, 4, 4905-4911.	2.7	19
30	A facile one-pot method to synthesize ultrasmall core-shell superparamagnetic and upconversion nanoparticles. Journal of Colloid and Interface Science, 2016, 475, 1-7.	5.0	8
31	UCNPs@gelatin–ZnPc nanocomposite: synthesis, imaging and anticancer properties. Journal of Materials Chemistry B, 2016, 4, 4138-4146.	2.9	15
32	Luminescent Materials for 3D Display Technology. , 2016, , 503-523.		7
33	Preparation of Biocompatible, Luminescent-Plasmonic Core/Shell Nanomaterials Based on Lanthanide and Gold Nanoparticles Exhibiting SERS Effects. Journal of Physical Chemistry C, 2016, 120, 23788-23798.	1.5	53
34	Manipulating pH using near-infrared light assisted by upconverting nanoparticles. Chemical Communications, 2016, 52, 13959-13962.	2.2	32
35	Probing the Interior Crystal Quality in the Development of More Efficient and Smaller Upconversion Nanoparticles. Journal of Physical Chemistry Letters, 2016, 7, 3252-3258.	2.1	42
36	Fundamental View of Electronic Structures of β-NaYF ₄ , β-NaGdF ₄ , and β-NaLuF ₄ . Journal of Physical Chemistry C, 2016, 120, 18858-18870.	1.5	42
37	Design, fabrication, luminescence and biomedical applications of UCNPs@mSiO ₂ –ZnPc–CDs–P(NIPAm-MAA) nanocomposites. Journal of Materials Chemistry B, 2016, 4, 5883-5894.	2.9	35

#	Article	IF	CITATIONS
38	Engineered Upconversion Nanoparticles for Resolving Protein Interactions inside Living Cells. Angewandte Chemie - International Edition, 2016, 55, 11668-11672.	7.2	100
39	Maßgeschneiderte Aufwätskonvertierungsnanopartikel zur Detektion von Proteinwechselwirkungen in lebenden Zellen. Angewandte Chemie, 2016, 128, 11840-11845.	1.6	14
40	Energy harvesting and conversion mechanisms for intrinsic upconverted mechano-persistent luminescence in CaZnOS. Physical Chemistry Chemical Physics, 2016, 18, 25946-25974.	1.3	46
41	Nearâ€Infrared Photoinduced Coupling Reactions Assisted by Upconversion Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, 12195-12199.	7.2	65
42	Theranostic Upconversion Nanobeacons for Tumor mRNA Ratiometric Fluorescence Detection and Imaging-Monitored Drug Delivery. Small, 2016, 12, 5944-5953.	5.2	65
43	Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water. Nature Communications, 2016, 7, 13059.	5.8	164
44	Lanthanide Ion Doped Upconverting Nanoparticles: Synthesis, Structure and Properties. Small, 2016, 12, 3888-3907.	5.2	91
45	Tuning the size and upconversion luminescence of NaYbF_4:Er^3+/Tm^3+ nanoparticles through Y^3+ or Gd^3+ doping. Optical Materials Express, 2016, 6, 2165.	1.6	36
46	Integration of Upconversion Nanoparticles and Ultrathin Black Phosphorus for Efficient Photodynamic Theranostics under 808 nm Near-Infrared Light Irradiation. Chemistry of Materials, 2016, 28, 4724-4734.	3.2	193
47	Localization induced intense red upconversion luminescence in monodispersed K3ZrF7:Yb3+/Er3+ nanocrystals. Chemical Physics Letters, 2016, 658, 215-219.	1.2	7
48	Energy migration in YBO 3 :Yb 3+ ,Tb 3+ materials: Down- and upconversion luminescence studies. Journal of Alloys and Compounds, 2016, 686, 951-961.	2.8	22
49	Fluorescent nanoprobes for sensing and imaging of metal ions: Recent advances and future perspectives. Nano Today, 2016, 11, 309-329.	6.2	211
50	Development of a Highly Selective, Sensitive, and Fast Response Upconversion Luminescent Platform for Hydrogen Sulfide Detection. Advanced Functional Materials, 2016, 26, 191-199.	7.8	79
51	Synthesis, multicolour tuning, and emission enhancement of ultrasmall LaF3:Yb3+/Ln3+ (LnÂ=ÂEr, Tm, and) Tj E	TQq <u>1</u> 10.	784314 rgBT)
52	Lanthanide-doped Na 3 ZrF 7 upconversion nanoparticles synthesized by a facile method. Journal of Alloys and Compounds, 2016, 658, 914-919.	2.8	7
53	Mn-complex modified NaDyF ₄ :Yb@NaLuF ₄ :Yb,Er@polydopamine core–shell nanocomposites for multifunctional imaging-guided photothermal therapy. Journal of Materials Chemistry B, 2016, 4, 2697-2705.	2.9	39
54	Up-conversion luminescence of Yb3+ and Er3+ doped YPO4, LaPO4 and GdPO4 nanocrystals. Journal of Luminescence, 2016, 175, 21-27.	1.5	43
55	Near-infrared light-induced imaging and targeted anti-cancer therapy based on a yolk/shell structure. RSC Advances, 2016, 6, 21590-21599.	1.7	3

#	Article	IF	CITATIONS
56	808 nm photocontrolled UCL imaging guided chemo/photothermal synergistic therapy with single UCNPs-CuS@PAA nanocomposite. Dalton Transactions, 2016, 45, 13061-13069.	1.6	35
57	Functional nanomaterials for near-infrared-triggered cancer therapy. Biomaterials Science, 2016, 4, 890-909.	2.6	135
58	Thermally Switchable Molecular Upconversion Emission. Chemistry of Materials, 2016, 28, 738-745.	3.2	34
59	Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging. Journal of Controlled Release, 2016, 240, 312-322.	4.8	182
60	Dual-Mode Ultrasensitive Quantification of MicroRNA in Living Cells by Chiroplasmonic Nanopyramids Self-Assembled from Gold and Upconversion Nanoparticles. Journal of the American Chemical Society, 2016, 138, 306-312.	6.6	399
61	Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chemical Reviews, 2017, 117, 536-711.	23.0	575
62	Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Advanced Drug Delivery Reviews, 2017, 113, 61-86.	6.6	60
63	Hybrid Nanoparticle Pyramids for Intracellular Dual MicroRNAs Biosensing and Bioimaging. Advanced Materials, 2017, 29, 1606086.	11.1	105
64	Geometry modulated upconversion photoluminescence of individual NaYF4: Yb3+, Er3+ microcrystals. AIP Advances, 2017, 7, .	0.6	2
65	808â€nmâ€Lightâ€Excited Lanthanideâ€Doped Nanoparticles: Rational Design, Luminescence Control and Theranostic Applications. Advanced Materials, 2017, 29, 1605434.	11.1	229
66	Investigation on the thermal effects of NaYF4:Er under 1550 nm irradiation. Physical Chemistry Chemical Physics, 2017, 19, 8465-8470.	1.3	13
67	Rich stochastic dynamics of co-doped Er:Yb fluorescence upconversion nanoparticles in the presence of thermal, non-conservative, harmonic and optical forces. Methods and Applications in Fluorescence, 2017, 5, 014005.	1.1	4
68	Multifunctional NaYF ₄ :Yb ³⁺ ,Er ³⁺ @SiO ₂ @Au heterogeneous nanocomposites for upconversion luminescence, temperature sensing and photothermal conversion. RSC Advances, 2017, 7, 11491-11495.	1.7	8
69	Bioimaging and biodetection assisted with TTA-UC materials. Drug Discovery Today, 2017, 22, 1400-1411.	3.2	45
70	Recent progress in the application of nanomaterials in the analysis of emerging chemical contaminants. Analytical Methods, 2017, 9, 2768-2783.	1.3	25
71	Manipulating the emission intensity and lifetime of NaYF ₄ :Yb ³⁺ ,Er ³⁺ simultaneously by embedding it into CdS photonic crystals. Nanoscale, 2017, 9, 7666-7673.	2.8	41
72	Synthesis and thermometric properties of Yb 3+ -Er 3+ co-doped K 2 GdF 5 up-conversion phosphors. Journal of Rare Earths, 2017, 35, 436-440.	2.5	14
73	Depth-profiling of Yb ³⁺ sensitizer ions in NaYF ₄ upconversion nanoparticles. Nanoscale, 2017, 9, 7719-7726.	2.8	36

#	Article	IF	CITATIONS
74	Biofunctionalized upconverting CaF2:Yb,Tm nanoparticles for Candida albicans detection and imaging. Nano Research, 2017, 10, 3333-3345.	5.8	22
75	A novel anion doping strategy to enhance upconversion luminescence in NaGd(MoO ₄) ₂ :Yb ³⁺ /Er ³⁺ nanophosphors. Physical Chemistry Chemical Physics, 2017, 19, 15693-15700.	1.3	38
76	High quality colloidal GdVO 4 :Yb,Er upconversion nanoparticles synthesized via a protected calcination process for versatile applications. Materials and Design, 2017, 130, 190-196.	3.3	28
77	Power-dependent upconversion quantum yield of NaYF ₄ :Yb ³⁺ ,Er ³⁺ nano- and micrometer-sized particles – measurements and simulations. Nanoscale, 2017, 9, 10051-10058.	2.8	132
78	Broadband Emission in Tellurite Glasses. Springer Series in Materials Science, 2017, , 155-211.	0.4	2
79	Cavity controlled upconversion luminescence in Ag-capped NaYF 4 :Yb,Er micron rod. Journal of Luminescence, 2017, 187, 466-470.	1.5	7
80	Charge convertibility and near infrared photon co-enhanced cisplatin chemotherapy based on upconversion nanoplatform. Biomaterials, 2017, 130, 42-55.	5.7	77
81	Distinct mechanisms for the upconversion of NaYF ₄ :Yb ³⁺ ,Er ³⁺ nanoparticles revealed by stimulated emission depletion. Physical Chemistry Chemical Physics, 2017, 19, 9739-9744.	1.3	33
82	Ultrahigh Sensitivity Multifunctional Nanoprobe for the Detection of Hydroxyl Radical and Evaluation of Heavy Metal Induced Oxidative Stress in Live Hepatocyte. Analytical Chemistry, 2017, 89, 4986-4993.	3.2	34
83	Technological Advances in Tellurite Glasses. Springer Series in Materials Science, 2017, , .	0.4	39
84	Realâ€Time Inâ€Vivo Hepatotoxicity Monitoring through Chromophoreâ€Conjugated Photonâ€Upconverting Nanoprobes. Angewandte Chemie, 2017, 129, 4229-4233.	1.6	19
85	Realâ€Time Inâ€Vivo Hepatotoxicity Monitoring through Chromophoreâ€Conjugated Photonâ€Upconverting Nanoprobes. Angewandte Chemie - International Edition, 2017, 56, 4165-4169.	7.2	178
86	Highly Emissive Dye-Sensitized Upconversion Nanostructure for Dual-Photosensitizer Photodynamic Therapy and Bioimaging. ACS Nano, 2017, 11, 4133-4144.	7.3	342
87	"Energy Relay Center―for doped mechanoluminescence materials: a case study on Cu-doped and Mn-doped CaZnOS. Physical Chemistry Chemical Physics, 2017, 19, 1190-1208.	1.3	35
88	Markedly enhanced up-conversion luminescence by combining IR-808 dye sensitization and core–shell–shell structures. Dalton Transactions, 2017, 46, 1495-1501.	1.6	24
89	<i>In Situ</i> Growth Strategy to Integrate Up-Conversion Nanoparticles with Ultrasmall CuS for Photothermal Theranostics. ACS Nano, 2017, 11, 1064-1072.	7.3	132
90	A Chiralâ€Nanoassembliesâ€Enabled Strategy for Simultaneously Profiling Surface Glycoprotein and MicroRNA in Living Cells. Advanced Materials, 2017, 29, 1703410.	11.1	119
91	Finely-tuned NIR-to-visible up-conversion in La ₂ O ₃ :Yb ³⁺ ,Er ³⁺ microcrystals with high quantum yield. Journal of Materials Chemistry C, 2017, 5, 11010-11017.	2.7	40

#	Article	IF	CITATIONS
92	Functional tumor imaging based on inorganic nanomaterials. Science China Chemistry, 2017, 60, 1425-1438.	4.2	17
93	Dopamine-mediated photothermal theranostics combined with up-conversion platform under near infrared light. Scientific Reports, 2017, 7, 13562.	1.6	37
94	Yolk-Structured Upconversion Nanoparticles with Biodegradable Silica Shell for FRET Sensing of Drug Release and Imaging-Guided Chemotherapy. Chemistry of Materials, 2017, 29, 7615-7628.	3.2	92
95	Stochastic Photon Emission from Nonblinking Upconversion Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 21073-21079.	1.5	9
96	Integration of IRâ€808 Sensitized Upconversion Nanostructure and MoS ₂ Nanosheet for 808 nm NIR Light Triggered Phototherapy and Bioimaging. Small, 2017, 13, 1701841.	5.2	117
97	Multimodal imaging and photothermal therapy were simultaneously achieved in the core–shell UCNR structure by using single near-infrared light. Dalton Transactions, 2017, 46, 12147-12157.	1.6	22
98	Nano-sized NaF inspired intrinsic solvothermal growth mechanism of rare-earth nanocrystals for facile control synthesis of high-quality and small-sized hexagonal NaYbF ₄ :Er. Journal of Materials Chemistry C, 2017, 5, 9579-9587.	2.7	13
99	Unravelling the energy transfer of Er ³⁺ -self-sensitized upconversion in Er ³⁺ –Yb ³⁺ –Er ³⁺ clustered core@shell nanoparticles. Nanoscale, 2017, 9, 18490-18497.	2.8	10
100	Core-shell structured NaMnF ₃ : Yb, Er nanoparticles for bioimaging applications. RSC Advances, 2017, 7, 52588-52594.	1.7	9
101	Photoluminescence and cathodoluminescence studies of Er ³⁺ -activated strontium molybdate for solid-state lighting and display applications. Materials Research Express, 2017, 4, 126201.	0.8	9
102	Optical–magnetic bifunctional properties and mechanistic insights on upconversion of NaYF ₄ :Yb,Ho,Tm@NaGdF ₄ with a tunable nanodumbbell morphology. Physical Chemistry Chemical Physics, 2017, 19, 31675-31683.	1.3	7
103	Enhanced energy transfer in heterogeneous nanocrystals for near infrared upconversion photocurrent generation. Nanoscale, 2017, 9, 18661-18667.	2.8	14
104	NIR-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles. Biomaterials, 2017, 141, 40-49.	5.7	91
105	Ultraâ€Wideband Multiâ€Dyeâ€Sensitized Upconverting Nanoparticles for Information Security Application. Advanced Materials, 2017, 29, 1603169.	11.1	153
106	Broadband dye-sensitized upconversion: A promising new platform for future solar upconverter design. Journal of Alloys and Compounds, 2017, 690, 356-359.	2.8	148
107	Upconversion Luminescence Sensitized pH-Nanoprobes. Molecules, 2017, 22, 2064.	1.7	43
108	Revealing the <i>in situ</i> NaF generation balance for user-friendly controlled synthesis of sub-10Ânm monodisperse low-level Gd ³⁺ -doped β-NaYbF ₄ :Er. RSC Advances, 2018, 8, 9611-9617.	1.7	5
109	Bioresponsive upconversion nanostructure for combinatorial bioimaging and chemo-photothermal synergistic therapy. Chemical Engineering Journal, 2018, 342, 446-457.	6.6	20

#	Article	IF	CITATIONS
110	Facile preparation of multifunctionalisable â€~stealth' upconverting nanoparticles for biomedical applications. Dalton Transactions, 2018, 47, 8595-8604.	1.6	26
111	Ultrafast Singleâ€Band Upconversion Luminescence in a Liquidâ€Quenched Amorphous Matrix. Advanced Materials, 2018, 30, 1800008.	11.1	12
112	Cooperativity Principles in Self-Assembled Nanomedicine. Chemical Reviews, 2018, 118, 5359-5391.	23.0	129
113	A Modular System for the Design of Stimuliâ€Responsive Multifunctional Nanoparticle Aggregates by Use of Host–Guest Chemistry. Small, 2018, 14, e1704287.	5.2	29
114	Excitation Position Sensitive Upconversion Emission of Lanthanide Ions Doped βâ€NaYF ₄ Single Microcrystals. ChemNanoMat, 2018, 4, 348-352.	1.5	2
115	Recent progress in the green synthesis of rare-earth doped upconversion nanophosphors for optical bioimaging from cells to animals. Chinese Journal of Chemical Engineering, 2018, 26, 2206-2218.	1.7	26
116	Rapid Synthesis of Subâ€10 nm Hexagonal NaYF ₄ â€Based Upconverting Nanoparticles using Therminol [®] â€66. ChemistryOpen, 2018, 7, 159-168.	0.9	18
117	Systematic investigation of functional ligands for colloidal stable upconversion nanoparticles. RSC Advances, 2018, 8, 4842-4849.	1.7	69
118	A novel core–shell structured upconversion nanorod as a multimodal bioimaging and photothermal ablation agent for cancer theranostics. Journal of Materials Chemistry B, 2018, 6, 2597-2607.	2.9	43
119	Bioresponsive and near infrared photon co-enhanced cancer theranostic based on upconversion nanocapsules. Chemical Science, 2018, 9, 3233-3247.	3.7	75
120	NIR/blue light emission optimization of NaY _{1â^'(x+y)} Yb _x F ₄ :Tm _y upconversion nanoparticles <i>via</i> Yb ³⁺ /Tm ³⁺ dopant balancing. Dalton Transactions, 2018, 47, 8629-8637.	1.6	15
121	Enabling Photon Upconversion and Precise Control of Donor–Acceptor Interaction through Interfacial Energy Transfer. Advanced Science, 2018, 5, 1700667.	5.6	86
122	Metal–organic framework nanoparticles for magnetic resonance imaging. Inorganic Chemistry Frontiers, 2018, 5, 1760-1779.	3.0	99
123	NIR upconversion characteristics of carbon dots for selective detection of glutathione. New Journal of Chemistry, 2018, 42, 6399-6407.	1.4	42
124	Wide-range non-contact fluorescence intensity ratio thermometer based on Yb ³⁺ /Nd ³⁺ co-doped La ₂ O ₃ microcrystals operating from 290 to 1230 K. Journal of Materials Chemistry C, 2018, 6, 4163-4170.	2.7	127
125	Soft X-ray activated NaYF ₄ :Gd/Tb scintillating nanorods for <i>in vivo</i> dual-modal X-ray/X-ray-induced optical bioimaging. Nanoscale, 2018, 10, 342-350.	2.8	41
126	Solving the oxygen sensitivity of sensitized photon upconversion in life science applications. Nature Reviews Chemistry, 2018, 2, 437-452.	13.8	89
127	Probing Energy Migration through Precise Control of Interfacial Energy Transfer in Nanostructure. Advanced Materials, 2019, 31, e1806308.	11.1	60

#	Article	IF	CITATIONS
128	Towards Utilising Photocrosslinking of Polydiacetylenes for the Preparation of "Stealth― Upconverting Nanoparticles. Angewandte Chemie - International Edition, 2018, 57, 16036-16040.	7.2	21
129	Towards Utilising Photocrosslinking of Polydiacetylenes for the Preparation of "Stealth― Upconverting Nanoparticles. Angewandte Chemie, 2018, 130, 16268-16272.	1.6	5
130	Concentration Quenching in Upconversion Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 26298-26306.	1.5	99
131	Oxyhemoglobin-monitoring photodynamic theranostics with an 808†nm-excited upconversion optical nanoagent. Chemical Engineering Journal, 2018, 350, 108-119.	6.6	14
132	A method for correcting the excitation power density dependence of upconversion emission due to laser-induced heating. Optical Materials, 2018, 82, 65-70.	1.7	23
133	Rapid and high-selectivity detection of rifampicin based on upconversion luminescence core-shell structure composites. Journal of Solid State Chemistry, 2018, 266, 9-15.	1.4	12
134	Organic Semiconducting Agents for Deepâ€Tissue Molecular Imaging: Second Nearâ€Infrared Fluorescence, Selfâ€Luminescence, and Photoacoustics. Advanced Materials, 2018, 30, e1801778.	11.1	434
135	Separating and enhancing the green and red emissions of NaYF ₄ :Yb ³⁺ /Er ³⁺ by sandwiching them into photonic crystals with different bandgaps. Nanoscale Horizons, 2018, 3, 616-623.	4.1	24
136	Dual-channel fluorescence detection of mercuric (II) and glutathione by down- and up-conversion fluorescence carbon dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 205, 29-39.	2.0	34
137	Nanocatalyst Complex Can Dephosphorylate Key Proteins in MAPK Pathway for Cancer Therapy. Advanced Healthcare Materials, 2018, 7, e1800533.	3.9	3
138	The effects of lanthanide-doped upconverting nanoparticles on cancer cell biomarkers. Nanoscale, 2018, 10, 14464-14471.	2.8	16
139	Tumor Microenvironmentâ€Responsive Mesoporous MnO ₂ â€Coated Upconversion Nanoplatform for Selfâ€Enhanced Tumor Theranostics. Advanced Functional Materials, 2018, 28, 1803804.	7.8	261
140	Strategies for the design of bright upconversion nanoparticles for bioanalytical applications. Optical Materials, 2018, 80, 253-264.	1.7	20
141	Measuring the internal quantum yield of upconversion luminescence for ytterbium-sensitized upconversion phosphors using the ytterbium(<scp>iii</scp>) emission as an internal standard. Nanoscale, 2018, 10, 17212-17226.	2.8	29
142	Seeing, Targeting and Delivering with Upconverting Nanoparticles. Journal of the American Chemical Society, 2018, 140, 10923-10931.	6.6	110
143	Fast, low-cost preparation of hackmanite minerals with reversible photochromic behavior using a microwave-assisted structure-conversion method. Chemical Communications, 2018, 54, 7326-7329.	2.2	16
144	Photothermal Heating and Cooling of Nanostructures. Chemistry - an Asian Journal, 2018, 13, 2575-2586.	1.7	13
145	Polypyridyl ligands as a versatile platform for solid-state light-emitting devices. Chemical Society Reviews, 2019, 48, 5033-5139.	18.7	93

#	Article	IF	CITATIONS
146	Enhanced upconversion luminescence of GdVO4:Er3+/Yb3+ prepared by spray pyrolysis using organic additives. RSC Advances, 2019, 9, 20002-20008.	1.7	11
147	Critical Power Density: A Metric To Compare the Excitation Power Density Dependence of Photon Upconversion in Different Inorganic Host Materials. Journal of Physical Chemistry A, 2019, 123, 6799-6811.	1.1	26
148	Elemental Migration in Core/Shell Structured Lanthanide Doped Nanoparticles. Chemistry of Materials, 2019, 31, 5608-5615.	3.2	49
149	Mesoporous semiconductors combined with up-conversion nanoparticles for enhanced photodynamic therapy under near infrared light. RSC Advances, 2019, 9, 17273-17280.	1.7	9
150	Recent Advancements in Lnâ€ionâ€Based Upconverting Nanomaterials and Their Biological Applications. Particle and Particle Systems Characterization, 2019, 36, 1900153.	1.2	16
151	A Luminescent Amine-Functionalized Metal–Organic Framework Conjugated with Folic Acid as a Targeted Biocompatible pH-Responsive Nanocarrier for Apoptosis Induction in Breast Cancer Cells. ACS Applied Materials & Interfaces, 2019, 11, 45442-45454.	4.0	69
152	Future and challenges for hybrid upconversion nanosystems. Nature Photonics, 2019, 13, 828-838.	15.6	145
153	Degradable magnetic-response photoacoustic/up-conversion luminescence imaging-guided photodynamic/photothermal antitumor therapy. Biomaterials Science, 2019, 7, 4558-4567.	2.6	25
154	Realizing efficient ultraviolet emission from Er3+-sensitized upconversion nanoparticles under 1550†nm excitation. Science Bulletin, 2019, 64, 1295-1297.	4.3	3
155	Tutorial on the acquisition, analysis, and interpretation of upconversion luminescence data. Methods and Applications in Fluorescence, 2019, 7, 023001.	1.1	21
156	Barcoded point-of-care bioassays. Chemical Society Reviews, 2019, 48, 850-884.	18.7	120
157	Are lanthanide-doped upconversion materials good candidates for photocatalysis?. Nanoscale Horizons, 2019, 4, 579-591.	4.1	73
158	Fluorescent gels: a review of synthesis, properties, applications and challenges. Materials Chemistry Frontiers, 2019, 3, 1489-1502.	3.2	115
159	Intrinsic Timeâ€Tunable Emissions in Core–Shell Upconverting Nanoparticle Systems. Angewandte Chemie, 2019, 131, 9844-9853.	1.6	2
160	Intrinsic Time‶unable Emissions in Core–Shell Upconverting Nanoparticle Systems. Angewandte Chemie - International Edition, 2019, 58, 9742-9751.	7.2	24
161	Near-infrared light photocatalysis and photothermy of carbon quantum dots and au nanoparticles loaded titania nanotube array. Materials and Design, 2019, 177, 107845.	3.3	55
162	Upconversion Nanomaterials for Near-infrared Light-Mediated Theranostics. , 2019, , 321-340.		0
163	Tunable yellow-green up-conversion emission and luminescence lifetimes in Yb3+-Er3+-Ho3+ multi-doped β-NaLuF4 crystals. Journal of Alloys and Compounds, 2019, 793, 96-106.	2.8	5

#	Article	IF	CITATIONS
164	Recent progress of energy transfer and luminescence intensity boosting mechanism in Nd3+-sensitized upconversion nanoparticles. Journal of Rare Earths, 2019, 37, 791-805.	2.5	38
165	A General In Situ Growth Strategy of Designing Theranostic NaLnF ₄ @Cu _{2â~} <i>_x</i> S Nanoplatform for In Vivo NIRâ€I Optical Imaging Beyond 1500 nm and Photothermal Therapy. Advanced Therapeutics, 2019, 2, 1800153.	1.6	24
166	Stimuli-responsive nanotheranostics based on lanthanide-doped upconversion nanoparticles for cancer imaging and therapy: current advances and future challenges. Nano Today, 2019, 25, 38-67.	6.2	100
167	Two-Dimensional and Three-Dimensional Single Particle Tracking of Upconverting Nanoparticles in Living Cells. International Journal of Molecular Sciences, 2019, 20, 1424.	1.8	23
168	Extended color tunability and efficient white-light generation through the construction of β-NaYF4: Yb3+/Tm3+/Ho3+ @NaYF4 core-shell structured nanocrystals. Journal of Solid State Chemistry, 2019, 275, 63-69.	1.4	5
169	Controlling Red Color–Based Multicolor Upconversion through Selective Photon Blocking. Advanced Functional Materials, 2019, 29, 1804160.	7.8	62
170	Rare Earth Hydroxide as a Precursor for Controlled Fabrication of Uniform β-NaYF4 Nanoparticles: A Novel, Low Cost, and Facile Method. Molecules, 2019, 24, 357.	1.7	5
171	Tailoring up-conversion luminescence for optical thermometry in K+/Er3+ co-doped oxyfluoride glass ceramics. Journal of Luminescence, 2019, 210, 247-254.	1.5	7
172	Microgels in biomaterials and nanomedicines. Advances in Colloid and Interface Science, 2019, 266, 1-20.	7.0	56
173	Facile synthesis of novel carbon-dots/hemin nanoplatforms for synergistic photo-thermal and photo-dynamic therapies. Journal of Inorganic Biochemistry, 2019, 193, 166-172.	1.5	23
174	Upconversion Luminescence of Gd ₂ O ₃ :Ln ³⁺ Nanorods for White Emission and Cellular Imaging via Surface Charging and Crystallinity Control. ACS Applied Nano Materials, 2019, 2, 1421-1430.	2.4	20
175	Emissive Single-Crystalline Boroxine-Linked Colloidal Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 19728-19735.	6.6	79
176	Optically Active Nanomaterials for Bioimaging and Targeted Therapy. Frontiers in Bioengineering and Biotechnology, 2019, 7, 320.	2.0	44
177	Thermal and crystallization behavior of SiO ₂ â€PbF ₂ glass system in the presence of ErF ₃ and Al ₂ O ₃ . Journal of the American Ceramic Society, 2019, 102, 3411-3425.	1.9	2
178	Advances in the application of upconversion nanoparticles for detecting and treating cancers. Photodiagnosis and Photodynamic Therapy, 2019, 25, 177-192.	1.3	59
179	Engineering upconversion using cavity plasmonic mode of Ag hemishell capped on NaLuF4:Yb,Er@SiO2 nanosphere. Journal of Luminescence, 2019, 206, 211-217.	1.5	7
180	Selective cellular imaging with lanthanideâ€based upconversion nanoparticles. Journal of Biophotonics, 2019, 12, e201800256.	1.1	13
181	Combination of CuS and g-C3N4 QDs on upconversion nanoparticles for targeted photothermal and photodynamic cancer therapy. Chemical Engineering Journal, 2019, 360, 866-878.	6.6	76

#	Article	IF	CITATIONS
182	Plasmon-enhanced upconversion photoluminescence: Mechanism and application. Reviews in Physics, 2019, 4, 100026.	4.4	105
183	An intelligent nanoplatform for imaging-guided photodynamic/photothermal/chemo-therapy based on upconversion nanoparticles and CuS integrated black phosphorus. Chemical Engineering Journal, 2020, 382, 122822.	6.6	47
184	Steric hindrance boosted upconversion for low-power imaging in vivo. Journal of Luminescence, 2020, 218, 116837.	1.5	5
185	Controlling lanthanide-doped upconversion nanoparticles for brighter luminescence. Journal Physics D: Applied Physics, 2020, 53, 043001.	1.3	13
186	Enhanced photovoltaic performance of Y2O3:Ho3+/Yb3+ upconversion nanophosphor based DSSC and investigation of color tunability in Ho3+/Tm3+/Yb3+ tridoped Y2O3. Journal of Alloys and Compounds, 2020, 821, 153230.	2.8	33
187	Origin of the giant thermal enhancement of the Er3+ ion's 4I9/2-4I15/2 photoluminescence. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117862.	2.0	4
188	Green route synthesized upconverting (NaYF4: Yb3+, Tm3+)nanophosphors and its photophysical and magnetic Properties. Journal of Luminescence, 2020, 228, 117654.	1.5	3
189	An Ultrasensitive Fluorescence Immunoassay Based on Magnetic Separation and Upconversion Nanoparticles as Labels for the Detection of Chloramphenicol in Animal-Derived Foods. Food Analytical Methods, 2020, 13, 2039-2049.	1.3	9
190	Photoactivation Strategies for Therapeutic Release in Nanodelivery Systems. Advanced Therapeutics, 2020, 3, 2000117.	1.6	12
191	Multimodal Luminescent Yb ³⁺ /Er ³⁺ /Bi ³⁺ â€Doped Perovskite Single Crystals for Xâ€ray Detection and Antiâ€Counterfeiting. Advanced Materials, 2020, 32, e2004506.	11.1	187
192	Multi-function up-conversion luminescent Bi4Ti3O12 nanoparticles sensitized by Nd3+ and Yb3+. Optical Materials, 2020, 109, 110408.	1.7	6
193	Efficient modulation of upconversion luminescence in NaErF ₄ -based core–shell nanocrystals. New Journal of Chemistry, 2020, 44, 9153-9157.	1.4	2
194	Evaluation of Lanthanide-Doped Upconverting Nanoparticles for in Vitro and in Vivo Applications. ACS Applied Bio Materials, 2020, 3, 4358-4369.	2.3	18
195	Contemporary Synthesis of Ultrasmall (subâ€10 nm) Upconverting Nanomaterials. ChemistryOpen, 2020, 9, 703-712.	0.9	5
196	Controlled synthesis and upconversion luminescence properties of Yb3+/Er3+ co-doped Bi2O3 nanospheres for optical and X-ray computed tomography imaging. Optical Materials, 2020, 102, 109827.	1.7	10
197	Photocontrolled nanosystems for antibacterial drug delivery. , 2020, , 311-344.		1
198	Lanthanide-Based Nanocomposites for Photothermal Therapy under Near-Infrared Laser: Relationship between Light and Heat, Biostability, and Reaction Temperature. Langmuir, 2020, 36, 4033-4043.	1.6	11
199	Activatable Molecular Probes for Second Nearâ€Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging. Angewandte Chemie, 2020, 132, 11813-11827.	1.6	86

		Report	
# 200	ARTICLE Upconversion nanocrystals for near-infrared-controlled drug delivery. , 2020, , 345-371.	IF	CITATIONS
	Activatable Molecular Probes for Second Nearâ€Infrared Fluorescence, Chemiluminescence, and		
201	Photoacoustic Imaging. Angewandte Chemie - International Edition, 2020, 59, 11717-11731.	7.2	353
202	Controllable synthesis of ultrasmall core-shell hexagonal upconversion nanoparticles towards full-color output. Optik, 2020, 207, 164398.	1.4	4
203	The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 2020, 30, 1909062.	7.8	174
204	Tuning the upconversion luminescence of cubic KMnF3:Yb3+/Er3+ nanocrystals through inert lanthanide ion doping. Journal of Materials Chemistry C, 2020, 8, 2847-2851.	2.7	5
205	Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications. Chemical Society Reviews, 2020, 49, 1109-1143.	18.7	211
206	Highly bright and sensitive thermometric LiYF4:Yb, Er upconversion nanocrystals through Mg2+ tridoping. Journal of Materials Science: Materials in Electronics, 2020, 31, 3415-3425.	1.1	6
207	Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials, 2020, 237, 119827.	5.7	484
208	Water-Dispersible Triplet–Triplet Annihilation Photon Upconversion Particle: Molecules Integrated in Hydrophobized Two–Dimensional Interlayer Space of Montmorillonite and Their Application for Photocatalysis in the Aqueous Phase. ACS Applied Materials & Interfaces, 2020, 12, 7021-7029.	4.0	14
209	Self-Sufficient and Highly Efficient Gold Sandwich Upconversion Nanocomposite Lasers for Stretchable and Bio-applications. ACS Applied Materials & Interfaces, 2020, 12, 19840-19854.	4.0	21
210	Optimized Multimetal Sensitized Phosphor for Enhanced Red Up-Conversion Luminescence by Machine Learning. ACS Combinatorial Science, 2020, 22, 285-296.	3.8	11
211	Spectroscopic investigation of upconversion and downshifting properties LaF3:Tb3+,Yb3+: A dual mode green emitter nanophosphor. Journal of Alloys and Compounds, 2021, 859, 157857.	2.8	9
212	Integration of IR-808 and thiol-capped Au–Bi bimetallic nanoparticles for NIR light mediated photothermal/photodynamic therapy and imaging. Journal of Materials Chemistry B, 2021, 9, 101-111.	2.9	18
213	An overview of rare earth coupled lead halide perovskite and its application in photovoltaics and light emitting devices. Progress in Materials Science, 2021, 120, 100737.	16.0	35
214	Engineering Red-Enhanced and Biocompatible Upconversion Nanoparticles. Nanomaterials, 2021, 11, 284.	1.9	16
215	CaSc2O4 hosted upconversion and downshifting luminescence. Journal of Materials Chemistry C, 2021, 9, 3800-3805.	2.7	4
216	NIR laser scanning microscopy for photophysical characterization of upconversion nanoparticles and nanohybrids. Nanoscale, 2021, 13, 10067-10080.	2.8	4
217	Recent Advances and Opportunities of Lead-Free Perovskite Nanocrystal for Optoelectronic Application. Energy Material Advances, 2021, 2021, .	4.7	43

#	Article	IF	CITATIONS
218	A Spontaneous Membrane-Adsorption Approach to Enhancing Second Near-Infrared Deep-Imaging-Guided Intracranial Tumor Therapy. ACS Nano, 2021, 15, 4518-4533.	7.3	9
219	Reconstructing the Surface Structure of NaREF ₄ Upconversion Nanocrystals with a Novel K ⁺ Treatment. Chemistry of Materials, 2021, 33, 2548-2556.	3.2	5
220	Rareâ€Earth Incorporated Alloy Catalysts: Synthesis, Properties, and Applications. Advanced Materials, 2021, 33, e2005988.	11.1	84
221	Targeted Luminescent Probes for Precise Upconversion/NIR II Luminescence Diagnosis of Lung Adenocarcinoma. Analytical Chemistry, 2021, 93, 4984-4992.	3.2	20
222	Advancing Graphitic Carbon Nitride-Based Photocatalysts toward Broadband Solar Energy Harvesting. , 2021, 3, 663-697.		63
223	Photon upconversion in self-assembled materials. Coordination Chemistry Reviews, 2021, 432, 213756.	9.5	24
224	Application of DNA sequences in anti-counterfeiting: Current progress and challenges. International Journal of Pharmaceutics, 2021, 602, 120580.	2.6	9
225	Yb ³⁺ and Er ³⁺ Codoped BaLiF ₃ Nanocrystals for X-ray Dosimetry and Imaging by Upconversion Luminescence. ACS Applied Nano Materials, 2021, 4, 6659-6667.	2.4	11
226	Photostable and Small YVO4:Yb,Er Upconversion Nanoparticles in Water. Nanomaterials, 2021, 11, 1535.	1.9	10
227	Recent trends in the developments of analytical probes based on lanthanide-doped upconversion nanoparticles. TrAC - Trends in Analytical Chemistry, 2021, 139, 116256.	5.8	50
228	Upconversion luminescent nanomaterials: A promising new platform for food safety analysis. Critical Reviews in Food Science and Nutrition, 2022, 62, 8866-8907.	5.4	22
229	Photon Upconversion for Photovoltaics and Photocatalysis: AÂCriticalÂReview. Chemical Reviews, 2021, 121, 9165-9195.	23.0	190
230	Volume and surface effects on two-photonic and three-photonic processes in dry co-doped upconversion nanocrystals. Nano Research, 2022, 15, 2362-2373.	5.8	3
231	Janus metallic mesoporous silica nanoparticles: Unique structures for cancer theranostics. Current Opinion in Biomedical Engineering, 2021, 19, 100294.	1.8	8
232	Bi3+ as an enhancer for down- and upconversion luminescence in ternary vanadate structures. Ceramics International, 2021, 47, 24182-24190.	2.3	4
233	Fungal Biogenesis of NPs and Their Limitations. , 2021, , 81-101.		2
234	Multiphoton ultraviolet upconversion through selectively controllable energy transfer in confined sensitizing sublattices towards improved solar photocatalysis. Journal of Materials Chemistry A, 2021, 9, 4007-4017.	5.2	27
235	Self-monitored biological nanoheaters operating in the first biological window based on single-band red upconversion nanoparticles fabricated through architectural design. Journal of Alloys and Compounds, 2020, 842, 155602.	2.8	11

#	Article	IF	CITATIONS
236	Investigation of upconversion luminescence for Tb3+/Yb3+ co-doped CaLnAlO4 (Ln = Y, Gd, La) phosphors. Journal of Luminescence, 2020, 223, 117266.	1.5	10
237	Advances in highly doped upconversion nanoparticles. Nature Communications, 2018, 9, 2415.	5.8	793
238	Parametric upconversion imaging and its applications. Advances in Optics and Photonics, 2019, 11, 952.	12.1	52
239	Highly efficient upconversion luminescence of Er heavily doped nanocrystals through 1530  nm excitation. Optics Letters, 2019, 44, 711.	1.7	19
240	Double-color luminescence and magnetic characteristics in Fe ³⁺ doped NaErF ₄ microcrystals. Optical Materials Express, 2019, 9, 3379.	1.6	4
241	Enhanced UV Light Emission by Core-Shell Upconverting Particles Powering up TiO2 Photocatalysis in Near-Infrared Light. Catalysts, 2020, 10, 232.	1.6	4
242	Rare-Earth Ion-Based Photon Up-Conversion for Transmission-Loss Reduction in Solar Cells. , 2022, , 241-267.		1
243	Tumorâ€Microenvironmentâ€Activated Reactive Oxygen Species Amplifier for Enzymatic Cascade Cancer Starvation/Chemodynamic /Immunotherapy. Advanced Materials, 2022, 34, e2106010.	11.1	139
244	Synthesizing WO3:Yb3+/Er3+ Nanoparticles for Upconversion Manipulation. , 2019, , .		0
245	Energy transfer with nanoparticles for in vitro diagnostics. Frontiers of Nanoscience, 2020, 16, 25-65.	0.3	1
246	Hot injection synthesis of core-shell upconversion nanoparticles for bioimaging application. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 147801.	0.2	1
247	One-photon red light-triggered disassembly of small-molecule nanoparticles for drug delivery. Journal of Nanobiotechnology, 2021, 19, 357.	4.2	9
248	On the photostability and luminescence of dye-sensitized upconverting nanoparticles using modified IR820 dyes. Nanoscale Advances, 2022, 4, 608-618.	2.2	12
249	White light source and optical thermometry based on zinc-tellurite glass tri-doped with Tm3+/Er3+/Sm3+. Journal of Alloys and Compounds, 2022, 899, 163305.	2.8	9
250	Light–Heat and Light–Light Dual-Controlled Upconversion Luminescence and Photochromic Processes in Er-Activated Bi ₇ Ti ₄ NbO ₂₁ for Optical Information Storage. ACS Applied Electronic Materials, 2022, 4, 776-786.	2.0	17
252	Tuning and optimization of upconversion phosphors. , 2022, , 251-290.		0
253	Physics of inorganic upconverting nanophosphors and their relevance in applications. , 2022, , 49-102.		1
254	Ceramic-based unconversion phosphors 2022 181-202		0

#	Article	IF	CITATIONS
255	A proposal for wide range wavelength switching process using optical force. Physica Scripta, 2021, 96, 125537.	1.2	1
256	Controlling upconversion in emerging multilayer core–shell nanostructures: from fundamentals to frontier applications. Chemical Society Reviews, 2022, 51, 1729-1765.	18.7	117
257	Upconversion Nanoparticles Coated with Mesoporous Silica Nanoshells Loaded with Dyes for Fine-Tuned Multicolor Emission in Bioimaging Applications. ACS Applied Nano Materials, 2022, 5, 3541-3547.	2.4	5
258	Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coordination Chemistry Reviews, 2022, 460, 214486.	9.5	39
259	Rare earth nanoparticles for sprayed and intravenous NIR II imaging and photodynamic therapy of tongue cancer. Nanoscale Advances, 2022, 4, 2224-2232.	2.2	4
260	Upconversion luminescence in lanthanide-doped nanoparticles. , 2022, , .		0
262	Advanced optical properties of upconversion nanoparticles. , 2023, , 613-648.		1
263	Controlling the Energyâ€Transfer Processes in a Nanosized Molecular Upconverter to Tap into Luminescence Thermometry Application. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
264	Controlling the Energyâ€Transfer Processes in a Nanosized Molecular Upconverter to Tap into Luminescence Thermometry Application. Angewandte Chemie, 0, , .	1.6	2
265	Chirp-dependent dual light emission in Na0.95Er0.05Nb0.9Ti0.1O3 perovskite. Optical Materials, 2022, 129, 112500.	1.7	1
266	Electrodeposition of Lithium-Based Upconversion Nanoparticle Thin Films for Efficient Perovskite Solar Cells. Nanomaterials, 2022, 12, 2115.	1.9	8
267	A design of red emission CDs-based aptasensor for sensitive detection of insulin via fluorescence resonance energy transfer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 280, 121497.	2.0	8
268	Defects in rare-earth-doped inorganic materials. , 2022, , 85-133.		0
269	Upconversion luminescence behavior of rare-earth-activated phosphors. , 2022, , 291-308.		0
270	Properties and characterization of rare-earth-activated phosphors. , 2022, , 69-84.		0
271	A proposal for optomechanical bichromatic wavelength switching for two-color up-conversion application. Optical and Quantum Electronics, 2022, 54, .	1.5	1
272	Recent progress in upconversion nanomaterials for emerging optical biological applications. Advanced Drug Delivery Reviews, 2022, 188, 114414.	6.6	29
273	Dopant ion concentration-dependent upconversion luminescence of cubic SrF ₂ :Yb ³⁺ ,Er ³⁺ nanocrystals prepared by a fluorolytic sol–gel method. Nanoscale, 2022, 14, 11590-11599.	2.8	6

#	Article	IF	CITATIONS
274	Lanthanide-doped upconversion nanomaterials. , 2022, , .		0
275	Plasmon-enhanced upconversion luminescence with the hybrid structure of semiconductor-insulator-semiconductor. Ceramics International, 2023, 49, 4956-4963.	2.3	3
276	Enhancement of single upconversion nanoparticle imaging by topologically segregated core-shell structure with inward energy migration. Nature Communications, 2022, 13, .	5.8	25
277	Recent Developments of Microscopic Study for Lanthanide and Manganese Doped Luminescent Materials. Small, 2022, 18, .	5.2	6
278	Advances in upconversion luminescence nanomaterialâ€based biosensor for virus diagnosis. Exploration, 2022, 2, .	5.4	19
279	Angle-Dependent Upconversion Luminescence of NaYF ₄ :Yb ³⁺ ,Er ³⁺ /Tm ³⁺ Nanoparticles Realized by Photonic Crystals. , 2023, 1, 421-429.		1
280	Vitamin needed: Lanthanides in optoelectronic applications of metal halide perovskites. Materials Science and Engineering Reports, 2023, 152, 100710.	14.8	12
281	Time-domain stepwise encoding based on a stepped photon emission material. Chemical Communications, 2022, 58, 13927-13930.	2.2	0
282	Revisiting carboxylic group functionalization of silica sol–gel materials. Journal of Materials Chemistry B, 2023, 11, 1628-1653.	2.9	3
283	Sustainable energy technologies for the Global South: challenges and solutions toward achieving SDG 7. Environmental Science Advances, 2023, 2, 570-585.	1.0	4
284	Up-to-Five-Photon Upconversion from Near-Infrared to Ultraviolet Luminescence Coupled to Aluminum Plasmonic Lattices. ACS Applied Materials & amp; Interfaces, 2023, 15, 9533-9541.	4.0	6
285	BioMOF-Based Anti-Cancer Drug Delivery Systems. Nanomaterials, 2023, 13, 953.	1.9	13
291	Image-Guided Precision Treatments. Advances in Experimental Medicine and Biology, 2023, , 59-86.	0.8	0
294	Cerium-based nanomaterials for photo/electrocatalysis. Science China Chemistry, 2023, 66, 2204-2220.	4.2	2
295	Design of Interfacial Energy Transfer Model in Upconversion Nanoparticles. Progress in Optical Science and Photonics, 2023, , 73-96.	0.3	0
296	Photocatalysis, Anti-counterfeiting and Optical Thermometry Applications of Upconversion Nanoparticles. Progress in Optical Science and Photonics, 2023, , 193-220.	0.3	0
306	Photophysics and its application in photon upconversion. Nanoscale, 2024, 16, 2747-2764.	2.8	0