Voxelated liquid crystal elastomers

Science 347, 982-984 DOI: 10.1126/science.1261019

Citation Report

#	Article	IF	CITATIONS
1	Lightâ€Fueled Microscopic Walkers. Advanced Materials, 2015, 27, 3883-3887.	11.1	355
2	Liquid crystals with patterned molecular orientation as an electrolytic active medium. Physical Review E, 2015, 92, 052502.	0.8	49
3	Smart Muscleâ€Driven Selfâ€Cleaning of Biomimetic Microstructures from Liquid Crystal Elastomers. Advanced Materials, 2015, 27, 6828-6833.	11.1	86
4	Grapheneâ€Enabled Superior and Tunable Photomechanical Actuation in Liquid Crystalline Elastomer Nanocomposites. Advanced Materials, 2015, 27, 6376-6381.	11.1	149
5	Programmed liquid crystal elastomers with tunable actuation strain. Polymer Chemistry, 2015, 6, 4835-4844.	1.9	85
6	Direct mapping of local director field of nematic liquid crystals at the nanoscale. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15291-15296.	3.3	17
7	Stressed states and persistent defects in confined nematic elastica. Nonlinearity, 2015, 28, 3957-3971.	0.6	2
8	Shape-shifting liquid crystals. Science, 2015, 347, 949-950.	6.0	17
9	Liquid Crystal Research Highlights. Liquid Crystals Today, 2015, 24, 98-98.	2.3	0
10	Controlling Motion at the Nanoscale: Rise of the Molecular Machines. ACS Nano, 2015, 9, 7746-7768.	7.3	385
11	New liquid crystal molecule advances organic solar cells. Liquid Crystals Today, 2015, 24, 99-100.	2.3	1
12	Metallo-, Thermo-, and Photoresponsive Shape Memory and Actuating Liquid Crystalline Elastomers. Macromolecules, 2015, 48, 3239-3246.	2.2	86
13	Photopatternable Biodegradable Aliphatic Polyester with Pendent Benzophenone Groups. Biomacromolecules, 2015, 16, 3329-3335.	2.6	16
14	Inhomogeneous stretch induced patterning of molecular orientation in liquid crystal elastomers. Extreme Mechanics Letters, 2015, 5, 30-36.	2.0	33
15	Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nature Materials, 2015, 14, 1087-1098.	13.3	1,250
16	Pure Anisotropic Hydrogel with an Inherent Chiral Internal Structure Based on the Chiral Nematic Liquid Crystal Phase of Rodlike Viruses. ACS Macro Letters, 2015, 4, 1215-1219.	2.3	29
17	Optical patterning of magnetic domains and defects in ferromagnetic liquid crystal colloids. Applied Physics Letters, 2015, 107, .	1.5	27
18	Topology optimization for the design of folding liquid crystal elastomer actuators. Soft Matter, 2015, 11, 7288-7295.	1.2	72

ATION REDO

#	Article	IF	CITATIONS
19	Programmable Liquid Crystal Elastomers Prepared by Thiol–Ene Photopolymerization. ACS Macro Letters, 2015, 4, 942-946.	2.3	120
20	A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11757-11764.	3.3	429
21	Modeling Defects, Shape Evolution, and Programmed Auto-Origami in Liquid Crystal Elastomers. Frontiers in Materials, 2016, 3, .	1.2	24
22	Influence of a Crosslinker Containing an Azo Group on the Actuation Properties of a Photoactuating LCE System. Polymers, 2016, 8, 435.	2.0	32
23	GPU-Accelerated Molecular Dynamics Simulation to Study Liquid Crystal Phase Transition Using Coarse-Grained Gay-Berne Anisotropic Potential. PLoS ONE, 2016, 11, e0151704.	1.1	9
24	Light Responsive Microstructured Surfaces of Liquid Crystalline Network with Shape Memory and Tunable Wetting Behaviors. Macromolecular Rapid Communications, 2016, 37, 311-317.	2.0	19
25	Patterning of Soft Matter across Multiple Length Scales. Advanced Functional Materials, 2016, 26, 2609-2616.	7.8	25
26	Highâ€Resolution and Highâ€Throughput Plasmonic Photopatterning of Complex Molecular Orientations in Liquid Crystals. Advanced Materials, 2016, 28, 2353-2358.	11.1	132
27	Controlled Mechanical Buckling for Origamiâ€Inspired Construction of 3D Microstructures in Advanced Materials. Advanced Functional Materials, 2016, 26, 2629-2639.	7.8	231
28	Shape-programmable materials. Physics Today, 2016, 69, 32-38.	0.3	39
29	Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications. Chemical Reviews, 2016, 116, 15089-15166.	23.0	671
30	A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes. Nature Communications, 2016, 7, 13981.	5.8	206
31	Belousov-Zhabotinsky autonomic hydrogel composites: Regulating waves via asymmetry. Science Advances, 2016, 2, e1600813.	4.7	26
32	Reversible shapeâ€shifting in polymeric materials. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1365-1380.	2.4	100
33	Origami MEMS and NEMS. MRS Bulletin, 2016, 41, 123-129.	1.7	253
34	Design of super-conformable, foldable materials via fractal cuts and lattice kirigami. MRS Bulletin, 2016, 41, 130-138.	1.7	54
35	Regional Shape Control of Strategically Assembled Multishape Memory Vitrimers. Advanced Materials, 2016, 28, 156-160.	11.1	213
36	A deformable robot with tensegrity structure using nylon artificial muscle. Proceedings of SPIE, 2016,	0.8	19

ARTICLE IF CITATIONS # Grayscale gel lithography for programmed buckling of non-Euclidean hydrogel plates. Soft Matter, 37 1.2 72 2016, 12, 4985-4990. Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms. Journal of Materials Science, 2016, 51, 10663-10689. 1.7 109 Synthesis of Optically Complex, Porous, and Anisometric Polymeric Microparticles by Templating from 39 7.8 35 Liquid Crystalline Droplets. Advanced Functional Materials, 2016, 26, 7343-7351. A "writing―strategy for shape transition with infinitely adjustable shaping sequences and in situ 6.4 tunable 3D structures. Materials Horizons, 2016, 3, 581-587. Synthesis and characterization of chiral smectic side-chain liquid crystalline elastomers containing 41 1.4 10 nematic and chiral mesogens. New Journal of Chemistry, 2016, 40, 9352-9360. Sizeâ€Selective Binding of Sodium and Potassium Ions in Nanoporous Thin Films of Polymerized Liquid 7.8 Crystals. Advanced Functional Materials, 2016, 26, 8023-8030. Curvature and defects in nematic liquid crystals. Liquid Crystals, 2016, 43, 1920-1936. 43 0.9 41 Deformation of cross-linked liquid crystal polymers by light – from ultraviolet to visible and 44 36 infrared. Liquid Crystals, 2016, 43, 2114-2135. Tuning the Sawtooth Tensile Response and Toughness of Multiblock Copolymer Diamond Networks. 45 2.2 10 Macromolecules, 2016, 49, 6711-6721. Encoding Gaussian curvature in glassy and elastomeric liquid crystal solids. Proceedings of the Royal 1.0 64 Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160112. Light Propagation and Photoactuation in Densely Cross-Linked Azobenzene-Functionalized Liquid-Crystalline Polymers: Contribution of Host and Concerted Isomerism. Macromolecules, 2016, 47 2.2 21 49, 6012-6020. Design and simulative experiment of an innovative trailing edge morphing mechanism driven by 1.8 artificial muscles embedded in skin. Smart Materials and Structures, 2016, 25, 095004. Shape-Morphing Chromonic Liquid Crystal Hydrogels. Chemistry of Materials, 2016, 28, 8489-8492. 49 3.2 31 Guided Folding of Nematic Liquid Crystal Elastomer Sheets into 3D via Patterned 1D Microchannels. Advanced Materials, 2016, 28, 9637-9643. 11.1 Combinatorial design of textured mechanical metamaterials. Nature, 2016, 535, 529-532. 51 13.7 289 A bioinspired reversible snapping hydrogel assembly. Materials Horizons, 2016, 3, 422-428. Nematoelastic crawlers. Physical Review E, 2016, 93, 022703. 53 0.8 5 Photoinduced Topographical Feature Development in Blueprinted Azobenzeneâ€Functionalized Liquid 54 145 Crystalline Elastomers. Advanced Functional Materials, 2016, 26, 5819-5826.

#	Article	IF	Citations
55	Photomobile Liquidâ€Crystalline Elastomers with Rearrangeable Networks. Advanced Materials, 2016, 28, 8212-8217.	11.1	209
56	Programming complex shapes in thin nematic elastomer and glass sheets. Physical Review E, 2016, 94, 010701.	0.8	43
57	Advanced Materials for Thermoelectric Applications. , 2016, , 238-282.		0
58	Localized soft elasticity in liquid crystal elastomers. Nature Communications, 2016, 7, 10781.	5.8	132
59	Programming temporal shapeshifting. Nature Communications, 2016, 7, 12919.	5.8	72
60	Muscular MEMS—the engineering of liquid crystal elastomer actuators. Smart Materials and Structures, 2016, 25, 085010.	1.8	27
61	Polymer-dispersed liquid crystal elastomers. Nature Communications, 2016, 7, 13140.	5.8	57
62	Orthogonal photoswitching in a multifunctional molecular system. Nature Communications, 2016, 7, 12054.	5.8	174
63	Thermomechanical liquid crystalline elastomer capillaries with biomimetic peristaltic crawling function. Journal of Materials Chemistry B, 2016, 4, 7293-7302.	2.9	34
64	Alignment layer-free molecular ordering induced by masked photopolymerization with non-polarized light. Applied Physics Express, 2016, 9, 072601.	1.1	26
65	Preparation of Monodomain Liquid Crystal Elastomers and Liquid Crystal Elastomer Nanocomposites. Journal of Visualized Experiments, 2016, , e53688.	0.2	5
66	Photoresponsive Liquid Crystalline Epoxy Networks with Shape Memory Behavior and Dynamic Ester Bonds. ACS Applied Materials & Interfaces, 2016, 8, 15750-15757.	4.0	123
67	Photoresponsive Fiber Array: Toward Mimicking the Collective Motion of Cilia for Transport Applications. Advanced Functional Materials, 2016, 26, 5322-5327.	7.8	116
68	High-Fidelity Replica Molding of Glassy Liquid Crystalline Polymer Microstructures. ACS Applied Materials & Interfaces, 2016, 8, 8110-8117.	4.0	18
69	Regulating the modulus of a chiral liquid crystal polymer network by light. Soft Matter, 2016, 12, 3196-3201.	1.2	68
70	Making and Remaking Dynamic 3D Structures by Shining Light on Flat Liquid Crystalline Vitrimer Films without a Mold. Journal of the American Chemical Society, 2016, 138, 2118-2121.	6.6	334
71	Advancing Reversible Shape Memory by Tuning the Polymer Network Architecture. Macromolecules, 2016, 49, 1383-1391.	2.2	55
72	Reconfiguring Nanocomposite Liquid Crystal Polymer Films with Visible Light. Macromolecules, 2016, 49, 1575-1581.	2.2	55

#	Article	IF	CITATIONS
73	Shape memory polymer network with thermally distinct elasticity and plasticity. Science Advances, 2016, 2, e1501297.	4.7	406
74	"2D or not 2D― Shape-programming polymer sheets. Progress in Polymer Science, 2016, 52, 79-106.	11.8	292
75	Bioinspired photocontrollable microstructured transport device. Science Robotics, 2017, 2, .	9.9	116
76	A room-temperature two-stage thiol–ene photoaddition approach towards monodomain liquid crystalline elastomers. Polymer Chemistry, 2017, 8, 1364-1370.	1.9	43
77	Grapheneâ€Based Polymer Bilayers with Superior Lightâ€Driven Properties for Remote Construction of 3D Structures. Advanced Science, 2017, 4, 1600437.	5.6	71
78	Molecular engineering of step-growth liquid crystal elastomers. Sensors and Actuators B: Chemical, 2017, 244, 433-440.	4.0	16
79	Single-layer dual-phase nematic elastomer films with bending, accordion-folding, curling and buckling motions. Chemical Communications, 2017, 53, 1844-1847.	2.2	30
80	Liquid crystal elastomer actuators: Synthesis, alignment, and applications. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 395-411.	2.4	257
81	Photoinduced Plasticity in Cross‣inked Liquid Crystalline Networks. Advanced Materials, 2017, 29, 1606509.	11.1	103
82	Liquid crystals in micron-scale droplets, shells and fibers. Journal of Physics Condensed Matter, 2017, 29, 133003.	0.7	140
83	Contraction of side-on nematic liquid crystalline elastomers micropillars: Influence of molecular parameters. Molecular Crystals and Liquid Crystals, 2017, 643, 83-96.	0.4	0
85	Metamorphic Superomniphobic Surfaces. Advanced Materials, 2017, 29, 1700295.	11.1	104
86	Thermal bending coupled with volume change in liquid crystal gels. Soft Matter, 2017, 13, 4341-4348.	1.2	8
87	Dual-responsive, shape-switching bilayers enabled by liquid crystal elastomers. Soft Matter, 2017, 13, 4349-4356.	1.2	98
88	Origami by frontal photopolymerization. Science Advances, 2017, 3, e1602326.	4.7	193
89	Selfâ€Regulating Iris Based on Lightâ€Actuated Liquid Crystal Elastomer. Advanced Materials, 2017, 29, 1701814.	11.1	288
90	Reprogrammable Chemical 3D Shaping for Origami, Kirigami, and Reconfigurable Molding. Angewandte Chemie, 2017, 129, 8362-8365.	1.6	6
91	A light-driven artificial flytrap. Nature Communications, 2017, 8, 15546.	5.8	499

#	Article	IF	CITATIONS
92	Voxel resolution in the directed self-assembly of liquid crystal polymer networks and elastomers. Soft Matter, 2017, 13, 4335-4340.	1.2	34
93	Reprogrammable Chemical 3D Shaping for Origami, Kirigami, and Reconfigurable Molding. Angewandte Chemie - International Edition, 2017, 56, 8250-8253.	7.2	36
101	Kirigami pattern design of mechanically driven formation of complex 3D structures through topology optimization. Extreme Mechanics Letters, 2017, 15, 139-144.	2.0	39
102	Pixelated Polymers: Directed Self Assembly of Liquid Crystalline Polymer Networks. ACS Macro Letters, 2017, 6, 436-441.	2.3	63
103	Plates with incompatible prestrain of high order. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2017, 34, 1883-1912.	0.7	22
104	Textures and shapes in nematic elastomers under the action of dopant concentration gradients. Soft Matter, 2017, 13, 2886-2892.	1.2	4
105	Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nature Reviews Materials, 2017, 2, .	23.3	463
106	Polydopamine nanoparticles doped in liquid crystal elastomers for producing dynamic 3D structures. Journal of Materials Chemistry A, 2017, 5, 6740-6746.	5.2	98
107	4D Printing of Shape Memoryâ€Based Personalized Endoluminal Medical Devices. Macromolecular Rapid Communications, 2017, 38, 1600628.	2.0	280
108	Humidity―and Photoâ€Induced Mechanical Actuation of Crossâ€Linked Liquid Crystal Polymers. Advanced Materials, 2017, 29, 1604792.	11.1	212
109	Soft Actuators for Small cale Robotics. Advanced Materials, 2017, 29, 1603483.	11.1	973
110	Ultrafast Digital Printing toward 4D Shape Changing Materials. Advanced Materials, 2017, 29, 1605390.	11.1	348
111	Visible Light Responsive Liquid Crystal Polymers Containing Reactive Moieties with Good Processability. ACS Applied Materials & Interfaces, 2017, 9, 782-789.	4.0	54
112	Four-dimensional Printing of Liquid Crystal Elastomers. ACS Applied Materials & Interfaces, 2017, 9, 37332-37339.	4.0	354
113	Influence of external loads on structure and photoactuation in densely crosslinked azo-incorporated liquid crystalline polymers. Polymer, 2017, 129, 252-260.	1.8	8
114	Nonâ€Uniform Optical Inscription of Actuation Domains in a Liquid Crystal Polymer of Uniaxial Orientation: An Approach to Complex and Programmable Shape Changes. Angewandte Chemie - International Edition, 2017, 56, 14202-14206.	7.2	112
115	Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science, 2017, 358, 210-214.	6.0	210
116	Smart biomimetic micro/nanostructures based on liquid crystal elastomers and networks. Soft Matter, 2017, 13, 8006-8022.	1.2	66

#	Article	IF	CITATIONS
117	Nonâ€Uniform Optical Inscription of Actuation Domains in a Liquid Crystal Polymer of Uniaxial Orientation: An Approach to Complex and Programmable Shape Changes. Angewandte Chemie, 2017, 129, 14390-14394.	1.6	26
118	Multiplicity of shape selection in functionally graded liquid crystalline polymers. RSC Advances, 2017, 7, 23046-23054.	1.7	7
119	Synthesis and Characterization of Liquid-Crystalline Networks: Toward Autonomous Shape-Memory Actuation. Journal of Physical Chemistry C, 2017, 121, 22403-22414.	1.5	26
120	Reprogrammable, Reprocessible, and Self-Healable Liquid Crystal Elastomer with Exchangeable Disulfide Bonds. ACS Applied Materials & Interfaces, 2017, 9, 33119-33128.	4.0	208
121	High strain actuation liquid crystal elastomers via modulation of mesophase structure. Soft Matter, 2017, 13, 7537-7547.	1.2	106
122	Polybenzoxazole Nanofiber-Reinforced Moisture-Responsive Soft Actuators. Scientific Reports, 2017, 7, 769.	1.6	34
123	Liquid crystal templating as an approach to spatially and temporally organise soft matter. Chemical Society Reviews, 2017, 46, 5935-5949.	18.7	57
124	Polymer‣tabilized Micropixelated Liquid Crystals with Tunable Optical Properties Fabricated by Double Templating. Advanced Materials, 2017, 29, 1703054.	11.1	26
125	Phase separation and folding in swelled nematoelastic films. Physical Review E, 2017, 96, 012709.	0.8	2
127	Shape forming by thermal expansion mismatch and shape memory locking in polymer/elastomer laminates. Smart Materials and Structures, 2017, 26, 105027.	1.8	39
128	Enhanced Deformation of Azobenzene-Modified Liquid Crystal Polymers under Dual Wavelength Exposure: A Photophysical Model. Physical Review Letters, 2017, 119, 057801.	2.9	14
129	A flexible metallic actuator using reduced graphene oxide as a multifunctional component. Nanoscale, 2017, 9, 12963-12968.	2.8	18
130	Dual-responsive deformation of a crosslinked liquid crystal polymer film with complex molecular alignment. Soft Matter, 2017, 13, 6145-6151.	1.2	14
131	Functional films using reactive mesogens for display applications. Journal of Information Display, 2017, 18, 119-129.	2.1	15
132	Near-Infrared Chromophore Functionalized Soft Actuator with Ultrafast Photoresponsive Speed and Superior Mechanical Property. Journal of the American Chemical Society, 2017, 139, 11333-11336.	6.6	180
133	Frame, metric and geodesic evolution in shape-changing nematic shells. Soft Matter, 2017, 13, 8858-8863.	1.2	13
134	Scanning wave photopolymerization enables dye-free alignment patterning of liquid crystals. Science Advances, 2017, 3, e1701610.	4.7	50
135	Steering with light: indexable photomotility in liquid crystalline polymers. RSC Advances, 2017, 7, 52510-52516.	1.7	7

#	Article	IF	CITATIONS
136	Reversible Actuation of Origami Inspired Composites Using Liquid Crystal Elastomers. , 2017, , .		6
137	Synthesis of Elastomeric Liquid Crystalline Polymer Networks via Chain Transfer. ACS Macro Letters, 2017, 6, 1290-1295.	2.3	63
138	3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers. Soft Matter, 2017, 13, 5558-5568.	1.2	223
139	Engineered Elastomer Substrates for Guided Assembly of Complex 3D Mesostructures by Spatially Nonuniform Compressive Buckling. Advanced Functional Materials, 2017, 27, 1604281.	7.8	50
140	Thermally Active Liquid Crystal Network Gripper Mimicking the Selfâ€Peeling of Gecko Toe Pads. Advanced Materials, 2017, 29, 1604021.	11.1	145
141	Origami and kirigami inspired self-folding for programming three-dimensional shape shifting of polymer sheets with light. Extreme Mechanics Letters, 2017, 11, 111-120.	2.0	101
142	Thiolâ€acrylate mainâ€chain liquidâ€crystalline elastomers with tunable thermomechanical properties and actuation strain. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 157-168.	2.4	106
143	Unimodal Nematic Liquid Crystalline Random Copolymers Designed for Accepting Chiral Dopants. Bulletin of the Chemical Society of Japan, 2017, 90, 216-222.	2.0	2
144	Reversibly Actuating Solid Janus Polymeric Fibers. ACS Applied Materials & Interfaces, 2017, 9, 4873-4881.	4.0	29
145	Plasticity-induced origami for assembly of three dimensional metallic structures guided by compressive buckling. Extreme Mechanics Letters, 2017, 11, 105-110.	2.0	48
146	Shape changes in chemoresponsive liquid crystal elastomers. Sensors and Actuators B: Chemical, 2017, 240, 511-518.	4.0	83
147	Directing block copolymer self-assembly with permanent magnets: photopatterning microdomain alignment and generating oriented nanopores. Molecular Systems Design and Engineering, 2017, 2, 549-559.	1.7	19
148	A comprehensive review of select smart polymeric and gel actuators for soft mechatronics and robotics applications: fundamentals, freeform fabrication, and motion control. International Journal of Smart and Nano Materials, 2017, 8, 144-213.	2.0	58
149	Designs of Plasmonic Metamasks for Photopatterning Molecular Orientations in Liquid Crystals. Crystals, 2017, 7, 8.	1.0	28
150	A simple analytical thermo-mechanical model for liquid crystal elastomer bilayer structures. AIP Advances, 2018, 8, .	0.6	19
151	Synthesis and characterisation of novel side-chain chiral liquid crystalline elastomers with long dimer mesogens. Liquid Crystals, 2018, 45, 1353-1365.	0.9	9
152	Nematic director fields and topographies of solid shells of revolution. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20170566.	1.0	28
153	Multitemperature Memory Actuation of a Liquid Crystal Polymer Network over a Broad Nematic–Isotropic Phase Transition Induced by Large Strain. ACS Macro Letters, 2018, 7, 353-357.	2.3	49

#	Article	IF	CITATIONS
154	Instant Locking of Molecular Ordering in Liquid Crystal Elastomers by Oxygenâ€Mediated Thiol–Acrylate Click Reactions. Angewandte Chemie - International Edition, 2018, 57, 5665-5668.	7.2	74
155	Deformation of glassy nematic films due to local illumination. Thin Solid Films, 2018, 655, 41-47.	0.8	0
156	Topographical changes in photo-responsive liquid crystal films: a computational analysis. Soft Matter, 2018, 14, 2411-2428.	1.2	13
157	Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot. Science Advances, 2018, 4, eaao3865.	4.7	360
158	Liquid crystal elastomer coatings with programmed response of surface profile. Nature Communications, 2018, 9, 456.	5.8	114
159	Curvature by design and on demand in liquid crystal elastomers. Physical Review E, 2018, 97, 012504.	0.8	53
160	Smecticâ€B Liquid Single Crystal Elastomers as Efficient Optical Mechanotransducers. Macromolecular Chemistry and Physics, 2018, 219, 1700550.	1.1	4
161	Surface Aligned Main-Chain Liquid Crystalline Elastomers: Tailored Properties by the Choice of Amine Chain Extenders. Macromolecules, 2018, 51, 1141-1149.	2.2	57
162	Acoustic Wave Guiding by Reconfigurable Tessellated Arrays. Physical Review Applied, 2018, 9, .	1.5	18
163	Shape control of surface-stabilized disclination loops in nematic liquid crystals. Physical Review E, 2018, 97, 020701.	0.8	16
164	Liquidâ€Crystalline Dynamic Networks Doped with Gold Nanorods Showing Enhanced Photocontrol of Actuation. Advanced Materials, 2018, 30, e1706597.	11.1	252
165	Ultrathin Shape Change Smart Materials. Accounts of Chemical Research, 2018, 51, 436-444.	7.6	45
166	Oscillating Chiralâ€Nematic Fingerprints Wipe Away Dust. Advanced Materials, 2018, 30, 1704970.	11.1	80
167	Periodic Planarâ€Homeotropic Anchoring Realized by Photoalignment for Stabilization of Chiral Superstructures. Advanced Optical Materials, 2018, 6, 1701163.	3.6	26
168	Multitemperature Responsive Selfâ€Folding Soft Biomimetic Structures. Macromolecular Rapid Communications, 2018, 39, 1700692.	2.0	40
169	Photochromism into nanosystems: towards lighting up the future nanoworld. Chemical Society Reviews, 2018, 47, 1044-1097.	18.7	549
170	Actuation of Thin Nematic Elastomer Sheets with Controlled Heterogeneity. Archive for Rational Mechanics and Analysis, 2018, 227, 149-214.	1.1	15
171	3D Printing of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic Order. Advanced Materials, 2018, 30, 1706164.	11.1	467

#	Article	IF	CITATIONS
172	Photomechanical effects in liquid crystalline polymer networks and elastomers. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 695-705.	2.4	94
173	Convenient and Robust Route to Photoswitchable Hierarchical Liquid Crystal Polymer Stripes via Flow-Enabled Self-Assembly. ACS Applied Materials & Interfaces, 2018, 10, 4961-4970.	4.0	29
174	Adaptable liquid crystal elastomers with transesterification-based bond exchange reactions. Soft Matter, 2018, 14, 951-960.	1.2	92
175	Instant Locking of Molecular Ordering in Liquid Crystal Elastomers by Oxygenâ€Mediated Thiol–Acrylate Click Reactions. Angewandte Chemie, 2018, 130, 5767-5770.	1.6	26
176	Patterning nonisometric origami in nematic elastomer sheets. Soft Matter, 2018, 14, 3127-3134.	1.2	39
177	Functional Liquid Crystals towards the Next Generation of Materials. Angewandte Chemie - International Edition, 2018, 57, 4355-4371.	7.2	363
178	Lightâ€Driven, Caterpillarâ€Inspired Miniature Inching Robot. Macromolecular Rapid Communications, 2018, 39, 1700224.	2.0	180
179	Shape‣hifting Azo Dye Polymers: Towards Sunlightâ€Driven Molecular Devices. Macromolecular Rapid Communications, 2018, 39, 1700253.	2.0	70
180	Programmed shape of glassy nematic sheets with varying in-plane director fields: A kinetics approach. International Journal of Solids and Structures, 2018, 130-131, 183-189.	1.3	8
181	Light Robots: Bridging the Gap between Microrobotics and Photomechanics in Soft Materials. Advanced Materials, 2018, 30, e1703554.	11.1	270
182	Functional liquid-crystalline polymers and supramolecular liquid crystals. Polymer Journal, 2018, 50, 149-166.	1.3	82
183	Electrical Control of Shape in Voxelated Liquid Crystalline Polymer Nanocomposites. ACS Applied Materials & Interfaces, 2018, 10, 1187-1194.	4.0	43
184	First order shear strain beam theory for spontaneous bending of liquid crystal polymer strips. International Journal of Solids and Structures, 2018, 136-137, 168-185.	1.3	14
185	Easily Processable and Programmable Responsive Semiâ€Interpenetrating Liquid Crystalline Polymer Network Coatings with Changing Reflectivities and Surface Topographies. Advanced Functional Materials, 2018, 28, 1704756.	7.8	63
186	Programming Photoresponse in Liquid Crystal Polymer Actuators with Laser Projector. Advanced Optical Materials, 2018, 6, 1700949.	3.6	62
187	Simulation-based design of thermally-driven actuators using liquid crystal elastomers. Liquid Crystals, 2018, 45, 1010-1022.	0.9	13
188	Tunable large-scale regular array of topological defects in nematic liquid crystals. RSC Advances, 2018, 8, 35640-35645.	1.7	17
189	Shape-morphing architected sheets with non-periodic cut patterns. Soft Matter, 2018, 14, 9744-9749.	1.2	72

#	Article	IF	CITATIONS
190	Von funktionellen Flüssigkristallen zur nÃ⊠hsten Generation von Materialien. Angewandte Chemie, 2018, 130, 4438-4455.	1.6	31
191	Selfâ€Regulating Capabilities in Photonic Robotics. Advanced Materials Technologies, 2019, 4, 1800571.	3.0	57
192	Phase behavior of main-chain liquid crystalline polymer networks synthesized by alkyne–azide cycloaddition chemistry. Soft Matter, 2018, 14, 9885-9900.	1.2	6
193	Multiresponsive polymeric microstructures with encoded predetermined and self-regulated deformability. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12950-12955.	3.3	91
194	Coincident molecular auxeticity and negative order parameter in a liquid crystal elastomer. Nature Communications, 2018, 9, 5095.	5.8	53
195	Multiphysics Modeling and Experimental Validation of Reconfigurable, E-Textile Origami Antennas. , 2018, , .		0
196	Reconfigurable photoactuator through synergistic use of photochemical and photothermal effects. Nature Communications, 2018, 9, 4148.	5.8	233
197	Digital coding of mechanical stress in a dynamic covalent shape memory polymer network. Nature Communications, 2018, 9, 4002.	5.8	109
198	Tunable Optical Vortices Generated by Self-Assembled Defect Structures in Nematics. Physical Review Applied, 2018, 10, .	1.5	14
199	Liquid crystal elastomers: an introduction and review of emerging technologies. Liquid Crystals Reviews, 2018, 6, 78-107.	1.1	190
200	Novel ink for ambient condition printing of liquid crystal elastomers for 4D printing. Smart Materials and Structures, 2018, 27, 125011.	1.8	149
201	Photomodulated Tricolor-Changing Artificial Flowers. Chemistry of Materials, 2018, 30, 8079-8088.	3.2	71
202	Photothermally driven liquid crystal polymer actuators. Materials Chemistry Frontiers, 2018, 2, 1932-1943.	3.2	144
203	Liquid Crystal-Templated Synthesis of Mesoporous Membranes with Predetermined Pore Alignment. ACS Applied Materials & Interfaces, 2018, 10, 33484-33492.	4.0	25
204	Bioinspired 3D structures with programmable morphologies and motions. Nature Communications, 2018, 9, 3705.	5.8	151
205	Liquid Crystal Elastomer-Based Microelectrode Array for In Vitro Neuronal Recordings. Micromachines, 2018, 9, 416.	1.4	24
206	Different Geometric Information Integrated within a Single Polydopamine Pattern to Yield Dual Shape Transformations. Macromolecular Materials and Engineering, 2018, 303, 1800319.	1.7	3
207	Untethered Recyclable Tubular Actuators with Versatile Locomotion for Soft Continuum Robots. Advanced Materials, 2018, 30, e1801103.	11.1	133

ARTICLE IF CITATIONS # Solvent-assisted programming of flat polymer sheets into reconfigurable and self-healing 3D 208 5.8 108 structures. Nature Communications, 2018, 9, 1906. Liquid crystal polymers with motile surfaces. Soft Matter, 2018, 14, 4898-4912. 209 1.2 24 Controlled mechanical assembly of complex 3D mesostructures and strain sensors by tensile 210 5.131 buckling. Npj Flexible Electronics, 2018, 2, . Prepatterned liquid crystal elastomers as a step toward artificial morphogenesis. Proceedings of the National Academy of Ściences of the United States of America, 2018, 115, 7171-7173. Layered liquid crystal elastomer actuators. Nature Communications, 2018, 9, 2531. 212 5.8 203 An easily coatable temperature responsive cholesteric liquid crystal oligomer for making structural 2.7 colour patterns. Journal of Materials Chemistry C, 2018, 6, 7184-7187 Universal inverse design of surfaces with thin nematic elastomer sheets. Proceedings of the National 214 3.3 213 Academy of Sciences of the United States of America, 2018, 115, 7206-7211. From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials. 2.9 143 Nanophotonics, 2018, 7, 1387-1422. Reconfigurable LC Elastomers: Using a Thermally Programmable Monodomain To Access Two-Way 216 2.2 92 Free-Standing Multiple Shape Memory Polymers. Macromolecules, 2018, 51, 5812-5819. Multistimulus Responsive Actuator with GO and Carbon Nanotube/PDMS Bilayer Structure for 144 Flexible and Smart Devices. ACS Applied Materials & amp; Interfaces, 2018, 10, 27215-27223. Programmable 3D Shape Changes in Liquid Crystal Polymer Networks of Uniaxial Orientation. 218 7.8 60 Advanced Functional Materials, 2018, 28, 1802809. Kinetics of Ordering and Deformation in Photosensitive Azobenzene LC Networks. Polymers, 2018, 10, A cut-and-paste strategy towards liquid crystal elastomers with complex shape morphing. Journal of 221 2.7 38 Materials Chemistry C, 2018, 6, 8251-8257. Dynamic investigations of liquid crystalline elastomers and their constituents by ²H NMR spectroscopy. Liquid Crystals, 2018, 45, 2158-2173. 223 Soft skin texture modulation for social robotics., 2018,,. 23 Enabling and Localizing Omnidirectional Nonlinear Deformation in Liquid Crystalline Elastomers. 224 11.1 Advanced Materials, 2018, 30, e1802438. Effect of Block Immiscibility on Strain-Induced Microphase Segregation and Crystallization of Model 225 2.22 Block Copolymer Elastomers. Macromolecules, 2018, 51, 5685-5693. Actuating thermo- and photo-responsive tubes from liquid crystalline elastomers. Journal of 34 Materials Chemistry C, 2018, 6, 9093-9101.

#	Article	IF	Citations
227	4D Printed Actuators with Softâ€Robotic Functions. Macromolecular Rapid Communications, 2018, 39, 1700710.	2.0	268
228	Coolingâ€Triggered Shapeshifting Hydrogels with Multiâ€Shape Memory Performance. Advanced Materials, 2018, 30, e1707461.	11.1	51
229	Advances in Cell Scaffolds for Tissue Engineering: The Value of Liquid Crystalline Elastomers. Chemistry - A European Journal, 2018, 24, 12206-12220.	1.7	44
230	Unpolarized light-induced alignment of azobenzene by scanning wave photopolymerization. Polymer Journal, 2018, 50, 753-759.	1.3	14
231	Liquid Crystal Elastomers—A Path to Biocompatible and Biodegradable 3D-LCE Scaffolds for Tissue Regeneration. Materials, 2018, 11, 377.	1.3	52
232	Nanostructured Composites Based on Liquid-Crystalline Elastomers. Polymers, 2018, 10, 773.	2.0	22
233	A readily programmable, fully reversible shape-switching material. Science Advances, 2018, 4, eaat4634.	4.7	146
234	Physio- and chemo-dual crosslinking toward thermoand photo-response of azobenzene-containing liquid crystalline polyester. Science China Materials, 2018, 61, 1225-1236.	3.5	12
235	Effects of director orientation on the vibration of anisotropic nematic elastomer plates under various boundary conditions. Smart Materials and Structures, 2018, 27, 075044.	1.8	4
236	Micrometerâ€Scale Porous Buckling Shell Actuators Based on Liquid Crystal Networks. Advanced Functional Materials, 2018, 28, 1801209.	7.8	39
237	A theoretical model of postbuckling in straight ribbons with engineered thickness distributions for three-dimensional assembly. International Journal of Solids and Structures, 2018, 147, 254-271.	1.3	23
238	Aggregation-Induced Emission Luminogen-Functionalized Liquid Crystal Elastomer Soft Actuators. Macromolecules, 2018, 51, 4516-4524.	2.2	54
239	Reversible solvent-sensitive actuator with continuous bending/debending process from liquid crystal elastomer-colloidal material. Soft Matter, 2018, 14, 5547-5553.	1.2	17
240	Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 2018, 558, 274-279.	13.7	1,426
241	Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers. Soft Matter, 2018, 14, 6024-6036.	1.2	53
242	Coupling of Photoinduced Mass Immigration with Polymer Networks to Produce Nanostructured Materials Capable of Reversibly Creating Arbitrary Deformations. Macromolecular Chemistry and Physics, 2018, 219, 1800113.	1.1	3
243	Molecular alignment, large surface deformations and hysteresis effects in polydomain LC polymer films under an in-plane DC electric field. Journal of Physics and Chemistry of Solids, 2018, 122, 36-40.	1.9	4
244	Selfâ€Folded Gripperâ€Like Architectures from Stimuliâ€Responsive Bilayers. Advanced Materials, 2018, 30, e1801669.	11.1	53

#	Article	IF	CITATIONS
245	Interpenetrating Liquid-Crystal Polyurethane/Polyacrylate Elastomer with Ultrastrong Mechanical Property. Journal of the American Chemical Society, 2019, 141, 14364-14369.	6.6	178
246	Enabling Robust Selfâ€Folding Origami by Preâ€Biasing Vertex Buckling Direction. Advanced Materials, 2019, 31, e0193006.	11.1	32
247	Morphing of liquid crystal surfaces by emergent collectivity. Nature Communications, 2019, 10, 3501.	5.8	19
248	Advances in biomimetic stimuli responsive soft grippers. Nano Convergence, 2019, 6, 20.	6.3	55
249	Graphene Oxide Liquid Crystal Domains: Quantification and Role in Tailoring Viscoelastic Behavior. ACS Nano, 2019, 13, 8957-8969.	7.3	24
250	Microstructured Photopolymerization of Liquid Crystalline Elastomers in Oxygenâ€Rich Environments. Advanced Functional Materials, 2019, 29, 1903761.	7.8	29
251	Voxelated Molecular Patterning in Three-Dimensional Freeforms. ACS Applied Materials & Interfaces, 2019, 11, 28236-28245.	4.0	67
252	Harnessing the interface mechanics of hard films and soft substrates for 3D assembly by controlled buckling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15368-15377.	3.3	54
253	Assembling a Natural Small Molecule into a Supramolecular Network with High Structural Order and Dynamic Functions. Journal of the American Chemical Society, 2019, 141, 12804-12814.	6.6	190
254	Polymer Design for 3D Printing Elastomers: Recent Advances in Structure, Properties, and Printing. Progress in Polymer Science, 2019, 97, 101144.	11.8	169
255	Voltage-controlled morphing of dielectric elastomer circular sheets into conical surfaces. Extreme Mechanics Letters, 2019, 30, 100504.	2.0	30
256	Multi-functional soft-bodied jellyfish-like swimming. Nature Communications, 2019, 10, 2703.	5.8	343
257	Travelling waves on photo-switchable patterned liquid crystal polymer films directed by rotating polarized light. Soft Matter, 2019, 15, 8040-8050.	1.2	12
258	Liquidâ€Crystalâ€Mediated Geometric Phase: From Transmissive to Broadband Reflective Planar Optics. Advanced Materials, 2020, 32, e1903665.	11.1	124
259	A peritrophin mediates the peritrophic matrix permeability in the workers of the bees Melipona quadrifasciata and Apis mellifera. Arthropod Structure and Development, 2019, 53, 100885.	0.8	12
260	Haptic display for virtual reality: progress and challenges. Virtual Reality & Intelligent Hardware, 2019, 1, 136-162.	1.8	119
261	Deformation and Elastic Recovery of Acrylate-Based Liquid Crystalline Elastomers. Macromolecules, 2019, 52, 8248-8255.	2.2	22
262	Oscillating Surfaces Fueled by a Continuous AC Electric Field. Advanced Materials Interfaces, 2019, 6, 1901292.	1.9	9

#	Article	IF	CITATIONS
263	Dispersed Association of Single-Component Short-Alkyl Chains toward Thermally Programmable and Malleable Multiple-Shape Hydrogel. ACS Applied Materials & Interfaces, 2019, 11, 43622-43630.	4.0	22
264	Intelligently Actuating Liquid Crystal Elastomerâ€Carbon Nanotube Composites. Advanced Functional Materials, 2019, 29, 1905063.	7.8	135
265	Biasing Buckling Direction in Shapeâ€Programmable Hydrogel Sheets with Throughâ€Thickness Gradients. Advanced Functional Materials, 2019, 29, 1905273.	7.8	39
266	Semi-implicit methods for the dynamics of elastic sheets. Journal of Computational Physics, 2019, 399, 108952.	1.9	6
267	On-demand orbital maneuver of multiple soft robots via hierarchical magnetomotility. Nature Communications, 2019, 10, 4751.	5.8	48
268	Opposite Self-Folding Behavior of Polymeric Photoresponsive Actuators Enabled by a Molecular Approach. Polymers, 2019, 11, 1644.	2.0	8
269	Programming the Shape Transformation of a Composite Hydrogel Sheet via Erasable and Rewritable Nanoparticle Patterns. ACS Applied Materials & Interfaces, 2019, 11, 42654-42660.	4.0	19
270	Threading the Spindle: A Geometric Study of Chiral Liquid Crystal Polymer Microparticles. Physical Review Letters, 2019, 123, 157801.	2.9	14
272	Untethered soft robotic matter with passive control of shape morphing and propulsion. Science Robotics, 2019, 4, .	9.9	268
273	Precise Control of Lyotropic Chromonic Liquid Crystal Alignment through Surface Topography. ACS Applied Materials & Interfaces, 2019, 11, 36110-36117.	4.0	20
274	Modern Problems of the Physics of Liquid Systems. Springer Proceedings in Physics, 2019, , .	0.1	2
275	Decoding Liquid Crystal Oligomer Phase Transitions: Toward Molecularly Engineered Shape Changing Materials. Macromolecules, 2019, 52, 6878-6888.	2.2	12
276	Contactless Manipulation of Soft Robots. Materials, 2019, 12, 3065.	1.3	34
277	Structure and rheology of liquid crystal hydroglass formed in aqueous nanocrystalline cellulose suspensions. Journal of Colloid and Interface Science, 2019, 555, 702-713.	5.0	21
278	Visible and infrared three-wavelength modulated multi-directional actuators. Nature Communications, 2019, 10, 4539.	5.8	155
279	A multifunctional shape-morphing elastomer with liquid metal inclusions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21438-21444.	3.3	203
280	Direct shape programming of liquid crystal elastomers. Soft Matter, 2019, 15, 870-879.	1.2	85
281	Liquid crystal hydroglass formed <i>via</i> phase separation of nanocellulose colloidal rods. Soft Matter, 2019, 15, 1716-1720.	1.2	25

#	Article	IF	CITATIONS
282	Durable liquid-crystalline vitrimer actuators. Chemical Science, 2019, 10, 3025-3030.	3.7	82
283	Photomobile Polymer Materials with Complex 3D Deformation, Continuous Motions, Selfâ€Regulation, and Enhanced Processability. Advanced Optical Materials, 2019, 7, 1900380.	3.6	59
284	Buckling and twisting of advanced materials into morphable 3D mesostructures. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13239-13248.	3.3	81
285	Light to Shape the Future: From Photolithography to 4D Printing. Advanced Optical Materials, 2019, 7, 1900598.	3.6	152
286	Preparation of liquid crystalline polymer networks containing a cinnamyl group in the main chain with tunable thermal actuation behavior. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 904-911.	2.4	3
287	Fabrication of Asymmetric Tubular Hydrogels through Polymerization-Assisted Welding for Thermal Flow Actuated Artificial Muscles. Chemistry of Materials, 2019, 31, 4469-4478.	3.2	39
288	Photoswitchable chevron topographies of glassy nematic coatings. Physical Review E, 2019, 99, 052702.	0.8	3
289	Microfluidic Synthesis of Liquid Crystalline Elastomer Particle Transport Systems which Can Be Remoteâ€Controlled Magnetically. Advanced Functional Materials, 2019, 29, 1902454.	7.8	32
290	Bioinspired Design of Lightâ€Powered Crawling, Squeezing, and Jumping Untethered Soft Robot. Advanced Materials Technologies, 2019, 4, 1900185.	3.0	144
291	Distortion-controlled isotropic swelling: numerical study of free boundary swelling patterns. Soft Matter, 2019, 15, 4890-4897.	1.2	1
292	Responsive, 3D Electronics Enabled by Liquid Crystal Elastomer Substrates. ACS Applied Materials & Interfaces, 2019, 11, 19506-19513.	4.0	38
293	Soft Three-Dimensional Robots with Hard Two-Dimensional Materials. ACS Nano, 2019, 13, 4883-4892.	7.3	45
294	Long Liquid Crystal Elastomer Fibers with Large Reversible Actuation Strains for Smart Textiles and Artificial Muscles. ACS Applied Materials & amp; Interfaces, 2019, 11, 19514-19521.	4.0	168
295	Molecularly-ordered hydrogels with controllable, anisotropic stimulus response. Soft Matter, 2019, 15, 4508-4517.	1.2	13
296	Surface Dynamics at Photoactive Liquid Crystal Polymer Networks. Advanced Optical Materials, 2019, 7, 1900255.	3.6	16
297	Simultaneous formation behaviour of surface structures and molecular alignment by patterned photopolymerisation. Liquid Crystals, 2019, 46, 1995-2002.	0.9	7
298	Shining Light on Liquid Crystal Polymer Networks: Preparing, Reconfiguring, and Driving Soft Actuators. Advanced Optical Materials, 2019, 7, 1900262.	3.6	75
299	Shapeable Material Technologies for 3D Selfâ€Assembly of Mesoscale Electronics. Advanced Materials Technologies, 2019, 4, 1800692.	3.0	44

#	Article	IF	CITATIONS
300	Plasmonic Metasurfaces with High UV–Vis Transmittance for Photopatterning of Designer Molecular Orientations. Advanced Optical Materials, 2019, 7, 1900117.	3.6	17
301	Programmable actuation of liquid crystal elastomers <i>via</i> "living―exchange reaction. Soft Matter, 2019, 15, 2811-2816.	1.2	63
302	Tailoring surface patterns to direct the assembly of liquid crystalline materials. Liquid Crystals Reviews, 2019, 7, 30-59.	1.1	20
303	Liquid crystal elastomer shell actuators with negative order parameter. Science Advances, 2019, 5, eaaw2476.	4.7	45
304	Low <i>f</i> â€Number Diffraction‣imited Pancharatnam–Berry Microlenses Enabled by Plasmonic Photopatterning of Liquid Crystal Polymers. Advanced Materials, 2019, 31, e1808028.	11.1	42
305	Bio-inspired liquid crystal actuator materials. Journal of Materials Chemistry C, 2019, 7, 3413-3428.	2.7	83
306	Thermo-mechanical and photo-luminescence properties of micro-actuators made of liquid crystal elastomers with cyano-oligo(<i>p</i> -phenylene vinylene) crosslinking bridges. Materials Chemistry Frontiers, 2019, 3, 2499-2506.	3.2	19
307	Reusable gold nanorod/liquid crystalline elastomer (GNR/LCE) composite films with UV-triggered dynamic crosslinks capable of micropatterning and NIR actuation. Journal of Materials Chemistry C, 2019, 7, 14245-14254.	2.7	24
308	Programmable 3D Shape-Change Liquid Crystalline Elastomer Based on a Vertically Aligned Monodomain with Cross-link Gradient. ACS Applied Materials & Interfaces, 2019, 11, 48393-48401.	4.0	18
309	Molecular heterogeneity drives reconfigurable nematic liquid crystal drops. Nature, 2019, 576, 433-436.	13.7	41
310	Monolithic shape-programmable dielectric liquid crystal elastomer actuators. Science Advances, 2019, 5, eaay0855.	4.7	126
311	Modeling of the photo-induced stress in azobenzene polymers by combining theory and computer simulations. Soft Matter, 2019, 15, 9894-9908.	1.2	15
312	Simple Synthesis of Elastomeric Photomechanical Switches That Selfâ€Heal. Macromolecular Rapid Communications, 2019, 40, e1800815.	2.0	21
313	4D printing with robust thermoplastic polyurethane hydrogel-elastomer trilayers. Materials and Design, 2019, 163, 107544.	3.3	93
314	Molecularlyâ€Engineered, 4Dâ€Printed Liquid Crystal Elastomer Actuators. Advanced Functional Materials, 2019, 29, 1806412.	7.8	234
315	Responsive lignin for shape memory applications. Polymer, 2019, 160, 210-222.	1.8	16
316	Photocontrol of helix handedness in curled liquid crystal elastomers. Liquid Crystals, 2019, 46, 1231-1240.	0.9	29
317	Allâ€Optical Control of Shape. Advanced Materials, 2019, 31, e1805750.	11.1	56

# 320	ARTICLE Liquid Crystals-Enabled AC Electrokinetics. Micromachines, 2019, 10, 45.	IF 1.4	CITATIONS
321	Light Control with Liquid Crystalline Elastomers. Advanced Optical Materials, 2019, 7, 1801683.	3.6	83
322	Making shapes of glassy nematic sheets with three-dimensional director fields. International Journal of Solids and Structures, 2019, 159, 232-238.	1.3	4
323	Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties. Advanced Materials, 2019, 31, e1805282.	11.1	171
324	Smart helical structures inspired by the pellicle of euglenids. Journal of the Mechanics and Physics of Solids, 2019, 123, 234-246.	2.3	16
325	Advances in 4D Printing: Materials and Applications. Advanced Functional Materials, 2019, 29, 1805290.	7.8	633
326	Phototunable Morpho Butterfly Microstructures Modified by Liquid Crystal Polymers. Advanced Optical Materials, 2019, 7, 1801494.	3.6	28
327	Light-driven topographical morphing of azobenzene-doped liquid crystal polymer films via tunable photo-polymerization induced diffusion. Journal of the Mechanics and Physics of Solids, 2019, 123, 247-266.	2.3	5
328	Combined Light and Electric Response of Topographic Liquid Crystal Network Surfaces. Advanced Functional Materials, 2020, 30, 1901681.	7.8	28
329	Microstructured Actuation of Liquid Crystal Polymer Networks. Advanced Functional Materials, 2020, 30, 1901890.	7.8	93
330	Flexible Actuators for Soft Robotics. Advanced Intelligent Systems, 2020, 2, 1900077.	3.3	79
331	Multimodal Haptic Display for Virtual Reality: A Survey. IEEE Transactions on Industrial Electronics, 2020, 67, 610-623.	5.2	86
332	Synthesis and characterization of two series of pressure-sensitive cholesteric liquid crystal elastomers with optical properties. Liquid Crystals, 2020, 47, 143-153.	0.9	10
333	Predicting molecular ordering in a binary liquid crystal using machine learning. Liquid Crystals, 2020, 47, 438-448.	0.9	11
334	Static and Dynamic Control of Fingerprint Landscapes of Liquid Crystal Network Coatings. ACS Applied Materials & Interfaces, 2020, 12, 5265-5273.	4.0	9
335	Topographic Mechanics and Applications of Liquid Crystalline Solids. Annual Review of Condensed Matter Physics, 2020, 11, 125-145.	5.2	58
336	3D Selfâ€Assembled Microelectronic Devices: Concepts, Materials, Applications. Advanced Materials, 2020, 32, e1902994.	11.1	67
337	Organic Haptics: Intersection of Materials Chemistry and Tactile Perception. Advanced Functional Materials, 2020, 30, 1906850.	7.8	25

#	Article	IF	CITATIONS
338	3D Printable and Reconfigurable Liquid Crystal Elastomers with Lightâ€Induced Shape Memory via Dynamic Bond Exchange. Advanced Materials, 2020, 32, e1905682.	11.1	195
339	Liquid rystalline Soft Actuators with Switchable Thermal Reprogrammability. Angewandte Chemie, 2020, 132, 4808-4814.	1.6	14
340	Liquidâ€Crystalline Soft Actuators with Switchable Thermal Reprogrammability. Angewandte Chemie - International Edition, 2020, 59, 4778-4784.	7.2	102
341	Self-assembly of azaphthalocyanine–oligodeoxynucleotide conjugates into J-dimers: towards biomolecular logic gates. Organic Chemistry Frontiers, 2020, 7, 445-456.	2.3	5
342	Liquid crystalline networks based on photo-initiated thiol–ene click chemistry. Soft Matter, 2020, 16, 1760-1770.	1.2	12
343	Simultaneous control of Gaussian curvature and buckling direction by swelling of asymmetric trilayer hydrogel hybrids. Soft Matter, 2020, 16, 688-694.	1.2	13
344	Localizing genesis in polydomain liquid crystal elastomers. Soft Matter, 2020, 16, 330-336.	1.2	7
345	On the History of Reactive Mesogens: Interview with Dirk J. Broer. Advanced Materials, 2020, 32, e1905144.	11.1	14
347	Magnetic Shape Memory Polymers with Integrated Multifunctional Shape Manipulation. Advanced Materials, 2020, 32, e1906657.	11.1	367
348	Associative Learning by Classical Conditioning in Liquid Crystal Network Actuators. Matter, 2020, 2, 194-206.	5.0	51
350	Responsive and Foldable Soft Materials. Trends in Chemistry, 2020, 2, 107-122.	4.4	46
351	Liquid Crystal Polymerâ€Based Soft Robots. Advanced Intelligent Systems, 2020, 2, 2000148.	3.3	67
352	Shape Programming by Modulating Actuation over Hierarchical Length Scales. Advanced Materials, 2020, 32, e2004515.	11.1	7
353	On a consistent finite-strain plate model of nematic liquid crystal elastomers. Journal of the Mechanics and Physics of Solids, 2020, 145, 104169.	2.3	15
354	Distributed Electric Field Induces Orientations of Nanosheets to Prepare Hydrogels with Elaborate Ordered Structures and Programmed Deformations. Advanced Materials, 2020, 32, e2005567.	11.1	89
355	Processing advances in liquid crystal elastomers provide a path to biomedical applications. Journal of Applied Physics, 2020, 128, 140901.	1.1	59
356	Repeatable and Reprogrammable Shape Morphing from Photoresponsive Gold Nanorod/Liquid Crystal Elastomers. Advanced Materials, 2020, 32, e2004270.	11.1	109
357	Disclination regulated depression and elevation of glassy nematic coatings on soft elastic substrates. Extreme Mechanics Letters, 2020, 40, 100938.	2.0	0

ARTICLE IF CITATIONS # Deuteron NMR investigation on orientational order parameter in polymer dispersed liquid crystal 358 1.3 17 elastomers. Physical Chemistry Chemical Physics, 2020, 22, 23064-23072. Designing seamless-welded liquid-crystalline soft actuators with a "glue-free―method by dynamic 1.8 boroxines. Polymer, 2020, 208, 122962. Transesterification in Epoxy–Thiol Exchangeable Liquid Crystalline Elastomers. Macromolecules, 360 2.2 30 2020, 53, 8642-8649. Effect of Isomeric Amine Chain Extenders and Crosslink Density on the Properties of Liquid Crystal 361 Elastomers. Materials, 2020, 13, 3094. Carbon-based thin-film actuator with 1D to 2D transitional structure applied in smart clothing. 362 5.4 5 Carbon, 2020, 168, 546-552. A Battery-Free Temperature Sensor With Liquid Crystal Elastomer Switching Between RFID Chips. IEEE Access, 2020, 8, 87870-87883. 2.6 Light-driven complex 3D shape morphing of glassy polymers by resolving spatio-temporal stress 364 1.6 5 confliction. Scientific Reports, 2020, 10, 10840. Chemical Oscillation and Morphological Oscillation in Catalyst-Embedded Lyotropic Liquid 1.8 Crystalline Gels. Frontiers in Chemistry, 2020, 8, 583165. Dynamically morphing microchannels in liquid crystal elastomer coatings containing disclinations. 366 1.1 5 Journal of Applied Physics, 2020, 128, . Advances in Stimuli-Responsive Soft Robots with Integrated Hybrid Materials. Actuators, 2020, 9, 115. 1.2 Design and applications of light responsive liquid crystal polymer thin films. Applied Physics Reviews, 368 5.544 2020, 7, . Defective nematogenesis: Gauss curvature in programmable shape-responsive sheets with topological 1.2 defects. Soft Matter, 2020, 16, 10935-10945. 3D Microstructures of Liquid Crystal Networks with Programmed Voxelated Director Fields. 370 11.1 58 Advanced Materials, 2020, 32, e2002753. Evaluation of mesomorphic and thermal stabilities for terminal epoxy liquid crystals. Journal of 371 2.3 Molecular Liquids, 2020, 317, 113955. Orientation Control of Helical Nanofilament Phase and Its Chiroptical Applications. Crystals, 2020, 10, 372 1.0 17 675. Photonic artificial muscles: from micro robots to tissue engineering. Faraday Discussions, 2020, 223, 216-232. A plate theory for nematic liquid crystalline solids. Journal of the Mechanics and Physics of Solids, 374 2.325 2020, 144, 104101. Evolving, complex topography from combining centers of Gaussian curvature. Physical Review E, 2020, 375 102, 013003.

#	Article	IF	CITATIONS
376	Light-Sensitive Azobenzene-Containing Liquid Crystalline Polymers. Polymers and Polymeric Composites, 2020, , 447-477.	0.6	1
377	Four-Dimensional Printed Liquid Crystalline Elastomer Actuators with Fast Photoinduced Mechanical Response toward Light-Driven Robotic Functions. ACS Applied Materials & Interfaces, 2020, 12, 44195-44204.	4.0	77
378	Shape morphing smart 3D actuator materials for micro soft robot. Materials Today, 2020, 41, 243-269.	8.3	130
379	Three-dimensional printing of functionally graded liquid crystal elastomer. Science Advances, 2020, 6,	4.7	129
380	What Came First: The Helix or the H2O?. Matter, 2020, 3, 608-610.	5.0	0
381	Liquid Crystal Polymeric Skins "Sweat―to Provide Real-Time Drug Delivery. Matter, 2020, 3, 606-608.	5.0	1
382	On demand shape memory polymer via light regulated topological defects in a dynamic covalent network. Nature Communications, 2020, 11, 4257.	5.8	82
383	Multivalent Assembly of Flexible Polymer Chains into Supramolecular Nanofibers. Journal of the American Chemical Society, 2020, 142, 16814-16824.	6.6	33
384	Foundations for Soft, Smart Matter by Active Mechanical Metamaterials. Advanced Science, 2020, 7, 2001384.	5.6	52
385	Plasmaâ€Induced Polymerizations: A New Synthetic Entry in Liquid Crystal Elastomer Actuators. Macromolecular Rapid Communications, 2020, 41, e2000385.	2.0	2
386	Programmable Transformation and Controllable Locomotion of Magnetoactive Soft Materials with 3D-Patterned Magnetization. ACS Applied Materials & Interfaces, 2020, 12, 58179-58190.	4.0	37
387	Reconfigurable and Latchable Shapeâ€Morphing Dielectric Elastomers Based on Local Stiffness Modulation. Advanced Functional Materials, 2020, 30, 2001597.	7.8	42
388	Catalytic Control of Plastic Flow in Siloxane-Based Liquid Crystalline Elastomer Networks. ACS Macro Letters, 2020, 9, 749-755.	2.3	28
389	Main-Chain Liquid Crystalline Hydrogels that Support 3D Stem Cell Culture. Biomacromolecules, 2020, 21, 2365-2375.	2.6	3
390	Chiral, Thermally Irreversible and Quasi‣tealth Photochromic Dopant to Control Selective Reflection Wavelength of Cholesteric Liquid Crystal. ChemPhysChem, 2020, 21, 1375-1383.	1.0	7
391	Liquid crystal elastomer actuator with serpentine locomotion. Chemical Communications, 2020, 56, 7597-7600.	2.2	34
392	A copper(i)-catalyzed azide–alkyne click chemistry approach towards multifunctional two-way shape-memory actuators. Polymer Chemistry, 2020, 11, 3747-3755.	1.9	13
393	Microscale Polarization Color Pixels from Liquid Crystal Elastomers. Advanced Optical Materials, 2020, 8, 1902098.	3.6	29

#	Article	IF	CITATIONS
394	Cooperative and Independent Effect of Modular Functionalization on Mesomorphic Performances and Microphase Separation of Wellâ€Đesigned Liquid Crystalline Diblock Copolymers. Chemistry - A European Journal, 2020, 26, 11199-11208.	1.7	5
395	Programmable Reversible Shape Transformation of Hydrogels Based on Transient Structural Anisotropy. Advanced Materials, 2020, 32, e2001693.	11.1	77
396	Recent progress of morphable 3D mesostructures in advanced materials. Journal of Semiconductors, 2020, 41, 041604.	2.0	9
397	Design principles for non-reciprocal photomechanical actuation. Soft Matter, 2020, 16, 5951-5958.	1.2	17
398	Reactive 3D Printing of Shape-Programmable Liquid Crystal Elastomer Actuators. ACS Applied Materials & Interfaces, 2020, 12, 28692-28699.	4.0	61
399	Allyl sulfide-based visible light-induced dynamically reshaped liquid crystalline elastomer/SWCNT nanocomposites capable of multimode NIR photomechanical actuations. New Journal of Chemistry, 2020, 44, 10902-10910.	1.4	19
400	Recent progress in dynamic covalent chemistries for liquid crystal elastomers. Journal of Materials Chemistry B, 2020, 8, 6610-6623.	2.9	59
401	Degradation-Induced Actuation in Oxidation-Responsive Liquid Crystal Elastomers. Crystals, 2020, 10, 420.	1.0	10
402	Artificial Organic Skin Wets Its Surface by Field-Induced Liquid Secretion. Matter, 2020, 3, 782-793.	5.0	23
403	Liquid rystalâ€Elastomerâ€Based Dissipative Structures by Digital Light Processing 3D Printing. Advanced Materials, 2020, 32, e2000797.	11.1	120
404	Tunable Electromechanical Liquid Crystal Elastomer Actuators. Advanced Intelligent Systems, 2020, 2, 2000022.	3.3	27
405	Emergent Surface Topography Enabled by Concurrent Crystallization and Polymerization. Macromolecules, 2020, 53, 2388-2395.	2.2	6
406	Smart Textileâ€Based Personal Thermal Comfort Systems: Current Status and Potential Solutions. Advanced Materials Technologies, 2020, 5, 1901155.	3.0	82
407	Shape-Programmed Fabrication and Actuation of Magnetically Active Micropost Arrays. ACS Applied Materials & Materi	4.0	44
408	A Review on Liquid Crystal Polymers in Free-Standing Reversible Shape Memory Materials. Molecules, 2020, 25, 1241.	1.7	41
409	Programming Shape-Morphing Behavior of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing. ACS Applied Materials & Interfaces, 2020, 12, 15562-15572.	4.0	70
410	Moulding three-dimensional curved structures by selective heating. Royal Society Open Science, 2020, 7, 200011.	1.1	0
411	The relationship between hole size and the voltage-driven formation of surface structures in an ITO/liquid crystal polymer/perforated metal electrode system. Journal of Physics and Chemistry of Solids, 2020, 141, 109418.	1.9	2

#	Article	IF	CITATIONS
412	Soft actuators using liquid crystal elastomers with encapsulated liquid metal joule heaters. Multifunctional Materials, 2020, 3, 025003.	2.4	52
413	Lightâ€Coded Digital Crystallinity Patterns Toward Bioinspired 4D Transformation of Shapeâ€Memory Polymers. Advanced Functional Materials, 2020, 30, 2000522.	7.8	55
414	Blueprinting Photothermal Shapeâ€Morphing of Liquid Crystal Elastomers. Advanced Materials, 2020, 32, e2000609.	11.1	110
415	Materials as Machines. Advanced Materials, 2020, 32, e1906564.	11.1	213
416	The chemistry behind 4D printing. Applied Materials Today, 2020, 19, 100611.	2.3	42
417	In Situ Swelling-Gated Chemical Sensing Actuator. Cell Reports Physical Science, 2020, 1, 100011.	2.8	8
418	A domain decomposition approach to accelerate simulations of structure preserving nematic liquid crystal models. Journal of Non-Newtonian Fluid Mechanics, 2020, 283, 104335.	1.0	1
419	Anisotropic, porous hydrogels templated by lyotropic chromonic liquid crystals. Journal of Materials Chemistry B, 2020, 8, 6988-6998.	2.9	10
420	Reversible actuation for self-folding modular machines using liquid crystal elastomer. Smart Materials and Structures, 2020, 29, 105003.	1.8	22
421	Electric-field induced deformation and bending in nematic elastomer strips with orientation gradient. International Journal of Solids and Structures, 2020, 202, 243-259.	1.3	7
422	Liquid crystalline polymers: Discovery, development, and the future. Polymer, 2020, 202, 122740.	1.8	31
423	Thermal wrinkling of liquid crystal polymer shell/core spheres. Extreme Mechanics Letters, 2020, 40, 100860.	2.0	11
424	Synthesis of well-defined PS-based Azo-liquid crystals with control of phase transitions and photo-behaviors for liquid crystal networks with photomechanical deformation. Polymer, 2020, 203, 122749.	1.8	3
425	Materials, design, and fabrication of shape programmable polymers. Multifunctional Materials, 2020, 3, 032002.	2.4	17
426	Optical Pliers: Micrometerâ€5cale, Lightâ€Driven Tools Grown on Optical Fibers. Advanced Materials, 2020, 32, e2002779.	11.1	23
427	Large, Tunable Liquid Crystal Pretilt Achieved by Enhanced Out-of-Plane Reorientation of Azodye Thin Films. Langmuir, 2020, 36, 8554-8559.	1.6	3
428	Mechanically programmed 2D and 3D liquid crystal elastomers at macro- and microscale via two-step photocrosslinking. Soft Matter, 2020, 16, 2695-2705.	1.2	23
429	A 1 mm-Thick Miniatured Mobile Soft Robot With Mechanosensation and Multimodal Locomotion. IEEE Robotics and Automation Letters, 2020, 5, 3291-3298.	3.3	19

#	Article	IF	CITATIONS
430	Electrically Controlled Soft Actuators with Multiple and Reprogrammable Actuation Modes. Advanced Intelligent Systems, 2020, 2, 1900177.	3.3	26
431	Virtual Texture Generated Using Elastomeric Conductive Block Copolymer in a Wireless Multimodal Haptic Glove. Advanced Intelligent Systems, 2020, 2, 2000018.	3.3	29
432	Kirigamiâ€Inspired Selfâ€Assembly of 3D Structures. Advanced Functional Materials, 2020, 30, 1909888.	7.8	28
433	Dynamic Manipulation of Friction in Smart Textile Composites of Liquid rystal Elastomers. Advanced Materials Interfaces, 2020, 7, 1901996.	1.9	22
434	Self-Assembly of Aqueous Soft Matter Patterned by Liquid-Crystal Polymer Networks for Controlling the Dynamics of Bacteria. ACS Applied Materials & Interfaces, 2020, 12, 13680-13685.	4.0	20
435	Cell alignment by smectic liquid crystal elastomer coatings with nanogrooves. Journal of Biomedical Materials Research - Part A, 2020, 108, 1223-1230.	2.1	30
436	Continuum soft actuators based on reprogrammable geometric constraints. Extreme Mechanics Letters, 2020, 36, 100649.	2.0	3
437	Multipolar spatial electric field modulation for freeform electroactive hydrogel actuation. Scientific Reports, 2020, 10, 2482.	1.6	18
438	Programming temporal morphing of self-actuated shells. Nature Communications, 2020, 11, 237.	5.8	65
439	Shaping and Locomotion of Soft Robots Using Filament Actuators Made from Liquid Crystal Elastomer–Carbon Nanotube Composites. Advanced Intelligent Systems, 2020, 2, 1900163.	3.3	80
440	Effects of network structure on the mechanical and thermal responses of liquid crystal elastomers. Multifunctional Materials, 2020, 3, 015002.	2.4	4
442	A Passive RFID Temperature Sensing Antenna With Liquid Crystal Elastomer Switching. IEEE Access, 2020, 8, 24443-24456.	2.6	18
443	Biocompatible liquid-crystal elastomers mimic the intervertebral disc. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 107, 103757.	1.5	44
444	4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector. Journal of Medicinal Chemistry, 2020, 63, 8003-8024.	2.9	107
445	Light-triggered topological programmability in a dynamic covalent polymer network. Science Advances, 2020, 6, eaaz2362.	4.7	75
446	Shape memory materials for electrically-powered soft machines. Journal of Materials Chemistry B, 2020, 8, 4539-4551.	2.9	52
447	Crease-induced targeted cutting and folding of graphene origami. Carbon, 2020, 165, 259-266.	5.4	11
448	Modeling of Stripe Patterns in Photosensitive Azopolymers. Polymers, 2020, 12, 735.	2.0	10

#	Article	IF	CITATIONS
449	Liquid crystal elastomers as substrates for 3D, robust, implantable electronics. Journal of Materials Chemistry B, 2020, 8, 6286-6295.	2.9	16
450	Electroplasticization of Liquid Crystal Polymer Networks. ACS Applied Materials & Interfaces, 2020, 12, 19927-19937.	4.0	15
451	Measuring the five elastic constants of a nematic liquid crystal elastomer. Liquid Crystals, 2021, 48, 511-520.	0.9	9
452	Functional Liquid Crystal Polymer Surfaces with Switchable Topographies. Small Structures, 2021, 2, 2000107.	6.9	14
453	Thermally resistant and strong remoldable triple-shape memory thermosets based on bismaleimide with transesterification. Journal of Materials Science, 2021, 56, 3623-3637.	1.7	6
454	4Dâ€Printing of Photoswitchable Actuators. Angewandte Chemie, 2021, 133, 5596-5603.	1.6	18
455	Oblique wrinkling patterns on liquid crystal polymer core–shell cylinders under thermal load. International Journal of Solids and Structures, 2021, 208-209, 181-193.	1.3	7
456	4Dâ€Printing of Photoswitchable Actuators. Angewandte Chemie - International Edition, 2021, 60, 5536-5543.	7.2	104
457	Shape memory materials with reversible shape change and self-healing abilities: A review. Materials Today: Proceedings, 2021, 44, 4563-4568.	0.9	6
458	4D Printing of Glass Fiber-Regulated Shape Shifting Structures with High Stiffness. ACS Applied Materials & Interfaces, 2021, 13, 12797-12804.	4.0	28
459	Printing Multiâ€Material Organic Haptic Actuators. Advanced Materials, 2021, 33, e2002541.	11.1	35
460	<scp>Bodyâ€ŧemperature</scp> s <scp>hapeâ€shifting</scp> liquid crystal elastomers. Journal of Applied Polymer Science, 2021, 138, 50136.	1.3	30
461	A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. Advanced Materials, 2021, 33, e2000713.	11.1	558
462	Introduction to 4D printing. , 2021, , 303-342.		6
463	An Untethered Soft Robot Based on Liquid Crystal Elastomers. Soft Robotics, 2022, 9, 154-162.	4.6	28
464	Numerical analysis and design of a light-driven liquid crystal polymer-based motorless miniature cart. Soft Matter, 2021, 17, 7714-7728.	1.2	2
465	Thermal- and light-responsive programmable shape-memory behavior of liquid crystalline polyurethanes with pendant photosensitive groups. Journal of Materials Chemistry A, 2021, 9, 15087-15094.	5.2	23
466	Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. Chemical Reviews, 2021, 121, 1716-1745.	23.0	587

"		15	Currenterio
#	ARTICLE	IF	CHATIONS
467	Miniature Machines. Advanced Materials, 2021, 33, e2006191.	11.1	101
468	Selection rules and a new model for stable topological defect arrays in nematic liquid crystal. Liquid Crystals, 2021, 48, 1295-1308.	0.9	6
469	Stimuli-responsive engineered living materials. Soft Matter, 2021, 17, 785-809.	1.2	64
470	Liquid Crystalline Polymers: Opportunities to Shape Neural Interfaces. Neuromodulation, 2022, 25, 1259-1267.	0.4	8
471	Thermo- and chemical-triggered overhand and reef knots based on liquid crystal gels. Journal of Materials Chemistry C, 0, , .	2.7	0
472	A facile approach for the preparation of liquid crystalline polyurethane for light-responsive actuator films with self-healing performance. Materials Chemistry Frontiers, 2021, 5, 3192-3200.	3.2	22
473	Tailoring the multistability of origami-inspired, buckled magnetic structures <i>via</i> compression and creasing. Materials Horizons, 2021, 8, 3324-3333.	6.4	4
474	A photo-driven metallo-supramolecular stress-free reversible shape memory polymer. Journal of Materials Chemistry A, 2021, 9, 6827-6830.	5.2	30
475	Molecular Engineering of Mesogenic Constituents Within Liquid Crystalline Elastomers to Sharpen Thermotropic Actuation. Advanced Functional Materials, 2021, 31, 2100564.	7.8	38
476	Remotely Controlled, Reversible, On-Demand Assembly and Reconfiguration of 3D Mesostructures via Liquid Crystal Elastomer Platforms. ACS Applied Materials & Interfaces, 2021, 13, 8929-8939.	4.0	22
477	Photoalignment in Polysiloxane Liquidâ€Crystalline Elastomers with Rearrangeable Networks. Advanced Optical Materials, 2021, 9, 2100053.	3.6	27
478	Translating 2D Director Profile to 3D Topography in a Liquid Crystal Polymer. Advanced Science, 2021, 8, 2004749.	5.6	11
479	Exchangeable Liquid Crystalline Elastomers and Their Applications. Chemical Reviews, 2022, 122, 4927-4945.	23.0	91
480	Autonomous materials systems from active liquid crystals. Nature Reviews Materials, 2021, 6, 437-453.	23.3	53
481	Bioinspired Ultrathin Piecewise Controllable Soft Robots. Advanced Materials Technologies, 2021, 6, 2001095.	3.0	27
482	Autonomous Shapeshifting Hydrogels via Temporal Programming of Photoswitchable Dynamic Network. Chemistry of Materials, 2021, 33, 2046-2053.	3.2	29
483	Polymer Chemistry for Haptics, Soft Robotics, and Human–Machine Interfaces. Advanced Functional Materials, 2021, 31, 2008375.	7.8	14
484	Photochemical-induced phase transitions in photoactive semicrystalline polymers. Physical Review E, 2021, 103, 033003.	0.8	4

#	Article	IF	CITATIONS
485	Magnetic polydomain liquid crystal elastomers – synthesis and characterisation. Liquid Crystals, 2021, 48, 1815-1826.	0.9	3
486	Fully Controllable Structural Phase Transition in Thermomechanical Molecular Crystals with a Very Small Thermal Hysteresis. Small, 2021, 17, e2006757.	5.2	12
487	Reconfigurable Threeâ€Dimensional Mesotructures of Spatially Programmed Liquid Crystal Elastomers and Their Ferromagnetic Composites. Advanced Functional Materials, 2021, 31, 2100338.	7.8	36
488	Actuation of cylindrical nematic elastomer balloons. Journal of Applied Physics, 2021, 129, .	1.1	17
489	Photopolymerization-enforced stratification in liquid crystal materials. Progress in Polymer Science, 2021, 114, 101365.	11.8	18
490	Modeling the combined photo-chemo/thermo-mechanical actuation in azobenzene-doped liquid crystal thin films. Journal of Applied Physics, 2021, 129, .	1.1	6
491	Processing and reprocessing liquid crystal elastomer actuators. Journal of Applied Physics, 2021, 129, .	1.1	30
492	Large deformation analysis of spontaneous twist and contraction in nematic elastomer fibers with helical director. Journal of Applied Physics, 2021, 129, .	1.1	7
493	Influence of Orientational Genesis on the Actuation of Monodomain Liquid Crystalline Elastomers. Macromolecules, 2021, 54, 4023-4029.	2.2	15
494	Actuated bending of a long cantilevered glassy nematic bilayer strip: failure of the beam model. Engineering Research Express, 2021, 3, 025004.	0.8	Ο
495	Wrinkling of liquid-crystal elastomer disks caused by light-driven dynamic contraction. Physical Review E, 2021, 103, L041002.	0.8	3
496	Modeling and Simulation of Flexible Vector Shear Flow Sensor Based on COMSOL Multiphysics. , 2021, , ,		1
497	Robotic surfaces with reversible, spatiotemporal control for shape morphing and object manipulation. Science Robotics, 2021, 6, .	9.9	70
498	Bioinspired Dualâ€Mode Temporal Communication via Digitally Programmable Phaseâ€Change Materials. Advanced Materials, 2021, 33, e2008119.	11.1	40
499	4D Printing of Hygroscopic Liquid Crystal Elastomer Actuators. Small, 2021, 17, e2100910.	5.2	82
500	Reprogrammable 3D Liquidâ€Crystalline Actuators with Precisely Controllable Stepwise Actuation. Advanced Intelligent Systems, 2021, 3, 2000249.	3.3	18
501	Wirelessly Actuated Thermo―and Magnetoâ€Responsive Soft Bimorph Materials with Programmable Shapeâ€Morphing. Advanced Materials, 2021, 33, e2100336	11.1	60
502	Liquid crystal elastomer shells with topological defect-defined actuation: Complex shape morphing, opening/closing, and unidirectional rotation. Journal of Applied Physics, 2021, 129, 174701.	1.1	8

#	Article	IF	CITATIONS
503	Photopatterned Designer Disclination Networks in Nematic Liquid Crystals. Advanced Optical Materials, 2021, 9, 2100181.	3.6	21
504	Liquidâ€Crystalâ€Elastomerâ€Actuated Reconfigurable Microscale Kirigami Metastructures. Advanced Materials, 2021, 33, e2008605.	11.1	48
505	Photo-induced axisymmetric deflection of circular glassy nematic discs with spiral director fields. Archive of Applied Mechanics, 2021, 91, 3191-3202.	1.2	0
506	Photoâ€Triggered Shape Reconfiguration in Stretchable Reduced Graphene Oxideâ€Patterned Azobenzeneâ€Functionalized Liquid Crystalline Polymer Networks. Advanced Functional Materials, 2021, 31, 2102106.	7.8	14
507	Origami and materials science. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200113.	1.6	11
508	A General Control Strategy to Micropattern Topological Defects in Nematic Liquid Crystals Using Ionically Charged Dielectric Surface. Advanced Materials Interfaces, 2021, 8, 2100379.	1.9	4
509	Innervated, Selfâ€Sensing Liquid Crystal Elastomer Actuators with Closed Loop Control. Advanced Materials, 2021, 33, e2101814.	11.1	128
510	Inverse Design of Axisymmetric Shapes in Glassy Nematic Bilayers. Journal of Applied Mechanics, Transactions ASME, 0, , 1-17.	1.1	1
511	Continuum modeling of the nonlinear electro-opto-mechanical coupling and solid Fréedericksz transition in dielectric liquid crystal elastomers. International Journal of Solids and Structures, 2021, 219-220, 198-212.	1.3	2
512	Shape programming lines of concentrated Gaussian curvature. Journal of Applied Physics, 2021, 129, .	1.1	12
513	Azimuthal Anchoring Strength in Photopatterned Alignment of a Nematic. Crystals, 2021, 11, 675.	1.0	6
514	Biphenyl Containing Shape Memory Epoxy Resin with Postâ€heating Adjustable Properties. Macromolecular Materials and Engineering, 2021, 306, 2100185.	1.7	7
515	Numerical simulation and experimental validation of bending and curling behaviors of liquid crystal elastomer beams under thermal actuation. Applied Physics Letters, 2021, 118, .	1.5	7
516	Random Liquid Crystalline Copolymers Consisting of Prolate and Oblate Liquid Crystal Monomers. Macromolecules, 2021, 54, 5376-5387.	2.2	11
517	Regulating Asynchronous Deformations of Biopolyester Elastomers via Photoprogramming and Strain-Induced Crystallization. Macromolecules, 2021, 54, 5694-5704.	2.2	17
518	A micromechanical-based model of stimulus responsive liquid crystal elastomers. International Journal of Solids and Structures, 2021, 219-220, 92-105.	1.3	26
519	Magnetic Dynamic Polymers for Modular Assembling and Reconfigurable Morphing Architectures. Advanced Materials, 2021, 33, e2102113.	11.1	88
520	Toward Application of Liquid Crystalline Elastomer for Smart Robotics: State of the Art and Challenges. Polymers, 2021, 13, 1889.	2.0	37

#	Article	IF	CITATIONS
521	Amineâ€Acrylate Liquid Single Crystal Elastomers Reinforced by Hydrogen Bonding. Advanced Materials, 2021, 33, e2101955.	11.1	33
522	Programmable Mechanical Energy Absorption and Dissipation of Liquid Crystal Elastomers: Modeling and Simulations. Advanced Engineering Materials, 2022, 24, 2100590.	1.6	7
523	Digital light processing of liquid crystal elastomers for self-sensing artificial muscles. Science Advances, 2021, 7, .	4.7	99
524	Deployableâ€6tructureâ€Based Artificial Muscles Generating Coded Forces. Advanced Materials Technologies, 2021, 6, 2100493.	3.0	0
525	Heliotracking Device using Liquid Crystalline Elastomer Actuators. Advanced Materials Technologies, 2021, 6, 2100681.	3.0	17
526	Mechanoâ€Optical Sensors Fabricated with Multilayered Liquid Crystal Elastomers Exhibiting Tunable Deformation Recovery. Advanced Functional Materials, 2021, 31, 2104702.	7.8	25
527	Physical intelligence as a new paradigm. Extreme Mechanics Letters, 2021, 46, 101340.	2.0	114
528	Soft, tough, and fast polyacrylate dielectric elastomer for non-magnetic motor. Nature Communications, 2021, 12, 4517.	5.8	82
529	Hydrogen-Bonded Supramolecular Liquid Crystal Polymers: Smart Materials with Stimuli-Responsive, Self-Healing, and Recyclable Properties. Chemical Reviews, 2022, 122, 4946-4975.	23.0	161
530	Electrospun liquid crystal elastomer microfiber actuator. Science Robotics, 2021, 6, .	9.9	157
531	System‣ngineered Miniaturized Robots: From Structure to Intelligence. Advanced Intelligent Systems, 2021, 3, 2000284.	3.3	18
533	Complexity from simplicity: Confinement directs morphogenesis and motility in nematic polymers. Extreme Mechanics Letters, 2021, 47, 101362.	2.0	3
534	Microâ€Lifting Jack: Heat―and Lightâ€Fueled 3D Symmetric Deformation of Braggâ€Onionâ€Like Beads with Ful Polymerized Chiral Networks. Advanced Optical Materials, 2021, 9, 2100667.	lly 3.6	7
535	Retention and deformation of the blue phases in liquid crystalline elastomers. Nature Communications, 2021, 12, 4916.	5.8	29
536	Reversible Curvature Reversal of Monolithic Liquid Crystal Elastomer Film and Its Smart Valve Application. Macromolecular Rapid Communications, 2021, 42, e2100404.	2.0	6
537	Wearable Optical Sensing of Strain and Humidity: A Patterned Dualâ€Responsive Semiâ€Interpenetrating Network of a Cholesteric Main hain Polymer and a Poly(ampholyte). Advanced Functional Materials, 2021, 31, 2104641.	7.8	33
538	Synthesis and alignment of liquid crystalline elastomers. Nature Reviews Materials, 2022, 7, 23-38.	23.3	205
539	Controlling Liquid Crystal Orientations for Programmable Anisotropic Transformations in Cellular Microstructures Advanced Materials 2021, 33, e2105024	11.1	22

	CITATION	REPORT	
#	Article	IF	CITATIONS
540	Crystal-like topological defect arrays in nematic liquid crystal. Applied Physics Letters, 2021, 119, .	1.5	4
541	Numerical method for the equilibrium configurations of a Maier-Saupe bulk potential in a Q-tensor model of an anisotropic nematic liquid crystal. Journal of Computational Physics, 2021, 441, 110441.	1.9	5
542	Multiâ€Photon 4D Printing of Complex Liquid Crystalline Microstructures by In Situ Alignment Using Electric Fields. Advanced Materials Technologies, 2022, 7, 2100944.	3.0	29
543	Liquid Crystal Elastomer Metamaterials with Giant Biaxial Thermal Shrinkage for Enhancing Skin Regeneration. Advanced Materials, 2021, 33, e2106175.	11.1	60
544	Single-Layer 4D Printing System Using Focused Light: A Tool for Untethered Microrobot Applications. Chemistry of Materials, 2021, 33, 7703-7712.	3.2	12
545	Chemically Triggered Changes in Mechanical Properties of Responsive Liquid Crystal Polymer Networks with Immobilized Urease. Journal of the American Chemical Society, 2021, 143, 16740-16749.	6.6	13
546	Liquid Crystal Elastomers with Enhanced Directional Actuation to Electric Fields. Advanced Materials, 2021, 33, e2103806.	11,1	49
547	Multivalued Inverse Design: Multiple Surface Geometries from One Flat Sheet. Physical Review Letters, 2021, 127, 128001.	2.9	7
548	Cephalopodâ€Inspired Stretchable Selfâ€Morphing Skin Via Embedded Printing and Twisted Spiral Artificial Muscles. Advanced Functional Materials, 2021, 31, 2105528.	7.8	15
549	Evaluation of the deformation shape of a balloon-type dielectric elastomer actuator prestretched with water pressure. ROBOMECH Journal, 2021, 8, .	0.9	2
550	Elastically tuned defect mode within a cholesteric elastomer doped with metallic nano-spheres. Journal of Applied Physics, 2021, 129, 043105.	1.1	2
551	Thermomechanically active electrodes power work-dense soft actuators. Soft Matter, 2021, 17, 1521-1529.	1.2	7
552	Elastomeric nematic colloids, colloidal crystals and microstructures with complex topology. Soft Matter, 2021, 17, 3037-3046.	1.2	3
553	Enhanced photoinduced mass migration in supramolecular azopolymers by H-bond driven positional constraint. Journal of Materials Chemistry C, 2021, 9, 11368-11375.	2.7	10
554	Tunable Photocontrolled Motions Using Stored Strain Energy in Malleable Azobenzene Liquid Crystalline Polymer Actuators. Advanced Materials, 2017, 29, 1606467.	11.1	305
555	Artificial Muscles for Underwater Soft Robotic System. , 2021, , 71-97.		3
556	Deployable, liquid crystal elastomer-based intracortical probes. Acta Biomaterialia, 2020, 111, 54-64.	4.1	11
557	Tough, Shape-Changing Materials: Crystallized Liquid Crystal Elastomers. Macromolecules, 2017, 50, 4267-4275.	2.2	74

#	Article	IF	CITATIONS
558	4D-Printable Liquid Metal–Liquid Crystal Elastomer Composites. ACS Applied Materials & Interfaces, 2021, 13, 12805-12813.	4.0	98
559	Synthesis and properties of chiral azo-liquid crystalline terpolymer containing cyano mesogenic units. Liquid Crystals, 2017, 44, 2379-2390.	0.9	24
560	Design of nematic liquid crystals to control microscale dynamics. Liquid Crystals Reviews, 2020, 8, 59-129.	1.1	22
561	Review: knots and other new topological effects in liquid crystals and colloids. Reports on Progress in Physics, 2020, 83, 106601.	8.1	75
562	Optimizing the network topology of block copolymer liquid crystal elastomers for enhanced extensibility and toughness. Physical Review Materials, 2017, 1, .	0.9	8
563	The Shape of a Photo-Actuated Pyramidal Cone. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	2
564	Thermal and Mechanical Analyses of Compliant Thermoelectric Coils for Flexible and Bio-Integrated Devices. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	1.1	13
565	Giant deformations and soft-inflation in LCE balloons. Europhysics Letters, 2020, 132, 36001.	0.7	9
566	Direct fabrication of a q-plate array by scanning wave photopolymerization. Journal of the Optical Society of America B: Optical Physics, 2019, 36, D47.	0.9	14
567	Preliminary airfoil design of an innovative adaptive variable camber compliant wing. Journal of Vibroengineering, 2016, 18, 1861-1873.	0.5	7
568	Engineered Living Materials-Based Sensing and Actuation. Frontiers in Sensors, 2020, 1, .	1.7	22
569	Two-Way and Multiple-Way Shape Memory Polymers for Soft Robotics: An Overview. Actuators, 2020, 9, 10.	1.2	104
570	Bioinspired Construction of Artificial Cardiac Muscles Based on Liquid Crystal Elastomer Fibers. Advanced Materials Technologies, 2022, 7, 2100934.	3.0	29
571	Carbon nanotubes modified nanocomposites based on liquid crystalline elastomers. Molecular Crystals and Liquid Crystals, 2022, 732, 11-49.	0.4	12
572	Large rewritable liquid crystal pretilt angle by <i>in situ</i> photoalignment of brilliant yellow films. Applied Physics Letters, 2021, 119, .	1.5	6
573	Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries. Nature Communications, 2021, 12, 5936.	5.8	42
574	Shape-morphing materials and structures for energy-efficient building envelopes. Materials Today Energy, 2021, 22, 100874.	2.5	19
575	Direct laser writing of liquid crystal elastomers oriented by a horizontal electric field. Open Research Europe, 0, 1, 129.	2.0	0

#	Article	IF	CITATIONS
576	Ultrafast Digital Fabrication of Designable Architectured Liquid Crystalline Elastomer. Advanced Materials, 2021, 33, e2105597.	11.1	37
577	4D-printed untethered self-propelling soft robot with tactile perception: Rolling, racing, and exploring. Matter, 2021, 4, 3313-3326.	5.0	74
578	Lightâ€Fueled Climbing of Monolithic Torsional Soft Robots via Molecular Engineering. Advanced Intelligent Systems, 2022, 4, 2100148.	3.3	13
579	Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels. Nature Communications, 2021, 12, 6155.	5.8	26
580	The effects of surface topography control using liquid crystal elastomers on bodies in flow. , 2018, , .		0
581	Thermal and Electrical Actuation of Liquid Crystal Elastomers/Gels. , 2019, , 289-306.		0
582	The Techniques of Surface Alignment of Liquid Crystals. Springer Proceedings in Physics, 2019, , 165-197.	0.1	4
583	Liquid crystal Pancharatnam-Berry optical elements. , 2019, , .		4
584	Shaping by Internal Material Frustration: Shifting to Architectural Scale. Advanced Science, 2021, 8, e2102171.	5.6	4
585	4D Printing of Liquid Crystals: What's Right for Me?. Advanced Materials, 2022, 34, e2104390.	11.1	75
586	Multiscale Structural Characterization of a Smectic Liquid Crystalline Elastomer upon Mechanical Deformation Using Neutron Scattering. Macromolecules, 2021, 54, 10574-10582.	2.2	3
587	Photopatterning Crystal Orientation in Shape-Morphing Polymers. ACS Applied Materials & Interfaces, 2022, 14, 22762-22770.	4.0	5
588	Cooperative Molecular Alignment Process Enabled by Scanning Wave Photopolymerization. , 2020, , 375-387.		0
589	Light-Sensitive Azobenzene-Containing Liquid Crystalline Polymers. Polymers and Polymeric Composites, 2020, , 1-31.	0.6	1
590	Photomechanical Effects in Crosslinked Liquid-Crystalline Polymers with Photosynergetic Processes. , 2020, , 479-492.		0
591	Varied Alignment Methods and Versatile Actuations for Liquid Crystal Elastomers: A Review. Advanced Intelligent Systems, 2022, 4, 2100065.	3.3	21
592	Bionic Polyurethane with a Reversible Core–Sheath for Real-Time On-Demand Performance Adjustment and Fluorescence Self-Reflection. ACS Applied Materials & Interfaces, 2021, 13, 54375-54385.	4.0	1
593	Light-Driven Linear Inchworm Motor Based on Liquid Crystal Elastomer Actuators Fabricated with Rubbing Overwriting. Materials, 2021, 14, 6688.	1.3	4

	C	CITATION REPORT	
#	Article	IF	Citations
594	Twisting and untwisting of twisted nematic elastomers. Physical Review Materials, 2020, 4, .	0.9	0
595	Liquid crystal polymer networks directed by scanning wave photopolymerization of oxetane monome and crosslinker. Molecular Crystals and Liquid Crystals, 2020, 713, 37-45.	er 0.4	1
596	Fundamentals and working mechanisms of artificial muscles with textile application in the loop. Smart Materials and Structures, 2022, 31, 023001.	1.8	7
597	Direct laser writing of liquid crystal elastomers oriented by a horizontal electric field. Open Research Europe, 0, 1, 129.	2.0	8
598	Robust and Reprocessable Artificial Muscles Based on Liquid Crystal Elastomers with Dynamic Thiourea Bonds. Advanced Functional Materials, 2022, 32, 2110360.	7.8	49
599	Achieving multimodal locomotion by a crosslinked poly(ethylene-co-vinyl acetate)-based two-way shape memory polymer. Smart Materials and Structures, 2022, 31, 015034.	1.8	8
600	Polymer Network Structure, Properties, and Formation of Liquid Crystalline Elastomers Prepared via Thiol–Acrylate Chain Transfer Reactions. Macromolecules, 2021, 54, 11074-11082.	2.2	24
601	Light-Actuated Liquid Crystal Elastomer Prepared by Projection Display. Materials, 2021, 14, 7245.	1.3	7
602	Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. Advanced Materials, 2022, 34, e2106787.	11.1	44
603	Using Small Molecule Absorbers to Create a Photothermal Wax Motor. Small, 2022, 18, e2105356.	5.2	6
604	Highly Durable and Tough Liquid Crystal Elastomers. ACS Applied Materials & Interfaces, 2022, 1 2006-2014.	.4, 4.0	13
605	Multi-functional liquid crystal elastomer composites. Applied Physics Reviews, 2022, 9, .	5.5	87
606	Electromechanical deformation of dielectric nematic elastomers accompanied by the rotation of mesogens. International Journal of Mechanical Sciences, 2022, 218, 107061.	3.6	3
607	Photoinduced Motions of Thermoplastic Polyurethanes Containing Azobenzene Moieties in Main Chains. Macromolecules, 2022, 55, 413-420.	2.2	19
608	Recent advances in the stereolithographic three-dimensional printing of ceramic cores: Challenges and prospects. Journal of Materials Science and Technology, 2022, 117, 79-98.	5.6	29
609	Shape Permanence in Diaryletheneâ€Functionalized Liquidâ€Crystal Elastomers Facilitated by Thiolâ€Anhydride Dynamic Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
610	Shape Permanence in Diaryletheneâ€Functionalized Liquidâ€Crystal Elastomers Facilitated by Thiolâ€Anhydride Dynamic Chemistry. Angewandte Chemie, 0, , .	1.6	1
611	Liquid Crystal Elastomer Twist Fibers toward Rotating Microengines. Advanced Materials, 2022, 34, e2107840.	11.1	49

#	Article	IF	CITATIONS
612	Advanced Functional Liquid Crystals. Advanced Materials, 2022, 34, e2109063.	11.1	106
613	Nematic Templated Complex Nanofiber Structures by Projection Display. ACS Applied Materials & Interfaces, 2022, 14, 7230-7240.	4.0	7
614	Three-Dimensional Printing of Liquid Crystal Elastomers and Their Applications. ACS Applied Polymer Materials, 2022, 4, 3153-3168.	2.0	20
615	Shape morphing mechanical metamaterials through reversible plasticity. Science Robotics, 2022, 7, eabg2171.	9.9	67
616	Hopfions, heliknotons, skyrmions, torons and both abelian and nonabelian vortices in chiral liquid crystals. Liquid Crystals Reviews, 2022, 10, 34-68.	1.1	20
617	Rheology of liquid crystalline oligomers for 3-D printing of liquid crystalline elastomers. Soft Matter, 2022, 18, 3168-3176.	1.2	8
618	Liquid Crystal-Based Organosilicone Elastomers with Supreme Mechanical Adaptability. Polymers, 2022, 14, 789.	2.0	4
619	The Effect of Phenyl Content on the Liquid Crystal-Based Organosilicone Elastomers with Mechanical Adaptability. Polymers, 2022, 14, 903.	2.0	3
620	The Progress of Magnetoactive Origami Structures. Journal of Physics: Conference Series, 2022, 2230, 012024.	0.3	1
621	Multiscale Phase Behaviors of Nematic Solids: A Short Review. Multiscale Science and Engineering, 2022, 4, 28-36.	0.9	3
622	Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities. Advanced Materials, 2022, 34, e2110384.	11.1	133
623	Controlling the Phase Behavior and Reflection of Main-Chain Cholesteric Oligomers Using a Smectic Monomer. International Journal of Molecular Sciences, 2022, 23, 3275.	1.8	3
624	Regulating Surface Topography of Liquidâ€Crystalline Polymers by External Stimuli. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	5
625	Programmable Lightâ€Driven Liquid Crystal Elastomer Kirigami with Controlled Molecular Orientations. Advanced Intelligent Systems, 2022, 4, .	3.3	9
626	Liquid Crystalline Elastomers Based on Click Chemistry. ACS Applied Materials & Interfaces, 2022, 14, 14842-14858.	4.0	20
627	Image encoding with unconventional appearance through direct ink writing of a cholesteric liquid crystal oligomer ink. , 2022, , .		1
628	Rapidly and Repeatedly Reprogrammable Liquid Crystalline Elastomer via a Shape Memory Mechanism. Advanced Materials, 2022, 34, e2201679.	11.1	44
629	Manipulation of mechanically nanopatterned line defect assemblies in plane-parallel nematic liquid crystals. Liquid Crystals Reviews, 2022, 10, 98-122.	1.1	4

#	Article	IF	CITATIONS
630	Optically controlled grasping-slipping robot moving on tubular surfaces. Multifunctional Materials, 2022, 5, 024001.	2.4	5
631	Liquid Crystal Elastomer with Integrated Soft Thermoelectrics for Shape Memory Actuation and Energy Harvesting. Advanced Materials, 2022, 34, e2200857.	11.1	52
632	Hierarchical Multiscale Hydrogels with Identical Compositions Yet Disparate Properties via Tunable Phase Separation. Advanced Functional Materials, 2022, 32, .	7.8	17
634	Metric mechanics with nontrivial topology: Actuating irises, cylinders, and evertors. Physical Review E, 2021, 104, 065004.	0.8	6
635	Optically Controlled Latching and Launching in Soft Actuators. Advanced Functional Materials, 2022, 32, .	7.8	24
636	Photo-Dissociable Fe ³⁺ -Carboxylate Coordination: A General Approach toward Hydrogels with Shape Programming and Active Morphing Functionalities. ACS Applied Materials & amp; Interfaces, 2021, 13, 59310-59319.	4.0	15
637	Solventâ€Assisted 4D Programming and Reprogramming of Liquid Crystalline Organogels. Advanced Materials, 2022, 34, e2107855.	11.1	44
638	The richness of liquid crystal elastomer mechanics keeps growing. Liquid Crystals Today, 2021, 30, 59-66.	2.3	4
639	Sharing of Strain Between Nanofiber Forests and Liquid Crystals Leads to Programmable Responses to Electric Fields. Advanced Functional Materials, 2022, 32, .	7.8	5
641	Advances in 4D printing of liquid crystalline elastomers: materials, techniques, and applications. Materials Horizons, 2022, 9, 1825-1849.	6.4	59
642	Bioinspired Structures for Soft Actuators. Advanced Materials Technologies, 2022, 7, .	3.0	20
643	Self-regulated non-reciprocal motions in single-material microstructures. Nature, 2022, 605, 76-83.	13.7	63
644	A Scientometric Review of Soft Robotics: Intellectual Structures and Emerging Trends Analysis (2010–2021). Frontiers in Robotics and Al, 2022, 9, .	2.0	12
645	Digital Programming of Liquid Crystal Elastomers to Achieve High-Fidelity Surface Morphing. Applied Materials Today, 2022, 27, 101501.	2.3	3
646	Photopolymerisable liquid crystals for additive manufacturing. Additive Manufacturing, 2022, 55, 102861.	1.7	1
647	Formation of rolls from liquid crystal elastomer bistrips. Soft Matter, 2022, 18, 4077-4089.	1.2	2
648	Beating of a Spherical Liquid Crystal Elastomer Balloon under Periodic Illumination. Micromachines, 2022, 13, 769.	1.4	2
649	Hybrid Nanocrystals of Small Molecules and Chemically Disordered Polymers. ACS Nano, 2022, 16, 8993-9003.	7.3	8

#	Article	IF	CITATIONS
650	Physical intelligence as a new paradigm Extreme Mechanics Letters, 2021, 46, 101340.	2.0	8
651	Effective continuum models for the buckling of non-periodic architected sheets that display quasi-mechanism behaviors. Journal of the Mechanics and Physics of Solids, 2022, 166, 104934.	2.3	6
652	Liquid Crystal Elastomer Based Thermal Microactuators and Photothermal Microgrippers Using Lateral Bending Beams. Advanced Materials Technologies, 0, , 2101732.	3.0	3
654	Multistable shape programming of variable-stiffness electromagnetic devices. Science Advances, 2022, 8, .	4.7	17
655	Light-Induced Crystalline Size Heterogeneity of Polymers Enables Programmable Writing, Morphing, and Mechanical Performance Designing. ACS Macro Letters, 2022, 11, 739-746.	2.3	2
656	Twisting for soft intelligent autonomous robot in unstructured environments. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	77
657	Biocatalytic 3D Actuation in Liquid Crystal Elastomers via Enzyme Patterning. ACS Applied Materials & Interfaces, 2022, 14, 26480-26488.	4.0	11
658	Photoresponsive Polymerâ€Based Biomimetic Contractile Units as Building Block for Artificial Muscles. Macromolecular Materials and Engineering, 2022, 307, .	1.7	5
659	The importance of structure property relationship for the designing of biomaterials using liquid crystal elastomers. Materials Advances, 0, , .	2.6	8
660	Fabrication and Functionality Integration Technologies for Small‣cale Soft Robots. Advanced Materials, 2022, 34, .	11.1	13
661	Locally controllable magnetic soft actuators with reprogrammable contraction-derived motions. Science Advances, 2022, 8, .	4.7	57
662	Supramolecular nylon-based actuators with a high work efficiency based on host–guest complexation and the mechanoisomerization of azobenzene. Polymer Journal, 2022, 54, 1213-1223.	1.3	5
663	Understanding the effect of liquid crystal content on the phase behavior and mechanical properties of liquid crystal elastomers. Soft Matter, 2022, 18, 5074-5081.	1.2	8
664	Interfacial metric mechanics: stitching patterns of shape change in active sheets. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	1.0	4
665	Light―and Fieldâ€Controlled Diffusion, Ejection, Flow and Collection of Liquid at a Nanoporous Liquid Crystal Membrane. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
666	Light―and Fieldâ€Controlled Diffusion, Ejection, Flow and Collection of Liquid at a Nanoporous Liquid Crystal Membrane. Angewandte Chemie, 0, , .	1.6	2
667	Slidable Cross-Linking Effect on Liquid Crystal Elastomers: Enhancement of Toughness, Shape-Memory, and Self-Healing Properties. ACS Applied Materials & Interfaces, 2022, 14, 32486-32496.	4.0	6
668	Photothermal-Driven Liquid Crystal Elastomers: Materials, Alignment and Applications. Molecules, 2022, 27, 4330.	1.7	10

		CITATION REPORT		
#	Article		IF	Citations
669	Recent advances in bioprinting using silk protein-based bioinks. Biomaterials, 2022, 28	7, 121672.	5.7	36
670	Bendingâ€Insensitive Intrinsically Flexible Ultraviolet Encoding Devices Based on Piezo Nanogeneratorâ€6upplied Liquid Crystalline Polymer Fabrics. Small, 2022, 18, .	electric	5.2	6
671	Optothermally Programmable Liquids with Spatiotemporal Precision and Functional Co Advanced Materials, 2022, 34, .	omplexity.	11.1	10
672	Semiâ€Crystalline Rubber as a Lightâ€Responsive, Programmable, Resilient Robotic Ma Functional Materials, 2022, 32, .	iterial. Advanced	7.8	4
674	Rapidly reprogrammable actuation of liquid crystal elastomers. Matter, 2022, 5, 2409-2	2413.	5.0	4
675	Drum Towerâ€Inspired Kirigami Structures for Rapid Fabrication of Multifunctional Sha Smart Devices with Complex and Rigid 3D Geometry in a Twoâ€Stage Photopolymer. A Materials, 2022, 32, .	peâ€Memory Advanced Functional	7.8	8
676	Surfaceâ€Enforced Alignment of Reprogrammable Liquid Crystalline Elastomers. Advar 9, .	iced Science, 2022,	5.6	17
677	Liquid Crystalline Polymer Coatings Fabricated by Initiated Chemical Vapor Deposition. Materials Interfaces, 2022, 9, .	Advanced	1.9	2
678	Self-assembled liquid crystal architectures for soft matter photonics. Light: Science and 2022, 11, .	d Applications,	7.7	44
679	Liquid Crystal Elastomers. Interdisciplinary Applied Mathematics, 2022, , 183-215.		0.2	0
680	Three-dimensional thermochromic liquid crystal elastomer structures with reversible shape-morphing and color-changing capabilities for soft robotics. Soft Matter, 2022, 1	8, 6857-6867.	1.2	13
681	Recent advances in molecular programming of liquid crystal elastomers with additive n for 4D printing. Molecular Systems Design and Engineering, 2022, 7, 1588-1601.	nanufacturing	1.7	7
682	Functional Liquid Crystal Elastomers Based on Dynamic Covalent Chemistry. Chemistry Journal, 2022, 28, .	/ - A European	1.7	18
683	Confinement-Induced Fabrication of Liquid Crystalline Polymeric Fibers. Molecules, 202	22, 27, 5639.	1.7	1
684	Photoâ€Programmed Deformations in Rigid Liquid Crystalline Polymers Triggered by Bo Small, 2022, 18, .	ody Temperature.	5.2	2
685	Morphing of stiffness-heterogeneous liquid crystal elastomers via mechanical training a controlled photopolymerization. Matter, 2022, 5, 4332-4346.	and locally	5.0	5
686	On the origin of elasticity and heat conduction anisotropy of liquid crystal elastomers a frequencies. Nature Communications, 2022, 13, .	at gigahertz	5.8	4
687	MEMS-compatible structuring of liquid crystal network actuators using maskless photo Smart Materials and Structures, 2022, 31, 115014.	plithography.	1.8	3

#	Article	IF	CITATIONS
688	Self-Folding Liquid Crystal Network Filaments Patterned with Vertically Aligned Mesogens. ACS Applied Materials & Interfaces, 2022, 14, 50171-50179.	4.0	7
689	Curvature-driven instabilities in thin active shells. Royal Society Open Science, 2022, 9, .	1.1	1
690	Multiple Shape Manipulation of Liquid Crystal Polymers Containing Dielsâ€Alder Network. Advanced Functional Materials, 2022, 32, .	7.8	14
691	Human-muscle-inspired single fibre actuator with reversible percolation. Nature Nanotechnology, 2022, 17, 1198-1205.	15.6	53
692	Automated photo-aligned liquid crystal elastomer film fabrication with a low-tech, home-built robotic workstation. Scientific Reports, 2022, 12, .	1.6	1
693	Multiple shapes from a single nematic elastomer sheet activated via patterned illumination. Europhysics Letters, 2022, 140, 36003.	0.7	2
694	Embedding intelligence in materials for responsive built environment: A topical review on Liquid Crystal Elastomer actuators and sensors. Building and Environment, 2022, 226, 109714.	3.0	11
695	Meniscus-Climbing System Inspired 3D Printed Fully Soft Robotics with Highly Flexible Three-Dimensional Locomotion at the Liquid–Air Interface. ACS Nano, 2022, 16, 19393-19402.	7.3	9
696	Calla Lily flower inspired morphing of flat films to conical tubes. Journal of Polymer Science, 2023, 61, 1065-1073.	2.0	2
697	Shape Morphing Directed by Spatially Encoded, Dually Responsive Liquid Crystalline Elastomer Microâ€Actuators. Advanced Materials, 2023, 35, .	11.1	11
698	Photo-responsive liquid crystal network-based material with adaptive modulus for haptic application. Scientific Reports, 2022, 12, .	1.6	5
699	3Dâ€Printed Photoresponsive Liquid Crystal Elastomer Composites for Freeâ€Form Actuation. Advanced Functional Materials, 2023, 33, .	7.8	34
700	Reconfigurable Fluorescent Liquid Crystal Elastomers for Integrated Visual and Haptic Information Storage. ACS Applied Materials & amp; Interfaces, 2022, 14, 53348-53358.	4.0	9
701	Regression analysis for predicting the elasticity of liquid crystal elastomers. Scientific Reports, 2022, 12, .	1.6	3
702	Shape programming and photoactuation of interpenetrating polymer networks containing azobenzene moieties. Journal of Materials Chemistry C, 0, , .	2.7	2
703	A theoretical framework for the design of molecular crystal engines. Chemical Science, 2023, 14, 937-949.	3.7	7
704	Robotic Pickâ€andâ€Place Operations in Multifunctional Liquid Crystal Elastomers. Advanced Intelligent Systems, 2022, 4, .	3.3	9
705	Self‣teering Lasing System Enabled by Flexible Photoâ€Actuators with Sandwich Structure. Advanced Functional Materials, 0, , 2210657.	7.8	0

#	Article	IF	CITATIONS
706	From Light-Powered Motors, to Micro-Grippers, to Crawling Caterpillars, Snails and Beyond—Light-Responsive Oriented Polymers in Action. Materials, 2022, 15, 8214.	1.3	1
707	Feedback-controlled hydrogels with homeostatic oscillations and dissipative signal transduction. Nature Nanotechnology, 2022, 17, 1303-1310.	15.6	26
708	Harnessing β-Hydroxyl Groups in Poly(β-Amino Esters) toward Robust and Fast Reprocessing Covalent Adaptable Networks. Macromolecules, 2022, 55, 10366-10376.	2.2	13
709	3D solvent-responsive actuator capable of directionally outputting thrust. Cell Reports Physical Science, 2022, 3, 101183.	2.8	2
710	Thermal-Partial Compression Process: Bypass Route for Multilayer Lamination of Liquid Crystal Polymer-Based 5G Patch Antenna Fabrication. , 2023, 1, 7-12.		0
711	Living Cellulose Materials with Tunable Viscoelasticity through Probiotic Proliferation. ACS Applied Bio Materials, 2023, 6, 157-163.	2.3	2
712	Recent Advances in 4D Printing of Liquid Crystal Elastomers. Advanced Materials, 2023, 35, .	11.1	28
713	Lightâ€Fueled Nonreciprocal Selfâ€Oscillators for Fluidic Transportation and Coupling. Advanced Materials, 0, , .	11.1	10
714	Multi-parameter-encoded 4D printing of liquid crystal elastomers for programmable shape morphing behaviors. Additive Manufacturing, 2023, 61, 103376.	1.7	4
715	Design of Surface-Aligned Main-Chain Liquid-Crystal Networks Prepared under Ambient, Light-Free Conditions Using the Diels–Alder Cycloaddition. ACS Macro Letters, 0, , 33-39.	2.3	2
716	A Semicrystalline Poly(azobenzene) Exhibiting Room Temperature Light-Induced Melting, Crystallization, and Alignment. Macromolecules, 2022, 55, 10330-10340.	2.2	3
717	A Homogenized Bending Theory for Prestrained Plates. Journal of Nonlinear Science, 2023, 33, .	1.0	3
718	Shape Morphing by Topological Patterns and Profiles in Laser-Cut Liquid Crystal Elastomer Kirigami. ACS Applied Materials & Interfaces, 2023, 15, 4538-4548.	4.0	4
719	New Liquid Crystalline Elastomeric Films Containing a Smectic Crosslinker: Chemical and Physical Properties. Crystals, 2023, 13, 96.	1.0	3
721	Magneticâ€responsive Covalent Adaptable Networks. Chemistry - an Asian Journal, 2023, 18, .	1.7	5
722	Smart Nematic Liquid Crystal Polymers for Micromachining Advances. Micromachines, 2023, 14, 124.	1.4	1
723	Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface. Light: Science and Applications, 2023, 12, .	7.7	31
724	Programming Orientation in Liquid Crystalline Elastomers Prepared with Intra-Mesogenic Supramolecular Bonds. ACS Applied Materials & amp; Interfaces, 2023, 15, 3467-3475.	4.0	6

#	Article	IF	Citations
725	Active Textile Fabrics from Weaving Liquid Crystalline Elastomer Filaments. Advanced Materials, 2023, 35, .	11.1	17
726	Photo-Ordering and Deformation in Azobenzene-Containing Polymer Networks under Irradiation with Elliptically Polarized Light. Processes, 2023, 11, 129.	1.3	2
727	Dandelionâ€Inspired, Windâ€Dispersed Polymerâ€Assembly Controlled by Light. Advanced Science, 2023, 10, .	5.6	13
728	The Contribution of Oligomerization Reaction Chemistry to the Thermomechanical Properties of Surface-Aligned Liquid Crystalline Elastomers. Macromolecules, 2023, 56, 974-979.	2.2	3
729	Leaping liquid crystal elastomers. Science Advances, 2023, 9, .	4.7	13
730	Reprocessable, Self-Healing, Thermadapt Shape Memory Polycaprolactone via Robust Ester–Ester Interchanges Toward Kirigami-Tailored 4D Medical Devices. ACS Applied Polymer Materials, 2023, 5, 1585-1595.	2.0	8
731	Degree of Orientation in Liquid Crystalline Elastomers Defines the Magnitude and Rate of Actuation. ACS Macro Letters, 2023, 12, 248-254.	2.3	7
732	Polymer-dispersed liquid crystal elastomers as moldable shape-programmable material. Nature Communications, 2023, 14, .	5.8	7
733	A constitutive model of liquid crystal elastomers with loading-history dependence. Journal of the Mechanics and Physics of Solids, 2023, 174, 105258.	2.3	4
734	Fiber-reinforced liquid crystalline elastomer composite actuators with multi-stimulus response properties and multi-directional morphing capabilities. Composites Part B: Engineering, 2023, 256, 110640.	5.9	2
735	Dynamically Tunable Optical Cavities with Embedded Nematic Liquid Crystalline Networks. Advanced Materials, 2023, 35, .	11.1	3
736	Milky translucent haze of a large-scale topological defect array in nematic liquid crystal. Liquid Crystals, 0, , 1-12.	0.9	0
737	Discontinuous Metric Programming in Liquid Crystalline Elastomers. ACS Applied Materials & Interfaces, 2023, 15, 11092-11098.	4.0	3
738	Shape-Persistent Liquid Crystal Elastomers with Cis-Stable Crosslinkers Containing Ortho-Methyl-Substituted Azobenzene. Macromolecules, 2023, 56, 1324-1338.	2.2	2
739	Impact of molecular architectures on mesogen reorientation relaxation and post-relaxation stress of liquid crystal elastomers under electric fields. Polymer, 2023, 271, 125789.	1.8	0
740	Flexible forceâ€bearing liquid crystalline elastomer component toward a dynamic braille platform. Nano Select, 2023, 4, 324-332.	1.9	2
741	A Facile Strategy for the Development of Recyclable Multifunctional Liquid Crystal Polymers via Postâ€Polymerization Modification and Ringâ€Opening Metathesis Polymerization. Angewandte Chemie, 2023, 135, .	1.6	0
742	A Facile Strategy for the Development of Recyclable Multifunctional Liquid Crystal Polymers via Postâ€Polymerization Modification and Ringâ€Opening Metathesis Polymerization. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6

#	Article	IF	CITATIONS
743	Geometry Controlled Oscillations in Liquid Crystal Polymer Films Triggered by Thermal Feedback. ACS Applied Materials & Interfaces, 2023, 15, 18362-18371.	4.0	5
744	Light-driven peristaltic pumping by an actuating splay-bend strip. Nature Communications, 2023, 14, .	5.8	6
745	A cold-responsive liquid crystal elastomer provides visual signals for monitoring a critical temperature decrease. Materials Horizons, 2023, 10, 2649-2655.	6.4	2
746	Electrically Controlled Liquid Crystal Elastomer Surfaces for Dynamic Wrinkling. Advanced Intelligent Systems, 2024, 6, .	3.3	1
747	Photothermalâ€Responsive Crosslinked Liquid Crystal Polymers. Macromolecular Materials and Engineering, 2023, 308, .	1.7	8
748	Controlling the Structure and Morphology of Organic Nanofilaments Using External Stimuli. ACS Nanoscience Au, 2023, 3, 295-309.	2.0	2
753	Microneedle system with light trigger for precise and programmable penetration. Materials Horizons, 2023, 10, 3044-3050.	6.4	4
770	Navigating Soft Robots through Wireless Heating. , 2023, , .		1
774	Wireless Actuation for Soft Electronics-free Robots. , 2023, , .		1
804	Dynamic control of molecular alignment in liquid-crystal elastomers by external materials. , 2023, , .		0
818	Colloid and Interface Science of Liquid Crystals. ACS Symposium Series, 0, , 349-380.	0.5	0