N6-methyladenosine-dependent RNA structural switch interactions

Nature 518, 560-564

DOI: 10.1038/nature14234

Citation Report

#	Article	IF	CITATIONS
1	Long nonâ€coding RNA regulation of reproduction and development. Molecular Reproduction and Development, 2015, 82, 932-956.	1.0	140
2	N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. Journal of Controlled Release, 2015, 217, 337-344.	4.8	365
3	Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases. Journal of Translational Medicine, 2015, 13, 385.	1.8	64
4	RNA structure: Merging chemistry and genomics for a holistic perspective. BioEssays, 2015, 37, 1129-1138.	1.2	7
5	Epigenetic Codes Programing Class Switch Recombination. Frontiers in Immunology, 2015, 6, 405.	2.2	14
6	RNA-Binding Proteins in the Regulation of miRNA Activity: A Focus on Neuronal Functions. Biomolecules, 2015, 5, 2363-2387.	1.8	32
7	Probing RNA Modification Status at Single-Nucleotide Resolution in Total RNA. Methods in Enzymology, 2015, 560, 149-159.	0.4	37
8	The Arabidopsis epitranscriptome. Current Opinion in Plant Biology, 2015, 27, 17-21.	3.5	39
9	Progress and challenges for chemical probing of RNA structure inside living cells. Nature Chemical Biology, 2015, 11, 933-941.	3.9	88
10	Analysis of sequencing data for probing RNA secondary structures and protein–RNA binding in studying posttranscriptional regulations. Briefings in Bioinformatics, 2015, 17, bbv106.	3.2	6
11	Sketching the distribution of transcriptomic features on RNA transcripts with Travis coordinates. , 2015, , .		0
12	RNA modification does a regulatory two-step. Nature, 2015, 518, 492-493.	13.7	6
13	Emerging properties of nuclear RNP biogenesis and export. Current Opinion in Cell Biology, 2015, 34, 46-53.	2.6	11
14	Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nature Chemical Biology, 2015, 11, 592-597.	3.9	428
15	Transcriptome-wide measurement of plant RNA secondary structure. Current Opinion in Plant Biology, 2015, 27, 36-43.	3 . 5	14
16	RNA $\langle i \rangle N \langle i \rangle \langle sup \rangle 6 \langle sup \rangle$ -methyladenosine methylation in post-transcriptional gene expression regulation. Genes and Development, 2015, 29, 1343-1355.	2.7	727
17	Small RNAs in Bacteria and Archaea. Advances in Genetics, 2015, 90, 133-208.	0.8	462
19	DNA Methylation on N6-Adenine in C.Âelegans. Cell, 2015, 161, 868-878.	13.5	602

#	ARTICLE	IF	CITATIONS
20	A Pooled shRNA Screen Identifies Rbm15, Spen, and Wtap as Factors Required for Xist RNA-Mediated Silencing. Cell Reports, 2015, 12, 562-572.	2.9	226
21	DNA N6-methyladenine: a new epigenetic mark in eukaryotes?. Nature Reviews Molecular Cell Biology, 2015, 16, 705-710.	16.1	228
22	Computations Reveal a Rich Mechanistic Variation of Demethylation of $\langle i \rangle N \langle i \rangle$ -Methylated DNA/RNA Nucleotides by FTO. ACS Catalysis, 2015, 5, 7077-7090.	5 . 5	56
23	Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature, 2015, 526, 591-594.	13.7	990
24	HNRNPA2B1 Is a Mediator of m6A-Dependent Nuclear RNA Processing Events. Cell, 2015, 162, 1299-1308.	13.5	1,077
25	The Maternal-to-Zygotic Transition During Vertebrate Development. Current Topics in Developmental Biology, 2015, 113, 191-232.	1.0	98
26	Synthesis and base pairing studies of geranylated 2-thiothymidine, a natural variant of thymidine. Chemical Communications, 2015, 51, 16369-16372.	2.2	19
27	Guitar: An R/Bioconductor Package for Gene Annotation Guided Transcriptomic Analysis of RNA-Related Genomic Features. BioMed Research International, 2016, 2016, 1-8.	0.9	95
28	Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries. Viruses, 2016, 8, 320.	1.5	24
29	N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. ELife, 2016, 5, .	2.8	227
30	Basic Principles of Noncoding RNAs in Epigenetics. , 2016, , 47-63.		0
31	A comprehensive analysis of $3\hat{a} \in 2$ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation. Genome Research, 2016, 26, 1145-1159.	2.4	196
32	Reparameterizations of the $\langle i \rangle \ddot{i} + \langle i \rangle$ Torsion and Lennard-Jones $\langle i \rangle \ddot{i} / \langle i \rangle$ Parameters Improve the Conformational Characteristics of Modified Uridines. Journal of Computational Chemistry, 2016, 37, 1576-1588.	1.5	12
33	Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Molecular Cell, 2016, 63, 306-317.	4. 5	831
34	m6A-LAIC-seq reveals the census and complexity of the m6A epitranscriptome. Nature Methods, 2016, 13, 692-698.	9.0	310
35	m6A modulates neuronal functions and sex determination in Drosophila. Nature, 2016, 540, 242-247.	13.7	453
36	Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex. Nature, 2016, 534, 575-578.	13.7	807
37	<i>N</i> ⁶ -Methyladenosine Methyltransferases and Demethylases: New Regulators of Stem Cell Pluripotency and Differentiation. Stem Cells and Development, 2016, 25, 1050-1059.	1.1	13

#	ARTICLE	IF	Citations
38	Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cellular and Molecular Life Sciences, 2016, 73, 3075-3095.	2.4	106
39	ALKBHs-facilitated RNA modifications and de-modifications. DNA Repair, 2016, 44, 87-91.	1.3	50
41	Recent advances in dynamic m ⁶ A RNA modification. Open Biology, 2016, 6, 160003.	1.5	265
42	<i>N</i> 6â€methyladenosine modification in <scp>mRNA</scp> : machinery, function and implications for health and diseases. FEBS Journal, 2016, 283, 1607-1630.	2.2	167
43	Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications. Journal of Cell Biology, 2016, 213, 15-22.	2.3	115
44	RNA modifications: what have we learned and where are we headed?. Nature Reviews Genetics, 2016, 17, 365-372.	7.7	215
45	The m 6 A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Molecular Cell, 2016, 62, 335-345.	4.5	1,148
46	N 6-Methyladenosine (m6A) Methylation in mRNA with A Dynamic and Reversible Epigenetic Modification. Molecular Biotechnology, 2016, 58, 450-459.	1.3	101
47	m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature, 2016, 537, 369-373.	13.7	1,250
48	Evolving insights into RNA modifications and their functional diversity in the brain. Nature Neuroscience, 2016, 19, 1292-1298.	7.1	64
49	RNA Modification N 6-Methyladenosine in Post-transcriptional Regulation. RNA Technologies, 2016, , 131-145.	0.2	1
50	Deciphering the epitranscriptome: A green perspective. Journal of Integrative Plant Biology, 2016, 58, 822-835.	4.1	36
51	Modified Nucleic Acids in Biology and Medicine. RNA Technologies, 2016, , .	0.2	3
52	TargetM6A: Identifying N ⁶ -Methyladenosine Sites From RNA Sequences via Position-Specific Nucleotide Propensities and a Support Vector Machine. IEEE Transactions on Nanobioscience, 2016, 15, 674-682.	2.2	73
53	Genome-Wide Analysis of RNA Secondary Structure. Annual Review of Genetics, 2016, 50, 235-266.	3.2	186
54	New Edges of RNA Adenosine Methylation Modifications. Genomics, Proteomics and Bioinformatics, 2016, 14, 172-175.	3.0	2
55	ALKBH1-Mediated tRNA Demethylation Regulates Translation. Cell, 2016, 167, 816-828.e16.	13.5	366
56	Dynamics of the human and viral m6A RNA methylomes during HIV-1 infection of T cells. Nature Microbiology, 2016, 1, 16011.	5.9	373

#	Article	IF	Citations
57	Dawn of the <i>in vivo</i> RNA structurome and interactome. Biochemical Society Transactions, 2016, 44, 1395-1410.	1.6	36
58	Nucleotide modifications in messenger RNA and their role in development and disease. Biochemical Society Transactions, 2016, 44, 1385-1393.	1.6	32
59	Update: Mechanisms Underlying N 6 -Methyladenosine Modification of Eukaryotic mRNA. Trends in Genetics, 2016, 32, 763-773.	2.9	50
60	N6-Methyladenosine: a conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5. Scientific Reports, 2016, 6, 25677.	1.6	118
61	Post-transcriptional modifications in development and stem cells. Development (Cambridge), 2016, 143, 3871-3881.	1.2	66
62	Viral cell biology: HIV RNA gets methylated. Nature Microbiology, 2016, 1, 16037.	5.9	6
63	Dynamics of Human and Viral RNA Methylation during Zika Virus Infection. Cell Host and Microbe, 2016, 20, 666-673.	5.1	318
64	YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nature Communications, 2016, 7, 12626.	5.8	963
65	Epigenetic mechanisms in neurogenesis. Nature Reviews Neuroscience, 2016, 17, 537-549.	4.9	299
66	Experience-Dependent Accumulation of $\langle i \rangle N \langle i \rangle \langle sup \rangle 6 \langle sup \rangle$ -Methyladenosine in the Prefrontal Cortex Is Associated with Memory Processes in Mice. Journal of Neuroscience, 2016, 36, 6771-6777.	1.7	191
67	Lessons from non-canonical splicing. Nature Reviews Genetics, 2016, 17, 407-421.	7.7	230
68	Messenger RNA modifications: Form, distribution, and function. Science, 2016, 352, 1408-1412.	6.0	479
69	m ⁶ A: Signaling for mRNA splicing. RNA Biology, 2016, 13, 756-759.	1.5	96
70	Synthesis, base pairing and structure studies of geranylated RNA. Nucleic Acids Research, 2016, 44, 6036-6045.	6.5	26
71	mRNA modifications: Dynamic regulators of gene expression?. RNA Biology, 2016, 13, 760-765.	1.5	45
72	Cracking the epitranscriptome. Rna, 2016, 22, 169-174.	1.6	73
73	<i>FTO</i> Obesity Variant and Adipocyte Browning in Humans. New England Journal of Medicine, 2016, 374, 190-193.	13.9	36
74	Identification of Proteins Bound to Dengue Viral RNA <i>In Vivo</i> Reveals New Host Proteins Important for Virus Replication. MBio, 2016, 7, e01865-15.	1.8	65

#	Article	IF	CITATIONS
75	Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE. Nature Protocols, 2016, 11, 273-290.	5.5	147
76	The emerging epitranscriptomics of long noncoding RNAs. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 59-70.	0.9	71
77	Structural Chemistry of Human RNA Methyltransferases. ACS Chemical Biology, 2016, 11, 575-582.	1.6	59
78	Bacterial Riboswitches and Ribozymes Potently Activate the Human Innate Immune Sensor PKR. ACS Chemical Biology, 2016, 11, 1118-1127.	1.6	15
79	The Conservation and Function of RNA Secondary Structure in Plants. Annual Review of Plant Biology, 2016, 67, 463-488.	8.6	74
80	Nuclear m 6 A Reader YTHDC1 Regulates mRNA Splicing. Molecular Cell, 2016, 61, 507-519.	4.5	1,432
81	Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nature Chemical Biology, 2016, 12, 311-316.	3.9	502
82	Nucleic Acid Modifications in Regulation of Gene Expression. Cell Chemical Biology, 2016, 23, 74-85.	2.5	219
83	N6-methyladenosine–encoded epitranscriptomics. Nature Structural and Molecular Biology, 2016, 23, 98-102.	3.6	266
84	RNA Splicing. Circulation Research, 2016, 118, 454-468.	2.0	81
85	RNA binding proteins implicated in Xist-mediated chromosome silencing. Seminars in Cell and Developmental Biology, 2016, 56, 58-70.	2.3	37
86	SRAMP: prediction of mammalian N ⁶ -methyladenosine (m ⁶ A) sites based on sequence-derived features. Nucleic Acids Research, 2016, 44, e91-e91.	6.5	560
87	Decoding the RNA structurome. Current Opinion in Structural Biology, 2016, 36, 142-148.	2.6	66
88	N6-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nature Structural and Molecular Biology, 2016, 23, 110-115.	3.6	202
89	RNA epigenetics â€" chemical messages for posttranscriptional gene regulation. Current Opinion in Chemical Biology, 2016, 30, 46-51.	2.8	119
90	Transcriptomics and Gene Regulation. Translational Bioinformatics, 2016, , .	0.0	2
91	N6-Methyladenosine Modification in a Long Noncoding RNA Hairpin Predisposes Its Conformation to Protein Binding. Journal of Molecular Biology, 2016, 428, 822-833.	2.0	164
92	MALAT1 long non-coding RNA in cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 192-199.	0.9	190

#	Article	IF	CITATIONS
93	Post-Transcriptional Gene Regulation. Methods in Molecular Biology, 2016, 1358, v-viii.	0.4	3
94	lncRNAs and microRNAs with a role in cancer development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 169-176.	0.9	449
95	Chemical and structural effects of base modifications in messenger RNA. Nature, 2017, 541, 339-346.	13.7	156
96	TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code. Genome Research, 2017, 27, 393-406.	2.4	106
97	YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Research, 2017, 27, 315-328.	5.7	1,220
98	Pseudouridine and <i>N</i> ⁶ -methyladenosine modifications weaken PUF protein/RNA interactions. Rna, 2017, 23, 611-618.	1.6	50
99	RNA modifications and structures cooperate to guide RNA–protein interactions. Nature Reviews Molecular Cell Biology, 2017, 18, 202-210.	16.1	225
100	Splicing regulation and dysregulation of cholinergic genes expressed at the neuromuscular junction. Journal of Neurochemistry, 2017, 142, 64-72.	2.1	20
101	Intersections of post-transcriptional gene regulatory mechanisms with intermediary metabolism. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 349-362.	0.9	14
102	Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biology, 2017, 18, 1.	3.8	587
103	Epitranscriptomic regulation of viral replication. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 460-471.	0.9	17
104	Synthesis of Geranylâ€⊋â€Thiouridineâ€Modified RNA. Current Protocols in Nucleic Acid Chemistry, 2017, 68, 4.72.1-4.72.13.	0.5	5
105	Antibodies specific for nucleic acid modifications. RNA Biology, 2017, 14, 1089-1098.	1.5	29
106	Metabolic influences on RNA biology and translation. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 176-184.	2.3	3
107	Systematic probing of the bacterial RNA structurome to reveal new functions. Current Opinion in Microbiology, 2017, 36, 14-19.	2.3	19
108	Viral Epitranscriptomics. Journal of Virology, 2017, 91, .	1.5	66
109	N 6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Research, 2017, 45, 6051-6063.	6.5	586
110	5-methylcytosine promotes mRNA export â€" NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Research, 2017, 27, 606-625.	5.7	666

#	ARTICLE	IF	CITATIONS
111	Nature's Selection of Geranyl Group as a tRNA Modification: The Effects of Chain Length on Base-Pairing Specificity. ACS Chemical Biology, 2017, 12, 1504-1513.	1.6	7
112	Specific RNP capture with antisense LNA/DNA mixmers. Rna, 2017, 23, 1290-1302.	1.6	41
113	Identification of factors required for m ⁶ A mRNA methylation in <i>Arabidopsis</i> reveals a role for the conserved E3 ubiquitin ligase HAKAI. New Phytologist, 2017, 215, 157-172.	3.5	301
114	m 6 A in mRNA: An Ancient Mechanism for Fine-Tuning Gene Expression. Trends in Genetics, 2017, 33, 380-390.	2.9	338
115	Brothers in arms: emerging roles of RNA epigenetics in DNA damage repair. Cell and Bioscience, 2017, 7, 24.	2.1	12
116	Identification of N 6 -methyladenosine reader proteins. Methods, 2017, 126, 105-111.	1.9	5
117	Dynamic RNA Modifications in Gene Expression Regulation. Cell, 2017, 169, 1187-1200.	13.5	2,222
118	<i>N</i> ⁶ -methyladenosine is required for the hypoxic stabilization of specific mRNAs. Rna, 2017, 23, 1444-1455.	1.6	92
119	Readers, writers and erasers of N6-methylated adenosine modification. Current Opinion in Structural Biology, 2017, 47, 67-76.	2.6	82
120	The U6 snRNA m 6 A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell, 2017, 169, 824-835.e14.	13.5	756
121	Interplay between miR-574-3p and hnRNP L regulates VEGFA mRNA translation and tumorigenesis. Nucleic Acids Research, 2017, 45, 7950-7964.	6.5	33
122	Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA: a structural scaffold for nuclear, cytoplasmic and viral proteins. Nucleic Acids Research, 2017, 45, 6805-6821.	6.5	46
123	m ⁶ A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes and Development, 2017, 31, 990-1006.	2.7	448
124	Kaposi's Sarcoma-Associated Herpesvirus Utilizes and Manipulates RNA N ⁶ -Adenosine Methylation To Promote Lytic Replication. Journal of Virology, 2017, 91, .	1.5	118
125	The RNA Modification N 6 -methyladenosine and Its Implications in Human Disease. Genomics, Proteomics and Bioinformatics, 2017, 15, 154-163.	3.0	132
126	Making the Mark: The Role of Adenosine Modifications in the Life Cycle of RNA Viruses. Cell Host and Microbe, 2017, 21, 661-669.	5.1	73
127	Epitranscriptomics: Toward A Better Understanding of RNA Modifications. Genomics, Proteomics and Bioinformatics, 2017, 15, 147-153.	3.0	31
128	m 6 A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer Cell, 2017, 31, 591-606.e6.	7.7	1,131

#	Article	IF	Citations
129	Measuring RNA structure transcriptome-wide with icSHAPE. Methods, 2017, 120, 85-90.	1.9	9
131	Methylated mRNA Nucleotides as Regulators for Ribosomal Translation. Methods in Molecular Biology, 2017, 1562, 283-294.	0.4	5
132	A fly view on the roles and mechanisms of the m ⁶ A mRNA modification and its players. RNA Biology, 2017, 14, 1232-1240.	1.5	56
133	RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature, 2017, 543, 573-576.	13.7	685
134	FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N 6 -Methyladenosine RNA Demethylase. Cancer Cell, 2017, 31, 127-141.	7.7	1,139
135	Epitranscriptome sequencing technologies: decoding RNA modifications. Nature Methods, 2017, 14, 23-31.	9.0	360
136	Chemical Modifications to RNA: A New Layer of Gene Expression Regulation. ACS Chemical Biology, 2017, 12, 316-325.	1.6	134
137	Single-cell exome sequencing identifies mutations in KCP, LOC440040, and LOC440563 as drivers in renal cell carcinoma stem cells. Cell Research, 2017, 27, 590-593.	5.7	14
138	N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Research, 2017, 45, 11356-11370.	6.5	337
139	Regulation of m6A Transcripts by the $3\hat{E}^1\hat{a}\dagger'5\hat{E}^1$ RNA Helicase YTHDC2 Is Essential for a Successful Meiotic Program in the Mammalian Germline. Molecular Cell, 2017, 68, 374-387.e12.	4. 5	370
140	RNA Regulations and Functions Decoded by Transcriptome-wide RNA Structure Probing. Genomics, Proteomics and Bioinformatics, 2017, 15, 267-278.	3.0	34
141	Gene regulation in the immune system by long noncoding RNAs. Nature Immunology, 2017, 18, 962-972.	7.0	611
142	The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biology, 2017, 14, 1705-1714.	1.5	383
143	The RNA helicase DDX46 inhibits innate immunity by entrapping m6A-demethylated antiviral transcripts in the nucleus. Nature Immunology, 2017, 18, 1094-1103.	7.0	284
144	Genome-Wide Maps of m6A circRNAs Identify Widespread and Cell-Type-Specific Methylation Patterns that Are Distinct from mRNAs. Cell Reports, 2017, 20, 2262-2276.	2.9	315
145	Roles of RNA methylation by means of N6-methyladenosine (m6A) in human cancers. Cancer Letters, 2017, 408, 112-120.	3.2	223
146	The RNA m 6 A Reader YTHDF2 Is Essential for the Post-transcriptional Regulation of the Maternal Transcriptome and Oocyte Competence. Molecular Cell, 2017, 67, 1059-1067.e4.	4.5	287
147	<i>Arabidopsis</i> m ⁶ A demethylase activity modulates viral infection of a plant virus and the m ⁶ A abundance in its genomic RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10755-10760.	3.3	214

#	Article	IF	CITATIONS
148	The requirement of Mettl3-promoted <i>MyoD</i> mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation. Open Biology, 2017, 7, 170119.	1.5	71
149	Region-specific RNA m ⁶ A methylation represents a new layer of control in the gene regulatory network in the mouse brain. Open Biology, 2017, 7, 170166.	1.5	126
150	Oncogenic Activities of IDH1/2 Mutations: From Epigenetics to Cellular Signaling. Trends in Cell Biology, 2017, 27, 738-752.	3.6	99
151	Rethinking m ⁶ A Readers, Writers, and Erasers. Annual Review of Cell and Developmental Biology, 2017, 33, 319-342.	4.0	833
152	Mettl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation. Cell Research, 2017, 27, 1100-1114.	5.7	306
153	Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Research, 2017, 27, 1115-1127.	5.7	696
154	The role of interactions of long non-coding RNAs and heterogeneous nuclear ribonucleoproteins in regulating cellular functions. Biochemical Journal, 2017, 474, 2925-2935.	1.7	84
155	Elucidating the in vivo interactome of HIV-1 RNA by hybridization capture and mass spectrometry. Scientific Reports, 2017, 7, 16965.	1.6	36
156	An epitranscriptomic vulnerability in myeloid malignancies. Nature Medicine, 2017, 23, 1252-1254.	15.2	2
157	ALKBH10B Is an RNA <i>N</i> ⁶ -Methyladenosine Demethylase Affecting Arabidopsis Floral Transition. Plant Cell, 2017, 29, 2995-3011.	3.1	235
158	Epitranscriptomics: regulation of mRNA metabolism through modifications. Current Opinion in Chemical Biology, 2017, 41, 93-98.	2.8	116
159	Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. Journal of Cell Science, 2017, 130, 4180-4192.	1.2	206
160	The m6A pathway facilitates sex determination in Drosophila. Nature Communications, 2017, 8, 15737.	5.8	154
161	The N6-Methyladenosine RNA modification in pluripotency and reprogramming. Current Opinion in Genetics and Development, 2017, 46, 77-82.	1.5	20
162	Post-transcriptional gene regulation by mRNA modifications. Nature Reviews Molecular Cell Biology, 2017, 18, 31-42.	16.1	1,592
163	The organization and regulation of <scp>mRNA</scp> â€"protein complexes. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1369.	3.2	68
164	Translating the epitranscriptome. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1375.	3.2	38
165	Emerging Themes in Regulation of Global mRNA Turnover in cis. Trends in Biochemical Sciences, 2017, 42, 16-27.	3.7	36

#	Article	IF	Citations
166	The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. International Journal of Oncology, 2018, 52, 621-629.	1.4	231
167	S-Adenosylmethionine Synthesis Is Regulated by Selective N6-Adenosine Methylation and mRNA Degradation Involving METTL16 and YTHDC1. Cell Reports, 2017, 21, 3354-3363.	2.9	240
168	Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Research, 2017, 45, 10350-10368.	6.5	334
169	MALAT1-mediated tumorigenesis. Frontiers in Bioscience - Landmark, 2017, 22, 66-80.	3.0	56
170	The Dark Side of the Epitranscriptome: Chemical Modifications in Long Non-Coding RNAs. International Journal of Molecular Sciences, 2017, 18, 2387.	1.8	101
171	YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. ELife, 2017, 6, .	2.8	815
172	Role of DNA and RNA N6-Adenine Methylation in Regulating Stem Cell Fate. Current Stem Cell Research and Therapy, 2017, 13, 31-38.	0.6	39
173	The More the Merrier—Complexity in Long Non-Coding RNA Loci. Frontiers in Endocrinology, 2017, 8, 90.	1.5	43
174	RNA Epigenetics (Epitranscriptomics)., 2017,, 19-35.		0
175	High-throughput m6A-seq reveals RNA m6A methylation patterns in the chloroplast and mitochondria transcriptomes of Arabidopsis thaliana. PLoS ONE, 2017, 12, e0185612.	1.1	43
176	Epitranscriptomic influences on development and disease. Genome Biology, 2017, 18, 197.	3.8	97
177	X chromosome inactivation: new players in the initiation of gene silencing. F1000Research, 2017, 6, 344.	0.8	34
178	Enzymatic or In Vivo Installation of Propargyl Groups in Combination with Click Chemistry for the Enrichment and Detection of Methyltransferase Target Sites in RNA. Angewandte Chemie - International Edition, 2018, 57, 6342-6346.	7.2	82
179	Deciphering the Epitranscriptome in Cancer. Trends in Cancer, 2018, 4, 207-221.	3.8	39
180	RNA tales – how embryos read and discard messages from mom. Journal of Cell Science, 2018, 131, .	1.2	30
181	Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nature Reviews Molecular Cell Biology, 2018, 19, 158-174.	16.1	577
182	Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 2018, 20, 285-295.	4.6	1,650
183	An additional class of m6A readers. Nature Cell Biology, 2018, 20, 230-232.	4.6	37

#	Article	IF	CITATIONS
184	Enzymatischer oder In-vivo-Einbau von Propargylgruppen in Kombination mit Klick-Chemie zur Anreicherung und Detektion von Methyltransferase-Zielsequenzen in RNA. Angewandte Chemie, 2018, 130, 6451-6455.	1.6	19
185	Cytoplasmic functions of long noncoding RNAs. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1471.	3.2	327
186	Subcellular Compartmentation of Alternatively Spliced Transcripts Defines <i>SERINE/ARGININE-RICH PROTEIN30</i> Expression. Plant Physiology, 2018, 176, 2886-2903.	2.3	37
187	N 6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Research, 2018, 46, 3906-3920.	6.5	208
188	RNA N6-methyladenosine modification in cancers: current status and perspectives. Cell Research, 2018, 28, 507-517.	5 . 7	586
189	Structural insights into the RNA methyltransferase domain of METTL16. Scientific Reports, 2018, 8, 5311.	1.6	80
190	An m $<$ sup $>$ 6 $<$ /sup $>$ A-YTH Module Controls Developmental Timing and Morphogenesis in Arabidopsis. Plant Cell, 2018, 30, 952-967.	3.1	187
191	Emerging role of dynamic RNA modifications during animal development. Mechanisms of Development, 2018, 154, 24-32.	1.7	30
192	$2\hat{a}$ €²-O-methylation in mRNA disrupts tRNA decoding during translation elongation. Nature Structural and Molecular Biology, 2018, 25, 208-216.	3.6	92
193	Rice InÂVivo RNA Structurome Reveals RNA Secondary Structure Conservation and Divergence in Plants. Molecular Plant, 2018, 11, 607-622.	3.9	46
194	RNA Biology in Retinal Development and Disease. Trends in Genetics, 2018, 34, 341-351.	2.9	29
195	N6-methyladenosine links RNA metabolism to cancer progression. Cell Death and Disease, 2018, 9, 124.	2.7	381
196	Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nature Communications, 2018, 9, 420.	5.8	261
197	Premature polyadenylation of MACI3 is associated with diminished N6-methyladenosine in its large internal exon. Scientific Reports, 2018, 8, 1415.	1.6	17
198	A brave new world of RNA-binding proteins. Nature Reviews Molecular Cell Biology, 2018, 19, 327-341.	16.1	1,172
199	<i>Mettl3</i> Mutation Disrupts Gamete Maturation and Reduces Fertility in Zebrafish. Genetics, 2018, 208, 729-743.	1.2	77
200	We skip to work: alternative splicing in normal and malignant myelopoiesis. Leukemia, 2018, 32, 1081-1093.	3.3	33
201	N6-Methyladenosine Guides mRNA Alternative Translation during Integrated Stress Response. Molecular Cell, 2018, 69, 636-647.e7.	4. 5	215

#	Article	IF	CITATIONS
202	Epigenetics and Genetics of Development. , 2018, , 153-210.		2
203	RFAthM6A: a new tool for predicting m6A sites in Arabidopsis thaliana. Plant Molecular Biology, 2018, 96, 327-337.	2.0	62
204	N6-Methyladenosines Modulate A-to-I RNA Editing. Molecular Cell, 2018, 69, 126-135.e6.	4.5	108
205	MeT-DB V2.0: elucidating context-specific functions of N6-methyl-adenosine methyltranscriptome. Nucleic Acids Research, 2018, 46, D281-D287.	6.5	115
206	Mechanism of N6-methyladenosine modification and its emerging role in cancer. , 2018, 189, 173-183.		31
207	Multiple functions of m6A RNA methylation in cancer. Journal of Hematology and Oncology, 2018, 11, 48.	6.9	255
208	RNA epitranscriptomics: Regulation of infection of RNA and DNA viruses by <i>N</i> ⁶ â€methyladenosine (m ⁶ A). Reviews in Medical Virology, 2018, 28, e1983.	3.9	66
209	Stress-induced Pseudouridylation Alters the Structural Equilibrium of Yeast U2 snRNA Stem II. Journal of Molecular Biology, 2018, 430, 524-536.	2.0	20
210	Role of N6-methyladenosine modification in cancer. Current Opinion in Genetics and Development, 2018, 48, 1-7.	1.5	178
211	The emerging role of mRNA methylation in normal and pathological behavior. Genes, Brain and Behavior, 2018, 17, e12428.	1.1	65
212	Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene, 2018, 37, 522-533.	2.6	486
213	Experienceâ€dependent neural plasticity, learning, and memory in the era of epitranscriptomics. Genes, Brain and Behavior, 2018, 17, e12426.	1.1	28
214	Role of RNA modifications in brain and behavior. Genes, Brain and Behavior, 2018, 17, e12444.	1.1	47
215	Viral and cellular N6-methyladenosine and N6,2′-O-dimethyladenosine epitranscriptomes in the KSHV life cycle. Nature Microbiology, 2018, 3, 108-120.	5.9	137
216	Potential link between m 6 A modification and systemic lupus erythematosus. Molecular Immunology, 2018, 93, 55-63.	1.0	68
217	Aberrant expression of enzymes regulating m $<$ sup $>$ 6 $<$ /sup $>$ A mRNA methylation: implication in cancer. Cancer Biology and Medicine, 2018, 15, 323.	1.4	86
218	Human RNA cap1 methyltransferase CMTr1 cooperates with RNA helicase DHX15 to modify RNAs with highly structured $5\hat{a} \in 2$ termini. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20180161.	1.8	15
219	A link between a synonymous SNP and the clinical response to tyrosine kinase inhibitors. Non-coding RNA Investigation, 2018, 2, 6-6.	0.6	1

#	Article	IF	CITATIONS
221	N6-Methyladenosine in RNA and DNA: An Epitranscriptomic and Epigenetic Player Implicated in Determination of Stem Cell Fate. Stem Cells International, 2018, 2018, 1-18.	1.2	52
222	M6AMRFS: Robust Prediction of N6-Methyladenosine Sites With Sequence-Based Features in Multiple Species. Frontiers in Genetics, 2018, 9, 495.	1.1	90
223	Nucleotide Modifications Decrease Innate Immune Response Induced by Synthetic Analogs of snRNAs and snoRNAs. Genes, 2018, 9, 531.	1.0	45
224	RNA m ⁶ A modification enzymes shape innate responses to DNA by regulating interferon \hat{l}^2 . Genes and Development, 2018, 32, 1472-1484.	2.7	180
225	Circadian Clock Regulation of Hepatic Lipid Metabolism by Modulation of m6A mRNA Methylation. Cell Reports, 2018, 25, 1816-1828.e4.	2.9	207
226	RNome and Chromatin Dynamics. , 2018, , 79-112.		0
227	N6-methyladenosine (m6A): Revisiting the Old with Focus on New, an Arabidopsis thaliana Centered Review. Genes, 2018, 9, 596.	1.0	30
228	Abasic Sites in RNA of Yeast and Human. SSRN Electronic Journal, 2018, , .	0.4	1
229	The Multiples Fates of the Flavivirus RNA Genome During Pathogenesis. Frontiers in Genetics, 2018, 9, 595.	1.1	81
230	Baicalin hydrate inhibits cancer progression in nasopharyngeal carcinoma by affecting genome instability and splicing. Oncotarget, 2018, 9, 901-914.	0.8	27
231	Preâ€mRNA modifications and their role in nuclear processing. Quantitative Biology, 2018, 6, 210-227.	0.3	22
232	The Structure-To-Function Relationships of Gammaherpesvirus-Encoded Long Non-Coding RNAs and Their Contributions to Viral Pathogenesis. Non-coding RNA, 2018, 4, 24.	1.3	16
233	<i>N</i> ⁶ â€Methyladenosineâ€Sensitive RNAâ€Cleaving Deoxyribozymes. Angewandte Chemie - International Edition, 2018, 57, 15117-15121.	7.2	39
234	N 6 â€Methyladenosineâ€Sensitive RNAâ€Cleaving Deoxyribozymes. Angewandte Chemie, 2018, 130, 15337-153	416	11
235	circRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma. Cell Death and Disease, 2018, 9, 1091.	2.7	182
236	N6-Methyladenosine Inhibits Local Ribonucleolytic Cleavage to Stabilize mRNAs in Arabidopsis. Cell Reports, 2018, 25, 1146-1157.e3.	2.9	175
237	An Elongation―and Ligationâ€Based qPCR Amplification Method for the Radiolabelingâ€Free Detection of Locusâ€Specific N 6 â€Methyladenosine Modification. Angewandte Chemie, 2018, 130, 16227-16232.	1.6	6
238	An Elongation―and Ligationâ€Based qPCR Amplification Method for the Radiolabelingâ€Free Detection of Locusâ€Specific <i>N</i> ⁶ â€Methyladenosine Modification. Angewandte Chemie - International Edition, 2018, 57, 15995-16000.	7.2	175

#	Article	IF	CITATIONS
239	The m6A-methylase complex recruits TREX and regulates mRNA export. Scientific Reports, 2018, 8, 13827.	1.6	89
240	Structural Basis for Regulation of METTL16, an S-Adenosylmethionine Homeostasis Factor. Molecular Cell, 2018, 71, 1001-1011.e4.	4.5	146
241	Methylation of Structured RNA by the m6A Writer METTL16 Is Essential for Mouse Embryonic Development. Molecular Cell, 2018, 71, 986-1000.e11.	4.5	250
242	Epigenetic Regulation of Skin Development and Regeneration. Pancreatic Islet Biology, 2018, , .	0.1	0
243	Chemical Modifications in the Life of an mRNA Transcript. Annual Review of Genetics, 2018, 52, 349-372.	3.2	147
244	RNA Methylation in theÂControl of Stem Cell Activity and Epidermal Differentiation. Contributions To Management Science, 2018, , 215-229.	0.4	1
245	Terminal exon characterization with TECtool reveals an abundance of cell-specific isoforms. Nature Methods, 2018, 15, 832-836.	9.0	27
246	Aberrant Regulation of mRNA m6A Modification in Cancer Development. International Journal of Molecular Sciences, 2018, 19, 2515.	1.8	48
247	RNA, Action through Interactions. Trends in Genetics, 2018, 34, 867-882.	2.9	33
248	RNA-modifying proteins as anticancer drug targets. Nature Reviews Drug Discovery, 2018, 17, 435-453.	21.5	107
249	Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Research, 2018, 28, 616-624.	5.7	1,045
250	Identification of YTH Domain-Containing Proteins as the Readers for <i>N</i> 1-Methyladenosine in RNA. Analytical Chemistry, 2018, 90, 6380-6384.	3.2	171
251	The Long Nonâ€Coding RNA Transcriptome Landscape in CHO Cells Under Batch and Fedâ€Batch Conditions. Biotechnology Journal, 2018, 13, e1800122.	1.8	15
252	m 6 A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression. Biochemical and Biophysical Research Communications, 2018, 502, 456-464.	1.0	200
253	N6-Methyladenosine modification: a novel pharmacological target for anti-cancer drug development. Acta Pharmaceutica Sinica B, 2018, 8, 833-843.	5.7	58
254	The m ⁶ A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′–3′ exoribonuclease XRN1. Rna, 2018, 24, 1339-1350.	1.6	171
255	Synaptic N6-methyladenosine (m6A) epitranscriptome reveals functional partitioning of localized transcripts. Nature Neuroscience, 2018, 21, 1004-1014.	7.1	153
256	Gene Regulatory Network Perturbation by Genetic and Epigenetic Variation. Trends in Biochemical Sciences, 2018, 43, 576-592.	3.7	20

#	Article	IF	Citations
257	Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Research, 2018, 28, 904-917.	5.7	203
258	Identification of Natural Compound Radicicol as a Potent FTO Inhibitor. Molecular Pharmaceutics, 2018, 15, 4092-4098.	2.3	59
259	Long non-coding RNA and Polycomb an intricate partnership in cancer biology. Frontiers in Bioscience - Landmark, 2018, 23, 2106-2132.	3.0	48
260	A fluorescent methylation-switchable probe for highly sensitive analysis of FTO <i>N</i> ⁶ -methyladenosine demethylase activity in cells. Chemical Science, 2018, 9, 7174-7185.	3.7	28
261	Novel insights on m6A RNA methylation in tumorigenesis: a double-edged sword. Molecular Cancer, 2018, 17, 101.	7.9	163
262	RNA Methylation in ncRNA: Classes, Detection, and Molecular Associations. Frontiers in Genetics, 2018, 9, 243.	1.1	40
263	The dual role of N6â€methyladenosine modification of RNAs is involved in human cancers. Journal of Cellular and Molecular Medicine, 2018, 22, 4630-4639.	1.6	72
264	Role of Pseudogenes in Tumorigenesis. Cancers, 2018, 10, 256.	1.7	92
265	Emerging Roles of N6-Methyladenosine on HIV-1 RNA Metabolism and Viral Replication. Frontiers in Microbiology, 2018, 9, 576.	1.5	20
266	Epitranscriptomics: A New Regulatory Mechanism of Brain Development and Function. Frontiers in Neuroscience, 2018, 12, 85.	1.4	27
267	Above the Epitranscriptome: RNA Modifications and Stem Cell Identity. Genes, 2018, 9, 329.	1.0	39
268	N6-Methyladenosine–binding proteins suppress HIV-1 infectivity and viral production. Journal of Biological Chemistry, 2018, 293, 12992-13005.	1.6	79
269	Impact of DNA and RNA Methylation on Radiobiology and Cancer Progression. International Journal of Molecular Sciences, 2018, 19, 555.	1.8	26
270	One-Step Preparation of Phenyl Boron-Modified Magnetic Mesoporous Silica for Selective Enrichment of cis-Diol-Containing Substances. Molecules, 2018, 23, 603.	1.7	4
271	A potentially abundant junctional RNA motif stabilized by m6A and Mg2+. Nature Communications, 2018, 9, 2761.	5.8	66
272	New insights into the plant epitranscriptome. Journal of Experimental Botany, 2018, 69, 4659-4665.	2.4	30
273	Topological Characterization of Human and Mouse m ⁵ C Epitranscriptome Revealed by Bisulfite Sequencing. International Journal of Genomics, 2018, 2018, 1-19.	0.8	17
274	Enhancing Epitranscriptome Module Detection from m6A-Seq Data Using Threshold-Based Measurement Weighting Strategy. BioMed Research International, 2018, 2018, 1-15.	0.9	10

#	Article	IF	CITATIONS
275	QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data. Genome Biology, 2018, 19, 45.	3.8	176
276	Discovery of physiological and cancer-related regulators of 3′ UTR processing with KAPAC. Genome Biology, 2018, 19, 44.	3.8	54
277	Comparative Analysis of Human Genes Frequently and Occasionally Regulated by m 6 A Modification. Genomics, Proteomics and Bioinformatics, 2018, 16, 127-135.	3.0	3
278	<i>N6</i> -methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8829-8834.	3.3	164
279	N6-Methyladenosine Role in Acute Myeloid Leukaemia. International Journal of Molecular Sciences, 2018, 19, 2345.	1.8	34
280	m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nature Cell Biology, 2018, 20, 1074-1083.	4.6	592
281	Epitranscriptomic Code and Its Alterations in Human Disease. Trends in Molecular Medicine, 2018, 24, 886-903.	3.5	101
282	Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets. Human Molecular Genetics, 2018, 27, 3936-3950.	1.4	129
283	The m6Aâ€epitranscriptomic signature in neurobiology: from neurodevelopment to brain plasticity. Journal of Neurochemistry, 2018, 147, 137-152.	2.1	120
284	Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genetics, 2018, 14, e1007412.	1.5	386
285	N6-methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi's sarcoma-associated herpesvirus infection. PLoS Pathogens, 2018, 14, e1006995.	2.1	162
286	Deregulation of UBE2C-mediated autophagy repression aggravates NSCLC progression. Oncogenesis, 2018, 7, 49.	2.1	77
287	RNA methylation in nuclear preâ€mRNA processing. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1489.	3.2	37
288	m6A RNA Methylation Controls Neural Development and Is Involved in Human Diseases. Molecular Neurobiology, 2019, 56, 1596-1606.	1.9	127
289	The Epitranscriptome in Translation Regulation. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032623.	2.3	30
290	Methylation of RNA N6-methyladenosine in modulation of cytokine responses and tumorigenesis. Cytokine, 2019, 118, 35-41.	1.4	24
291	The Role of Dynamic m ⁶ A <scp>RNA</scp> Methylation in Photobiology. Photochemistry and Photobiology, 2019, 95, 95-104.	1.3	31
292	Epigenetics in Neurodevelopment: Emerging Role of Circular RNA. Frontiers in Cellular Neuroscience, 2019, 13, 327.	1.8	60

#	Article	IF	CITATIONS
293	Protein profiling of SH-SY5Y neuroblastoma cells: The effect of rhein. Journal of Biosciences, 2019, 44, 1.	0.5	3
294	Transcriptome-wide dynamics of extensive m6A mRNA methylation during Plasmodium falciparum blood-stage development. Nature Microbiology, 2019, 4, 2246-2259.	5.9	66
295	Programmable RNA N6-methyladenosine editing by CRISPR-Cas9 conjugates. Nature Chemical Biology, 2019, 15, 865-871.	3.9	140
296	Long Noncoding RNAs of the Arterial Wall as Therapeutic Agents and Targets in Atherosclerosis. Thrombosis and Haemostasis, 2019, 119, 1222-1236.	1.8	12
297	Repeat-associated RNA structure and aberrant splicing. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194405.	0.9	23
298	Small changes, big implications: The impact of m6A RNA methylation on gene expression in pluripotency and development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194402.	0.9	37
299	Regulation of Viral Infection by the RNA Modification $\langle i \rangle N6 \langle i \rangle -Methyladenosine$. Annual Review of Virology, 2019, 6, 235-253.	3.0	111
300	Nuclear TARBP2 Drives Oncogenic Dysregulation of RNA Splicing and Decay. Molecular Cell, 2019, 75, 967-981.e9.	4.5	54
301	<i>In Vitro</i> Selection with a Site-Specifically Modified RNA Library Reveals the Binding Preferences of N ^{-Methyladenosine Reader Proteins. Biochemistry, 2019, 58, 3386-3395.}	1,2	24
302	Structure of <i>Arabidopsis thaliana N⁶</i> -methyl-AMP deaminase ADAL with bound GMP and IMP and implications for <i>N⁶</i> -methyl-AMP recognition and processing. RNA Biology, 2019, 16, 1504-1512.	1.5	6
303	Long Noncoding RNA FAM225A Promotes Nasopharyngeal Carcinoma Tumorigenesis and Metastasis by Acting as ceRNA to Sponge miR-590-3p/miR-1275 and Upregulate ITGB3. Cancer Research, 2019, 79, 4612-4626.	0.4	250
304	Marking RNA: m6A writers, readers, and functions in Arabidopsis. Journal of Molecular Cell Biology, 2019, 11, 899-910.	1.5	7 3
305	iN6-Methyl (5-step): Identifying RNA N6-methyladenosine sites using deep learning mode via Chou's 5-step rules and Chou's general PseKNC. Chemometrics and Intelligent Laboratory Systems, 2019, 193, 103811.	1.8	83
306	Sequence-specific m ⁶ A demethylation in RNA by FTO fused to RCas9. Rna, 2019, 25, 1311-1323.	1.6	34
307	Effect of methylation of adenine N ⁶ on kink turn structure depends on location. RNA Biology, 2019, 16, 1377-1385.	1.5	9
308	Combinatorial regulation of alternative splicing. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194392.	0.9	39
309	HIV-1 Replication Benefits from the RNA Epitranscriptomic Code. Journal of Molecular Biology, 2019, 431, 5032-5038.	2.0	10
310	In search of the mRNA modification landscape in plants. BMC Plant Biology, 2019, 19, 421.	1.6	24

#	Article	IF	CITATIONS
311	N6-methyladenosine mRNA marking promotes selective translation of regulons required for human erythropoiesis. Nature Communications, 2019, 10, 4596.	5.8	42
312	Are Small Nucleolar RNAs "CRISPRable� A Report on Box C/D Small Nucleolar RNA Editing in Human Cells. Frontiers in Pharmacology, 2019, 10, 1246.	1.6	13
313	Flexible Binding of m ⁶ A Reader Protein YTHDC1 to Its Preferred RNA Motif. Journal of Chemical Theory and Computation, 2019, 15, 7004-7014.	2.3	18
314	WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Molecular Cancer, 2019, 18, 127.	7.9	400
315	FTO: An Emerging Molecular Player in Neuropsychiatric Diseases. Neuroscience, 2019, 418, 15-24.	1.1	21
316	Regulation of Co-transcriptional Pre-mRNA Splicing by m6A through the Low-Complexity Protein hnRNPG. Molecular Cell, 2019, 76, 70-81.e9.	4.5	248
317	Accurate detection of m6A RNA modifications in native RNA sequences. Nature Communications, 2019, 10, 4079.	5.8	322
318	Reading, writing and erasing mRNA methylation. Nature Reviews Molecular Cell Biology, 2019, 20, 608-624.	16.1	1,403
319	Dynamic methylome of internal mRNA N7-methylguanosine and its regulatory role in translation. Cell Research, 2019, 29, 927-941.	5.7	154
320	Probing RNA structure in vivo. Current Opinion in Structural Biology, 2019, 59, 151-158.	2.6	66
321	Readers of the m6A epitranscriptomic code. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 329-342.	0.9	40
322	Mettl3 Regulates Osteogenic Differentiation and Alternative Splicing of Vegfa in Bone Marrow Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2019, 20, 551.	1.8	93
323	Regulation of Virus Replication and T Cell Homeostasis by N6-Methyladenosine. Virologica Sinica, 2019, 34, 22-29.	1.2	12
324	m6A mRNA Destiny: Chained to the rhYTHm by the YTH-Containing Proteins. Genes, 2019, 10, 49.	1.0	44
325	Epitranscriptomic Signatures in IncRNAs and Their Possible Roles in Cancer. Genes, 2019, 10, 52.	1.0	74
326	Genomic data mining for functional annotation of human long noncoding RNAs. Journal of Zhejiang University: Science B, 2019, 20, 476-487.	1.3	15
327	Interplay Between N6-Methyladenosine (m6A) and Non-coding RNAs in Cell Development and Cancer. Frontiers in Cell and Developmental Biology, 2019, 7, 116.	1.8	97
328	METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Molecular Cancer, 2019, 18, 110.	7.9	475

#	Article	IF	CITATIONS
329	m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nature Communications, 2019, 10, 2782.	5.8	468
330	Reduced m6A modification predicts malignant phenotypes and augmented Wnt/Pl3Kâ€Akt signaling in gastric cancer. Cancer Medicine, 2019, 8, 4766-4781.	1.3	201
331	hnRNPC regulates cancer-specific alternative cleavage and polyadenylation profiles. Nucleic Acids Research, 2019, 47, 7580-7591.	6.5	86
332	The roles of structural dynamics in the cellular functions of RNAs. Nature Reviews Molecular Cell Biology, 2019, 20, 474-489.	16.1	322
333	Complex Regulation of X-Chromosome Inactivation in Mammals by Long Non-coding RNAs. , 2019, , 1-33.		1
334	Chemical Modifications and Their Role in Long Non-coding RNAs. , 2019, , 35-63.		0
335	mRNA methylation in cell senescence. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1547.	3.2	35
337	Long Noncoding RNA: Genomics and Relevance to Physiology. , 2019, 9, 933-946.		25
338	The maternal-to-zygotic transition revisited. Development (Cambridge), 2019, 146, .	1.2	267
339	N6-methyladenosine modifications: interactions with novel RNA-binding proteins and roles in signal transduction. RNA Biology, 2019, 16, 991-1000.	1.5	49
340	Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Molecular Cell, 2019, 74, 640-650.	4.5	1,096
341	A Review in Research Progress Concerning m6A Methylation and Immunoregulation. Frontiers in Immunology, 2019, 10, 922.	2.2	209
342	Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia. Cancer Cell, 2019, 35, 677-691.e10.	7.7	516
343	Using SHAPE-MaP to probe small molecule-RNA interactions. Methods, 2019, 167, 105-116.	1.9	12
344	The RNA N6-methyladenosine modification landscape of human fetal tissues. Nature Cell Biology, 2019, 21, 651-661.	4.6	124
345	The interactome of a family of potential methyltransferases in HeLa cells. Scientific Reports, 2019, 9, 6584.	1.6	52
346	Chemical RNA Modifications: The Plant Epitranscriptome. , 2019, , 291-310.		1
347	The chemical diversity of RNA modifications. Biochemical Journal, 2019, 476, 1227-1245.	1.7	94

#	Article	IF	CITATIONS
348	N6-Methyladenosine (m6A): A Promising New Molecular Target in Acute Myeloid Leukemia. Frontiers in Oncology, 2019, 9, 251.	1.3	66
349	N6â€Methyladenosine detected in <scp>RNA</scp> of testicular germ cell tumors is controlled by <scp>METTL</scp> 3, <scp>ALKBH</scp> 5, <scp>YTHDC</scp> 1/F1/F2, and <scp>HNRNPC</scp> as writers, erasers, and readers. Andrology, 2019, 7, 498-506.	1.9	39
350	RNA epigenetics and cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 2019, 129, 272-280.	0.9	25
351	RNA structure maps across mammalian cellular compartments. Nature Structural and Molecular Biology, 2019, 26, 322-330.	3.6	183
352	Emerging roles of lncRNAs in the post-transcriptional regulation in cancer. Genes and Diseases, 2019, 6, 6-15.	1.5	170
353	Importance of m N6-methyladenosine (m6A) RNA modification in cancer. Medical Oncology, 2019, 36, 36.	1.2	61
354	m6A-induced IncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Molecular Cancer, 2019, 18, 87.	7.9	300
355	Regulation of Gene Expression by N-methyladenosine in Cancer. Trends in Cell Biology, 2019, 29, 487-499.	3.6	159
356	The Untranslated Regions of mRNAs in Cancer. Trends in Cancer, 2019, 5, 245-262.	3.8	70
357	RNA N6-methyladenosine modification participates in miR-660/E2F3 axis-mediated inhibition of cell proliferation in gastric cancer. Pathology Research and Practice, 2019, 215, 152393.	1.0	17
358	Tracking RNA structures as RNAs transit through the cell. Nature Structural and Molecular Biology, 2019, 26, 256-257.	3.6	3
359	Demonstration of protein cooperativity mediated by RNA structure using the human protein PUM2. Rna, 2019, 25, 702-712.	1.6	14
360	Colocalization of m ⁶ A and G-Quadruplex-Forming Sequences in Viral RNA (HIV, Zika,) Tj ETQq0 0 0 rg ACS Central Science, 2019, 5, 218-228.	gBT /Overl 5.3	lock 10 Tf 50 39
361	Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Non-coding RNA, 2019, 5, 17.	1.3	441
362	The Opening of Pandora's Box: An Emerging Role of Long Noncoding RNA in Viral Infections. Frontiers in Immunology, 2018, 9, 3138.	2.2	42
363	Circular RNA circNOL10 Inhibits Lung Cancer Development by Promoting SCLM1â€Mediated Transcriptional Regulation of the Humanin Polypeptide Family. Advanced Science, 2019, 6, 1800654.	5.6	72
364	N6-Methyladenosine Landscape of Glioma Stem-Like Cells: METTL3 Is Essential for the Expression of Actively Transcribed Genes and Sustenance of the Oncogenic Signaling. Genes, 2019, 10, 141.	1.0	82
365	The role of m6A RNA methylation in cancer. Biomedicine and Pharmacotherapy, 2019, 112, 108613.	2.5	540

#	Article	IF	CITATIONS
366	WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach. Nucleic Acids Research, 2019, 47, e41-e41.	6.5	177
367	Structural Stability of the Anticodon Stem Loop Domains of the Unmodified Yeast and <i>Escherichia coli</i> tRNA ^{Phe} : Differing Views from Different Force Fields. ACS Omega, 2019, 4, 3029-3044.	1.6	1
368	Mammalian RNA switches: Molecular rheostats in gene regulation, disease, and medicine. Computational and Structural Biotechnology Journal, 2019, 17, 1326-1338.	1.9	18
369	m6A modification suppresses ocular melanoma through modulating HINT2 mRNA translation. Molecular Cancer, 2019, 18, 161.	7.9	114
370	Secondary Structural Model of Human MALAT1 Reveals Multiple Structure–Function Relationships. International Journal of Molecular Sciences, 2019, 20, 5610.	1.8	41
371	Ontogenic mRNA expression of RNA modification writers, erasers, and readers in mouse liver. PLoS ONE, 2019, 14, e0227102.	1.1	14
372	m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nature Communications, 2019, 10, 5332.	5.8	268
373	Functions of N6-methyladenosine and its role in cancer. Molecular Cancer, 2019, 18, 176.	7.9	798
374	The interplay between m6A RNA methylation and noncoding RNA in cancer. Journal of Hematology and Oncology, 2019, 12, 121.	6.9	367
375	The RNA-binding protein FMRP facilitates the nuclear export of N6-methyladenosine–containing mRNAs. Journal of Biological Chemistry, 2019, 294, 19889-19895.	1.6	84
376	NMR Chemical Exchange Measurements Reveal That <i>N</i> ⁶ -Methyladenosine Slows RNA Annealing. Journal of the American Chemical Society, 2019, 141, 19988-19993.	6.6	46
377	Hematopoietic stem cells: self-renewal and expansion. Current Opinion in Hematology, 2019, 26, 258-265.	1.2	13
378	The m6A eraser FTO facilitates proliferation and migration of human cervical cancer cells. Cancer Cell International, 2019, 19, 321.	1.8	113
379	m6A minimally impacts the structure, dynamics, and Rev ARM binding properties of HIV-1 RRE stem IIB. PLoS ONE, 2019, 14, e0224850.	1.1	15
380	The m ⁶ A Writer: Rise of a Machine for Growing Tasks. Biochemistry, 2019, 58, 363-378.	1.2	117
381	Transcriptome-wide reprogramming of N6-methyladenosine modification by the mouse microbiome. Cell Research, 2019, 29, 167-170.	5.7	38
382	m6A modification of non-coding RNA and the control of mammalian gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 310-318.	0.9	132
383	Genome-wide methods for investigating long noncoding RNAs. Biomedicine and Pharmacotherapy, 2019, 111, 395-401.	2.5	55

#	Article	IF	CITATIONS
384	Focus on Translation Initiation of the HIV-1 mRNAs. International Journal of Molecular Sciences, 2019, 20, 101.	1.8	28
385	m6A mRNA modification regulates mammalian spermatogenesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 403-411.	0.9	46
386	Steering pluripotency and differentiation with N6-methyladenosine RNA modification. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 394-402.	0.9	13
387	Lnc2Cancer v2.0: updated database of experimentally supported long non-coding RNAs in human cancers. Nucleic Acids Research, 2019, 47, D1028-D1033.	6.5	173
388	m6A: Widespread regulatory control in virus replication. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 370-381.	0.9	37
389	Novel positioning from obesity to cancer: FTO, an m6A RNA demethylase, regulates tumour progression. Journal of Cancer Research and Clinical Oncology, 2019, 145, 19-29.	1.2	101
390	Epitranscriptomics: Correlation of N6-methyladenosine RNA methylation and pathway dysregulation in the hippocampus of HIV transgenic rats. PLoS ONE, 2019, 14, e0203566.	1.1	9
391	m6A-mediated translation regulation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 301-309.	0.9	39
392	Mapping <i>N</i> ⁶ â€Methyladenosine (m ⁶ A) in RNA: Established Methods, Remaining Challenges, and Emerging Approaches. Chemistry - A European Journal, 2019, 25, 3455-3464.	1.7	18
393	RNA Modifications: Reversal Mechanisms and Cancer. Biochemistry, 2019, 58, 312-329.	1.2	41
394	$\langle i \rangle N \langle i \rangle 6$ -methyladenosine modification and METTL3 modulate enterovirus 71 replication. Nucleic Acids Research, 2019, 47, 362-374.	6.5	133
395	Mechanistic insights into m6A RNA enzymes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 222-229.	0.9	89
396	RNA modifications in structure prediction – Status quo and future challenges. Methods, 2019, 156, 32-39.	1.9	31
397	N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nature Chemical Biology, 2019, 15, 88-94.	3.9	258
398	A novel m6A reader Prrc2a controls oligodendroglial specification and myelination. Cell Research, 2019, 29, 23-41.	5.7	250
399	Improved yield of rhEPO in CHO cells with synthetic 5′ UTR. Biotechnology Letters, 2019, 41, 231-239.	1.1	7
400	The m6A‑methylase complex and mRNA export. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 319-328.	0.9	40
401	It's complicated… m6A-dependent regulation of gene expression in cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 382-393.	0.9	31

#	Article	IF	CITATIONS
402	Dynamic and reversible RNA <i>N</i> ⁶ â€methyladenosine methylation. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1507.	3.2	31
403	RNA methylation and diseases: experimental results, databases, Web servers and computational models. Briefings in Bioinformatics, 2019, 20, 896-917.	3.2	74
404	RNA-centric approaches to study RNA-protein interactions in vitro and in silico. Methods, 2020, 178, 11-18.	1.9	14
405	Reading Chemical Modifications in the Transcriptome. Journal of Molecular Biology, 2020, 432, 1824-1839.	2.0	18
406	Emerging role of m ⁶ A RNA methylation in nutritional physiology and metabolism. Obesity Reviews, 2020, 21, e12942.	3.1	71
407	Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences. Briefings in Bioinformatics, 2020, 21, 1676-1696.	3.2	98
408	Topologies of <i>N⁶</i> â€adenosine methylation (m ⁶ A) in land plant mitochondria and their putative effects on organellar gene expression. Plant Journal, 2020, 101, 1269-1286.	2.8	26
409	New sights in cancer: Component and function of N6-methyladenosine modification. Biomedicine and Pharmacotherapy, 2020, 122, 109694.	2.5	20
410	METTL3-mediated m ⁶ A is required for murine oocyte maturation and maternal-to-zygotic transition. Cell Cycle, 2020, 19, 391-404.	1.3	69
411	Enhancer RNAs in cancer: regulation, mechanisms and therapeutic potential. RNA Biology, 2020, 17, 1550-1559.	1.5	66
412	Epigenetic Regulation of m6A Modifications in Human Cancer. Molecular Therapy - Nucleic Acids, 2020, 19, 405-412.	2.3	159
413	YTHDF2 Recognition of N ¹ -Methyladenosine (m ¹ A)-Modified RNA Is Associated with Transcript Destabilization. ACS Chemical Biology, 2020, 15, 132-139.	1.6	72
414	The Function of Pre-mRNA Alternative Splicing in Mammal Spermatogenesis. International Journal of Biological Sciences, 2020, 16, 38-48.	2.6	45
415	The m6A epitranscriptome: transcriptome plasticity in brain development and function. Nature Reviews Neuroscience, 2020, 21, 36-51.	4.9	195
416	RNA Modifications in Cancer: Functions, Mechanisms, and Therapeutic Implications. Annual Review of Cancer Biology, 2020, 4, 221-240.	2.3	60
418	Altered m6A Modification of Specific Cellular Transcripts Affects Flaviviridae Infection. Molecular Cell, 2020, 77, 542-555.e8.	4.5	129
419	The Biogenesis and Precise Control of RNA m6A Methylation. Trends in Genetics, 2020, 36, 44-52.	2.9	198
420	An Emerging Role for isomiRs and the microRNA Epitranscriptome in Neovascularization. Cells, 2020, 9, 61.	1.8	31

#	Article	IF	CITATIONS
421	The m6A epitranscriptome opens a new charter in immune system logic. Epigenetics, 2021, 16, 819-837.	1.3	18
422	Advances in the role of m6A RNA modification in cancer metabolic reprogramming. Cell and Bioscience, 2020, 10, 117.	2.1	17
423	An Emerging Role of m6A in Memory: A Case for Translational Priming. International Journal of Molecular Sciences, 2020, 21, 7447.	1.8	26
424	Principles of RNA methylation and their implications for biology and medicine. Biomedicine and Pharmacotherapy, 2020, 131, 110731.	2.5	72
425	Surmounting cancer drug resistance: New insights from the perspective of N6-methyladenosine RNA modification. Drug Resistance Updates, 2020, 53, 100720.	6 . 5	107
426	New Insights on the Role of N6-Methyladenosine RNA Methylation in the Physiology and Pathology of the Nervous System. Frontiers in Molecular Biosciences, 2020, 7, 555372.	1.6	19
427	m6A RNA Methylation in Cardiovascular Diseases. Molecular Therapy, 2020, 28, 2111-2119.	3.7	73
428	Multifaceted Functions and Novel Insight Into the Regulatory Role of RNA N6-Methyladenosine Modification in Musculoskeletal Disorders. Frontiers in Cell and Developmental Biology, 2020, 8, 870.	1.8	31
429	The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases. Genes and Diseases, 2021, 8, 746-758.	1.5	51
430	N ⁶ â€methyladenosine (m ⁶ A) RNA modification in human cancer. Cell Proliferation, 2020, 53, e12921.	2.4	29
431	Structural determinants of nucleobase modification recognition in the AlkB family of dioxygenases. DNA Repair, 2020, 96, 102995.	1.3	9
432	RNA N6-Methyladenosine and the Regulation of RNA Localization and Function in the Brain. Trends in Neurosciences, 2020, 43, 1011-1023.	4.2	36
433	M6A RNA Methylation Regulator HNRNPC Contributes to Tumorigenesis and Predicts Prognosis in Glioblastoma Multiforme. Frontiers in Oncology, 2020, 10, 536875.	1.3	44
434	The molecular structure of long non-coding RNAs: emerging patterns and functional implications. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 662-690.	2.3	51
435	N6-methyladenosine RNA modification in cancer therapeutic resistance: Current status and perspectives. Biochemical Pharmacology, 2020, 182, 114258.	2.0	43
436	Phase Separation and Neurodegenerative Diseases: A Disturbance in the Force. Developmental Cell, 2020, 55, 45-68.	3.1	234
437	The Autophagy–RNA Interplay: Degradation and Beyond. Trends in Biochemical Sciences, 2020, 45, 845-857.	3.7	28
438	Novel insights into the roles of RNA N-methyladenosine modification in regulating gene expression during environmental exposures. Chemosphere, 2020, 261, 127757.	4.2	13

#	Article	IF	CITATIONS
439	A CNN-Based RNA N6-Methyladenosine Site Predictor for Multiple Species Using Heterogeneous Features Representation. IEEE Access, 2020, 8, 138203-138209.	2.6	49
440	Inhibition of RNA-binding proteins with small molecules. Nature Reviews Chemistry, 2020, 4, 441-458.	13.8	76
441	Reversible N6-methyladenosine of RNA: The regulatory mechanisms on gene expression and implications in physiology and pathology. Genes and Diseases, 2020, 7, 585-597.	1.5	23
442	Bioinformatics approaches for deciphering the epitranscriptome: Recent progress and emerging topics. Computational and Structural Biotechnology Journal, 2020, 18, 1587-1604.	1.9	38
443	N6-methyladenosine as a Novel Regulator of Brain Physiology and Diseases. Current Medical Science, 2020, 40, 401-406.	0.7	3
444	N6-methyladenine modification in noncoding RNAs and its function in cancer. Biomarker Research, 2020, 8, 61.	2.8	28
445	RNA-binding protein RALY reprogrammes mitochondrial metabolism via mediating miRNA processing in colorectal cancer. Gut, 2021, 70, 1698-1712.	6.1	63
446	RNA methylations in human cancers. Seminars in Cancer Biology, 2021, 75, 97-115.	4.3	87
447	N6-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating Î ² -catenin signaling. Molecular Cancer, 2020, 19, 163.	7.9	171
448	Epitranscriptomic(N6-methyladenosine) Modification of Viral RNA and Virus-Host Interactions. Frontiers in Cellular and Infection Microbiology, 2020, 10, 584283.	1.8	36
449	Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing. Nature Communications, 2020, 11, 6016.	5.8	111
450	Emerging roles of N6-methyladenosine (m6A) modification in breast cancer. Cell and Bioscience, 2020, 10, 136.	2.1	20
451	The role of m6A modification in physiology and disease. Cell Death and Disease, 2020, 11, 960.	2.7	111
452	Advances in the profiling of N6-methyladenosine (m6A) modifications. Biotechnology Advances, 2020, 45, 107656.	6.0	55
453	The Role of Noncoding RNAs in B-Cell Lymphoma. Frontiers in Oncology, 2020, 10, 577890.	1.3	5
454	Nuclear export of chimeric mRNAs depends on an $lncRNA$ -triggered autoregulatory loop in blood malignancies. Cell Death and Disease, 2020, 11 , 566.	2.7	21
455	Critical Roles of N6-Methyladenosine (m6A) in Cancer and Virus Infection. Biomolecules, 2020, 10, 1071.	1.8	16
456	Comprehensive Analysis of the PD-L1 and Immune Infiltrates of m6A RNA Methylation Regulators in Head and Neck Squamous Cell Carcinoma. Molecular Therapy - Nucleic Acids, 2020, 21, 299-314.	2.3	143

#	Article	IF	Citations
457	Reshaping the role of m6A modification in cancer transcriptome: a review. Cancer Cell International, 2020, 20, 353.	1.8	37
458	Profiling of circular RNA N ⁶ â€methyladenosine in moso bamboo (<i>Phyllostachys) Tj ETQq1 1 0.784</i>	314 rgBT 4.1	/Overlock 1 35
459	Epigenetic Regulation of Endothelial Cell Function by Nucleic Acid Methylation in Cardiac Homeostasis and Disease. Cardiovascular Drugs and Therapy, 2021, 35, 1025-1044.	1.3	7
460	RNA demethylase Alkbh5 is widely expressed in neurons and decreased during brain development. Brain Research Bulletin, 2020, 163, 150-159.	1.4	36
461	A novel N6-methyladenosine (m6A)-dependent fate decision for the lncRNA THOR. Cell Death and Disease, 2020, 11, 613.	2.7	86
462	Roles of N6-Methyladenosine (m6A) in Stem Cell Fate Decisions and Early Embryonic Development in Mammals. Frontiers in Cell and Developmental Biology, 2020, 8, 782.	1.8	57
463	mRNA adenosine methylase (MTA) deposits m $\sup 6 on pri-miRNAs to modulate miRNA biogenesis in \inf A sciences of the United States of America, 2020, 117, 21785-21795.$	3.3	83
464	Insight into m ⁶ A methylation from occurrence to functions. Open Biology, 2020, 10, 200091.	1.5	24
465	<p>LncRNA GATA6-AS1 Inhibits the Progression of Non-Small Cell Lung Cancer via Repressing microRNA-543 to Up-Regulating RKIP</p> . Cancer Management and Research, 2020, Volume 12, 9327-9338.	0.9	11
466	Role of Viral Ribonucleoproteins in Human Papillomavirus Type 16 Gene Expression. Viruses, 2020, 12, 1110.	1.5	13
467	m ⁶ A RNA modification modulates PI3K/Akt/mTOR signal pathway in Gastrointestinal Cancer. Theranostics, 2020, 10, 9528-9543.	4.6	62
468	Epitranscriptomic regulation by m ⁶ A RNA methylation in brain development and diseases. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 2331-2349.	2.4	46
469	m6A modification in RNA: biogenesis, functions and roles in gliomas. Journal of Experimental and Clinical Cancer Research, 2020, 39, 192.	3.5	94
470	The Role of RNA Epigenetic Modification in Normal and Malignant Hematopoiesis. Current Stem Cell Reports, 2020, 6, 144-155.	0.7	12
471	On the Way to Understanding the Interplay between the RNA Structure and Functions in Cells: A Genome-Wide Perspective. International Journal of Molecular Sciences, 2020, 21, 6770.	1.8	19
472	m6A RNA Methylation: Ramifications for Gene Expression and Human Health. Molecular Biotechnology, 2020, 62, 467-484.	1.3	40
473	Roles of METTL3 in cancer: mechanisms and therapeutic targeting. Journal of Hematology and Oncology, 2020, 13, 117.	6.9	269
474	TRADES: Targeted RNA Demethylation by SunTag System. Advanced Science, 2020, 7, 2001402.	5.6	27

#	Article	IF	Citations
475	Environmental exposures and RNA N6-Methyladenosine modified long Non-Coding RNAs. Critical Reviews in Toxicology, 2020, 50, 641-649.	1.9	2
476	lt's the Little Things (in Viral RNA). MBio, 2020, 11, .	1.8	11
477	Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chemical Society Reviews, 2020, 49, 7331-7353.	18.7	130
478	N6-Methyladenosine RNA Methylation Regulators Have Clinical Prognostic Values in Hepatocellular Carcinoma. Frontiers in Genetics, 2020, 11, 863.	1.1	4
479	ALKBH5 regulates IGF1R expression to promote the Proliferation and Tumorigenicity of Endometrial Cancer. Journal of Cancer, 2020, 11, 5612-5622.	1.2	31
480	N ⁶ â€methyladenosine and RNA secondary structure affect transcript stability and protein abundance during systemic salt stress in Arabidopsis. Plant Direct, 2020, 4, e00239.	0.8	41
481	Epitranscriptomics in the Heart: a Focus on m6A. Current Heart Failure Reports, 2020, 17, 205-212.	1.3	14
482	RNA–protein interaction mapping via MS2- or Cas13-based APEX targeting. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22068-22079.	3.3	105
483	Identifying cortical specific long noncoding RNAs modified by m ⁶ A RNA methylation in mouse brains. Epigenetics, 2021, 16, 1260-1276.	1.3	10
484	Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins. Microorganisms, 2020, 8, 1976.	1.6	13
485	Long non-coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-methyladenosine. Molecular Cancer, 2020, 19, 171.	7.9	168
486	The Distinct Function and Localization of METTL3/METTL14 and METTL16 Enzymes in Cardiomyocytes. International Journal of Molecular Sciences, 2020, 21, 8139.	1.8	15
487	RNA m6A Modification in Cancers: Molecular Mechanisms and Potential Clinical Applications. Innovation(China), 2020, 1, 100066.	5.2	69
488	m6A Editing: New Tool to Improve Crop Quality?. Trends in Plant Science, 2020, 25, 859-867.	4.3	23
489	Functional Implications of Active N6-Methyladenosine in Plants. Frontiers in Cell and Developmental Biology, 2020, 8, 291.	1.8	30
490	RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Molecular Cancer, 2020, 19, 91.	7.9	230
491	Mechanisms of Long Non-Coding RNAs in Cancers and Their Dynamic Regulations. Cancers, 2020, 12, 1245.	1.7	95
492	<scp>RNA</scp> m ⁶ A methylation regulates sorafenib resistance in liver cancer through <scp>FOXO</scp> 3â€mediated autophagy. EMBO Journal, 2020, 39, e103181.	3.5	271

#	Article	IF	CITATIONS
493	Potential G-Quadruplex Forming Sequences and $\langle i \rangle N \langle i \rangle \langle \sup \rangle 6 \langle \sup \rangle$ -Methyladenosine Colocalize at Human Pre-mRNA Intron Splice Sites. ACS Chemical Biology, 2020, 15, 1292-1300.	1.6	18
494	The potential role of RNA N6-methyladenosine in Cancer progression. Molecular Cancer, 2020, 19, 88.	7.9	516
495	N ⁶ â€Methyladenosine Demethylase FTO Contributes to Neuropathic Pain by Stabilizing G9a Expression in Primary Sensory Neurons. Advanced Science, 2020, 7, 1902402.	5.6	59
496	Classification and function of <scp>RNA</scp> â€"protein interactions. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1601.	3.2	26
497	m6A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development. Immunity, 2020, 52, 1007-1021.e8.	6.6	99
498	Progress toward understanding chromosome silencing by Xist RNA. Genes and Development, 2020, 34, 733-744.	2.7	95
499	Function and evolution of RNA N6-methyladenosine modification. International Journal of Biological Sciences, 2020, 16, 1929-1940.	2.6	70
500	A m ⁶ A Sensing Method by Its Impact on the Stability of RNA Double Helix. Chemistry and Biodiversity, 2020, 17, e2000050.	1.0	3
501	Diverse molecular functions of m6A mRNA modification in cancer. Experimental and Molecular Medicine, 2020, 52, 738-749.	3.2	38
502	RNA Demethylase ALKBH5 Selectively Promotes Tumorigenesis and Cancer Stem Cell Self-Renewal in Acute Myeloid Leukemia. Cell Stem Cell, 2020, 27, 64-80.e9.	5.2	225
503	The role of N6-methyladenosine (m6A) modification in the regulation of circRNAs. Molecular Cancer, 2020, 19, 105.	7.9	184
504	RNA N-6-methyladenosine enzymes and resistance of cancer cells to chemotherapy and radiotherapy. Epigenomics, 2020, 12, 801-809.	1.0	32
505	LNC942 promoting METTL14-mediated m6A methylation in breast cancer cell proliferation and progression. Oncogene, 2020, 39, 5358-5372.	2.6	131
506	N6-methyladenosine (m6A) methylation in ischemia–reperfusion injury. Cell Death and Disease, 2020, 11, 478.	2.7	34
507	Mechanisms of RNA N6-Methyladenosine in Hepatocellular Carcinoma: From the Perspectives of Etiology. Frontiers in Oncology, 2020, 10, 1105.	1.3	21
508	MALAT1 Long Non-Coding RNA: Functional Implications. Non-coding RNA, 2020, 6, 22.	1.3	115
509	Mechanism of RNA modification N6-methyladenosine in human cancer. Molecular Cancer, 2020, 19, 104.	7.9	184
510	LITHOPHONE: Improving IncRNA Methylation Site Prediction Using an Ensemble Predictor. Frontiers in Genetics, 2020, 11, 545.	1.1	16

#	ARTICLE	IF	CITATIONS
511	RF-PseU: A Random Forest Predictor for RNA Pseudouridine Sites. Frontiers in Bioengineering and Biotechnology, 2020, 8, 134.	2.0	72
512	Unraveling the RNA modification code with mass spectrometry. Molecular Omics, 2020, 16, 305-315.	1.4	19
513	The functions of N6-methyladenosine modification in lncRNAs. Genes and Diseases, 2020, 7, 598-605.	1.5	64
514	m6A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell, 2020, 37, 270-288.	7.7	688
515	Epigenetic modulations of noncoding RNA: a novel dimension of Cancer biology. Molecular Cancer, 2020, 19, 64.	7.9	69
516	Role of m6A in Embryonic Stem Cell Differentiation and in Gametogenesis. Epigenomes, 2020, 4, 5.	0.8	22
517	iMRM: a platform for simultaneously identifying multiple kinds of RNA modifications. Bioinformatics, 2020, 36, 3336-3342.	1.8	122
518	Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nature Biotechnology, 2020, 38, 1431-1440.	9.4	173
519	Genetic analyses support the contribution of mRNA N6-methyladenosine (m6A) modification to human disease heritability. Nature Genetics, 2020, 52, 939-949.	9.4	113
520	FTO-Dependent <i>N</i> ⁶ -Methyladenosine Modifications Inhibit Ovarian Cancer Stem Cell Self-Renewal by Blocking cAMP Signaling. Cancer Research, 2020, 80, 3200-3214.	0.4	128
521	Association between <i>METTL3</i> gene polymorphisms and neuroblastoma susceptibility: A nineâ€eentre caseâ€eontrol study. Journal of Cellular and Molecular Medicine, 2020, 24, 9280-9286.	1.6	20
522	The emerging roles of N6-methyladenosine RNA methylation in human cancers. Biomarker Research, 2020, 8, 24.	2.8	31
523	A Census and Categorization Method of Epitranscriptomic Marks. International Journal of Molecular Sciences, 2020, 21, 4684.	1.8	29
524	N6-Adenosine Methylation in RNA and a Reduced m3G/TMG Level in Non-Coding RNAs Appear at Microirradiation-Induced DNA Lesions. Cells, 2020, 9, 360.	1.8	36
525	Dysregulations of Functional RNA Modifications in Cancer, Cancer Stemness and Cancer Therapeutics. Theranostics, 2020, 10, 3164-3189.	4.6	37
526	mRNA modification orchestrates cancer stem cell fate decisions. Molecular Cancer, 2020, 19, 38.	7.9	31
527	Destabilisation of the c-kit1 G-quadruplex structure by N6-methyladenosine modification. Biochemical and Biophysical Research Communications, 2020, 524, 472-476.	1.0	16
528	<i>ALKBH5</i> gene polymorphisms and Wilms tumor risk in Chinese children: A fiveâ€center caseâ€control study. Journal of Clinical Laboratory Analysis, 2020, 34, e23251.	0.9	19

#	Article	IF	Citations
529	Genetic variants in m6A modification genes are associated with esophageal squamous-cell carcinoma in the Chinese population. Carcinogenesis, 2020, 41, 761-768.	1.3	35
530	Deep analysis of RNA N6-adenosine methylation (m6A) patterns in human cells. NAR Genomics and Bioinformatics, 2020, 2, Iqaa007.	1.5	17
531	FTO promotes cell proliferation and migration in esophageal squamous cell carcinoma through up-regulation of MMP13. Experimental Cell Research, 2020, 389, 111894.	1.2	48
532	Methyltransferase like 3 promotes colorectal cancer proliferation by stabilizing CCNE1 mRNA in an m6Aâ€dependent manner. Journal of Cellular and Molecular Medicine, 2020, 24, 3521-3533.	1.6	69
533	Molecular Mechanisms Driving mRNA Degradation by m6A Modification. Trends in Genetics, 2020, 36, 177-188.	2.9	251
534	Characterization of METTL16 as a cytoplasmic RNA binding protein. PLoS ONE, 2020, 15, e0227647.	1.1	43
535	Widespread non-modular overlapping codes in the coding regions*. Physical Biology, 2020, 17, 031002.	0.8	22
536	m6A mRNA methylation: A pleiotropic regulator of cancer. Gene, 2020, 736, 144415.	1.0	20
537	Epigenetic Signaling and RNA Regulation in Cardiovascular Diseases. International Journal of Molecular Sciences, 2020, 21, 509.	1.8	21
538	N6-Methyladenosine Level in Silkworm Midgut/Ovary Cell Line Is Associated With Bombyx mori Nucleopolyhedrovirus Infection. Frontiers in Microbiology, 2019, 10, 2988.	1.5	25
539	Post-Transcriptional Regulation of Homeostatic, Stressed, and Malignant Stem Cells. Cell Stem Cell, 2020, 26, 138-159.	5.2	54
540	Modification of Adenosine196 by Mettl3 Methyltransferase in the 5'-External Transcribed Spacer of 47S Pre-rRNA Affects rRNA Maturation. Cells, 2020, 9, 1061.	1.8	11
541	RNA-Binding Proteins as Important Regulators of Long Non-Coding RNAs in Cancer. International Journal of Molecular Sciences, 2020, 21, 2969.	1.8	89
542	Pathogenic diversity of RNA variants and RNA variation-associated factors in cancer development. Experimental and Molecular Medicine, 2020, 52, 582-593.	3.2	10
543	m6A-binding proteins: the emerging crucial performers in epigenetics. Journal of Hematology and Oncology, 2020, 13, 35.	6.9	174
544	How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms. Molecular Cell, 2020, 78, 9-29.	4.5	396
545	Genetic analysis of N6-methyladenosine modification genes in Parkinson's disease. Neurobiology of Aging, 2020, 93, 143.e9-143.e13.	1.5	35
546	An oncopeptide regulates m6A recognition by the m6A reader IGF2BP1 and tumorigenesis. Nature Communications, 2020, 11 , 1685 .	5.8	149

#	Article	IF	CITATIONS
547	The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nature Immunology, 2020, 21, 501-512.	7.0	256
548	Deoxyribozyme-based method for absolute quantification of N6-methyladenosine fractions at specific sites of RNA. Journal of Biological Chemistry, 2020, 295, 6992-7000.	1.6	13
549	The rRNA m ⁶ A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes and Development, 2020, 34, 715-729.	2.7	93
550	Natural Variation in RNA m ⁶ A Methylation and Its Relationship with Translational Status. Plant Physiology, 2020, 182, 332-344.	2.3	7 3
551	Insights into the Regulatory Role of m6A Epitranscriptome in Glioblastoma. International Journal of Molecular Sciences, 2020, 21, 2816.	1.8	32
552	Insights into the N ⁶ -methyladenosine mechanism and its functionality: progress and questions. Critical Reviews in Biotechnology, 2020, 40, 639-652.	5.1	15
553	Epitranscriptomics in liver disease: Basic concepts and therapeutic potential. Journal of Hepatology, 2020, 73, 664-679.	1.8	92
554	Occurrence and Functions of m ⁶ A and Other Covalent Modifications in Plant mRNA. Plant Physiology, 2020, 182, 79-96.	2.3	80
555	Naturally occurring modified ribonucleosides. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1595.	3.2	108
556	The role of long noncoding RNAs in hepatocellular carcinoma. Molecular Cancer, 2020, 19, 77.	7.9	310
557	Novel insight into the regulatory roles of diverse RNA modifications: Re-defining the bridge between transcription and translation. Molecular Cancer, 2020, 19, 78.	7.9	129
558	YTHDF2 promotes mitotic entry and is regulated by cell cycle mediators. PLoS Biology, 2020, 18, e3000664.	2.6	50
559	VIRMA-Dependent N6-Methyladenosine Modifications Regulate the Expression of Long Non-Coding RNAs CCAT1 and CCAT2 in Prostate Cancer. Cancers, 2020, 12, 771.	1.7	59
560	RNA contributions to the form and function of biomolecular condensates. Nature Reviews Molecular Cell Biology, 2021, 22, 183-195.	16.1	353
561	LEADâ€m ⁶ Aâ€seq for Locusâ€Specific Detection of <i>N</i> ⁶ â€Methyladenosine and Quantification of Differential Methylation. Angewandte Chemie, 2021, 133, 886-893.	1.6	0
562	Mechanisms of epitranscriptomic gene regulation. Biopolymers, 2021, 112, e23403.	1.2	16
563	LEADâ€m 6 Aâ€seq for Locusâ€Specific Detection of N 6 â€Methyladenosine and Quantification of Differential Methylation. Angewandte Chemie - International Edition, 2021, 60, 873-880.	7.2	16
564	Biased photo cleavage of N-/N-nitrobenzyl from 2'-hydroxyethyl-adenosine and their DNA/RNA Caged-analogues. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 404, 112864.	2.0	2

#	ARTICLE	IF	CITATIONS
565	Upregulation of METTL3 expression and m6A RNA methylation in placental trophoblasts in preeclampsia. Placenta, 2021, 103, 43-49.	0.7	35
566	Novel Insights Into the Role of N6-Methyladenosine RNA Modification in Bone Pathophysiology. Stem Cells and Development, 2021, 30, 17-28.	1.1	21
567	The cardiac methylome: A hidden layer of RNA modifications to regulate gene expression. Journal of Molecular and Cellular Cardiology, 2021, 152, 40-51.	0.9	3
568	Anything but Ordinary – Emerging Splicing Mechanisms in Eukaryotic Gene Regulation. Trends in Genetics, 2021, 37, 355-372.	2.9	64
569	N6-Methyladenosine Regulates Host Responses to Viral Infection. Trends in Biochemical Sciences, 2021, 46, 366-377.	3.7	28
570	MetaTX: deciphering the distribution of mRNA-related features in the presence of isoform ambiguity, with applications in epitranscriptome analysis. Bioinformatics, 2021, 37, 1285-1291.	1.8	10
571	Transcriptome-wide analysis reveals spatial correlation between N6-methyladenosine and binding sites of microRNAs and RNA-binding proteins. Genomics, 2021, 113, 205-216.	1.3	19
572	RNA Modifications in the Central Nervous System. , 0, , 153-192.		1
573	The momentous role of N6â€methyladenosine in lung cancer. Journal of Cellular Physiology, 2021, 236, 3244-3256.	2.0	21
574	Functional long non-coding RNAs in hepatocellular carcinoma. Cancer Letters, 2021, 500, 281-291.	3.2	32
575	m6A-Atlas: a comprehensive knowledgebase for unraveling the $\langle i \rangle N \langle i \rangle 6$ -methyladenosine (m6A) epitranscriptome. Nucleic Acids Research, 2021, 49, D134-D143.	6.5	185
576	Genetic variants in N6-methyladenosine are associated with bladder cancer risk in the Chinese population. Archives of Toxicology, 2021, 95, 299-309.	1.9	18
577	<scp>RNA</scp> structures in alternative splicing and backâ€splicing. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1626.	3.2	37
578	Regulation of RNA N ⁶ -methyladenosine modification and its emerging roles in skeletal muscle development. International Journal of Biological Sciences, 2021, 17, 1682-1692.	2.6	25
579	An epigenetic â€~extreme makeover': the methylation of flaviviral RNA (and beyond). RNA Biology, 2021, 18, 696-708.	1.5	7
580	Establishment of a Risk Signature Based on m6A RNA Methylation Regulators That Predicts Poor Prognosis in Renal Cell Carcinoma. OncoTargets and Therapy, 2021, Volume 14, 413-426.	1.0	5
581	Experimental and Computational Methods for Guiding Identification and Characterization of Epitranscriptome Proteins. RNA Technologies, 2021, , 593-632.	0.2	0
582	Epitranscriptomic Signatures in Neural Development and Disease. RNA Technologies, 2021, , 79-120.	0.2	1

#	Article	IF	CITATIONS
583	Mapping of 7-methylguanosine (m7G), 3-methylcytidine (m3C), dihydrouridine (D) and 5-hydroxycytidine (ho5C) RNA modifications by AlkAniline-Seq. Methods in Enzymology, 2021, 658, 25-47.	0.4	14
584	Multifaceted regulation of translation by the epitranscriptomic modification N ⁶ -methyladenosine. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 137-148.	2.3	11
585	The crosstalk between m ⁶ A RNA methylation and other epigenetic regulators: a novel perspective in epigenetic remodeling. Theranostics, 2021, 11, 4549-4566.	4.6	57
586	Integrative network analysis of N ⁶ methylation-related genes reveal potential therapeutic targets for spinal cord injury. Mathematical Biosciences and Engineering, 2021, 18, 8174-8187.	1.0	3
587	Targeting RNA with small molecules: from fundamental principles towards the clinic. Chemical Society Reviews, 2021, 50, 2224-2243.	18.7	118
588	The interplay between m6A modification and non-coding RNA in cancer stemness modulation: mechanisms, signaling pathways, and clinical implications. International Journal of Biological Sciences, 2021, 17, 2718-2736.	2.6	22
589	Gene signatures of 6-methyladenine regulators in women with lung adenocarcinoma and development of a risk scoring system: a retrospective study using the cancer genome atlas database. Aging, 2021, 13, 3957-3968.	1.4	4
590	Integrated analysis of multiâ€omics data on epigenetic changes caused by combined exposure to environmental hazards. Environmental Toxicology, 2021, 36, 1001-1010.	2.1	13
591	Role of N6-methyl-adenosine modification in mammalian embryonic development. Genetics and Molecular Biology, 2021, 44, e20200253.	0.6	9
592	Regulation of Gene Expression Associated With the N6-Methyladenosine (m6A) Enzyme System and Its Significance in Cancer. Frontiers in Oncology, 2020, 10, 623634.	1.3	27
593	WHISTLE: A Functionally Annotated High-Accuracy Map of Human m6A Epitranscriptome. Methods in Molecular Biology, 2021, 2284, 519-529.	0.4	9
594	Identification of genetic variants in m6A modification genes associated with pancreatic cancer risk in the Chinese population. Archives of Toxicology, 2021, 95, 1117-1128.	1.9	17
595	Looking at induced pluripotent stem cell (iPSC) differentiation through the lens of the noncoding genome., 2021,, 23-62.		0
596	Targeted RNA m6A Editing Using Engineered CRISPR-Cas9 Conjugates. Methods in Molecular Biology, 2021, 2298, 399-414.	0.4	3
597	A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability. Oncogene, 2021, 40, 1609-1627.	2.6	126
598	Roles of m6A RNA Modification in Normal Development and Disease. RNA Technologies, 2021, , 267-308.	0.2	2
599	Recent advances in functional annotation and prediction of the epitranscriptome. Computational and Structural Biotechnology Journal, 2021, 19, 3015-3026.	1.9	13
600	The Emerging Role of the Interactions between Circular RNAs and RNA-binding Proteins in Common Human Cancers. Journal of Cancer, 2021, 12, 5206-5219.	1.2	15

#	Article	IF	CITATIONS
601	Comment on "Ythdf M $<$ sup $>$ 6 $<$ /sup $>$ A Readers Function Redundantly During Zebrafish Development " by Kontur et al SSRN Electronic Journal, 0, , .	0.4	0
602	From m6A to Cap-Adjacent m6Am and their Effects on mRNAs. RNA Technologies, 2021, , 325-351.	0.2	1
603	Experimental Approaches and Computational Workflows for Systematic Mapping and Functional Interpretation of RNA Modifications. RNA Technologies, 2021, , 197-216.	0.2	1
604	The effects of folic acid on RNA m6A methylation in hippocampus as well as learning and memory ability of rats with acute lead exposure. Journal of Functional Foods, 2021, 76, 104276.	1.6	8
605	Decreased expression of METTL14 predicts poor prognosis and construction of a prognostic signature for clear cell renal cell carcinoma. Cancer Cell International, 2021, 21, 46.	1.8	23
606	ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism. Genome Biology, 2021, 22, 51.	3.8	71
607	The role of m6A, m5C and $\hat{\Gamma}$ RNA modifications in cancer: Novel therapeutic opportunities. Molecular Cancer, 2021, 20, 18.	7.9	245
608	YTHDF2 inhibit the tumorigenicity of endometrial cancer via downregulating the expression of IRS1 methylated with m ⁶ A. Journal of Cancer, 2021, 12, 3809-3818.	1.2	13
609	ZayyuNet – A Unified Deep Learning Model for the Identification of Epigenetic Modifications Using Raw Genomic Sequences. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 2533-2544.	1.9	13
610	Metabolic regulation in urological tumors: Interplay with epigenetics and epitranscriptomics. , 2021, , 107-145.		0
611	N6-Adenosine Methylation (m6A) RNA Modification: an Emerging Role in Cardiovascular Diseases. Journal of Cardiovascular Translational Research, 2021, 14, 857-872.	1.1	25
612	Transcriptome-wide analysis of epitranscriptome and translational efficiency associated with heterosis in maize. Journal of Experimental Botany, 2021, 72, 2933-2946.	2.4	28
613	RNA Modification by m6A Methylation in Cardiovascular Disease. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-13.	1.9	8
614	The Regulation of RNA Modification Systems: The Next Frontier in Epitranscriptomics?. Genes, 2021, 12, 345.	1.0	29
615	The non-coding epitranscriptome in cancer. Briefings in Functional Genomics, 2021, 20, 94-105.	1.3	11
616	N(6)â€methyladenosineâ€binding protein YTHDF1 suppresses EBV replication and promotes EBV RNA decay. EMBO Reports, 2021, 22, e50128.	2.0	59
617	The role of m6A modification in the biological functions and diseases. Signal Transduction and Targeted Therapy, 2021, 6, 74.	7.1	718
618	ldentification of a New Prognostic Risk Signature of Clear Cell Renal Cell Carcinoma Based on N6-Methyladenosine RNA Methylation Regulators. Journal of Immunology Research, 2021, 2021, 1-23.	0.9	7

#	Article	IF	Citations
619	Methyladenosine Modification in RNAs: Classification and Roles in Gastrointestinal Cancers. Frontiers in Oncology, 2020, 10, 586789.	1.3	14
620	METTL16, Methyltransferase-Like Protein 16: Current Insights into Structure and Function. International Journal of Molecular Sciences, 2021, 22, 2176.	1.8	46
621	Analysis of RNA Modifications by Second- and Third-Generation Deep Sequencing: 2020 Update. Genes, 2021, 12, 278.	1.0	38
622	m6A RNA methylation regulators play an important role in the prognosis of patients with testicular germ cell tumor. Translational Andrology and Urology, 2021, 10, 662-679.	0.6	10
623	Deciphering the molecular mechanisms of epitranscriptome regulation in cancer. BMB Reports, 2021, 54, 89-97.	1.1	2
624	Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures. Cell Research, 2021, 31, 495-516.	5.7	64
625	L1 retrotransposons exploit RNA m6A modification as an evolutionary driving force. Nature Communications, 2021, 12, 880.	5.8	32
626	N6-methyladenosine RNA modification suppresses antiviral innate sensing pathways via reshaping double-stranded RNA. Nature Communications, 2021, 12, 1582.	5.8	65
627	The Important Role of N6-methyladenosine RNA Modification in Non-Small Cell Lung Cancer. Genes, 2021, 12, 440.	1.0	14
628	Expression patterns and prognostic value of m6A RNA methylation regulators in adrenocortical carcinoma. Medicine (United States), 2021, 100, e25031.	0.4	5
629	RNA methylation in hematological malignancies and its interactions with other epigenetic modifications. Leukemia, 2021, 35, 1243-1257.	3.3	19
630	Deciphering Epitranscriptome: Modification of mRNA Bases Provides a New Perspective for Post-transcriptional Regulation of Gene Expression. Frontiers in Cell and Developmental Biology, 2021, 9, 628415.	1.8	76
631	Epigenetic Regulation of Alternative Splicing: How LncRNAs Tailor the Message. Non-coding RNA, 2021, 7, 21.	1.3	33
632	N ⁶ â€methyladenosine modification of lncRNA <i>Pvt1</i> governs epidermal stemness. EMBO Journal, 2021, 40, e106276.	3.5	30
633	RNA N6-methyladenosine modification, spermatogenesis, and human male infertility. Molecular Human Reproduction, 2021, 27, .	1.3	25
634	m6A RNA Methylation in Systemic Autoimmune Diseases—A New Target for Epigenetic-Based Therapy?. Pharmaceuticals, 2021, 14, 218.	1.7	16
635	ALKBH5 Gene Polymorphisms and Hepatoblastoma Susceptibility in Chinese Children. Journal of Oncology, 2021, 2021, 1-6.	0.6	11
636	Emerging Perspectives of RNA N6-methyladenosine (m6A) Modification on Immunity and Autoimmune Diseases. Frontiers in Immunology, 2021, 12, 630358.	2.2	18

#	Article	IF	Citations
637	A brief review of RNA modification related database resources. Methods, 2022, 203, 342-353.	1.9	15
638	Role of m6A methyltransferase component VIRMA in multiple human cancers (Review). Cancer Cell International, 2021, 21, 172.	1.8	36
639	CLIP and complementary methods. Nature Reviews Methods Primers, 2021, 1, .	11.8	152
640	Modeling multi-species RNA modification through multi-task curriculum learning. Nucleic Acids Research, 2021, 49, 3719-3734.	6.5	23
641	The role of RNA N6-methyladenosine methyltransferase in cancers. Molecular Therapy - Nucleic Acids, 2021, 23, 887-896.	2.3	20
642	Comparison of RNA m6A and DNA methylation profiles between mouse female germline stem cells and STO cells. Molecular Therapy - Nucleic Acids, 2021, 23, 431-439.	2.3	9
643	N6-methyladenosine modification of MALAT1 promotes metastasis via reshaping nuclear speckles. Developmental Cell, 2021, 56, 702-715.e8.	3.1	71
644	Emerging role of RNA modification N6-methyladenosine in immune evasion. Cell Death and Disease, 2021, 12, 300.	2.7	39
645	Regulation of translation by methylation multiplicity of 18S rRNA. Cell Reports, 2021, 34, 108825.	2.9	16
646	Translational remodeling by <scp>RNA</scp> â€binding proteins and noncoding <scp>RNAs</scp> . Wiley Interdisciplinary Reviews RNA, 2021, 12, e1647.	3.2	23
647	A five-m6A regulatory gene signature is a prognostic biomarker in lung adenocarcinoma patients. Aging, 2021, 13, 10034-10057.	1.4	12
648	ATP-Independent Initiation during Cap-Independent Translation of m6A-Modified mRNA. International Journal of Molecular Sciences, 2021, 22, 3662.	1.8	3
649	Comparison and Analysis of Computational Methods for Identifying N6-Methyladenosine Sites in Saccharomyces cerevisiae. Current Pharmaceutical Design, 2021, 27, 1219-1229.	0.9	1
650	Epigenetic regulations in mammalian spermatogenesis: RNA-m6A modification and beyond. Cellular and Molecular Life Sciences, 2021, 78, 4893-4905.	2.4	31
651	The RNA helicase DDX5 promotes viral infection via regulating N6-methyladenosine levels on the DHX58 and NFκB transcripts to dampen antiviral innate immunity. PLoS Pathogens, 2021, 17, e1009530.	2.1	31
652	Importance of N6‑methyladenosine RNA modification in lung cancer (Review). Molecular and Clinical Oncology, 2021, 14, 128.	0.4	4
653	InÂvivo structural characterization of the SARS-CoV-2 RNA genome identifies host proteins vulnerable to repurposed drugs. Cell, 2021, 184, 1865-1883.e20.	13.5	153
654	Alternative Splicing of Pre-mRNA in the Control of Immune Activity. Genes, 2021, 12, 574.	1.0	19

#	Article	IF	Citations
655	The m6A RNA methylation regulates oncogenic signaling pathways driving cell malignant transformation and carcinogenesis. Molecular Cancer, 2021, 20, 61.	7.9	68
656	Main N6-Methyladenosine Readers: YTH Family Proteins in Cancers. Frontiers in Oncology, 2021, 11, 635329.	1.3	35
658	MMP24 Contributes to Neuropathic Pain in an FTO-Dependent Manner in the Spinal Cord Neurons. Frontiers in Pharmacology, 2021, 12, 673831.	1.6	7
659	N6-Methyladenosine, DNA Repair, and Genome Stability. Frontiers in Molecular Biosciences, 2021, 8, 645823.	1.6	16
660	The Putative Role of m6A-RNA Methylation in Memory Consolidation. Neurochemical Journal, 2021, 15, 103-113.	0.2	0
661	Epigenetic regulation of mRNA N6-methyladenosine modifications in mammalian gametogenesis. Molecular Human Reproduction, 2021, 27, .	1.3	15
663	N6-methyladenosine-dependent signalling in cancer progression and insights into cancer therapies. Journal of Experimental and Clinical Cancer Research, 2021, 40, 146.	3.5	26
664	Multiple Functions of RNA Methylation in T Cells: A Review. Frontiers in Immunology, 2021, 12, 627455.	2.2	16
665	Dynamics of m6A RNA Methylome on the Hallmarks of Hepatocellular Carcinoma. Frontiers in Cell and Developmental Biology, 2021, 9, 642443.	1.8	13
666	Tissue-specific reprogramming of host tRNA transcriptome by the microbiome. Genome Research, 2021, 31, 947-957.	2.4	11
667	RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes, 2021, 12, 627.	1.0	12
668	The epitranscriptome of long noncoding RNAs in metabolic diseases. Clinica Chimica Acta, 2021, 515, 80-89.	0.5	19
669	The role of N6-methyladenosine mRNA in the tumor microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188522.	3.3	69
670	Aging through an epitranscriptomic lens. Nature Aging, 2021, 1, 335-346.	5.3	13
671	Prognostic Significance and Tumor Immune Microenvironment Heterogenicity of m5C RNA Methylation Regulators in Triple-Negative Breast Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 657547.	1.8	57
672	The crucial roles of N6-methyladenosine (m6A) modification in the carcinogenesis and progression of colorectal cancer. Cell and Bioscience, 2021, 11, 72.	2.1	27
673	The occurrence order and cross-talk of different tRNA modifications. Science China Life Sciences, 2021, 64, 1423-1436.	2.3	17
674	The Biological Function, Mechanism, and Clinical Significance of m6A RNA Modifications in Head and Neck Carcinoma: A Systematic Review. Frontiers in Cell and Developmental Biology, 2021, 9, 683254.	1.8	15

#	Article	IF	CITATIONS
675	mRNA modifications in cardiovascular biology and disease: with a focus on m6A modification. Cardiovascular Research, 2022, 118, 1680-1692.	1.8	66
676	Functions of RNA N6-methyladenosine modification in acute myeloid leukemia. Biomarker Research, 2021, 9, 36.	2.8	13
677	Co-expression Network Revealed Roles of RNA m6A Methylation in Human \hat{I}^2 -Cell of Type 2 Diabetes Mellitus. Frontiers in Cell and Developmental Biology, 2021, 9, 651142.	1.8	7
678	The Role of RNA Modifications and RNA-modifying Proteins in Cancer Therapy and Drug Resistance. Current Cancer Drug Targets, 2021, 21, 326-352.	0.8	23
679	SPMLMI: predicting lncRNA–miRNA interactions in humans using a structural perturbation method. PeerJ, 2021, 9, e11426.	0.9	5
680	A single m6A modification in U6 snRNA diversifies exon sequence at the 5' splice site. Nature Communications, 2021, 12, 3244.	5.8	30
682	Epigenetic regulation in antiviral innate immunity. European Journal of Immunology, 2021, 51, 1641-1651.	1.6	8
683	Implications of Enhancer Transcription and eRNAs in Cancer. Cancer Research, 2021, 81, 4174-4182.	0.4	38
684	m6A RNA methylation of major satellite repeat transcripts facilitates chromatin association and RNA:DNA hybrid formation in mouse heterochromatin. Nucleic Acids Research, 2021, 49, 5568-5587.	6.5	21
685	The m6A epitranscriptome on neural development and degeneration. Journal of Biomedical Science, 2021, 28, 40.	2.6	43
686	Role of promoters in regulating alternative splicing. Gene, 2021, 782, 145523.	1.0	9
687	The distinct roles of zinc finger CCHC-type (ZCCHC) superfamily proteins in the regulation of RNA metabolism. RNA Biology, 2021, 18, 2107-2126.	1.5	24
688	m6A regulators are associated with osteosarcoma metastasis and have prognostic significance. Medicine (United States), 2021, 100, e25952.	0.4	9
689	Elucidating the Functions of Non-Coding RNAs from the Perspective of RNA Modifications. Non-coding RNA, 2021, 7, 31.	1.3	8
690	Regulatory Role of N6-methyladenosine (m6A) Modification in Osteosarcoma. Frontiers in Oncology, 2021, 11, 683768.	1.3	7
691	N ⁶ â€methyladenosine Steers RNA Metabolism and Regulation in Cancer. Cancer Communications, 2021, 41, 538-559.	3.7	24
692	Detecting the epitranscriptome. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1663.	3.2	23
693	Emerging Role of m6 A Methylome in Brain Development: Implications for Neurological Disorders and Potential Treatment. Frontiers in Cell and Developmental Biology, 2021, 9, 656849.	1.8	15

#	Article	IF	CITATIONS
694	The m6A-epitranscriptome in brain plasticity, learning and memory. Seminars in Cell and Developmental Biology, 2022, 125, 110-121.	2.3	15
695	Potential regulatory role of epigenetic RNA methylation in cardiovascular diseases. Biomedicine and Pharmacotherapy, 2021, 137, 111376.	2.5	25
696	Biology of the mRNA Splicing Machinery and Its Dysregulation in Cancer Providing Therapeutic Opportunities. International Journal of Molecular Sciences, 2021, 22, 5110.	1.8	20
697	The m ⁶ A-related gene signature for predicting the prognosis of breast cancer. PeerJ, 2021, 9, e11561.	0.9	8
698	RNA m6A modification orchestrates a LINE-1–host interaction that facilitates retrotransposition and contributes to long gene vulnerability. Cell Research, 2021, 31, 861-885.	5.7	47
699	Epigenetic regulation of N6â€methyladenosine modifications in obesity. Journal of Diabetes Investigation, 2021, 12, 1306-1315.	1.1	14
700	RNA modifications in hematopoietic malignancies: a new research frontier. Blood, 2021, 138, 637-648.	0.6	24
701	From A to m6A: The Emerging Viral Epitranscriptome. Viruses, 2021, 13, 1049.	1.5	34
702	Epitranscriptomic editing of the RNA N6-methyladenosine modification by dCasRx conjugated methyltransferase and demethylase. Nucleic Acids Research, 2021, 49, 7361-7374.	6.5	66
703	Dual effects of N6-methyladenosine on cancer progression and immunotherapy. Molecular Therapy - Nucleic Acids, 2021, 24, 25-39.	2.3	20
704	The role of M6A modification in the regulation of tumor-related lncRNAs. Molecular Therapy - Nucleic Acids, 2021, 24, 768-779.	2.3	42
705	Transcriptome-Wide Analysis of RNA m6A Methylation and Gene Expression Changes Among Two Arabidopsis Ecotypes and Their Reciprocal Hybrids. Frontiers in Plant Science, 2021, 12, 685189.	1.7	14
706	The dynamics of N6-methyladenine RNA modification in interactions between rice and plant viruses. Genome Biology, 2021, 22, 189.	3.8	42
707	Methyl CpG binding protein 2 promotes colorectal cancer metastasis by regulating N ⁶ â€methyladenosine methylation through methyltransferaseâ€like 14. Cancer Science, 2021, 112, 3243-3254.	1.7	26
708	Arginine methylation of METTL14 promotes RNA N6-methyladenosine modification and endoderm differentiation of mouse embryonic stem cells. Nature Communications, 2021, 12, 3780.	5.8	34
709	Potential roles of N6-methyladenosine (m6A) in immune cells. Journal of Translational Medicine, 2021, 19, 251.	1.8	36
710	RNA N6-Methyladenosine Responds to Low-Temperature Stress in Tomato Anthers. Frontiers in Plant Science, 2021, 12, 687826.	1.7	24
711	The RNA structurome in the asexual blood stages of malaria pathogen <i>plasmodium falciparum</i> RNA Biology, 2021, 18, 2480-2497.	1.5	6

#	Article	IF	CITATIONS
712	m ⁶ Aâ€mediated alternative splicing coupled with nonsenseâ€mediated mRNA decay regulates SAM synthetase homeostasis. EMBO Journal, 2021, 40, e106434.	3.5	26
713	METTL16 promotes cell proliferation by upâ€regulating cyclin D1 expression in gastric cancer. Journal of Cellular and Molecular Medicine, 2021, 25, 6602-6617.	1.6	50
714	The m ⁶ A landscape of polyadenylated nuclear (PAN) RNA and its related methylome in the context of KSHV replication. Rna, 2021, 27, 1102-1125.	1.6	11
715	A global integrated analysis of UNC5C down-regulation in cancers: insights from mechanism and combined treatment strategy. Biomedicine and Pharmacotherapy, 2021, 138, 111355.	2.5	4
716	Long Non-Coding RNA Epigenetics. International Journal of Molecular Sciences, 2021, 22, 6166.	1.8	23
717	Comprehensive Analysis of the Immune Infiltrates and PD-L1 of m6A RNA Methylation Regulators in Hepatocellular Carcinoma. Frontiers in Cell and Developmental Biology, 2021, 9, 681745.	1.8	11
718	Downregulation of the FTO m6A RNA demethylase promotes EMT-mediated progression of epithelial tumors and sensitivity to Wnt inhibitors. Nature Cancer, 2021, 2, 611-628.	5.7	30
719	Expression Status and Prognostic Value of m6A RNA Methylation Regulators in Lung Adenocarcinoma. Life, 2021, 11, 619.	1.1	3
720	Chromatin and transcriptional regulation by reversible RNA methylation. Current Opinion in Cell Biology, 2021, 70, 109-115.	2.6	44
721	Guanine quadruplexes and their roles in molecular processes. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 482-499.	2.3	5
722	Interactions between m6A modification and miRNAs in malignant tumors. Cell Death and Disease, 2021, 12, 598.	2.7	52
723	Circ_0008542 in osteoblast exosomes promotes osteoclast-induced bone resorption through m6A methylation. Cell Death and Disease, 2021, 12, 628.	2.7	59
724	N6-Methyladenosine RNA Modification in Inflammation: Roles, Mechanisms, and Applications. Frontiers in Cell and Developmental Biology, 2021, 9, 670711.	1.8	56
725	m ⁶ A modification of lncRNA <i>PCAT6</i> promotes bone metastasis in prostate cancer through <i>IGF2BP2</i> â€mediated <i>IGF1R</i> mRNA stabilization. Clinical and Translational Medicine, 2021, 11, e426.	1.7	77
726	m6A RNA methylation and beyond – The epigenetic machinery and potential treatment options. Drug Discovery Today, 2021, 26, 2559-2574.	3.2	50
727	RNA structure probing uncovers RNA structure-dependent biological functions. Nature Chemical Biology, 2021, 17, 755-766.	3.9	59
728	Decreased m6A Modification of CD34/CD276(B7-H3) Leads to Immune Escape in Colon Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 715674.	1.8	8
729	RNA methylation in mammalian development and cancer. Cell Biology and Toxicology, 2021, 37, 811-831.	2.4	47

#	Article	IF	Citations
730	Function and clinical significance of N6-methyladenosine in digestive system tumours. Experimental Hematology and Oncology, 2021, 10, 40.	2.0	16
731	bCNN-Methylpred: Feature-Based Prediction of RNA Sequence Modification Using Branch Convolutional Neural Network. Genes, 2021, 12, 1155.	1.0	4
732	RNA Methylation in Systemic Lupus Erythematosus. Frontiers in Cell and Developmental Biology, 2021, 9, 696559.	1.8	12
733	Quantification of m6A RNA methylation modulators pattern was a potential biomarker for prognosis and associated with tumor immune microenvironment of pancreatic adenocarcinoma. BMC Cancer, 2021, 21, 876.	1.1	35
734	m6A Modification: A Double-Edged Sword in Tumor Development. Frontiers in Oncology, 2021, 11, 679367.	1.3	41
735	N6-Methyladenosine Modification Opens a New Chapter in Circular RNA Biology. Frontiers in Cell and Developmental Biology, 2021, 9, 709299.	1.8	25
736	Prognostic Role and Potential Mechanisms of N6-methyladenosine-related Long Noncoding RNAs in Hepatocellular Carcinoma. Journal of Clinical and Translational Hepatology, 2022, 10, 308-320.	0.7	4
737	A Lightâ€Controllable Chemical Modulation of m 6 A RNA Methylation. Angewandte Chemie, 2021, 133, 18264-18269.	1.6	5
738	Plants' Epigenetic Mechanisms and Abiotic Stress. Genes, 2021, 12, 1106.	1.0	64
739	Identification and validation of IncRNAs involved in m6A regulation for patients with ovarian cancer. Cancer Cell International, 2021, 21, 363.	1.8	30
741	Changes in N6-Methyladenosine Modification Modulate Diabetic Cardiomyopathy by Reducing Myocardial Fibrosis and Myocyte Hypertrophy. Frontiers in Cell and Developmental Biology, 2021, 9, 702579.	1.8	26
742	A Lightâ€Controllable Chemical Modulation of m ⁶ A RNA Methylation. Angewandte Chemie - International Edition, 2021, 60, 18116-18121.	7.2	23
743	Mapping of Functional Subdomains in the atALKBH9B m6A-Demethylase Required for Its Binding to the Viral RNA and to the Coat Protein of Alfalfa Mosaic Virus. Frontiers in Plant Science, 2021, 12, 701683.	1.7	14
744	m6A modification of RNA and its role in cancer, with a special focus on lung cancer. Genomics, 2021, 113, 2860-2869.	1.3	19
745	Towards a druggable epitranscriptome: Compounds that target RNA modifications in cancer. British Journal of Pharmacology, 2022, 179, 2868-2889.	2.7	19
746	The loss of RNA N6-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8+ TÂcell dysfunction and tumor growth. Cancer Cell, 2021, 39, 945-957.e10.	7.7	124
747	METTL14 facilitates global genome repair and suppresses skin tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	61
748	Cross-Talk between Oxidative Stress and m6A RNA Methylation in Cancer. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-26.	1.9	26

#	Article	IF	CITATIONS
749	The Importance of the Epi-Transcriptome in Translation Fidelity. Non-coding RNA, 2021, 7, 51.	1.3	6
750	RNA modifications in cardiovascular diseases, the potential therapeutic targets. Life Sciences, 2021, 278, 119565.	2.0	37
751	RNA regulatory mechanisms that control antiviral innate immunity. Immunological Reviews, 2021, 304, 77-96.	2.8	14
752	How RNA modifications regulate the antiviral response. Immunological Reviews, 2021, 304, 169-180.	2.8	17
753	Macrophage polarization-associated Inc-Ma301 interacts with caprin-1 to inhibit hepatocellular carcinoma metastasis through the Akt/Erk1 pathway. Cancer Cell International, 2021, 21, 422.	1.8	12
7 54	Regulatory effect of m ⁶ A modification on different viruses. Journal of Medical Virology, 2021, 93, 6100-6115.	2.5	7
755	Singleâ€Cell Imaging of m 6 A Modified RNA Using m 6 Aâ€Specific In Situ Hybridization Mediated Proximity Ligation Assay (m 6 AISHâ€PLA). Angewandte Chemie, 2021, 133, 22828.	1.6	1
756	Demethylase FTO activity analysis based on methyl sensitive enzyme MazF and hybridization chain reaction. Sensors and Actuators B: Chemical, 2021, 341, 129983.	4.0	14
757	Repurposing RNA sequencing for discovery of RNA modifications in clinical cohorts. Science Advances, 2021, 7, .	4.7	12
758	The detection and functions of RNA modification m6A based on m6A writers and erasers. Journal of Biological Chemistry, 2021, 297, 100973.	1.6	43
759	N6-Methyladenosine in Cancer Immunotherapy: An Undervalued Therapeutic Target. Frontiers in Immunology, 2021, 12, 697026.	2.2	14
761	Recent advances of m6A methylation modification in esophageal squamous cell carcinoma. Cancer Cell International, 2021, 21, 421.	1.8	17
762	Methyltransferase-like 3 Modulates Severe Acute Respiratory Syndrome Coronavirus-2 RNA N6-Methyladenosine Modification and Replication. MBio, 2021, 12, e0106721.	1.8	53
763	Singleâ€Cell Imaging of m ⁶ A Modified RNA Using m ⁶ Aâ€Specific In Situ Hybridization Mediated Proximity Ligation Assay (m ⁶ AlSHâ€PLA). Angewandte Chemie - International Edition, 2021, 60, 22646-22651.	7.2	21
764	Bioinformatical identification of key genes regulated by IGF2BP2- mediated RNA N6-methyladenosine and prediction of prognosis in hepatocellular carcinoma. Journal of Gastrointestinal Oncology, 2021, 12, 1773-1785.	0.6	8
765	M6A-GSMS: Computational identification of N ⁶ -methyladenosine sites with GBDT and stacking learning in multiple species. Journal of Biomolecular Structure and Dynamics, 2022, 40, 12380-12391.	2.0	5
767	Phase separation in RNA biology. Journal of Genetics and Genomics, 2021, 48, 872-880.	1.7	14
768	A quantitative model predicts how m6A reshapes the kinetic landscape of nucleic acid hybridization and conformational transitions. Nature Communications, 2021, 12, 5201.	5.8	18

#	Article	IF	Citations
769	Hydrogenâ€Bonding Interactions of Methylated Adenine Derivatives. European Journal of Organic Chemistry, 2021, 2021, 4166-4173.	1.2	3
771	DNA-guided photoactivatable probe-based chemical proteomics reveals the reader protein of mRNA methylation. IScience, 2021, 24, 103046.	1.9	3
772	Regulatory role and mechanism of m6A RNA modification in human metabolic diseases. Molecular Therapy - Oncolytics, 2021, 22, 52-63.	2.0	23
773	Crosstalk between N6-methyladenosine modification and circular RNAs: current understanding and future directions. Molecular Cancer, 2021, 20, 121.	7.9	52
774	Cancer-associated dynamics and potential regulators of intronic polyadenylation revealed by IPAFinder using standard RNA-seq data. Genome Research, 2021, 31, 2095-2106.	2.4	20
775	Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants, 2021, 10, 1483.	2.2	22
776	Roles of N6â€Methyladenosine Demethylase FTO in Malignant Tumors Progression. OncoTargets and Therapy, 2021, Volume 14, 4837-4846.	1.0	12
778	Sequence determinants as key regulators in gene expression of T cells. Immunological Reviews, 2021, 304, 10-29.	2.8	12
779	N6-Methyladenosine RNA Modification: An Emerging Immunotherapeutic Approach to Turning Up Cold Tumors. Frontiers in Cell and Developmental Biology, 2021, 9, 736298.	1.8	7
780	Splice and Dice: Intronic microRNAs, Splicing and Cancer. Biomedicines, 2021, 9, 1268.	1.4	8
781	The Role of m6A Ribonucleic Acid Modification in the Occurrence of Atherosclerosis. Frontiers in Genetics, 2021, 12, 733871.	1.1	16
782	Wilms' tumor 1-associating protein complex regulates alternative splicing and polyadenylation at potential G-quadruplex-forming splice site sequences. Journal of Biological Chemistry, 2021, 297, 101248.	1.6	16
783	Multiplexed profiling facilitates robust m6A quantification at site, gene and sample resolution. Nature Methods, 2021, 18, 1060-1067.	9.0	57
784	Comprehensive analysis of lncRNAs as biomarkers for diagnosis, prognosis, and treatment response in clear cell renal cell carcinoma. Molecular Therapy - Oncolytics, 2021, 22, 209-218.	2.0	6
785	The Latest Research Progress of m6A Modification and Its Writers, Erasers, Readers in Infertility: A Review. Frontiers in Cell and Developmental Biology, 2021, 9, 681238.	1.8	3
786	RNA <i>N</i> ⁶ â€methyladenosine modification in the lethal teamwork of cancer stem cells and the tumor immune microenvironment: Current landscape and therapeutic potential. Clinical and Translational Medicine, 2021, 11, e525.	1.7	18
787	METTL3-dependent MALAT1 delocalization drives c-Myc induction in thymic epithelial tumors. Clinical Epigenetics, 2021, 13, 173.	1.8	21
788	Circular RNAs' cap-independent translation protein and its roles in carcinomas. Molecular Cancer, 2021, 20, 119.	7.9	49

#	Article	IF	CITATIONS
789	Epigenetics: Roles and therapeutic implications of non-coding RNA modifications in human cancers. Molecular Therapy - Nucleic Acids, 2021, 25, 67-82.	2.3	52
791	Research progress concerning m ⁶ A methylation and cancer (Review). Oncology Letters, 2021, 22, 775.	0.8	11
792	Inosine Substitutions in RNA Activate Latent G-Quadruplexes. Journal of the American Chemical Society, 2021, 143, 15120-15130.	6.6	12
793	Defining the RBPome of primary T helper cells to elucidate higher-order Roquin-mediated mRNA regulation. Nature Communications, 2021, 12, 5208.	5.8	23
795	The epigenetic mechanisms involved in chronic pain in rodents: A mini-review. Current Neuropharmacology, 2021, 19, .	1.4	2
796	Cancer cell adaptability: turning ribonucleoprotein granules into targets. Trends in Cancer, 2021, 7, 902-915.	3.8	22
797	Epigenetic regulation of ion channels in the sense of taste. Pharmacological Research, 2021, 172, 105760.	3.1	4
798	Decoding m6A mRNA methylation by reader proteins in cancer. Cancer Letters, 2021, 518, 256-265.	3.2	12
799	HNRNPC impedes m6A-dependent anti-metastatic alternative splicing events in pancreatic ductal adenocarcinoma. Cancer Letters, 2021, 518, 196-206.	3.2	45
800	m6A-seq analysis of microRNAs reveals that the N6-methyladenosine modification of miR-21–5p affects its target expression. Archives of Biochemistry and Biophysics, 2021, 711, 109023.	1.4	11
801	N6-methyladenosine modification underlies messenger RNA metabolism and plant development. Current Opinion in Plant Biology, 2021, 63, 102047.	3.5	44
802	ALKBH5-Modified HMGB1-STING Activation Contributes to Radiation Induced Liver Disease via Innate Immune Response. International Journal of Radiation Oncology Biology Physics, 2021, 111, 491-501.	0.4	29
803	N6-methyladenosine RNA modification: A promising regulator in central nervous system injury. Experimental Neurology, 2021, 345, 113829.	2.0	17
804	Relevance of N6-methyladenosine regulators for transcriptome: Implications for development and the cardiovascular system. Journal of Molecular and Cellular Cardiology, 2021, 160, 56-70.	0.9	9
805	The RNA m6A writer METTL14 in cancers: Roles, structures, and applications. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188609.	3.3	58
807	N ⁶ -methyladenosine (m ⁶ A) in pancreatic cancer: Regulatory mechanisms and future direction. International Journal of Biological Sciences, 2021, 17, 2323-2335.	2.6	20
808	Crucial roles of different RNA-binding hnRNP proteins in Stem Cells. International Journal of Biological Sciences, 2021, 17, 807-817.	2.6	24
809	Epitranscriptomics and Diseases. RNA Technologies, 2021, , 121-140.	0.2	0

#	Article	IF	Citations
811	Metabolic Control of m6A RNA Modification. Metabolites, 2021, 11, 80.	1.3	24
812	Diet-Dependent Metabolic Regulation of DNA Double-Strand Break Repair in Cancer: More Choices on the Menu. Cancer Prevention Research, 2021, 14, 403-414.	0.7	2
813	Secondary Structural Model of MALAT1 Becomes Unstructured in Chronic Myeloid Leukemia and Undergoes Structural Rearrangement in Cervical Cancer. Non-coding RNA, 2021, 7, 6.	1.3	6
814	LncRNAs and Available Databases. Methods in Molecular Biology, 2021, 2348, 3-26.	0.4	10
815	Expression and prognostic characteristics of m ⁵ C regulators in lowâ€grade glioma. Journal of Cellular and Molecular Medicine, 2021, 25, 1383-1393.	1.6	21
816	Flipping the script: viral capitalization of RNA modifications. Briefings in Functional Genomics, 2021, 20, 86-93.	1.3	6
817	N6-methyladenosine dynamics in neurodevelopment and aging, and its potential role in Alzheimer's disease. Genome Biology, 2021, 22, 17.	3.8	131
818	m ⁶ A RNA methylation: from mechanisms to therapeutic potential. EMBO Journal, 2021, 40, e105977.	3.5	316
819	mRNA Traffic Control Reviewed: N6â€Methyladenosine (m ⁶ A) Takes the Driver's Seat. BioEssays, 2018, 40, 1700093.	1.2	62
820	Probing N 6-methyladenosine (m6A) RNA Modification in Total RNA with SCARLET. Methods in Molecular Biology, 2016, 1358, 285-292.	0.4	21
821	Global Approaches to Alternative Splicing and Its Regulationâ€"Recent Advances and Open Questions. Translational Bioinformatics, 2016, , 37-71.	0.0	2
822	RNA N 6-Methyladenosine Modification in Normal and Malignant Hematopoiesis. Advances in Experimental Medicine and Biology, 2019, 1143, 75-93.	0.8	35
823	Mapping the epigenetic modifications of DNA and RNA. Protein and Cell, 2020, 11, 792-808.	4.8	174
824	Reading the Epitranscriptome. The Enzymes, 2017, 41, 269-298.	0.7	19
825	Silencing METTL3 inhibits the proliferation and invasion of osteosarcoma by regulating ATAD2. Biomedicine and Pharmacotherapy, 2020, 125, 109964.	2.5	46
826	Transient N-6-Methyladenosine Transcriptome Sequencing Reveals a Regulatory Role of m6A in Splicing Efficiency. Cell Reports, 2018, 23, 3429-3437.	2.9	172
827	N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nature Structural and Molecular Biology, 2017, 24, 870-878.	3.6	432
828	Computational discovery and modeling of novel gene expression rules encoded in the mRNA. Biochemical Society Transactions, 2020, 48, 1519-1528.	1.6	1

#	Article	IF	CITATIONS
829	Multi-omics annotation of human long non-coding RNAs. Biochemical Society Transactions, 2020, 48, 1545-1556.	1.6	6
830	Targeting RNA structures in diseases with small molecules. Essays in Biochemistry, 2020, 64, 955-966.	2.1	22
831	m6A RNA methylation, a new hallmark in virus-host interactions. Journal of General Virology, 2017, 98, 2207-2214.	1.3	85
845	Interaction between N6-methyladenosine (m6A) modification and noncoding RNAs in cancer. Molecular Cancer, 2020, 19, 94.	7.9	168
846	Strategies to target long non-coding RNAs in cancer treatment: progress and challenges. Egyptian Journal of Medical Human Genetics, 2020, 21, .	0.5	44
847	Beyond transcription factors: roles of mRNA decay in regulating gene expression in plants. F1000Research, 2018, 7, 1940.	0.8	13
848	Who Watches the Watchmen: Roles of RNA Modifications in the RNA Interference Pathway. PLoS Genetics, 2016, 12, e1006139.	1.5	29
849	RNAMethPre: A Web Server for the Prediction and Query of mRNA m6A Sites. PLoS ONE, 2016, 11, e0162707.	1.1	55
850	The 18S <scp>rRNA</scp> m ⁶ A methyltransferase <scp>METTL</scp> 5 promotes mouse embryonic stem cell differentiation. EMBO Reports, 2020, 21, e49863.	2.0	42
851	So close, no matter how far: multiple paths connecting transcription to mRNA translation in eukaryotes. EMBO Reports, 2020, 21, e50799.	2.0	24
852	Exploring diagnostic m6A regulators in endometriosis. Aging, 2020, 12, 25916-25938.	1.4	45
853	Reduced m6A mRNA methylation is correlated with the progression of human cervical cancer. Oncotarget, 2017, 8, 98918-98930.	0.8	84
854	WITMSG: Large-scale Prediction of Human Intronic m6A RNA Methylation Sites from Sequence and Genomic Features. Current Genomics, 2020, 21, 67-76.	0.7	21
855	m6A Modification and Implications for microRNAs. MicroRNA (Shariqah, United Arab Emirates), 2017, 6, 97-101.	0.6	55
856	Dynamic m $<$ sup $>$ 6 $<$ /sup $>$ A methylation facilitates mRNA triaging to stress granules. Life Science Alliance, 2018, 1, e201800113.	1.3	136
857	Resveratrol Attenuates High-Fat Diet Induced Hepatic Lipid Homeostasis Disorder and Decreases m6A RNA Methylation. Frontiers in Pharmacology, 2020, 11, 568006.	1.6	34
858	N6‑methyladenine RNA modification and cancer (Review). Oncology Letters, 2020, 20, 1504-1512.	0.8	25
859	The Tudor SND1 protein is an m6A RNA reader essential for replication of Kaposi's sarcoma-associated herpesvirus. ELife, 2019, 8, .	2.8	107

#	Article	IF	CITATIONS
860	Plasmodium falciparum translational machinery condones polyadenosine repeats. ELife, 2020, 9, .	2.8	22
861	Role of methyltransferase-like enzyme 3 and methyltransferase-like enzyme 14 in urological cancers. Peerl, 2020, 8, e9589.	0.9	17
862	Identification of m6A methyltransferase-related genes predicts prognosis and immune infiltrates in head and neck squamous cell carcinoma. Annals of Translational Medicine, 2021, 9, 1554-1554.	0.7	11
864	Role of N6-Methyladenosine (m6A) Methylation Regulators in Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 755206.	1.3	16
866	Modifying the m6A brain methylome by ALKBH5-mediated demethylation: a new contender for synaptic tagging. Molecular Psychiatry, 2021, 26, 7141-7153.	4.1	19
867	RNA methylation and cancer treatment. Pharmacological Research, 2021, 174, 105937.	3.1	89
868	Characterization of Long Non-coding RNAs Modified by m6A RNA Methylation in Skeletal Myogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 762669.	1.8	9
869	Genome-wide RNA structure changes during human neurogenesis modulate gene regulatory networks. Molecular Cell, 2021, 81, 4942-4953.e8.	4.5	15
871	Endothelial METTL3 (Methyltransferase-Like 3) Inhibits Fibrinolysis by Promoting PAI-1 (Plasminogen) Tj ETQq0 0 0 Modification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2877-2889.	rgBT /Ov 1.1	erlock 10 Tf 3
872	RNA Networks that Regulate mRNA Expression and their Potential as Drug Targets. RNA & Disease (Houston, Tex), 0, , .	1.0	1
875	Transient N-6-Methyladensosine Transcriptome Sequencing Reveals a Regulatory Role of m6A in Splicing Efficiency. SSRN Electronic Journal, 0, , .	0.4	0
884	Functions and Dynamics of Methylation in Eukaryotic mRNA. RNA Technologies, 2019, , 333-351.	0.2	O
885	The Role of mRNA m6A in Regulation of Gene Expression. RNA Technologies, 2019, , 353-376.	0.2	0
886	m6A mRNA Methylation in the Mammalian Brain: Distribution, Function and Implications for Brain Functions. RNA Technologies, 2019, , 377-398.	0.2	O
896	m6A-Mediated Tumor Invasion and Methylation Modification in Breast Cancer Microenvironment. Journal of Oncology, 2021, 2021, 1-17.	0.6	10
897	Comprehensive Analysis of N6-Methyladenosine-Related IncRNA Signature for Predicting Prognosis and Immune Cell Infiltration in Patients with Colorectal Cancer. Disease Markers, 2021, 2021, 1-22.	0.6	7
900	RNA in cancer. , 2020, , 251-274.		0
901	Long Non-coding RNAs Diversity in Form and Function: From Microbes to Humans. RNA Technologies, 2020, , 1-57.	0.2	O

#	Article	IF	CITATIONS
903	m6A Modification in Non-Coding RNA: The Role in Cancer Drug Resistance. Frontiers in Oncology, 2021, 11, 746789.	1.3	10
904	Comprehensive Analysis of Transcriptome-wide m6A Methylome Upon Clostridium perfringens Beta2 Toxin Exposure in Porcine Intestinal Epithelial Cells by m6A Sequencing. Frontiers in Genetics, 2021, 12, 689748.	1.1	5
905	Non-Coding RNAs in Glioma Microenvironment and Angiogenesis. Frontiers in Molecular Neuroscience, 2021, 14, 763610.	1.4	12
906	Dual regulatory actions of LncBMP4 on BMP4 promote chicken primordial germ cell formation. EMBO Reports, 2022, 23, e52491.	2.0	9
909	N6-methyladenine RNA modification and cancers. American Journal of Cancer Research, 2018, 8, 1957-1966.	1.4	14
911	Transcriptome-wide N6-methyladenosine profiling of cotton root provides insights for salt stress tolerance. Environmental and Experimental Botany, 2022, 194, 104729.	2.0	14
912	The different activities of RNA G-quadruplex structures are controlled by flanking sequences. Life Science Alliance, 2022, 5, e202101232.	1.3	17
913	RNA m6A methylation regulators in ovarian cancer. Cancer Cell International, 2021, 21, 609.	1.8	27
914	Epitranscriptomic regulation of cognitive development and decline. Seminars in Cell and Developmental Biology, 2021, , .	2.3	0
916	Epigenetic modifications in acute myeloid leukemia: The emerging role of circular RNAs (Review). International Journal of Oncology, 2021, 59, .	1.4	7
917	Long non-coding RNAs: novel regulators of cellular physiology and function. Pflugers Archiv European Journal of Physiology, 2022, 474, 191-204.	1.3	32
918	Epitranscriptomic Analysis of N6-methyladenosine in Infant Rhesus Macaques after Multiple Sevoflurane Anesthesia. Neuroscience, 2022, 482, 64-76.	1.1	9
919	Enzymatic deamination of the epigenetic nucleoside <i>N6</i> -methyladenosine regulates gene expression. Nucleic Acids Research, 2021, 49, 12048-12068.	6.5	7
920	Cellular origins of dsRNA, their recognition and consequences. Nature Reviews Molecular Cell Biology, 2022, 23, 286-301.	16.1	113
921	Epitranscriptomics of cardiovascular diseases (Review). International Journal of Molecular Medicine, 2021, 49, .	1.8	9
922	m6A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity. Cell Reports, 2021, 37, 109968.	2.9	53
923	Comprehensive Analysis of the Transcriptome-Wide m6A Methylation Modification Difference in Liver Fibrosis Mice by High-Throughput m6A Sequencing. Frontiers in Cell and Developmental Biology, 2021, 9, 767051.	1.8	22
924	The Emerging Role of m6A Modification in Regulating the Immune System and Autoimmune Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 755691.	1.8	32

#	Article	IF	Citations
925	Survival-associated N6-adenosine methyltransferase signatures in lung squamous cell carcinoma and clinical verification. BMC Cancer, 2021, 21, 1265.	1.1	2
926	Up–to–date on the evidence linking miRNA-related epitranscriptomic modifications and disease settings. Can these modifications affect cross-kingdom regulation?. RNA Biology, 2021, , 1-14.	1.5	3
927	Depletion of METTL3 alters cellular and extracellular levels of miRNAs containing m6A consensus sequences. Heliyon, 2021, 7, e08519.	1.4	7
928	Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma. Progress in Retinal and Eye Research, 2022, 89, 101030.	7.3	18
929	Novel insights into the interaction between N6-methyladenosine modification and circular RNA. Molecular Therapy - Nucleic Acids, 2022, 27, 824-837.	2.3	19
930	WTAP-mediated m6A modification of lncRNA DIAPH1-AS1 enhances its stability to facilitate nasopharyngeal carcinoma growth and metastasis. Cell Death and Differentiation, 2022, 29, 1137-1151.	5.0	66
932	Insights into N6-methyladenosine and programmed cell death in cancer. Molecular Cancer, 2022, 21, 32.	7.9	81
933	Dynamic regulation and functions of mRNA m6A modification. Cancer Cell International, 2022, 22, 48.	1.8	63
934	Long intergenic non-protein coding RNA 1273 confers sorafenib resistance in hepatocellular carcinoma via regulation of methyltransferase 3. Bioengineered, 2022, 13, 3108-3121.	1.4	20
935	The multifaceted functions of the Fat mass and Obesity-associated protein (FTO) in normal and cancer cells. RNA Biology, 2022, 19, 132-142.	1.5	16
936	Identification and Validation of a Novel 2-LncRNAs Signature Associated with m6A Regulation in Colorectal Cancer. Journal of Cancer, 2022, 13, 21-33.	1.2	3
937	N6-Methyladenosine Modifications in the Female Reproductive System: Roles in Gonad Development and Diseases. International Journal of Biological Sciences, 2022, 18, 771-782.	2.6	12
938	The Role of N6-Methyladenosine (m6A) Methylation Modifications in Hematological Malignancies. Cancers, 2022, 14, 332.	1.7	12
939	Hypoxia-mediated YTHDF2 overexpression promotes lung squamous cell carcinoma progression by activation of the mTOR/AKT axis. Cancer Cell International, 2022, 22, 13.	1.8	16
940	RNA binding protein NKAP protects glioblastoma cells from ferroptosis by promoting SLC7A11 mRNA splicing in an m6A-dependent manner. Cell Death and Disease, 2022, 13, 73.	2.7	53
941	Emerging role of m6A modification in osteogenesis of stem cells. Journal of Bone and Mineral Metabolism, 2022, 40, 177-188.	1.3	6
942	ATXN2-mediated translation of TNFR1 promotes esophageal squamous cell carcinoma via m6A-dependent manner. Molecular Therapy, 2022, 30, 1089-1103.	3.7	17
943	Nanoparticle-Induced m6A RNA Modification: Detection Methods, Mechanisms and Applications. Nanomaterials, 2022, 12, 389.	1.9	1

#	Article	IF	Citations
944	The Interaction Between N6-Methyladenosine Modification and Non-Coding RNAs in Gastrointestinal Tract Cancers. Frontiers in Oncology, 2021, 11, 784127.	1.3	7
945	Spectroscopic and <i>inâ€vitro</i> Investigations of Fe ²⁺ ∫αâ€Ketoglutarateâ€Dependent Enzyme Involved in Nucleic Acid Repair and Modification. ChemBioChem, 2022, 23, .	\$ 1.3	5
946	N-6-Methyladenosine in Vasoactive microRNAs during Hypoxia; A Novel Role for METTL4. International Journal of Molecular Sciences, 2022, 23, 1057.	1.8	14
947	RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. Journal of Hematology and Oncology, 2022, 15, 8.	6.9	62
948	RNA binding to human METTL3-METTL14 restricts N6-deoxyadenosine methylation of DNA in vitro. ELife, 2022, 11, .	2.8	11
949	<i>N</i> 6-methyladenosine enhances post-transcriptional gene regulation by microRNAs. Bioinformatics Advances, 2022, 2, vbab046.	0.9	2
950	The role of regulators of RNA m6A methylation in lung cancer. Genes and Diseases, 2023, 10, 495-504.	1.5	5
952	RNA N6-methyladenosine modulates endothelial atherogenic responses to disturbed flow in mice. ELife, 2022, 11 , .	2.8	12
953	Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Molecular Cell, 2022, 82, 645-659.e9.	4. 5	75
954	Towards SINEUP-based therapeutics: Design of an inÂvitro synthesized SINEUP RNA. Molecular Therapy - Nucleic Acids, 2022, 27, 1092-1102.	2.3	4
955	Roles and drug development of METTL3 (methyltransferase-like 3) in anti-tumor therapy. European Journal of Medicinal Chemistry, 2022, 230, 114118.	2.6	31
956	Interplay Between m6A RNA Methylation and Regulation of Metabolism in Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, 813581.	1.8	7
957	CNNLSTMac4CPred: A Hybrid Model for N4-Acetylcytidine Prediction. Interdisciplinary Sciences, Computational Life Sciences, 2022, 14, 439-451.	2.2	6
958	Destabilization of DNA and RNA G-quadruplex structures formed by GGA repeat due to N6-methyladenine modification. Biochemical and Biophysical Research Communications, 2022, 597, 134-139.	1.0	5
959	StackRAM: a cross-species method for identifying RNA N6-methyladenosine sites based on stacked ensemble. Chemometrics and Intelligent Laboratory Systems, 2022, 222, 104495.	1.8	2
960	Insufficient pyruvate in culture medium arrests mouse embryos at the first cleavage stage associated with abnormal epigenetic modifications. Theriogenology, 2022, 181, 119-125.	0.9	3
961	Involvement of N6-methyladenosine modifications of long noncoding RNAs in systemic lupus erythematosus. Molecular Immunology, 2022, 143, 77-84.	1.0	13
962	Structural effects of m6A modification of the Xist A-repeat AUCG tetraloop and its recognition by YTHDC1. Nucleic Acids Research, 2022, 50, 2350-2362.	6.5	17

#	Article	IF	CITATIONS
963	RNA m6A Alterations Induced by Biomineralization Nanoparticles: A Proof-of-Concept Study of Epitranscriptomics for Nanotoxicity Evaluation. Nanoscale Research Letters, 2022, 17, 23.	3.1	3
964	Membrane linked RNA glycosylation as new trend to envision epi-transcriptome epoch. Cancer Gene Therapy, 2023, 30, 641-646.	2.2	5
965	Function of m6A and its regulation of domesticated animals' complex traits. Journal of Animal Science, 2022, 100, .	0.2	3
966	N6-methyladenosine-dependent modification of circGARS acts as a new player that promotes SLE progression through the NF-κB/A20 axis. Arthritis Research and Therapy, 2022, 24, 37.	1.6	13
967	N6-methyladenosine modification of the $5\hat{a} \in 2$ epsilon structure of the HBV pregenome RNA regulates its encapsidation by the viral core protein. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
968	Role of N6-methyladenosine Modification in Cardiac Remodeling. Frontiers in Cardiovascular Medicine, 2022, 9, 774627.	1.1	5
969	Mapping the m1A, m5C, m6A and m7G methylation atlas in zebrafish brain under hypoxic conditions by MeRIP-seq. BMC Genomics, 2022, 23, 105.	1.2	19
970	GR-mediated transcriptional regulation of m6A metabolic genes contributes to diet-induced fatty liver in hens. Journal of Animal Science and Biotechnology, 2021, 12, 117.	2.1	11
971	YTHDC1 gene polymorphisms and neuroblastoma susceptibility in Chinese children. Aging, 2021, 13, 25426-25439.	1.4	10
972	Protein profiling of SH-SY5Y neuroblastoma cells: The effect of rhein. Journal of Biosciences, 2019, 44,	0.5	0
973	The role of Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) as m ⁶ A readers in cancer. International Journal of Biological Sciences, 2022, 18, 2744-2758.	2.6	30
974	Four m6A RNA Methylation Gene Signatures and Their Prognostic Values in Lung Adenocarcinoma. Technology in Cancer Research and Treatment, 2022, 21, 153303382210853.	0.8	6
975	m6A modification: recent advances, anticancer targeted drug discovery and beyond. Molecular Cancer, 2022, 21, 52.	7.9	138
976	The m6A(m)-independent role of FTO in regulating WNT signaling pathways. Life Science Alliance, 2022, 5, e202101250.	1.3	9
977	m ⁶ Aâ€mediated regulation of crop development and stress responses. Plant Biotechnology Journal, 2022, 20, 1447-1455.	4.1	31
978	METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N6-methyladenosine modification of PD-L1 mRNA in breast cancer. Molecular Cancer, 2022, 21, 60.	7.9	135
979	Driving Chromatin Organisation through N6-methyladenosine Modification of RNA: What Do We Know and What Lies Ahead?. Genes, 2022, 13, 340.	1.0	6
980	Overexpression of m6A-factors METTL3, ALKBH5, and YTHDC1 alters HPV16 mRNA splicing. Virus Genes, 2022, 58, 98-112.	0.7	10

#	Article	IF	CITATIONS
982	YTHDF1 amplification is correlated with worse outcome and lower immune cell infiltrations in breast cancer. Cancer Biomarkers, 2022, 35, 127-142.	0.8	8
983	MdMTAâ€mediated m ⁶ A modification enhances drought tolerance by promoting mRNA stability and translation efficiency of genes involved in lignin deposition and oxidative stress. New Phytologist, 2022, 234, 1294-1314.	3.5	38
984	Genetic Regulation of N6-Methyladenosine-RNA in Mammalian Gametogenesis and Embryonic Development. Frontiers in Cell and Developmental Biology, 2022, 10, 819044.	1.8	10
985	The regulatory role of <scp>N⁶</scp> â€methyladenosine modification in the interaction between host and microbes. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1725.	3.2	8
986	Challenges with Simulating Modified RNA: Insights into Role and Reciprocity of Experimental and Computational Approaches. Genes, 2022, 13, 540.	1.0	4
987	m6A demethylase ALKBH5 promotes tumor cell proliferation by destabilizing IGF2BPs target genes and worsens the prognosis of patients with non-small-cell lung cancer. Cancer Gene Therapy, 2022, 29, 1355-1372.	2.2	13
988	m6A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nature Biotechnology, 2022, 40, 1210-1219.	9.4	115
989	N6â€methyladenosine modification participates in neoplastic immunoregulation and tumorigenesis. Journal of Cellular Physiology, 2022, 237, 2729-2739.	2.0	5
990	Secondary structure prediction for RNA sequences including N6-methyladenosine. Nature Communications, 2022, 13, 1271.	5.8	27
991	rtcisE2F promotes the self-renewal and metastasis of liver tumor-initiating cells via N6-methyladenosine-dependent E2F3/E2F6 mRNA stability. Science China Life Sciences, 2022, 65, 1840-1854.	2.3	12
992	Cooperation and competition by RNA-binding proteins in cancer. Seminars in Cancer Biology, 2022, 86, 286-297.	4.3	13
993	MTA1â€mediated RNA m ⁶ A modification regulates autophagy and is required for infection of the rice blast fungus. New Phytologist, 2022, 235, 247-262.	3 . 5	19
995	The epitranscriptome toolbox. Cell, 2022, 185, 764-776.	13.5	42
996	A systematic pan-cancer study demonstrates the oncogenic function of heterogeneous nuclear ribonucleoprotein C. Aging, 2022, 14, 2880-2901.	1.4	0
997	Oncogenic and Tumor-Suppressive Functions of the RNA Demethylase FTO. Cancer Research, 2022, 82, 2201-2212.	0.4	16
998	Impact of Nutrition on Age-Related Epigenetic RNA Modifications in Rats. Nutrients, 2022, 14, 1232.	1.7	5
999	Identification and Characterization of BmNPV m6A Sites and Their Possible Roles During Viral Infection. Frontiers in Immunology, 2022, 13, 869313.	2.2	4
1000	The multifaceted effects of YTHDC1-mediated nuclear m6A recognition. Trends in Genetics, 2022, 38, 325-332.	2.9	46

#	Article	IF	CITATIONS
1002	m ⁶ A RNA modification in transcription regulation. Transcription, 2021, 12, 266-276.	1.7	15
1003	An analysis of the role of HnRNP C dysregulation in cancers. Biomarker Research, 2022, 10, 19.	2.8	10
1004	The m6A demethylase ALKBH5 promotes tumor progression by inhibiting RIG-I expression and interferon alpha production through the IKK $\hat{l}\mu/TBK1/IRF3$ pathway in head and neck squamous cell carcinoma. Molecular Cancer, 2022, 21, 97.	7.9	42
1005	The Emerging Role of N6-Methyladenosine RNA Methylation as Regulators in Cancer Therapy and Drug Resistance. Frontiers in Pharmacology, 2022, 13, 873030.	1.6	8
1006	The N6-methyladenosine:mechanisms, diagnostic value, immunotherapy prospec-ts and challenges in gastric cancer. Experimental Cell Research, 2022, 415, 113115.	1.2	8
1008	m6A Methylation Regulates Osteoblastic Differentiation and Bone Remodeling. Frontiers in Cell and Developmental Biology, 2021, 9, 783322.	1.8	43
1009	Functional interplay within the epitranscriptome: Reality or fiction?. BioEssays, 2022, 44, e2100174.	1.2	5
1010	Non-Coding RNA m6A Modification in Cancer: Mechanisms and Therapeutic Targets. Frontiers in Cell and Developmental Biology, 2021, 9, 778582.	1.8	25
1011	Ribosome 18S m ⁶ A methyltransferase METTL5 promotes pancreatic cancer progression by modulating câ€'Myc translation. International Journal of Oncology, 2021, 60, .	1.4	16
1012	Novel Insights Into the Multifaceted Functions of RNA n6-Methyladenosine Modification in Degenerative Musculoskeletal Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 766020.	1.8	13
1014	Modulation of Phase Separation by RNA: A Glimpse on N6-Methyladenosine Modification. Frontiers in Cell and Developmental Biology, 2021, 9, 786454.	1.8	16
1015	Analysis of N6-Methyladenosine Methylation Modification in Fructose-Induced Non-Alcoholic Fatty Liver Disease. Frontiers in Endocrinology, 2021, 12, 780617.	1.5	18
1016	Characterization of m6A RNA Methylation Regulators Predicts Survival and Immunotherapy in Lung Adenocarcinoma. Frontiers in Immunology, 2021, 12, 782551.	2.2	7
1017	Emerging role of m6A methylation modification in ovarian cancer. Cancer Cell International, 2021, 21, 663.	1.8	9
1018	An Alternatively Spliced Variant of METTL3 Mediates Tumor Suppression in Hepatocellular Carcinoma. Genes, 2022, 13, 669.	1.0	7
1019	METTL3 promotes prostate cancer progression by regulating miRâ€182 maturation in m6Aâ€dependent manner. Andrologia, 2022, 54, 1581-1591.	1.0	10
1020	The Potential Role of m6A RNA Methylation in the Aging Process and Aging-Associated Diseases. Frontiers in Genetics, 2022, 13, 869950.	1.1	19
1036	The Role of RNA Methyltransferase METTL3 in Normal and Malignant Hematopoiesis. Frontiers in Oncology, 2022, 12, 873903.	1.3	11

#	Article	IF	CITATIONS
1037	The Roles and Regulation of m6A Modification in Glioblastoma Stem Cells and Tumorigenesis. Biomedicines, 2022, 10, 969.	1.4	3
1038	Profiling of Transcriptome-Wide N6-Methyladenosine (m6A) Modifications and Identifying m6A Associated Regulation in Sperm Tail Formation in Anopheles sinensis. International Journal of Molecular Sciences, 2022, 23, 4630.	1.8	5
1039	Discovery of METTL3 Small Molecule Inhibitors by Virtual Screening of Natural Products. Frontiers in Pharmacology, 2022, 13, 878135.	1.6	18
1040	Multiple Phosphorylations of SR Protein SRSF3 and Its Binding to m6A Reader YTHDC1 in Human Cells. Cells, 2022, 11, 1461.	1.8	0
1041	The functional roles of m6A modification in T lymphocyte responses and autoimmune diseases. Cytokine and Growth Factor Reviews, 2022, 65, 51-60.	3.2	11
1042	RNA Demethylase ALKBH5 Prevents Lung Cancer Progression by Regulating EMT and Stemness via Regulating p53. Frontiers in Oncology, 2022, 12, 858694.	1.3	12
1043	Role of main RNA modifications in cancer: N6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduction and Targeted Therapy, 2022, 7, 142.	7.1	62
1044	Construction of a Comprehensive Diagnostic Scoring Model for Prostate Cancer Based on a Novel Six-Gene Panel. Frontiers in Genetics, 2022, 13, 831162.	1.1	3
1045	N6-Methyladenosine RNA Methylation in Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2022, 9, 887838.	1.1	15
1046	Essential m6A Methylation Regulator HNRNPC Serves as a Targetable Biomarker for Papillary Renal Cell Carcinoma. Journal of Oncology, 2022, 2022, 1-29.	0.6	0
1047	SRSF9 promotes colorectal cancer progression via stabilizing DSN1 mRNA in an m6A-related manner. Journal of Translational Medicine, 2022, 20, 198.	1.8	10
1048	RNA bisulfite sequencing reveals NSUN2-mediated suppression of epithelial differentiation in pancreatic cancer. Oncogene, 2022, 41, 3162-3176.	2.6	14
1049	RNA modifications can affect RNase H1-mediated PS-ASO activity. Molecular Therapy - Nucleic Acids, 2022, 28, 814-828.	2.3	7
1050	The crucial mechanism and therapeutic implication of RNA methylation in bone pathophysiology. Ageing Research Reviews, 2022, 79, 101641.	5.0	16
1051	Characteristics of <i>N</i> 6 -Methyladenosine Modification During Sexual Reproduction of <i>Chlamydomonas Reinhardtii</i> . Genomics, Proteomics and Bioinformatics, 2023, 21, 756-768.	3.0	4
1052	A Test and Refinement of Folding Free Energy Nearest Neighbor Parameters for RNA Including N6-Methyladenosine. Journal of Molecular Biology, 2022, 434, 167632.	2.0	8
1053	Nanopore-Based Detection of Viral RNA Modifications. MBio, 2022, 13, e0370221.	1.8	12
1054	Investigating the structural changes due to adenosine methylation of the Kaposi's sarcoma-associated herpes virus ORF50 transcript. PLoS Computational Biology, 2022, 18, e1010150.	1.5	8

#	Article	IF	CITATIONS
1055	The Progression of N6-methyladenosine Study and Its Role in Neuropsychiatric Disorders. International Journal of Molecular Sciences, 2022, 23, 5922.	1.8	6
1056	The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer. Seminars in Cancer Biology, 2022, 86, 18-31.	4.3	33
1057	The impact of RNA modifications on the biology of DNA virus infection. European Journal of Cell Biology, 2022, 101, 151239.	1.6	5
1058	Research progress on N6-methyladenosine in the human placenta. Journal of Perinatal Medicine, 2022, 50, 1115-1123.	0.6	3
1059	Allosteric Regulation of IGF2BP1 as a Novel Strategy for the Activation of Tumor Immune Microenvironment. ACS Central Science, 2022, 8, 1102-1115.	5.3	40
1060	Emerging Role of Epitranscriptomics in Diabetes Mellitus and Its Complications. Frontiers in Endocrinology, 2022, 13, .	1.5	11
1061	The Role of m6A on Female Reproduction and Fertility: From Gonad Development to Ovarian Aging. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	8
1062	m6A RNA methylation: A dynamic regulator of cardiac muscle and extracellular matrix. Current Opinion in Physiology, 2022, , 100561.	0.9	2
1063	One Stone, Two Birds: N6-Methyladenosine RNA Modification in Leukemia Stem Cells and the Tumor Immune Microenvironment in Acute Myeloid Leukemia. Frontiers in Immunology, $0,13,.$	2.2	1
1064	Studies on Protein–RNA:DNA Hybrid Interactions by Microscale Thermophoresis (MST). Methods in Molecular Biology, 2022, , 239-251.	0.4	1
1066	ALKBH5 Expression could Affect the Function of T Cells in Systemic Lupus Erythematosus Patients: A Case-control Study. Current Pharmaceutical Design, 2022, 28, 2270-2278.	0.9	3
1067	Hidden codes in mRNA: Control of gene expression by m6A. Molecular Cell, 2022, 82, 2236-2251.	4.5	102
1068	Role of the Demethylase AlkB Homolog H5 in the Promotion of Dentinogenesis. Frontiers in Physiology, 0, 13 , .	1.3	3
1069	Measuring thermodynamic preferences to form non-native conformations in nucleic acids using ultraviolet melting. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
1070	HIF-1α Regulated WTAP Overexpression Promoting the Warburg Effect of Ovarian Cancer by m6A-Dependent Manner. Journal of Immunology Research, 2022, 2022, 1-21.	0.9	13
1071	Novel insights into the interaction between <scp>N6â€methyladenosine</scp> methylation and noncoding <scp>RNAs</scp> in musculoskeletal disorders. Cell Proliferation, 2022, 55, .	2.4	20
1072	hnRNPC induces isoform shifts in miR-21-5p leading to cancer development. Experimental and Molecular Medicine, 2022, 54, 812-824.	3.2	8
1073	Crosstalk Between Histone and m6A Modifications and Emerging Roles of m6A RNA Methylation. Frontiers in Genetics, 0, 13, .	1.1	4

#	Article	IF	CITATIONS
1075	Methyltransferase-like 3 leads to lung injury by up-regulation of interleukin 24 through N6-methyladenosine-dependent mRNA stability and translation efficiency in mice exposed to fine particulate matter 2.5. Environmental Pollution, 2022, 308, 119607.	3.7	18
1076	Hypoxia induced ALKBH5 prevents spontaneous abortion by mediating m6A-demethylation of SMAD1/5 mRNAs. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119316.	1.9	12
1077	Novel insights into m ⁶ A modification of coding and non-coding RNAs in tumor biology: From molecular mechanisms to therapeutic significance. International Journal of Biological Sciences, 2022, 18, 4432-4451.	2.6	13
1078	Bioinformatics-based analysis of SUMOylation-related genes in hepatocellular carcinoma reveals a role of upregulated SAE1 in promoting cell proliferation. Open Medicine (Poland), 2022, 17, 1183-1202.	0.6	4
1079	Epitranscriptomics Changes the Play: m6A RNA Modifications in Apoptosis. Advances in Experimental Medicine and Biology, 2022, , 163-171.	0.8	3
1080	RNA Epigenetics and Epitranscriptomics: The Emerging Gene Regulatory Landscape Through RNA Modifications. , 2022, , .		0
1081	RNA editing of ion channels and receptors in physiology and neurological disorders. , 2022, 1, .		2
1082	m6A Methylation in Cardiovascular Diseases: From Mechanisms to Therapeutic Potential. Frontiers in Genetics, $0,13,.$	1.1	11
1083	A Novel YTHDF3-Based Model to Predict Prognosis and Therapeutic Response in Breast Cancer. Frontiers in Molecular Biosciences, 0, 9, .	1.6	4
1084	Methyladenosine Modification in RNAs: From Regulatory Roles to Therapeutic Implications in Cancer. Cancers, 2022, 14, 3195.	1.7	8
1085	Research advances of <scp>N6</scp> â€methyladenosine in diagnosis and therapy of pancreatic cancer. Journal of Clinical Laboratory Analysis, 2022, 36, .	0.9	12
1086	Crosstalk among m6A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application. Journal of Hematology and Oncology, 2022, 15, .	6.9	31
1087	mRNAs sequestered in stress granules recover nearly completely for translation. RNA Biology, 2022, 19, 877-884.	1.5	9
1088	Progress and application of epitranscriptomic m ⁶ A modification in gastric cancer. RNA Biology, 2022, 19, 885-896.	1.5	5
1089	m6A Topological Transition Coupled to Developmental Regulation of Gene Expression During Mammalian Tissue Development. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
1090	m6A-modified circRNAs: detections, mechanisms, and prospects in cancers. Molecular Medicine, 2022, 28, .	1.9	10
1091	The HHIP-AS1 lncRNA promotes tumorigenicity through stabilization of dynein complex 1 in human SHH-driven tumors. Nature Communications, 2022, 13 , .	5.8	16
1092	Recent Acquisition of Functional m6A RNA Demethylase Domain in Orchid Ty3/Gypsy Elements. Frontiers in Plant Science, 0, 13, .	1.7	O

#	Article	IF	Citations
1093	Emerging biology of noncoding RNAs in malaria parasites. PLoS Pathogens, 2022, 18, e1010600.	2.1	11
1094	Quantitative detection of CpG methylation level on G-quadruplex and i-motif-forming DNA by recombinase polymerase amplification. Analytical and Bioanalytical Chemistry, 0, , .	1.9	0
1096	N6-methyladenosine modification and metabolic reprogramming of digestive system malignancies. Cancer Letters, 2022, 544, 215815.	3.2	13
1097	Change of Heart: the Epitranscriptome of Small Non-coding RNAs in Heart Failure. Current Heart Failure Reports, 0, , .	1.3	3
1098	RNA m6A modification orchestrates the rhythm of immune cell development from hematopoietic stem cells to T and B cells. Frontiers in Immunology, $0,13,.$	2.2	2
1099	5mC and H3K9me3 of TRAF3IP2 promoter region accelerates the progression of translocation renal cell carcinoma. Biomarker Research, 2022, 10, .	2.8	4
1100	La nueva perspectiva molecular del gen en la era posgenómica. Magna Scientia UCEVA, 2022, 2, 65-74.	0.1	0
1101	The epitranscriptome in ageing and stress resistance: A systematic review. Ageing Research Reviews, 2022, 81, 101700.	5.0	9
1102	N6-methyladenosine demethylase FTO regulates inflammatory cytokine secretion and tight junctions in retinal pigment epithelium cells. Clinical Immunology, 2022, 241, 109080.	1.4	16
1103	Mutual regulation of noncoding RNAs and RNA modifications in psychopathology: Potential therapeutic targets for psychiatric disorders?., 2022, 237, 108254.		1
1104	RNA m6A modification and microRNAs. , 2022, , 169-180.		0
1105	The Impact of Epitranscriptomics on Antiviral Innate Immunity. Viruses, 2022, 14, 1666.	1.5	3
1106	<pre><scp>IGF2BP2</scp> promotes pancreatic carcinoma progression by enhancing the stability of <scp>B3GNT6 mRNA</scp> via <scp>m6A</scp> methylation. Cancer Medicine, 2023, 12, 4405-4420.</pre>	1.3	5
1107	FLT3LG and IFITM3P6 consolidate T cell activity in the bone marrow microenvironment and are prognostic factors in acute myelocytic leukemia. Frontiers in Immunology, 0, 13, .	2.2	0
1108	The role of N6-methyladenosine methylation in environmental exposure-induced health damage. Environmental Science and Pollution Research, 2022, 29, 69153-69175.	2.7	5
1109	Transcriptome-wide analyses of RNA m6A methylation in hexaploid wheat reveal its roles in mRNA translation regulation. Frontiers in Plant Science, $0,13,.$	1.7	2
1110	YTHDF3 Is Involved in the Diapause Process of Bivoltine Bombyx mori Strains by Regulating the Expression of Cyp307a1 and Cyp18a1 Genes in the Ecdysone Synthesis Pathway. Biomolecules, 2022, 12, 1127.	1.8	6
1111	IncRNA CYTOR promotes aberrant glycolysis and mitochondrial respiration via HNRNPC-mediated ZEB1 stabilization in oral squamous cell carcinoma. Cell Death and Disease, 2022, 13, .	2.7	23

#	Article	IF	CITATIONS
1112	The Potential Role of m6A in the Regulation of TBI-Induced BGA Dysfunction. Antioxidants, 2022, 11 , 1521.	2.2	4
1113	FTO promotes clear cell renal cell carcinoma progression via upregulation of PDK1 through an m6A dependent pathway. Cell Death Discovery, 2022, 8, .	2.0	7
1114	Dysregulation and implications of N6-methyladenosine modification in renal cell carcinoma. Current Urology, 2023, 17, 45-51.	0.4	1
1116	Molecular Simulations Matching Denaturation Experiments for N ⁶ -Methyladenosine. ACS Central Science, 2022, 8, 1218-1228.	5.3	3
1117	Physio-pathological effects of N6-methyladenosine and its therapeutic implications in leukemia. Biomarker Research, 2022, 10, .	2.8	3
1118	N6-methyladenosine (m6A) in 18S rRNA promotes fatty acid metabolism and oncogenic transformation. Nature Metabolism, 2022, 4, 1041-1054.	5.1	39
1119	A bibliometric analysis of RNA methylation in diabetes mellitus and its complications from 2002 to 2022. Frontiers in Endocrinology, 0, 13 , .	1.5	10
1120	Role of <scp>m6A</scp> RNA methylation in the development of hepatitis B virusâ€associated hepatocellular carcinoma. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 2039-2050.	1.4	3
1121	m6A RNA Methylation Decreases Atherosclerotic Vulnerable Plaque Through Inducing T Cells. Brazilian Journal of Cardiovascular Surgery, 0, , .	0.2	0
1122	Transcriptome-wide profiling of <i>N</i> ⁶ -methyladenosine <i>via</i> a selective chemical labeling method. Chemical Science, 2022, 13, 12149-12157.	3.7	5
1123	The emerging roles of heterogeneous nuclear ribonucleoprotein C in cancer and other diseases. , 0, , $1-12$.		1
1124	New roles of N6-methyladenosine methylation system regulating the occurrence of non-alcoholic fatty liver disease with N6-methyladenosine-modified MYC. Frontiers in Pharmacology, 0, 13, .	1.6	11
1125	RNA m6A modification in liver biology and its implication in hepatic diseases and carcinogenesis. American Journal of Physiology - Cell Physiology, 2022, 323, C1190-C1205.	2.1	8
1126	RBM45 is an m6A-binding protein that affects neuronal differentiation and the splicing of a subset of mRNAs. Cell Reports, 2022, 40, 111293.	2.9	13
1127	Modification of m6A mediates tissue immune microenvironment in calcific aortic valve disease. Annals of Translational Medicine, 2022, 10, 931-931.	0.7	1
1128	The Critical Role of RNA m6A Methylation in Gliomas: Targeting the Hallmarks of Cancer. Cellular and Molecular Neurobiology, 2023, 43, 1697-1718.	1.7	1
1129	Recent developments in the significant effect of mRNA modification (M6A) in glioblastoma and esophageal cancer. Scientific African, 2022, 17, e01347.	0.7	0
1130	A Survey on Methods for Predicting Polyadenylation Sites from DNA Sequences, Bulk RNA-seq, and Single-cell RNA-seq. Genomics, Proteomics and Bioinformatics, 2023, 21, 67-83.	3.0	8

#	Article	IF	CITATIONS
1131	Integrative Analysis of N6-Methyladenosine-Related Enhancer RNAs Identifies Distinct Prognosis and Tumor Immune Micro-Environment Patterns in Head and Neck Squamous Cell Carcinoma. Cancers, 2022, 14, 4657.	1.7	2
1132	The role and regulatory mechanism of m6A methylation in the nervous system. Frontiers in Genetics, 0, 13, .	1.1	3
1134	RNA modifications: importance in immune cell biology and related diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	74
1135	The effects of <scp>RNA</scp> methylation on immune cells development and function. FASEB Journal, 2022, 36, .	0.2	5
1136	The role of RNA modification in hepatocellular carcinoma. Frontiers in Pharmacology, 0, 13, .	1.6	6
1137	More than a duologue: In-depth insights into epitranscriptomics and ferroptosis. Frontiers in Cell and Developmental Biology, $0,10,10$	1.8	4
1138	Significance of m6A regulatory factor in gene expression and immune function of osteoarthritis. Frontiers in Physiology, 0, 13, .	1.3	6
1139	Positional motif analysis reveals the extent of specificity of protein-RNA interactions observed by CLIP. Genome Biology, 2022, 23, .	3.8	14
1141	N6-methyladenosine modification: A potential regulatory mechanism in spinal cord injury. Frontiers in Cellular Neuroscience, $0,16,\ldots$	1.8	5
1142	Effects of writers, erasers and readers within miRNAâ€related m6A modification in cancers. Cell Proliferation, 2023, 56, .	2.4	15
1143	The regulation and potential roles of m6A modifications in early embryonic development and immune tolerance at the maternal-fetal interface. Frontiers in Immunology, 0, 13 , .	2.2	5
1144	Targeting RNA N6-methyladenosine modification: a precise weapon in overcoming tumor immune escape. Molecular Cancer, 2022, 21, .	7.9	15
1145	Crosstalk among N6-methyladenosine modification and RNAs in central nervous system injuries. Frontiers in Cellular Neuroscience, 0, 16 , .	1.8	5
1146	RNA modifications in aging-associated cardiovascular diseases. Aging, 2022, 14, 8110-8136.	1.4	2
1148	IMP1/IGF2BP1 in human colorectal cancer extracellular vesicles. American Journal of Physiology - Renal Physiology, 2022, 323, G571-G585.	1.6	5
1149	Leucine zipper protein 2 serves as a prognostic biomarker for prostate cancer correlating with immune infiltration and epigenetic regulation. Heliyon, 2022, 8, e10750.	1.4	3
1150	Investigation of the enhanced photoactivity of CdS/Bi2MoO6/MoSe2 and its application in antibody-free enzyme-assisted photoelectrochemical strategy for detection of N6-methyladenosine and FTO protein. Materials Today Nano, 2022, 20, 100269.	2.3	4
1151	RNA Metabolism in T Lymphocytes. Immune Network, 2022, 22, .	1.6	3

#	Article	IF	CITATIONS
1152	Acetaminophen changes the RNA m6A levels and m6A-related proteins expression in IL- $1\hat{l}^2$ -treated chondrocyte cells. BMC Molecular and Cell Biology, 2022, 23, .	1.0	1
1154	Comprehensive Analysis and Functional Characteristics of Differential Expression of N6-Methyladenosine Methylation Modification in the Whole Transcriptome of Rheumatoid Arthritis. Mediators of Inflammation, 2022, 2022, 1-14.	1.4	7
1155	Biological roles of adenine methylation in RNA. Nature Reviews Genetics, 2023, 24, 143-160.	7.7	73
1156	Extracellular Vesicle-Mediated Transfer of LncRNA <i>IGFL2-AS1</i> Renal Cell Carcinoma. Cancer Research, 2023, 83, 103-116.	0.4	17
1157	Novel insight into the functions of N ⁶ ‑methyladenosine modified lncRNAs in cancers (Review). International Journal of Oncology, 2022, 61, .	1.4	6
1158	<scp>RNA m⁶A</scp> methylation in cancer. Molecular Oncology, 2023, 17, 195-229.	2.1	10
1161	Emerging role of N6-methyladenosine RNA methylation in lung diseases. Experimental Biology and Medicine, 2022, 247, 1862-1872.	1,1	4
1163	The Role of m6A Modification and m6A Regulators in Esophageal Cancer. Cancers, 2022, 14, 5139.	1.7	2
1164	N6-methyladenosine demethylase FTO enhances chemo-resistance in colorectal cancer through SIVA1-mediated apoptosis. Molecular Therapy, 2023, 31, 517-534.	3.7	15
1165	Alternative RNA Conformations: Companion or Combatant. Genes, 2022, 13, 1930.	1.0	4
1166	<scp>N6</scp> â€methyladenosine functions and its role in skin cancer. Experimental Dermatology, 0, , .	1.4	2
1167	The N6-methyladenosine methyltransferase METTL16 enables erythropoiesis through safeguarding genome integrity. Nature Communications, 2022, 13, .	5.8	13
1168	RNA m6A methylation regulators in endometrial cancer (Review). International Journal of Oncology, 2022, 61, .	1.4	3
1169	Modulation of gene expression by YTH domain family (YTHDF) proteins in human physiology and pathology. Journal of Cellular Physiology, 2023, 238, 5-31.	2.0	5
1170	Critical functions of N6-adenosine methylation of mRNAs in T cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2023, 1870, 119380.	1.9	1
1171	Prognostic and clinicopathological value of m6A regulators in human cancers: a meta-analysis. Aging, 2022, 14, 8818-8838.	1.4	2
1172	3′UTR heterogeneity and cancer progression. Trends in Cell Biology, 2023, 33, 568-582.	3.6	14
1173	The emerging roles of N6-methyladenosine in osteoarthritis. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	4

#	Article	IF	CITATIONS
1174	Probing the dynamic RNA structurome and its functions. Nature Reviews Genetics, 2023, 24, 178-196.	7.7	42
1175	Research progress on N ⁶ -adenosylate methylation RNA modification in heart failure remodeling. Journal of Translational Internal Medicine, 2023, 10, 340-348.	1.0	10
1176	Role of N ⁶ â€'methyladenosine in the pathogenesis, diagnosis and treatment of pancreatic cancer (Review). International Journal of Oncology, 2022, 62, .	1.4	3
1177	N6-Methyladenosine modification (m6A) of circRNA-ZNF638 contributes to the induced activation of SHF stem cells through miR-361-5p/Wnt5a axis in cashmere goats. Animal Bioscience, 2023, 36, 555-569.	0.8	2
1178	Identification of RNA N6-methyladenosine regulation in epilepsy: Significance of the cell death mode, glycometabolism, and drug reactivity. Frontiers in Genetics, 0, 13, .	1.1	2
1179	m6A readers, writers, erasers, and the m6A epitranscriptome in breast cancer. Journal of Molecular Endocrinology, 2023, 70, .	1.1	13
1180	Interaction preferences between protein side chains and key epigenetic modifications 5-methylcytosine, 5-hydroxymethycytosine and N6-methyladenine. Scientific Reports, 2022, 12, .	1.6	2
1181	Detection of m6A from direct RNA sequencing using a multiple instance learning framework. Nature Methods, 2022, 19, 1590-1598.	9.0	54
1183	From form to function: m6A methylation links mRNA structure to metabolism. Advances in Biological Regulation, 2023, 87, 100926.	1.4	1
1184	The Role of Epitranscriptomic Modifications in the Regulation of RNA–Protein Interactions. Biochem, 2022, 2, 241-259.	0.5	1
1185	N6-methyladenosine Modification of Noncoding RNAs: Mechanisms and Clinical Applications in Cancer. Diagnostics, 2022, 12, 2996.	1.3	1
1186	Berberine Regulation of Cellular Oxidative Stress, Apoptosis and Autophagy by Modulation of m6A mRNA Methylation through Targeting the Camk1db/ERK Pathway in Zebrafish-Hepatocytes. Antioxidants, 2022, 11, 2370.	2.2	2
1187	m6A methyltransferase METTL3 inhibits endometriosis by regulating alternative splicing of MIR17HG. Reproduction, 2022, , .	1.1	2
1188	Biological roles of the RNA m6A modification and its implications in cancer. Experimental and Molecular Medicine, 2022, 54, 1822-1832.	3.2	10
1190	Comprehensive analysis of pre-mRNA alternative splicing regulated by m6A methylation in pig oxidative and glycolytic skeletal muscles. BMC Genomics, 2022, 23, .	1.2	3
1191	Epitranscriptomics in parasitic protists: Role of RNA chemical modifications in posttranscriptional gene regulation. PLoS Pathogens, 2022, 18, e1010972.	2.1	6
1192	The Role of the m6A RNA Methyltransferase METTL16 in Gene Expression and SAM Homeostasis. Genes, 2022, 13, 2312.	1.0	0
1194	Stage-specific requirement for METTL3-dependent m6A modification during dental pulp stem cell differentiation. Journal of Translational Medicine, 2022, 20, .	1.8	3

#	Article	IF	CITATIONS
1195	The regulatory role of N6-methyladenosine RNA modification in gastric cancer: Molecular mechanisms and potential therapeutic targets. Frontiers in Oncology, $0,12,.$	1.3	2
1196	Maternal <scp>mRNA</scp> deadenylation and allocation via Rbm14 condensates facilitate vertebrate blastula development. EMBO Journal, 2023, 42, .	3.5	3
1197	RNA modifications in cardiovascular health and disease. Nature Reviews Cardiology, 2023, 20, 325-346.	6.1	11
1200	Dynamic regulation and key roles of ribonucleic acid methylation. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	1
1201	Analysis approaches for the identification and prediction of $\langle i \rangle N \langle i \rangle \langle sup \rangle 6 \langle sup \rangle$ -methyladenosine sites. Epigenetics, 2023, 18, .	1.3	2
1202	Silencing of <i>IRF8</i> Mediated by m6A Modification Promotes the Progression of T ell Acute Lymphoblastic Leukemia. Advanced Science, 0, , 2201724.	5.6	2
1204	Dancing with the Devil: A Review of the Importance of Host RNA-Binding Proteins to Alphaviral RNAs during Infection. Viruses, 2023, 15, 164.	1.5	1
1205	Transcriptome-wide profiling and quantification of N6-methyladenosine by enzyme-assisted adenosine deamination. Nature Biotechnology, 2023, 41, 993-1003.	9.4	47
1206	Identification and validation of signature for prognosis and immune microenvironment in gastric cancer based on m6A demethylase ALKBH5. Frontiers in Oncology, 0, 12, .	1.3	1
1207	RNA methylation influences TDP43 binding and disease pathogenesis in models of amyotrophic lateral sclerosis and frontotemporal dementia. Molecular Cell, 2023, 83, 219-236.e7.	4.5	22
1208	Emerging Mutual Regulatory Roles between m6A Modification and microRNAs. International Journal of Molecular Sciences, 2023, 24, 773.	1.8	4
1209	High Throughput FISH Screening Identifies Small Molecules That Modulate Oncogenic IncRNA MALAT1 via GSK3B and hnRNPs. Non-coding RNA, 2023, 9, 2.	1.3	1
1210	Molecular Mechanisms of Noncoding RNA in the Occurrence of Castration-Resistant Prostate Cancer. International Journal of Molecular Sciences, 2023, 24, 1305.	1.8	2
1211	Novel Insights into The Roles of N ⁶ -methyladenosine (m ⁶ A) Modification and Autophagy in Human Diseases. International Journal of Biological Sciences, 2023, 19, 705-720.	2.6	6
1212	Detection, regulation, and functions of RNA N6-methyladenosine modification in plants. Plant Communications, 2023, 4, 100546.	3.6	14
1213	Effect of circular RNAs and N6-methyladenosine (m6A) modification on cancer biology. Biomedicine and Pharmacotherapy, 2023, 159, 114260.	2.5	7
1214	N6-methyladenosine methylation-related genes YTHDF2, METTL3, and ZC3H13 predict the prognosis of hepatocellular carcinoma patients. Annals of Translational Medicine, 2022, 10, 1398-1398.	0.7	2
1215	How does precursor RNA structure influence RNA processing and gene expression?. Bioscience Reports, 2023, 43, .	1.1	1

#	ARTICLE	IF	CITATIONS
1216	RNA N6-methyladenosine methylation and skin diseases. Autoimmunity, 2023, 56, .	1.2	3
1217	m ⁶ A mRNA methylation in human brain is disrupted in Lewy body disorders. Neuropathology and Applied Neurobiology, 2023, 49, .	1.8	3
1218	Current Insights into m6A RNA Methylation and Its Emerging Role in Plant Circadian Clock. Plants, 2023, 12, 624.	1.6	1
1219	Heterogeneous Nuclear Protein U Degraded the m ⁶ A Methylated TRAF3 Transcript by YTHDF2 To Promote Porcine Epidemic Diarrhea Virus Replication. Journal of Virology, 2023, 97, .	1.5	2
1220	RNA N6-methyladenosine modification in female reproductive biology and pathophysiology. Cell Communication and Signaling, 2023, 21, .	2.7	3
1221	<scp>N6</scp> â€methyladenosine <scp>RNA</scp> modification regulates cotton drought response in a Ca ²⁺ and <scp>ABA</scp> â€dependent manner. Plant Biotechnology Journal, 2023, 21, 1270-1285.	4.1	6
1222	mRNA Regulation by RNA Modifications. Annual Review of Biochemistry, 2023, 92, 175-198.	5.0	20
1223	Comprehensive analyses of molecular features, prognostic values, and regulatory functionalities of m6A-modified long non-coding RNAs in lung adenocarcinoma. Clinical Epigenetics, 2023, 15, .	1.8	1
1224	Aberrant RNA m6A modification in gastrointestinal malignancies: versatile regulators of cancer hallmarks and novel therapeutic opportunities. Cell Death and Disease, 2023, 14 , .	2.7	3
1225	N6-methyladenosine RNA modification in PD-1/PD-L1: Novel implications for immunotherapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2023, 1878, 188873.	3.3	3
1226	Role of N6-methyladenosine modification in central nervous system diseases and related therapeutic agents. Biomedicine and Pharmacotherapy, 2023, 162, 114583.	2.5	4
1227	Characterization of the m6A gene family in sorghum and its function in growth, development and stress resistance. Industrial Crops and Products, 2023, 198, 116625.	2.5	1
1233	N6-methylation of RNA-bound adenosine regulator HNRNPC promotes vascular endothelial dysfunction in type 2 diabetes mellitus by activating the PSEN1-mediated Notch pathway. Diabetes Research and Clinical Practice, 2023, 197, 110261.	1.1	5
1234	Target-promoted specific activation of m6A-DNAzyme for SPEXPAR-amplified and highly sensitive non-label electrochemical assay of FTO demethylase. Analytica Chimica Acta, 2023, 1247, 340902.	2.6	3
1235	Self-attention enabled deep learning of dihydrouridine (D)Âmodification on mRNAs unveiled a distinct sequence signature from tRNAs. Molecular Therapy - Nucleic Acids, 2023, 31, 411-420.	2.3	4
1236	Interaction between N6-methyladenosine (m6A) modification and environmental chemical-induced diseases in various organ systems. Chemico-Biological Interactions, 2023, 373, 110376.	1.7	2
1237	Inhibition of YTHDF1 prevents hypoxia-induced pulmonary artery smooth muscle cell proliferation by regulating Foxm1 translation in an m6A-dependent manner. Experimental Cell Research, 2023, 424, 113505.	1.2	4
1238	METTL3 regulates breast cancer-associated alternative splicing switches. Oncogene, 2023, 42, 911-925.	2.6	12

#	Article	IF	CITATIONS
1239	$<\!\!$ scp>FTO $<\!\!$ scp> negatively regulates the cytotoxic activity of natural killer cells. EMBO Reports, 2023, 24, .	2.0	1
1240	Emerging roles for heterogeneous ribonuclear proteins in normal and malignant B cells. Biochemistry and Cell Biology, 2023, 101, 160-171.	0.9	1
1241	The Emerging Role of m6A Modification in Endocrine Cancers, 2023, 15, 1033.	1.7	0
1242	Factors and Methods for the Detection of Gene Expression Regulation. Biomolecules, 2023, 13, 304.	1.8	0
1244	A Prognostic Signature for Colon Adenocarcinoma Patients Based on m6A-Related IncRNAs. Journal of Oncology, 2023, 2023, 1-13.	0.6	3
1245	Understanding the Epitranscriptome for Avant-Garde Brain Tumour Diagnostics. Cancers, 2023, 15, 1232.	1.7	2
1246	Regulatory roles of non-coding RNAs and m6A modification in trophoblast functions and the occurrence of its related adverse pregnancy outcomes. Critical Reviews in Toxicology, 2022, 52, 681-713.	1.9	1
1247	m6A Modificationâ€"Association with Oxidative Stress and Implications on Eye Diseases. Antioxidants, 2023, 12, 510.	2.2	2
1248	Overview of m6A and circRNAs in human cancers. Journal of Cancer Research and Clinical Oncology, 2023, 149, 6769-6784.	1.2	3
1249	RBM15 suppresses hepatic insulin sensitivity of offspring of gestational diabetes mellitus mice via m6A-mediated regulation of CLDN4. Molecular Medicine, 2023, 29, .	1.9	7
1250	m6A methylation: Critical roles in aging and neurological diseases. Frontiers in Molecular Neuroscience, 0, 16 , .	1.4	5
1251	Random Forest model reveals the interaction between N6-methyladenosine modifications and RNA-binding proteins. IScience, 2023, 26, 106250.	1.9	1
1252	The Comprehensive Analysis of N6-Methyadenosine Writer METTL3 and METTL14 in Gastric Cancer. Journal of Oncology, 2023, 2023, 1-13.	0.6	2
1253	Targeting RNA N6-methyladenosine to synergize with immune checkpoint therapy. Molecular Cancer, 2023, 22, .	7.9	9
1254	A Split CRISPR/Cas13b System for Conditional RNA Regulation and Editing. Journal of the American Chemical Society, 2023, 145, 5561-5569.	6.6	5
1255	N6-methyladenosine related gene expression signatures for predicting the overall survival and immune responses of patients with colorectal cancer. Frontiers in Genetics, 0, 14 , .	1.1	1
1256	Cellular liquid–liquid phase separation: Concept, functions, regulations, and detections. Journal of Cellular Physiology, 0, , .	2.0	0
1257	Role of Heterogeneous Nuclear Ribonucleoproteins in the Cancer-Immune Landscape. International Journal of Molecular Sciences, 2023, 24, 5086.	1.8	7

#	Article	IF	CITATIONS
1258	Recent advances in the plant epitranscriptome. Genome Biology, 2023, 24, .	3.8	10
1259	LncRNA CACCInc promotes chemoresistance of colorectal cancer by modulating alternative splicing of RAD51. Oncogene, 2023, 42, 1374-1391.	2.6	6
1261	N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms. Frontiers in Immunology, 0, 14, .	2.2	10
1262	N6-methyladenosine modifications in maternal-fetal crosstalk and gestational diseases. Frontiers in Cell and Developmental Biology, 0, $11,\ldots$	1.8	2
1263	Multi-task adaptive pooling enabled synergetic learning of RNA modification across tissue, type and species from low-resolution epitranscriptomes. Briefings in Bioinformatics, 2023, 24, .	3.2	3
1264	The role of m6A RNA methylation in autoimmune diseases: Novel therapeutic opportunities. Genes and Diseases, 2023, , .	1.5	1
1265	The m6A reader PRRC2A is essential for meiosis I completion during spermatogenesis. Nature Communications, 2023, 14 , .	5.8	6
1266	Potential Roles of m6A and FTO in Synaptic Connectivity and Major Depressive Disorder. International Journal of Molecular Sciences, 2023, 24, 6220.	1.8	6
1267	RNA m6A reader YTHDF2 facilitates precursor miR-126 maturation to promote acute myeloid leukemia progression. Genes and Diseases, 2024, 11, 382-396.	1.5	4
1268	Bta-miR-206 and a Novel IncRNA-IncA2B1 Promote Myogenesis of Skeletal Muscle Satellite Cells via Common Binding Protein HNRNPA2B1. Cells, 2023, 12, 1028.	1.8	1
1269	Integrative Genomic Analysis of m6a-SNPs Identifies Potential Functional Variants Associated with Alzheimer's Disease. ACS Omega, 2023, 8, 13332-13341.	1.6	1
1270	The critical roles of m6A RNA methylation in lung cancer: from mechanism to prognosis and therapy. British Journal of Cancer, 2023, 129, 8-23.	2.9	6
1271	Epitranscriptome Mapping of N6-Methyladenosine Using m6A Immunoprecipitation with High Throughput Sequencing in Skeletal Muscle Stem Cells. Methods in Molecular Biology, 2023, , 431-443.	0.4	0
1272	SINEUP non-coding RNA activity depends on specific N6-methyladenosine nucleotides. Molecular Therapy - Nucleic Acids, 2023, 32, 402-414.	2.3	2
1274	Comprehensive analysis of a novel RNA modifications-related model in the prognostic characterization, immune landscape and drug therapy of bladder cancer. Frontiers in Genetics, 0, 14, .	1.1	1
1275	Functions of N6-methyladenosine in cancer metabolism: from mechanism to targeted therapy. Biomarker Research, 2023, 11 , .	2.8	3
1276	Decoding m6A mRNA methylation by reader proteins in liver diseases. Genes and Diseases, 2024, 11, 711-726.	1.5	1
1277	m6A-modification of cyclin D1 and c-myc IRESs in glioblastoma controls ITAF activity and resistance to mTOR inhibition. Cancer Letters, 2023, 562, 216178.	3.2	4

#	Article	IF	CITATIONS
1278	The Proteins of mRNA Modification: Writers, Readers, and Erasers. Annual Review of Biochemistry, 2023, 92, 145-173.	5.0	21
1279	Novel insights into the multifaceted roles of m6A-modified LncRNAs in cancers: biological functions and therapeutic applications. Biomarker Research, 2023, 11 , .	2.8	3
1280	Transcriptome-wide profiling of RNA N4-cytidine acetylation in Arabidopsis thaliana and Oryza sativa. Molecular Plant, 2023, 16, 1082-1098.	3.9	2
1281	METTL16, an evolutionarily conserved m6A methyltransferase member, inhibits the antiviral immune response of miiuy croaker (Miichthys miiuy). Developmental and Comparative Immunology, 2023, , 104713.	1.0	O
1282	Role of m6A methylation in retinal diseases. Experimental Eye Research, 2023, 231, 109489.	1.2	2
1283	The expanding role of RNA modifications in plant RNA polymerase II transcripts: highlights and perspectives. Journal of Experimental Botany, 2023, 74, 3975-3986.	2.4	2
1284	m6A modification on the fate of colorectal cancer: functions and mechanisms of cell proliferation and tumorigenesis. Frontiers in Oncology, 0, 13 , .	1.3	4
1286	Artificially Evolved Superbinder for Specific Recognition of N ⁶ -Methyladenine Base Modification in DNA and RNA. Analytical Chemistry, 2023, 95, 7071-7075.	3.2	1
1290	Regulation of the epigenome through RNA modifications. Chromosoma, 2023, 132, 231-246.	1.0	4
1300	The interplay betweenÂN6-methyladenosine andÂprecancerous liver disease: molecular functions andÂmechanisms. Discover Oncology, 2023, 14, .	0.8	1
1311	Post-transcriptional checkpoints in autoimmunity. Nature Reviews Rheumatology, 2023, 19, 486-502.	3.5	3
1312	Deciphering glioma epitranscriptome: focus on RNA modifications. Oncogene, 2023, 42, 2197-2206.	2.6	3
1316	Regulation of non-coding RNAs., 2023,, 209-271.		0
1324	The roles and implications of RNA m6A modification in cancer. Nature Reviews Clinical Oncology, 2023, 20, 507-526.	12.5	34
1332	N6-methyladenosine RNA methylation in liver diseases: from mechanism to treatment. Journal of Gastroenterology, 2023, 58, 718-733.	2.3	3
1343	Role of N6-methyladenosine RNA modification in gastric cancer. Cell Death Discovery, 2023, 9, .	2.0	0
1354	The therapeutic targets of N6-methyladenosine (m6A) modifications on tumor radioresistance. Discover Oncology, 2023, 14, .	0.8	1
1358	N6-methyladenosine RNA modifications: a potential therapeutic target for AML. Annals of Hematology, 0, , .	0.8	O

#	Article	IF	CITATIONS
1364	Epigenetic regulation in major depression and other stress-related disorders: molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	5
1370	Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	7
1396	Therapy of infectious diseases using epigenetic approaches. , 2024, , 853-882.		0
1398	RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	0
1400	Probing the RNA Structure-Dependent RNA Regulations and Functions. RNA Technologies, 2023, , 145-158.	0.2	0
1401	Probing Techniques of Secondary and Tertiary RNA Structure and a Case Study for RNA G-Quadruplexes. RNA Technologies, 2023, , 159-182.	0.2	O
1402	The role of N6-methyladenosine methylation in PAHs-induced cancers. Environmental Science and Pollution Research, 2023, 30, 118078-118101.	2.7	1
1421	The role of RNA modification in urological cancers: mechanisms and clinical potential. Discover Oncology, 2023, 14, .	0.8	O
1429	Recent Advances in Adenosine-to-Inosine RNA Editing in Cancer. Cancer Treatment and Research, 2023, , 143-179.	0.2	0
1430	RNA Modifications in Cancer Metabolism and Tumor Microenvironment. Cancer Treatment and Research, 2023, , 3-24.	0.2	0
1443	New horizons for the role of RNA N6-methyladenosine modification in hepatocellular carcinoma. Acta Pharmacologica Sinica, 0, , .	2.8	0
1446	N6-Methyladenosine RNA Modification in Normal and Malignant Hematopoiesis. Advances in Experimental Medicine and Biology, 2023, , 105-123.	0.8	0
1451	Ubiquitination and deubiquitination in the regulation of N6-methyladenosine functional molecules. Journal of Molecular Medicine, 2024, 102, 337-351.	1.7	0
1453	Mechanism and Regulation of Immunoglobulin Class Switch Recombination. , 2024, , 213-234.		0
1458	RNA N6-methyladenosine modifications in urological cancers: from mechanism to application. Nature Reviews Urology, 0, , .	1.9	0
1460	The Functions of N6-Methyladenosine in Nuclear RNAs. Biochemistry (Moscow), 2024, 89, 159-172.	0.7	0
1478	RNA Metabolism Governs Immune Function and Response. Advances in Experimental Medicine and Biology, 2024, , 145-161.	0.8	0