Dynamically reconfigurable complex emulsions via tun

Nature 518, 520-524 DOI: 10.1038/nature14168

Citation Report

#	Article	IF	CITATIONS
1	Stabilisers for water-in-fluorinated-oil dispersions: Key properties for microfluidic applications. Current Opinion in Colloid and Interface Science, 2015, 20, 183-191.	3.4	61
2	Simple Microfluidic Approach to Fabricate Monodisperse Hollow Microparticles for Multidrug Delivery. ACS Applied Materials & Interfaces, 2015, 7, 14822-14832.	4.0	66
3	Liquid crystal Janus emulsion droplets: preparation, tumbling, and swimming. Soft Matter, 2015, 11, 6747-6754.	1.2	52
4	Multiple Responsive Fluids Based on Vesicle to Wormlike Micelle Transitions by Single-Tailed Pyrrolidone Surfactants. Langmuir, 2015, 31, 11760-11768.	1.6	33
5	Synthesis of Miktoarm Branched Conjugated Copolymers by ROMPing In and Out. ACS Macro Letters, 2015, 4, 1229-1233.	2.3	29
6	Mechanical Stability of Polystyrene and Janus Particle Monolayers at the Air/Water Interface. Journal of the American Chemical Society, 2015, 137, 15370-15373.	6.6	50
7	The transformation dynamics towards equilibrium in non-equilibrium w/w/o double emulsions. Applied Physics Letters, 2016, 109, .	1.5	14
8	Simple and double microemulsions via the capillary breakup of highly stretched liquid jets. Journal of Fluid Mechanics, 2016, 804, 550-577.	1.4	33
9	Redistribution of charged aluminum nanoparticles on oil droplets in water in response to applied electrical field. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	16
10	Dynamics and rheology of Janus drops in a steady shear flow. International Journal of Multiphase Flow, 2016, 85, 2-13.	1.6	2
11	Recent advances in microfluidic production of Janus droplets and particles. Current Opinion in Colloid and Interface Science, 2016, 25, 1-12.	3.4	141
12	Vortices around Janus droplets under externally applied electrical field. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	11
13	Controlled evacuation using the biocompatible and energy efficient microfluidic ejector. Biomedical Microdevices, 2016, 18, 96.	1.4	10
14	Fluorocarbon Oil Reinforced Triple Emulsion Drops. Advanced Materials, 2016, 28, 8425-8430.	11.1	37
15	Recent advances in multiple emulsions and their application as templates. Current Opinion in Colloid and Interface Science, 2016, 25, 98-108.	3.4	62
16	Microfluidic production of multiple emulsions and functional microcapsules. Lab on A Chip, 2016, 16, 3415-3440.	3.1	187
17	Measurement and Correlation of Densities and Dynamic Viscosities of Perfluoropolyether Oils. Industrial & Engineering Chemistry Research, 2016, 55, 8460-8471.	1.8	9
18	Light-tunable thermoresponsive behavior of branched polyethylenimine derivatives in water. Polymer, 2016, 107, 37-43.	1.8	6

#	Article	IF	CITATIONS
19	Recent studies of Janus emulsions prepared by one-step vibrational mixing. Current Opinion in Colloid and Interface Science, 2016, 25, 58-66.	3.4	27
20	Bubble Meets Droplet: Particleâ€Assisted Reconfiguration of Wetting Morphologies in Colloidal Multiphase Systems. Small, 2016, 12, 3309-3319.	5.2	23
21	Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers. Journal of Colloid and Interface Science, 2016, 466, 206-212.	5.0	88
22	Simultaneous synthesis/assembly of anisotropic cake-shaped porphyrin particles toward colloidal microcrystals. Chemical Communications, 2016, 52, 3619-3622.	2.2	7
23	Microfluidic Production of Uniform Microcarriers with Multicompartments through Phase Separation in Emulsion Drops. Chemistry of Materials, 2016, 28, 1430-1438.	3.2	74
24	Generation, Characterization, and Application of Hierarchically Structured Self-Assembly Induced by the Combined Effect of Self-Emulsification and Phase Separation. Journal of the American Chemical Society, 2016, 138, 2090-2093.	6.6	29
25	Routes to the preparation of mixed monolayers of fluorinated and hydrogenated alkanethiolates grafted on the surface of gold nanoparticles. Faraday Discussions, 2016, 191, 527-543.	1.6	19
26	Fabrication of Janus droplets by evaporation driven liquid–liquid phase separation. Chemical Communications, 2016, 52, 5015-5018.	2.2	46
27	One-step production of multiple emulsions: microfluidic, polymer-stabilized and particle-stabilized approaches. Soft Matter, 2016, 12, 998-1008.	1.2	86
28	Off-equilibrium surface tension in miscible fluids. Soft Matter, 2017, 13, 13-21.	1.2	30
29	Single, Janus, and Cerberus emulsions from the vibrational emulsification of oils with significant mutual solubility. Soft Matter, 2017, 13, 1012-1019.	1.2	20
30	Monitoring emulsion microstructure by using organic electrochemical transistors. Journal of Materials Chemistry C, 2017, 5, 2056-2065.	2.7	27
31	Optical control of surface forces and instabilities in foam films using photosurfactants. Soft Matter, 2017, 13, 1299-1305.	1.2	25
32	Surface Interaction of Water-in-Oil Emulsion Droplets with Interfacially Active Asphaltenes. Langmuir, 2017, 33, 1265-1274.	1.6	110
33	A minimal length rigid helical peptide motif allows rational design of modular surfactants. Nature Communications, 2017, 8, 14018.	5.8	49
34	Interfacial Polymerization on Dynamic Complex Colloids: Creating Stabilized Janus Droplets. ACS Applied Materials & Interfaces, 2017, 9, 7804-7811.	4.0	14
35	Composite core-shell microparticles from microfluidics for synergistic drug delivery. Science China Materials, 2017, 60, 543-553.	3.5	74
36	Four reversible and reconfigurable structures for three-phase emulsions: extended morphologies and applications. Scientific Reports, 2017, 7, 42738.	1.6	22

#	Article	IF	CITATIONS
37	Relating emulsion stability to interfacial properties for pharmaceutical emulsions stabilized by Pluronic F68 surfactant. International Journal of Pharmaceutics, 2017, 521, 8-18.	2.6	33
38	Fabrication of hollow polymer particles using emulsions of hydrocarbon oil/fluorocarbon oil/orocarbon oil/aqueous surfactant solution. Journal of Fluorine Chemistry, 2017, 197, 34-41.	0.9	5
39	Reconfigurable and responsive droplet-based compound micro-lenses. Nature Communications, 2017, 8, 14673.	5.8	119
41	In Situ and in Operando Characterization of Mixing Dynamics in Liquidâ€Phase Reactions by ¹²⁹ Xe NMR Spectroscopy. ChemPhysChem, 2017, 18, 1513-1516.	1.0	1
42	Sprouting Droplets Driven by Physical Effects Alone. Langmuir, 2017, 33, 4235-4241.	1.6	3
43	Krafft Temperature of Cesium Dodecylsulfate Solutions at High Concentration. Journal of Chemical & amp; Engineering Data, 2017, 62, 1623-1627.	1.0	1
44	Separation of Janus droplets and oil droplets in microchannels by wall-induced dielectrophoresis. Journal of Chromatography A, 2017, 1501, 151-160.	1.8	24
45	Near-infrared photochemistry at interfaces based on upconverting nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 23585-23596.	1.3	43
46	Polymer Material Design by Microfluidics Inspired by Cell Biology and Cellâ€Free Biotechnology. Macromolecular Chemistry and Physics, 2017, 218, 1600429.	1.1	17
47	From core-shell to Janus: Microfluidic preparation and morphology transition of Gas/Oil/Water emulsions. Chemical Engineering Science, 2017, 172, 100-106.	1.9	14
48	Janus Particles Templated by Janus Emulsions and Application as a Pickering Emulsifier. Langmuir, 2017, 33, 5819-5828.	1.6	63
49	Janus Emulsions for the Detection of Bacteria. ACS Central Science, 2017, 3, 309-313.	5.3	71
50	Optical visualization and quantification of enzyme activity using dynamic droplet lenses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3821-3825.	3.3	48
51	Rational design and synthesis of transition layer-mediated structured latex particles with poly(vinyl) Tj ETQq1 1	D.784314	rgBT /Overlo
52	One-Step Bulk Fabrication of Polymer-Based Microcapsules with Hard–Soft Bilayer Thick Shells. ACS Applied Materials & Interfaces, 2017, 9, 37364-37373.	4.0	12
53	Polymer Phase Separation in a Microcapsule Shell. Macromolecules, 2017, 50, 7681-7686.	2.2	26
54	Self-sorting in mixed fluorinated/hydrogenated assemblies. Supramolecular Chemistry, 2017, 29, 808-822.	1.5	3
55	Complex Emulsions by Extracting Water from Homogeneous Solutions Comprised of Aqueous Three-Phase Systems. Langmuir, 2017, 33, 12670-12680.	1.6	38

#	Article	IF	CITATIONS
56	Magnetic Janus particles synthesized using droplet micro-magnetofluidic techniques for protein detection. Lab on A Chip, 2017, 17, 3514-3525.	3.1	38
57	Liquid phase condensation in cell physiology and disease. Science, 2017, 357, .	6.0	2,699
58	Multiplex coaxial flow focusing for producing multicompartment Janus microcapsules with tunable material compositions and structural characteristics. Lab on A Chip, 2017, 17, 3168-3175.	3.1	46
59	Phase separation in organic aerosol. Chemical Society Reviews, 2017, 46, 7694-7705.	18.7	119
60	Janus particles self-assembled from a small organic atypical asymmetric gemini surfactant. Chemical Communications, 2017, 53, 8675-8678.	2.2	11
61	Fabrication and electrokinetic motion of electrically anisotropic Janus droplets in microchannels. Electrophoresis, 2017, 38, 287-295.	1.3	15
62	Microflow extraction: A review of recent development. Chemical Engineering Science, 2017, 169, 18-33.	1.9	175
63	Microfluidic Production of Multiple Emulsions. Micromachines, 2017, 8, 75.	1.4	115
64	Sensor Technologies Empowered by Materials and Molecular Innovations. Angewandte Chemie - International Edition, 2018, 57, 4248-4257.	7.2	70
65	Emergence of Droplets at the Nonequilibrium All-Aqueous Interface in a Vertical Hele-Shaw Cell. Langmuir, 2018, 34, 3030-3036.	1.6	14
66	Advanced emulsions <i>via</i> noncovalent interaction-mediated interfacial self-assembly. Chemical Communications, 2018, 54, 3174-3177.	2.2	3
67	Photopolymerization of complex emulsions with irregular shapes fabricated by multiplex coaxial flow focusing. Applied Physics Letters, 2018, 112, .	1.5	24
68	Structure and Dynamics of Stimuli-Responsive Nanoparticle Monolayers at Fluid Interfaces. Langmuir, 2018, 34, 5581-5591.	1.6	12
69	3D Nanofabrication via Chemoâ€Mechanical Transformation of Nanocrystal/Bulk Heterostructures. Advanced Materials, 2018, 30, e1800233.	11.1	15
70	Interfacial bioconjugation on emulsion droplet for biosensors. Bioorganic and Medicinal Chemistry, 2018, 26, 5307-5313.	1.4	9
71	Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Chemical Society Reviews, 2018, 47, 4156-4175.	18.7	388
72	Active nematic emulsions. Science Advances, 2018, 4, eaao1470.	4.7	51
73	Fluorescent Cyanine Dye J-Aggregates in the Fluorous Phase. Journal of the American Chemical Society, 2018, 140, 2727-2730.	6.6	63

#	Article	IF	Citations
74	Predicting Surface Tensions of Surfactant Solutions from Statistical Mechanics. Langmuir, 2018, 34, 2386-2395.	1.6	10
75	Sizeâ€Dependent Phase Separation in Emulsion Droplets. ChemPhysChem, 2018, 19, 1995-1998.	1.0	8
76	Systems of mechanized and reactive droplets powered by multi-responsive surfactants. Nature, 2018, 553, 313-318.	13.7	162
77	pH-responsive magnetic Pickering Janus emulsions. Colloid and Polymer Science, 2018, 296, 1039-1046.	1.0	19
78	Multiscale and Multifunctional Emulsions by Host–Guest Interaction-Mediated Self-Assembly. ACS Central Science, 2018, 4, 600-605.	5.3	25
79	Janus Droplets and Droplets with Multiple Heterogeneous Surface Strips Generated with Nanoparticles under Applied Electric Field. Journal of Physical Chemistry C, 2018, 122, 8461-8472.	1.5	11
80	Microfluidic Investigation of Asphaltenes-Stabilized Water-in-Oil Emulsions. Energy & Fuels, 2018, 32, 4903-4910.	2.5	43
81	Emulsion patterns in the wake of a liquid–liquid phase separation front. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3599-3604.	3.3	23
82	Temperature-controlled morphology evolution of porphyrin nanostructures on a hydrophobic substrate. Journal of Materials Chemistry C, 2018, 6, 3849-3855.	2.7	12
83	Molecular Rotors for Universal Quantitation of Nanoscale Hydrophobic Interfaces in Microplate Format. Nano Letters, 2018, 18, 618-628.	4.5	3
84	Water and Oil Insoluble PEGDA-Based Microcapsule: Biocompatible and Multicomponent Encapsulation. ACS Applied Materials & Interfaces, 2018, 10, 40366-40371.	4.0	35
85	pH Variation as a Simple and Selective Pathway for Obtaining Nanoparticle or Nanocapsule Polysaccharides. Langmuir, 2018, 34, 15820-15826.	1.6	3
86	Peanut-inspired anisotropic microparticles from microfluidics. Composites Communications, 2018, 10, 129-135.	3.3	9
87	Ionic Janus Liquid Droplets Assembled and Propelled by Electric Field. Angewandte Chemie, 2018, 130, 17015-17018.	1.6	1
88	Achieving Highly Stable, Reversibly Reconfigurable Plasmonic Nanocrystal Superlattices through the Use of Semifluorinated Surface Ligands. Chemistry of Materials, 2018, 30, 8201-8210.	3.2	12
89	Ionic Janus Liquid Droplets Assembled and Propelled by Electric Field. Angewandte Chemie - International Edition, 2018, 57, 16773-16776.	7.2	13
90	Photoinduced Reconfiguration of Complex Emulsions Using a Photoresponsive Surfactant. Langmuir, 2018, 34, 11544-11552.	1.6	23
91	Collective Shape Actuation of Polymer Double Emulsions by Solvent Evaporation. ACS Applied Materials & Interfaces, 2018, 10, 31865-31869.	4.0	8

#	Article	IF	CITATIONS
92	Preparation of Hollow Polystyrene Particles and Microcapsules by Radical Polymerization of Janus Droplets Consisting of Hydrocarbon and Fluorocarbon Oils. Journal of Visualized Experiments, 2018, ,	0.2	0
93	Synthesis of amphiphilic fluorinated Janus particles with applications in stabilizing surfactant-free foams. Particuology, 2018, 41, 112-117.	2.0	2
94	Rapid, non-invasive characterization of the dispersity of emulsions <i>via</i> microwaves. Chemical Science, 2018, 9, 6975-6980.	3.7	4
95	Single Micrometer-Sized Gels: Unique Mechanics and Characters for Applications. Gels, 2018, 4, 29.	2.1	10
96	UV- and Thermo-Controllable Azobenzene-Decorated Polycarbodiimide Molecular Springs. Macromolecules, 2018, 51, 3722-3730.	2.2	22
97	Local Measurement of Janus Particle Cap Thickness. ACS Applied Materials & Interfaces, 2018, 10, 30925-30929.	4.0	18
98	Sensortechnologien durch neuartige Materialien und Moleküle. Angewandte Chemie, 2018, 130, 4325-4335.	1.6	13
99	DNA-Coated Functional Oil Droplets. Langmuir, 2018, 34, 10073-10080.	1.6	12
100	Macromolecularly Crowded Protocells from Reversibly Shrinking Monodisperse Liposomes. Journal of the American Chemical Society, 2018, 140, 7399-7402.	6.6	72
101	Anisotropic Particles Templated by Cerberus Emulsions. Langmuir, 2018, 34, 7386-7395.	1.6	24
102	Biological tissue-inspired tunable photonic fluid. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6650-6655.	3.3	21
103	Temperature and composition induced morphology transition of Cerberus emulsion droplets. Journal of Colloid and Interface Science, 2019, 554, 210-219.	5.0	10
104	Light-responsive vesicles based on azobenzene containing imidazolium surfactants and sodium oleate. Colloid and Polymer Science, 2019, 297, 1489-1497.	1.0	13
105	Microcapsules with Distinct Dual-Layer Shells and Their Applications for the Encapsulation, Preservation, and Slow Release of Hydrophilic Small Molecules. ACS Applied Materials & Interfaces, 2019, 11, 41640-41648.	4.0	9
106	Dynamic Complex Liquid Crystal Emulsions. Journal of the American Chemical Society, 2019, 141, 18246-18255.	6.6	51
107	Dynamic Imine Chemistry at Complex Double Emulsion Interfaces. Journal of the American Chemical Society, 2019, 141, 18048-18055.	6.6	64
108	Exploring the Free Energy Landscape To Predict the Surfactant Adsorption Isotherm at the Nanoparticle–Water Interface. ACS Central Science, 2019, 5, 1804-1812.	5.3	19
109	Dynamically Reconfigurable, Multifunctional Emulsions with Controllable Structure and Movement. Advanced Materials, 2019, 31, e1905569.	11.1	33

#	Article	IF	CITATIONS
110	Stretchable and Reactive Membranes of Metal–Organic Framework Nanosurfactants on Liquid Droplets Enable Dynamic Control of Selfâ€Propulsion, Cargo Pickâ€Up, and Dropâ€Off. Advanced Intelligent Systems, 2019, 1, 1900065.	3.3	5
111	Bi-phase emulsion droplets as dynamic fluid optical systems. EPJ Web of Conferences, 2019, 215, 13003.	0.1	0
112	Topological Stabilization and Dynamics of Self-Propelling Nematic Shells. Physical Review Letters, 2019, 123, 178003.	2.9	29
113	Microfluidic fabrication and thermal properties of microencapsulated n-heptadecane with hexanediol diacrylate shell for thermal energy storage. Applied Thermal Engineering, 2019, 162, 114278.	3.0	19
114	Droplet Core Intermolecular Interactions and Block Copolymer Composition Heavily Influence Oil-In-Water Nanoemulsion Stability. Langmuir, 2019, 35, 12765-12772.	1.6	4
115	Natural Rice Starch Granules for Green Cleaning. Langmuir, 2019, 35, 13157-13164.	1.6	7
116	Shapeâ€Preserved Transformation of Biological Cells into Synthetic Hydrogel Microparticles. Advanced Biology, 2019, 3, e1800285.	3.0	7
117	Biobased polymeric surfactant: Natural glycyrrhizic acid-appended homopolymer with multiple pH-responsiveness. Journal of Colloid and Interface Science, 2019, 541, 93-100.	5.0	31
118	Thixotropic Behavior of Oilâ€inâ€Water Emulsions Stabilized with Ethoxylated Amines at Low Shear Rates. Chemical Engineering and Technology, 2019, 42, 432-443.	0.9	8
119	Temperature-triggered reversible breakdown of polymer-stabilized olive–silicone oil Janus emulsions. RSC Advances, 2019, 9, 19271-19277.	1.7	8
120	Precise morphology control and fast merging of a complex multi-emulsion system: the effects of AC electric fields. Soft Matter, 2019, 15, 5614-5625.	1.2	10
121	Power generation from the interaction of a liquid droplet and a liquid membrane. Nature Communications, 2019, 10, 2264.	5.8	237
122	Rapid Detection of <i>Salmonella enterica</i> via Directional Emission from Carbohydrate-Functionalized Dynamic Double Emulsions. ACS Central Science, 2019, 5, 789-795.	5.3	48
123	Microfluidics for drug delivery systems. , 2019, , 55-83.		1
124	Asymmetric superwetting configuration of Janus membranes based on thiol–ene clickable silane nanospheres enabling on-demand and energy-efficient oil–water remediation. Journal of Materials Chemistry A, 2019, 7, 10047-10057.	5.2	61
125	Waveguide-based chemo- and biosensors: complex emulsions for the detection of caffeine and proteins. Lab on A Chip, 2019, 19, 1327-1331.	3.1	34
126	Building Reconfigurable Devices Using Complex Liquid–Fluid Interfaces. Advanced Materials, 2019, 31, e1806370.	11.1	120
127	Harnessing liquid-in-liquid printing and micropatterned substrates to fabricate 3-dimensional all-liquid fluidic devices. Nature Communications, 2019, 10, 1095.	5.8	117

#	Article	IF	CITATIONS
128	Controlling nanoemulsion surface chemistry with poly(2-oxazoline) amphiphiles. Chemical Science, 2019, 10, 3994-4003.	3.7	32
129	Janus Graphene: Scalable Selfâ€Assembly and Solutionâ€Phase Orthogonal Functionalization. Advanced Materials, 2019, 31, e1900438.	11.1	42
130	Particle-stabilized Janus emulsions that exhibit pH-tunable stability. Chemical Communications, 2019, 55, 5773-5776.	2.2	11
131	Thermally reconfigurable Janus droplets with nematic liquid crystalline and isotropic perfluorocarbon oil compartments. Soft Matter, 2019, 15, 2580-2590.	1.2	19
132	Colouration by total internal reflection and interference at microscale concave interfaces. Nature, 2019, 566, 523-527.	13.7	151
133	Confinement-Induced Alteration of Morphologies of Oil–Water Emulsions. Langmuir, 2019, 35, 3797-3804.	1.6	3
134	Morphology-Dependent Luminescence in Complex Liquid Colloids. Journal of the American Chemical Society, 2019, 141, 3802-3806.	6.6	24
135	Reconfigurable Multicompartment Emulsion Drops Formed by Nematic Liquid Crystals and Immiscible Perfluorocarbon Oils. Langmuir, 2019, 35, 16312-16323.	1.6	12
136	The liquid nucleome $\hat{a} \in $ phase transitions in the nucleus at a glance. Journal of Cell Science, 2019, 132, .	1.2	181
137	Physicochemical properties of stable multilayer nanoemulsion prepared via the spontaneously-ordered adsorption of short and long chains. Food Chemistry, 2019, 274, 620-628.	4.2	16
138	The effect of demulsifier on the stability of liquid droplets: A study of micro-force balance. Journal of Molecular Liquids, 2019, 275, 157-162.	2.3	8
140	Emulsion Agglutination Assay for the Detection of Protein–Protein Interactions: An Optical Sensor for Zika Virus. ACS Sensors, 2019, 4, 180-184.	4.0	36
141	Multiphase Microfluidics: Fundamentals, Fabrication, and Functions. Small, 2020, 16, e1906357.	5.2	53
142	Polyelectrolyte hydrogel capsules as stabilizers for reconfigurable complex emulsions. Polymer Chemistry, 2020, 11, 281-286.	1.9	6
143	Selfâ€Folding Using Capillary Forces. Advanced Materials Interfaces, 2020, 7, 1901677.	1.9	24
144	Oil-coated bubbles in particle suspensions, capillary foams, and related opportunities in colloidal multiphase systems. Current Opinion in Colloid and Interface Science, 2020, 50, 101384.	3.4	20
145	One-step microdevices for synthesizing morphology-controlled ultraviolet-curable polysiloxane shell particles. Journal of Flow Chemistry, 2020, 10, 627-635.	1.2	1
146	Enhancing Surface Capture and Sensing of Proteins with Low-Power Optothermal Bubbles in a Biphasic Liquid. Nano Letters, 2020, 20, 7020-7027.	4.5	30

#	Article	IF	CITATIONS
147	Designing the Morphology of Separated Phases in Multicomponent Liquid Mixtures. Physical Review Letters, 2020, 125, 218003.	2.9	33
148	Reconfigurable complex emulsions: Design, properties, and applications. Chemical Physics Reviews, 2020, 1, 011301.	2.6	34
149	Advances and Opportunities of Oil-in-Oil Emulsions. ACS Applied Materials & Interfaces, 2020, 12, 38845-38861.	4.0	53
150	Physicochemical hydrodynamics of droplets out of equilibrium. Nature Reviews Physics, 2020, 2, 426-443.	11.9	126
151	One‣tep Generation of Core–Gap–Shell Microcapsules for Stimuliâ€Responsive Biomolecular Sensing. Advanced Functional Materials, 2020, 30, 2006019.	7.8	17
152	Discovery of Surfactant-Like Peptides from a Phage-Displayed Peptide Library. Viruses, 2020, 12, 1442.	1.5	5
153	Collective nucleation dynamics in two-dimensional emulsions with hexagonal packing. Physical Review E, 2020, 101, 030602.	0.8	2
154	Programmable Emulsions via Nucleophile-Induced Covalent Surfactant Modifications. Chemistry of Materials, 2020, 32, 4663-4671.	3.2	15
155	Fluorescent Janus emulsions for biosensing of <i>Listeria monocytogenes</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11923-11930.	3.3	28
156	Three-dimensional lattice Boltzmann simulation of Janus droplet formation in Y-shaped co-flowing microchannel. Chemical Engineering Science, 2020, 225, 115819.	1.9	18
157	Synthesis of Polymeric Janus Superstructures via a Facile Synthesis Method. Macromolecular Rapid Communications, 2020, 41, 2000140.	2.0	2
158	Photonic Multishells Composed of Cholesteric Liquid Crystals Designed by Controlled Phase Separation in Emulsion Drops. Advanced Materials, 2020, 32, e2002166.	11.1	39
159	Complex emulsions for shape control based on mass transfer and phase separation. Soft Matter, 2020, 16, 5981-5989.	1.2	10
160	Sodium caseinate as a particulate emulsifier for making indefinitely recycled pH-responsive emulsions. Chemical Science, 2020, 11, 3797-3803.	3.7	41
161	Enabling seamless investigation of fast and complex flow fields in microfluidics via metal lead halide perovskite based micro-particles. Applied Materials Today, 2020, 20, 100736.	2.3	0
162	Controlled Movement of Complex Double Emulsions via Interfacially Confined Magnetic Nanoparticles. ACS Central Science, 2020, 6, 1460-1466.	5.3	21
163	Unexpected monolayer-to-bilayer transition of arylazopyrazole surfactants facilitates superior photo-control of fluid interfaces and colloids. Chemical Science, 2020, 11, 2085-2092.	3.7	23
164	Ultralight magnetic aerogels from Janus emulsions. RSC Advances, 2020, 10, 7492-7499.	1.7	8

#	Article	IF	CITATIONS
165	Particle Stabilization of Oil–Fluorocarbon Interfaces and Effects on Multiphase Oil-in-Water Complex Emulsion Morphology and Reconfigurability. Langmuir, 2020, 36, 7083-7090.	1.6	11
166	Novel nonequilibrium steady states in multiple emulsions. Physics of Fluids, 2020, 32, .	1.6	20
167	Vaporizable endoskeletal droplets via tunable interfacial melting transitions. Science Advances, 2020, 6, eaaz7188.	4.7	16
168	One-Step Dynamic Imine Chemistry for Preparation of Chitosan-Stabilized Emulsions Using a Natural Aldehyde: Acid Trigger Mechanism and Regulation and Gastric Delivery. Journal of Agricultural and Food Chemistry, 2020, 68, 5412-5425.	2.4	42
169	Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization. Cell, 2020, 181, 306-324.e28.	13.5	543
170	Responsive Janus and Cerberus emulsions via temperature-induced phase separation in aqueous polymer mixtures. Journal of Colloid and Interface Science, 2020, 575, 88-95.	5.0	41
171	Formation of magnetic ionic liquid-water Janus droplet in assembled 3D-printed microchannel. Chemical Engineering Journal, 2021, 406, 126098.	6.6	11
172	Dynamic emulsion droplets enabled by interfacial assembly of azobenzene-functionalized nanoparticles under light and magnetic field. Journal of Colloid and Interface Science, 2021, 583, 586-593.	5.0	3
173	Temperature-induced liquid crystal microdroplet formation in a partially miscible liquid mixture. Soft Matter, 2021, 17, 947-954.	1.2	9
174	Behavior of Smart Surfactants in Stabilizing pHâ€Responsive Emulsions. Angewandte Chemie, 2021, 133, 5295-5299.	1.6	9
175	Behavior of Smart Surfactants in Stabilizing pHâ€Responsive Emulsions. Angewandte Chemie - International Edition, 2021, 60, 5235-5239.	7.2	31
176	Structurally Anisotropic Janus Particles with Tunable Amphiphilicity via Polymerization of Dynamic Complex Emulsions. Macromolecules, 2021, 54, 981-987.	2.2	14
177	Acid/alkali-resistant, stimuli-responsive, and shape-remodeled emulsion droplet assemblies with Ag nanocrystals as binding agents. Chemical Engineering Journal, 2021, 407, 127092.	6.6	2
178	Destabilization mechanism of (W1+W2)/O reverse Janus emulsions. Journal of Colloid and Interface Science, 2021, 585, 205-216.	5.0	12
179	Anisotropic Microparticles from Microfluidics. CheM, 2021, 7, 93-136.	5.8	54
180	Photo-responsive azobenzene-based surfactants as fast-phototuning foam switch synthesized via thiol-ene click chemistry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609, 125645.	2.3	3
181	The dynamics of the nuclear environment and their impact on gene function. Journal of Biochemistry, 2021, 169, 259-264.	0.9	3
182	Active motion of multiphase oil droplets: emergent dynamics of squirmers with evolving internal structure. Soft Matter, 2021, 17, 2985-2993.	1.2	24

	CHATION	LEPUKI	
#	Article	IF	Citations
183	Preparation and applications of freestanding Janus nanosheets. Nanoscale, 2021, 13, 15151-15176.	2.8	21
184	From shaping to functionalization of micro-droplets and particles. Nanoscale Advances, 2021, 3, 3395-3416.	2.2	8
185	Facile synthesis of micron-size Janus particles by one-pot suspension polymerization and their functional modification. Polymer Chemistry, 2021, 12, 2722-2730.	1.9	0
186	Colored Janus Nanocylinders Driven by Supramolecular Coassembly of Donor and Acceptor Building Blocks. ACS Nano, 2021, 15, 2569-2577.	7.3	9
187	Perpendicular alignment of the phase-separated boundary in adhered polymer droplets. Soft Matter, 2021, 17, 9499-9506.	1.2	1
188	Core–shell droplets and microcapsules formed through liquid–liquid phase separation of a colloid–polymer mixture. Soft Matter, 2021, 17, 8300-8307.	1.2	7
189	Dynamic Coloration of Complex Emulsions by Localization of Gold Rings Near the Triphase Junction. Small, 2021, 17, e2007507.	5.2	6
190	Tuning the Interfacial Properties of Fluorous Colloids Toward Ultrasound Programmable Bioactivity. ACS Applied Materials & Interfaces, 2021, 13, 5989-5998.	4.0	3
191	Self-assembly of superstructures at all scales. Matter, 2021, 4, 927-941.	5.0	32
192	Visualizing Interfacial Jamming Using an Aggregationâ€Inducedâ€Emission Molecular Reporter. Angewandte Chemie, 2021, 133, 8776-8781.	1.6	4
193	Visualizing Interfacial Jamming Using an Aggregationâ€Inducedâ€Emission Molecular Reporter. Angewandte Chemie - International Edition, 2021, 60, 8694-8699.	7.2	20
194	Trace Detection of Hydrogen Peroxide via Dynamic Double Emulsions. Journal of the American Chemical Society, 2021, 143, 4397-4404.	6.6	25
195	Electroinduced Reconfiguration of Complex Emulsions for Fabrication of Polymer Particles with Tunable Morphology. Macromolecular Rapid Communications, 2021, 42, e2100085.	2.0	8
196	Exploring New Horizons in Liquid Compartmentalization via Microfluidics. Biomacromolecules, 2021, 22, 1759-1769.	2.6	8
197	Phase-Field Modeling of Multiple Emulsions Via Spinodal Decomposition. Langmuir, 2021, 37, 5275-5281.	1.6	17
198	Shear dynamics of polydisperse double emulsions. Physics of Fluids, 2021, 33, .	1.6	10
199	On the compound sessile drops: configuration boundaries and transitions. Journal of Fluid Mechanics, 2021, 917, .	1.4	5
200	Multifunctional fabrics finished using electrosprayed hybrid Janus particles containing nanocatalysts. Chemical Engineering Journal, 2021, 411, 128474.	6.6	49

ARTICLE IF CITATIONS # Dynamics of Liquid–Liquid Phase Separation in Submicrometer Aerosol. Journal of Physical Chemistry 201 1.1 15 A, 2021, 125, 4446-4453. Janus Emulsion Biosensors for Anti-SARS-CoV-2 Spike Antibody. ACS Central Science, 2021, 7, 1166-1175. 5.3 28 Fabrication of Multi-Layered Microspheres Based on Phase Separation for Drug Delivery. 203 7 1.4 Micromachines, 2021, 12, 723. Complex Liquid Crystal Emulsions for Biosensing. Journal of the American Chemical Society, 2021, 143, 204 9177-9182. Synthesis of Polymer Janus Particles with Tunable Wettability Profiles as Potent Solid Surfactants to 205 Promote Gas Delivery in Aqueous Reaction Media. ACS Applied Materials & amp; Interfaces, 2021, 13, 4.0 24 32510-32519. Functional Surfactants for Molecular Fishing, Capsule Creation, and Single-Cell Gene Expression. 14.4 Nano-Micro Letters, 2021, 13, 147. Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 50 207 5.6 66 WPI-EGCG covalent conjugate nanoparticles. Food Hydrocolloids, 2021, 116, 106658. Study on the improvement of dispersibility and orientation control of <scp>fluorocarbonâ€modified singléâ€walled</scp> carbon nanotubes in a fluorinated polymer matrix. Polymer Composites, 2021, 42, 208 2.3 4845-4859. Thermodynamic Investigation of Droplet–Droplet and Bubble–Droplet Equilibrium in an Immiscible 209 1.2 4 Medium. Journal of Physical Chemistry B, 2021, 125, 8636-8651. Facile Monitoring of Water Hardness Levels Using Responsive Complex Emulsions. Analytical Chemistry, 2021, 93, 9390-9396. 3.2 Preparation of Anisotropic Micro-Hydrogels with Tunable Structural and Topographic Features by 211 3 4.0Compound Interfacial Shearing. ACS Applied Materials & amp; Interfaces, 2021, 13, 42114-42124. Complex High-Internal Phase Emulsions that can Form Interfacial Films with Tunable Morphologies. 1.6 Langmuir, 2021, 37, 9802-9808. Actuation of Janus Emulsion Droplets via Optothermally Induced Marangoni Forces. Physical Review 213 2.9 17 Letters, 2021, 127, 144503. Amphiphilicity-adaptable graphene quantum dots to stabilize pH-responsive pickering emulsions at a 214 5.0 very low concentration. Journal of Colloid and Interface Science, 2021, 601, 106-113 Recent progress in preparation of functional microparticles based on microfluidic technique. 215 0.9 8 Materials Today Communications, 2021, 29, 102740. Dynamic Complex Emulsions as Amplifiers for On-Chip Photonic Cavity-Enhanced Resonators. ACS 14 Sénsors, 2020, 5, 1996-2002. Triggered Release from Cellulose Microparticles Inspired by Wood Degradation by Fungi. ACS 217 3.253 Sustainable Chemistry and Engineering, 2021, 9, 387-397. Responsive drop method: quantitative<i>in situ</i>determination of surfactant effectiveness using 1.2 reconfigurable Janus emulsions. Soft Matter, 2020, 16, 10419-10424.

#	Article	IF	CITATIONS
219	Controlled diffusion of nanoparticles by viscosity gradient for photonic crystal with dual photonic band gaps. Nanotechnology, 2020, 31, 435604.	1.3	6
220	Micron-sized double emulsions and nematic shells generated via tip streaming. Physical Review Fluids, 2019, 4, .	1.0	9
221	The microfluidic laboratory at Synchrotron SOLEIL. Journal of Synchrotron Radiation, 2020, 27, 230-237.	1.0	8
222	Surfactant-Laden Janus Droplets with Tunable Morphologies and Enhanced Stability for Fabricating Lens-Shaped Polymeric Microparticles. Micromachines, 2021, 12, 29.	1.4	3
223	Research progress of bicontinuous interfacially jammed emulsion gel (Bijel). Wuli Xuebao/Acta Physica Sinica, 2018, 67, 144701.	0.2	6
224	Microfluidic droplet-based functional materials for cell manipulation. Lab on A Chip, 2021, 21, 4311-4329.	3.1	21
225	Janus Emulsion Solar Concentrators as Photocatalytic Droplet Microreactors. Advanced Optical Materials, 2021, 9, 2101139.	3.6	16
226	Crown Etherâ€Functionalized Complex Emulsions as an Artificial Adaptive Material Platform. Advanced Functional Materials, 2022, 32, 2107688.	7.8	11
227	Bioinspired Perfluorocarbonâ€Based Oxygen Carriers with Concave Shape and Deformable Shell. Advanced Materials Technologies, 2022, 7, 2100573.	3.0	11
228	Structural Color due to Interference of Totally Internally Reflected Light in Bi-Phase Droplets. , 2019, , .		0
229	Curvature sculptured growth of plasmonic nanostructures by supramolecular recognition. Physical Review Materials, 2019, 3, .	0.9	0
231	Microfluidics in tissue engineering. , 2020, , 567-598.		2
232	Microfluidic production of monodisperse emulsions for cosmetics. Biomicrofluidics, 2021, 15, 051302.	1.2	13
233	Multi-Phase Droplets as Dynamic Compound Micro-Lenses. Springer Theses, 2020, , 13-31.	0.0	0
234	Thermal Actuation of Bi-Phase Droplets. Springer Theses, 2020, , 71-82.	0.0	0
235	Shapeâ€Changing Particles: From Materials Design and Mechanisms to Implementation. Advanced Materials, 2022, 34, e2105758.	11.1	19
237	Stimuli-responsive emulsions: Recent advances and potential applications. Chinese Journal of Chemical Engineering, 2022, 41, 193-209.	1.7	21
238	Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chemical Reviews, 2022, 122, 7010-7060.	23.0	44

ARTICLE IF CITATIONS # Recyclable and re-usable smart surfactant for stabilization of various multi-responsive emulsions 239 1.2 5 alone or with nanoparticles. Soft Matter, 2022, 18, 849-858. Sustainable Superhydrophobic Surface with Tunable Nanoscale Hydrophilicity for Water Harvesting 240 1.6 Applications. Angewandte Chemie, 2022, 134, . Sustainable Superhydrophobic Surface with Tunable Nanoscale Hydrophilicity for Water Harvesting 241 7.2 35 Applications. Angewandte Chemie - International Edition, 2022, 61, . Effect of parameters on ME process by near-field electrospun PTFE membrane. Journal of the Taiwan 242 Institute of Chemical Engineers, 2022, 131, 104181. Chemical design of self-propelled Janus droplets. Matter, 2022, 5, 616-633. 243 5.0 32 Effect of Thermal History and Hydrocarbon Core Size on Perfluorocarbon Endoskeletal Droplet Vaporization. Langmuir, 2022, 38, 2634-2641. 1.6 Acoustically manipulating internal structure of disk-in-sphere endoskeletal droplets. Nature 245 5.8 12 Communications, 2022, 13, 987. Dynamic Polypyrrole Coreâ€"Shell Chemomechanical Actuators. Chemistry of Materials, 2022, 34, 3.2 3013-3019. 248 Study on liquid-liquid phase separation based on optical tweezers., 2022, , . 0 Fluorinated surfactants: A review on recent progress on synthesis and oilfield applications. Advances 249 in Colloid and Interface Science, 2022, 303, 102634. Hydrogelâ€shelled biodegradable microspheres for sustained release of encapsulants. Journal of 250 2.0 8 Pólymer Science, 2022, 60, 1700-1709. Pickering Janus Emulsions Stabilized with Gold Nanoparticles. Langmuir, 2022, 38, 147-155. 1.6 Detection of PFAS and Fluorinated Surfactants Using Differential Behaviors at Interfaces of Complex 252 4.0 16 Droplets. ACS Sensors, 2022, 7, 1514-1523. Systematic characterization of effect of flow rates and buffer compositions on double emulsion 254 3.1 droplet volumes and stability. Lab on A Chip, 2022, 22, 2315-2330. Polymer Crystallization with Configurable Birefringence in Double Emulsion Droplets. 255 2.2 5 Macromolecules, 2022, 55, 3974-3985. Reversible morphology-resolved chemotactic actuation and motion of Janus emulsion droplets. 5.8 14 Nature Communications, 2022, 13, 2562. Generation and evolution of double emulsions in a circular microchannel. Chemical Engineering 257 1.9 6 Science, 2022, 255, 117683. Recent Progress toward Physical Stimuliâ€Responsive Emulsions. Macromolecular Rapid Communications, 2022, 43, .

#	Article	IF	CITATIONS
260	Janus Droplet Formation via Thermally Induced Phase Separation: A Numerical Model with Diffusion and Convection. Langmuir, 2022, 38, 6882-6895.	1.6	17
261	Synthesis and comparative studies on the surface-active and biological properties of linear poly(glycidol) esters. Journal of Molecular Liquids, 2022, 360, 119538.	2.3	3
262	Anisotropic droplets with uniform internal structure prepared in batch-scale by combination of vortex mixing and phase separation. Journal of Molecular Liquids, 2022, 361, 119616.	2.3	2
263	Functional Droplets Stabilized by Interfacially Selfâ€Assembled Chiral Nanocomposites. Angewandte Chemie - International Edition, 2022, 61, .	7.2	3
264	Functional Droplets Stabilized by Interfacially Selfâ€Assembled Chiral Nanocomposites. Angewandte Chemie, 0, , .	1.6	0
265	Ultrahigh efficient emulsification with drag-reducing liquid gating interfacial behavior. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
266	Demulsification of (W1 +W2 +W3)/O reverse Cerberus emulsion from vibrational emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129623.	2.3	3
267	A new method for measuring the dynamic interfacial tension for flowing droplets of three-phase emulsion in the channel. Chemical Engineering Journal, 2022, 449, 137852.	6.6	2
268	Construction and regulation of aqueous-based Cerberus droplets by vortex mixing. Journal of Colloid and Interface Science, 2022, 627, 194-204.	5.0	3
269	Fragmentation of inviscid liquid and destination of satellite droplets. Physics of Fluids, 2022, 34, 084105.	1.6	0
270	The attraction between like-charged oil-in-water emulsion droplets induced by ionic micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 130143.	2.3	3
271	Microfluidic emulsification techniques for controllable emulsion production and functional microparticle synthesis. Chemical Engineering Journal, 2023, 452, 139277.	6.6	17
272	Controlled evaporation-induced phase separation of droplets containing nanogels and salt molecules. RSC Advances, 2022, 12, 27977-27986.	1.7	1
273	Capillary forces generated by biomolecular condensates. Nature, 2022, 609, 255-264.	13.7	92
274	Complex Suspended Janus Droplets Constructed through Solvent Evaporation-Induced Phase Separation at the Air–Liquid Interface. Langmuir, 2022, 38, 10994-11002.	1.6	1
275	Emerging Implications of Phase Separation in Cancer. Advanced Science, 2022, 9, .	5.6	9
276	Fabrication of WPI-EGCG covalent conjugates/gellan gum double network emulsion gels by duo-induction of GDL and CaCl2 for colon-controlled Lactobacillus Plantarum delivery. Food Chemistry, 2023, 404, 134513.	4.2	6
277	Modification of amphiphilic block copolymers for responsive and biologically active surfactants in complex droplets. Giant, 2023, 13, 100134.	2.5	3

#	ARTICLE	IF	CITATIONS
278	Shortwave Infrared Fluorofluorophores for Multicolor <i>In Vivo</i> Imaging**. Angewandte Chemie, 2023, 135, .	1.6	1
279	Shortwave Infrared Fluorofluorophores for Multicolor <i>In Vivo</i> Imaging**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
280	Switchable Nanostructures Triggered by Noyori-Type Organometallics. Inorganic Chemistry, 2022, 61, 19668-19672.	1.9	0
281	Non-equilibrium ordering of liquid crystalline (LC) films driven by external gradients in surfactant concentration. Journal of Colloid and Interface Science, 2023, 637, 134-146.	5.0	2
282	Behaviors of self-delivery lidocaine nano systems affected by intermolecular interaction. Chemical Communications, 2023, 59, 1653-1656.	2.2	1
283	Thermodynamic origins of two-component multiphase condensates of proteins. Chemical Science, 2023, 14, 1820-1836.	3.7	12
284	Morphologyâ€Đependent Aggregationâ€Induced Emission of Janus Emulsion Surfactants. Chemistry - A European Journal, 0, , .	1.7	4
285	Liquid-liquid phase separation of immiscible polymers at double emulsion interfaces for configurable microcapsules. Journal of Colloid and Interface Science, 2023, 641, 299-308.	5.0	3
286	Does the contact angle hysteresis control the droplet shapes on cylindrical fibers?. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 668, 131435.	2.3	1
287	Tailoring Pickering Double Emulsions by in Situ Particle Surface Modification. Langmuir, 2023, 39, 2911-2921.	1.6	2
288	Dynamic In Situ Monitoring of the Salt Counter-ion Effect on Surfactant Effectiveness Using Reconfigurable Janus Emulsions. Langmuir, 2023, 39, 2152-2160.	1.6	5
289	Nanostructure-free crescent-shaped microparticles as full-color reflective pigments. Nature Communications, 2023, 14, .	5.8	12
290	Multiplexed and continuous microfluidic sensors using dynamic complex droplets. Soft Matter, 2023, 19, 1930-1940.	1.2	6
291	Synthesis and Characterization of Magnetic Nanodroplets for Flowback Analysis in Fractured Reservoirs. , 2023, , .		1
292	Interfacial friction at action: Interactions, regulation, and applications. Friction, 2023, 11, 2153-2180.	3.4	8
293	Deformation characteristics of compound droplets with different morphologies during transport in a microchannel. Physics of Fluids, 2023, 35, 042003.	1.6	1
313	NEEDLE-BASED MICROFLUIDIC PRODUCTION OF MICROENCAPSULATED PHASE CHANGE MATERIAL FOR THERMAL ENERGY STORAGE. , 2023, , .		0